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ABSTRACT

An example is given of a nonreflexive Banach space X that is uniformly nonoc-
tahedral (or uniformly non-l‘,”), in the sense that thereis a A >1 such that
there is no isomorphism T of /¥ into ¥ for which

)] s [T0] S Alx] if x el

It is known that a Banach space B is reflexive if B is uniformly convex (see [16]
and [18]) or if B is uniformly nonsquare [13, Th. 1.1, p. 543], and that B**/B
is reflexive if B is uniformly nonoctahedral [4]. It has been conjectured that a
Banach space is reflexive if it is uniformly nonoctahedral. It is known that a
Banach space is super-reflexive if and only if it is isomorphic to a uniformly
convex space or if and only if it is isomorphic to a uniformly nonsquare space [5].
It has been conjectured that a Banach space is super-reflexive if and only if it is
isomorphic to a uniformly nonoctahedral space. The example X shows that
both of these conjectures are false.

It has also been conjectured that /; is finitely representable in each non-
reflexive Banach space X; that is, for each n and each A > 1 there is an iso-
morphism T, of /{"onto a subspace of X for which

x| s |T@] s A)x] i xe AV

This conjecture is known to be true if X has an unconditional basis or is a Banach
lattice, in fact, X then contains a subspace isomorphic to ¢, or I; (see [7, Th. 6,

1 This research was supported in part by NSF Grant GP-28578. It was presented in prelimi-
nary form at a conference at Oberwolfach, Germany, October 15-20, 1973.

Received February 7, 1974 and in revised form March 13, 1974
145



146 R. C. JAMES Israel J. Math.,

p. 142],[101, [13, Th. 2.2, p. 549], {17, Th. 16, p. 647]).1t is also true if X has
local unconditional structure [15]; or if R¥(X) is nonreflexive for all k, where
RY(Y) = Y**/Y and R**!(Y) = R'[R¥(Y)] for k = 1 and Yany Banach space
[4]. Tt was shown by A. Beck that a certain law of large numbers for random
variables with values in a Banach space X is valid if and only if /; is not finitely
representable in X; he called such a space B-convex [1].

The nonreflexive Banach space X to be defined is uniformly nonoctahedral
because there is a positive number A such that, if |x| = |y =|z| =1,
then there is an arrangement of signs for which

) |x+y+z]<3—A

The number A is rather small in comparison to the known fact that if 6 > 3/4,
then in the unit ball of each nonreflexive Banach space there are elements x, y
and z for which ||x £ y + z| Z 3 — & for all choices of signs [8]. However, it is
known that if I{® is uniformly representable in a space Y (that is, /; is crudely
finitely representable in Y in the sense that there is a 4 > 1 such that for each n
there is an isomorphism T, of I{” onto a subspace of Y for which A~1] x ||
< | T | = Alx| if x e I{), then /, is finitely representable in Y [6, Th. 1,
p. 62]. Thus, however small A may be for the space X, it follows that, for any
A > 1, there is an n for which there does not exist an isomorphism T of /{”
onto a subspace of X with the property that

it]x s @] s 31x] if xe 12

It is known that if X is a nonreflexive Banach space and 6 > 0, then there
are n members {x;} of X such that || x;|| = 1 for each i and

) % £ %24 £x,[| >n=9

for n choices of signs. These choices of signs can be the ones for which all positive
signs precede all negative signs (see [13, Th. 2.1, p. 547] and [19, Th. 2.2, p. 164])-
Now note that it follows by induction that if we are given n + 1 elements of type
X3 + X, + X3 + - £ X,, then there exist i and j for which x, & x; + x; occurs
as part of one of these n + 1 elements for each of the four possible choices of
signs (if such i and j do not exist, then there must be at most n—1 different com-
binations remaining if x, is discarded from each of the given n+1 combinations,
but at least two of these must have occurred with both + x, and — x,). There-
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fore if there are n + 1 choices of signs for which (2) is satisfied and if i and j are
chosen in this way, then

[xg £ %+ x| > @B ~8)—(n-3)=3-35

for all choices of signs. Thus it follows from the theorem of this paper that there
exists a nonreflexive Banach space X for which I cannot be embedded iso-
morphically in X with all points on n + 1 of the faces of the unit ball of I;”
having norms nearly equal to one.

A Banach space is said to be stable if for each bounded sequence {x,} there is
a subsequence {x,,} and an x such that, for each ¢ > 0, there is an N for which

“ x—=n" 100, + - + X ) “ <e
if {k;} is a strictly increasing sequence of positive integers and n = N the space
is ergodic for isometries if, for each linear isometry T, the sequence of Cesaro
averages {n~1(T'1+ --- + T")} converges in the strong operator topology; and

the space is (r,e)-convex if, whenever |x;|| £ 1 for i < r, there is a choice of
signs such that

”x1 + x, + o0 £+ X, “ < r(l—eg).

It is known [2, Th. 1] that all (r,&)-convex spaces (r = 2) are stable if all (r,¢)-
convex spaces are ergodic for isometries. Since all stable spaces are reflexive, it
follows from the theorem of this paper that if ¢ < (.0432 +)/3, there is a (3, 5)-
convex space that is not ergodic for isometries. Also, there exists a reflexive
stable space which is B-convex and not super-reflexive [9, Ex. 3]. Surprisingly
there is a Banach space that has an equal-signs-additive basis and is B-convex,
linearly isometric to its second conjugate, and quasi-reflexive but not reflexive [3].

The reader may wish to convince himself that the example constructed in the
proof of the theorem behaves much as the quasi-reflexive spaces discussed in [11]
and [12]. It has a natural basis {e,} for which the nth component of ¢, is 1 and all
other components are zero. This basis is monotone and shrinking. The space is

quasi-reflexive of order one; that is, its natural image in the second dual has
codimension 1.

The following special conventions will be used. A bump is a sequence of real
numbers x = {x,} for which there is a bounded interval I and a number a such
that x, = a if nel and x, = 0 if n¢I. The altitude of the bump is a, its sign is
sg(a), and the left and right ends are the first and last integers in I. For two
bumps with associated intervals I and J, the two bumps are disjoint if I N J is
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empty, they intersect if I NJ is not empty, and the first bump contains the
second if I » J. The following combinatorial lemma will be a basic tool for
estimating the number A in (1).

LEMMA. Let &, 5, and { be three sequences of real numbers each of which
s a finite sum of disjoint positive bumps of altitude 1. Let the respective numbers
of bumps be p, q, and r. Then, for each arrangement of signs o for which at
most one sign is negative, there is a set of three sequences {£,,,(,} such that &,
and {, are sums of disjoint bumps of altitude 1, n, is the sum of disjoint bumps
of altitudes + 1 or — 1 according as all signs in ¢ are positive or exactly one
sign in o is negative, and:

@) (£8EnEDe=C+m 105
(i) p,+4,+ 71, < p+q-+rforeacha, where p,, q,, and r, are the numbers

of bumps in &,, n,, and {,, respectively;
4
(i) X (p,+4) =2+4q+0).
c=1

Proor. It is sufficient to prove the lemma for the case the support of & + 9 +
is an interval of integers, since otherwise &,, 1,, and {, could be defined piece-wise
on the intervals whose union is the support of & +# + { and which have the
property that any two intervals are separated by integers at which each of ¢,
and { is zero. Assuming the support of £ +#n + { is an interval of integers, we
represent it as the union of intervals of maximal length which have the property
that each of &, 5, and ( is constant on each interval. We shall let Q denote the
collection of such intervals and let o be the number of intervals in Q on which
exactly one of &, n, or { is nonzero, § the number of intervals in Q on which
exactly two of ¢, 1, or { are nonzero, and y the number of intervals in Q on which
all of &, 1, and { are nonzero. Let us observe that

3) a+p+y < 2p+q+n—1.

That this inequality is true can be seen by noting that the intervals in Q are dis-
joint; their union is an interval; for two consecutive intervals I and J in Q, either
the right end of I or the left end of J is an end of a bump; the left end of the first
interval and the right end of the last interval are ends of bumps; and there are at
most 2(p + ¢q + r) ends of bumps.

If ¢ denotes the arrangement of signs in + £ + # & { for which all signs are
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positive, let &, be identically 1 on the support of ¢ + # + { and let 4, be identically
1 on all intervals in Q on which all of &, , and { are nonzero. Then &4+ 75+ ¢
— (&, +1,) = {, is a sum of disjoint bumps of altitude 1. Note that &, has 1
bump and 7, has y bumps.

Now suppose ¢ denotes an arrangement of signs in + £ + n + { for which
exactly one sign is negative. Let £, be identically 1 on all intervals in Q on which

(£ €41+ ), is identically 2; that is, on all intervals in Q on which the two of
+ ¢, + 1, and £ { with positive signs are identically 1 and the other is identically 0.

Then
4
) X p,=1+8
=1

Let #, be identically — 1 on all intervals in Q on which (+ £+ 7 £ {), is iden-
tically — 1; that is, on all intervals in © on which the one of + ¢, +4, and +¢{
with negative sign is identically — 1 and the others are identically 0. Then

4
) g =a+y,
c=1

and (£ ¢+ n+0),—(, +1,) =, is a sum of disjoint bumps of altitude 1.

To show that (ii) is satisfied, we note first that the variation of £, + #,+ (, is
2(p, + q, + 1,). Then it follows from (i) that the variation of (+ ¢+ n+{), is
2(p, + 4, +71,). Since the variations of &, 5, and { are 2p, 2q, and 2r, we can

conclude that (ii) is satisfied. It follows from (3), (4), and (5) that

4
Z@ta)=1+a+p+yS2ptq+n),
=1

o
so (iii) is satisfied.

THEOREM. Let A satisfy A <3 —(3*+4-6%) = .0432+. Then there is
a nonreflexive Banach space X such that, if x, y, and z are members of X for
which ” x ]| = I] y ” = ” z ” = 1, then there is an arrangement of signs for which

”xiy-_i_— z” < 3-—A.
Proor. Choose 0 so that 0 < § < 1 and
©) 3-(3+3-690-7 > A,
Since u = v = w = (1 + 26°)~1 is a solution of the system

u+0Pv+Pw=1 FCutv+Pw=1 Cu+t0v+w=1,
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we can choose Asothat 8% < A < 1and,if8° < a
there are positive values of u, v, and w for which

a;; £ @°JAforalli and j, then

M Utagpv+apw=1 ayut+v+aw=1ayu+av+w=1

Now define a functional [ ] whose domain is the set of all sequences x of real
numbers which have support in a bounded interval I and also have representations
as X7 x', where each x' is the sum of m; disjoint bumps with support in I and
equal altitudes a; and the quotient of the altitude of a bump of x/ and the altitude
of a bump of x for i < j is A? for some positive integer p (and therefore the bumps
of x* and of x/ have the same sign for all i and j). For each such x, let

© + ©
®) [x] = inf {( z miaiz) : x = X xas described above}.
1

1

For an arbitrary sequence x with finite support, let
m m
Ix| = inf{E [¥]:x= X x": ,
1 1

and let X be the resulting normed linear space. Let us verify simultaneously
that | x| > 0 if x +# O and that the completion X of X is not reflexive (see
[14, Th. 3(23), p. 109]), by noting that:

(@ |{x}| s1ifx;=1wheni < nandx; =0wheni > n;

® Jx] z@-Dsup{|x]}.
To establish (b), observe that if the altitudes of the bumps making up an x* = {x¥}
are aA’~! for j = 1, then we have

sup{l kl}<l z aii- 1] =—L_|Z

so that [x*] = (1 — A)sup {|x} |} and it follows from the definition of || - || that
|x]| = @~ Hsup{|x]}.

For the definition of | || to be valid, it is necessary that the domain of [ ] be
such that each x in X is the sum of members of the domain of [ ]. This is rather
clearly satisfied, since each x in X has only finitely many nonzero components
and each x with only one nonzero component is in the domain of [ ]. Actually,
the domain of [ ] is the set of all xe X whose nonzero components all have
the same sign. To see this, suppose x = {x;} with x; = O for all i and choose any
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a so that a(X P4 > sup {x;}. Now define x* by letting x' = {¢} a}, where ¢ = 1
if x, = aand &} = 0 otherwise; then let x* = {e2aA}, wheres? = 1if x, — x = al
and e} = 0 otherwise; and, in general, let x*= {gfat*"'}, where &f =1 if
x;— L FZ1x/ 2 ad*~! and &f = 0 otherwise.

If [x] exists, [x] is actually attained as (X °ma?)*. To see this, note first
that if x;, = 0 when i > N, then in (8) we can always have m; < N. Therefore, if
lim [ El m¥ (/1"~1ak)2]* = [x]

k= o i=

with m§ # 0 for all k, and if a is an accumulation point of {a,: k = 1}, then there
are numbers m; = 0 for which

[x] = [Z:‘,o ml(l"la)z] t

A brief sketch will be given of a proof that [x + y] < [x] 4 [»] need not be
true even if x, y, and x + y are in the domain of [ . The purpose of this is to
show that the introduction of ]| ” was badly needed, both because the domain
of [ ]isnot X and because [ ] does not satisfy the triangle inequality. It can
be shown that, subject to m; = 1, m, and each m, being a nonnegative integer, and

al + X gdY) =1 with ¢, =0 or 1
1

according as m; > 0 or m; = 0, the minimum of a?(m,; + X "mA?) is (1 — 2)
(1 + 1)~ 1 and this minimum is attained only when m; = 1 forallianda =1 — 4.
Now choose < 1 and an integer n so that n[6(1 — )] = 1. For each k < n,
let x* have constant value §(1 — 1) on the interval [1, k] and zero terms otherwise.
Then [x*] = 6(1 — 2)**(1 + )~ Y2Also, if [x + y] £ [x] + [y] whenever x, y,
and x + y are in the domain of [ J, then

L E ]2 -H+ -t
1

However, there is a number a for which there are bumps with altitudes aA?® such
that p(0) = 0 and

n o + -]
5 |- a[1+ 5 xm')] : a[l + 3 M*)] 1.
1 L 1 1

But then p(i) = i for all i, a = 1 — 4, and X} x* is the sum of bumps of altitudes
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(1 — A)A! for i = 0, as well as the sum of n unequal bumps of altitudes 6(1 — A)
< 1 — A. This is not possible.

Now let x, y, and z be arbitrary members of X for which |x| = [y| = [|z]| =1.
Choose representations for x, y, and z so that x = Z2xf, y = Zfyf z = Tz
and

%l > 0% [1 |

q r
y>02 Bl lz]>0 3 [4)
Next, replace these representations by {(x%, y5, 2% k £ s}, so that

51> 0% ) Iy]>0% i [=0>0% 4],

where x = Zxk, y = X042z = Tz, and

) inf([4], [A1 [} 2 0 *sup ([41. 14D, [4D)-
This can be done by choosing s large enough so that, for each x§, there is an
integer n, such that X /n, = s and

0-—-2

4 p
0% [xi] [x] 6712 []
1 < < L <
s n s s

Y|
IA

with similar statements for y% and z%. Then divide each x} into n, vectors, each
equal to x%/n, , with similar divisions of each y% and zF. These give the {x3}, {5},
and {z%}. They satisfy (9) however they are ordered.

Finally, choose {(x;, yx,2z): 1 £ i < n} so that

a0  [=l>0Z B rl> 03 L 2] >0 2 [

where x = X0x*, y = T1 4% 2z = X125

(1 inf {[x*], [*], [T} 2 6° - sup {{x'], [']. [']}
and there are representations, x*= T2 ,z% y* = T@  yb F = T2, M for
which [x*], [y*], and [2*] can be evaluated by use of (8) and x* »*, and z* have

A-compatible altitudes (that is, the quotient of the altitudes of two bumps is
+ A? for some integer p if each of these bumps is used in one of x*, y¥, or z¥).
This is done as follows. For each k, choose {a;;} so that 6 < a;; < 6%/;

(x%, @3, ¥%,a;,2%) have A-compatible altitudes; (ay,x5,¥%,a3,23) have A-com-
patible altitudes; and (a,;x%5, a;3)%,z5) have A-compatible altitudes. Choose a
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solution (u, v, w) of (7) for which u, v, and w are positive and let each of
(ux'é,uauy'z‘,uauz;), (valzx;,vyz",vanzkz), (wa“xzk,wanyz",wz;‘) form a triple
of type (x*, J*, ). The vector sum of these three new triples is (x%, y%, z%)
Inequality (11) follows from (9) and the fact that 8° < a;; < 1 for each q;;.

In what follows, we let (£,1,() denote (+ x*, + y*, +z*) for a particular value

of k and a particular arrangement of signs. Then

(12) inf {[&], [n], [£]} > 0° - sup {[&], [n].[<T}-

Also, &, n, and { have representations as ¢ = X7 &, n = X0, { = ZT¢* for
which
@ 4 © % ® k1

=] ney] 10 =2 a@r] k1= [ nar]
where & #, and {' have bumps of altitude a; and the respective numbers of
bumps are p;, ¢; and r, for each i. The quotient a;/a; for i < j is A? for some
positive integer p. We assume that the signs in ( + x*, + y*, £ z*) have been
chosen so that a; > 0 and all bumps used in &', 5%, or {! have positive altitudes
for all i.

It follows from the lemma that, for each i and each arrangement of signs o for
which at most one sign is negative, we can replace {&,*,{’} by {&,5},{}} so that
& and £} are sums of disjoint bumps of altitude a;, #" is the sum of disjoint bumps
of altitude a; or —a; according as all signs in & are positive or exactly one sign
is negative, and:

@ (x&€+n+0),=8+4+0;

®) pa+ 9o+ 75 < py + q; + r; for each o, where p,;, 4,,;, and r,; are

the numbers of bumps in &, 5}, and ¢}, respectively;

© Zi. (Poi+ 4) = 2(p + g; + 7).

Let (Av)z = ?=1pa,i(ai)29 (Ba)z = Zicil qmi(ai)29 and (Ca)z = Ei‘il rn'vi(ai)z'
Then it follows from (a) that

[(£&+n+0),| <4,+B,+C,.

It follows from (b) that A2+ B2+ C2 < X2,(p;i+ q;+ r)a? = M?, and
therefore

[(x&xnx0,| <4, +B,+[M* - (42 + BH]E
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Now let 42 = X5, A2, B> = T:_, B and use the elementary inequality
Tiox, £ 2T xH? to obtain

4
E |+t t0,]

IIA

4 4
X (4,+B)+ X [M*-(42+BH)?*
a=1 =1

< 2(A + B) + 2[4M?* — (4% + BH)]?
< 2[2(A* + BY)]* + 2[4M? — (4% + BY)] .
The rate of change of the last member of this inequality with respect to A* + B*

is positive if A2 + B2 < 8M?/3. Since it follows from (c) that 4% + B% < 2M?,
we have

(13 S |(£Etnt0,] S @+2-29M.
a=1

Now, for each k, let M7 = [x]* + [y*]* + [2*]*. Then it follows from (11) that
M S35 [x]if 1Sk <,
and it follows from (13) that
)4:1|[ +xF+ y & 2| S @03+ 20650 [x*],
where X7_, indicates the sum over the four arrangements of signs in +x* + y*
+ z* for which at most one of + x*,+ y* and + z* has negative bumps. However,

this could as well be the sum over the four arrangements of signs for which at
most one sign is negative, so we have

4 4
Tltxtytz]= I | (£x skt
a=1 =1 k=1
n 4
< X 2||j—_x"iy"+z"”
k=1 o=

IIA

@4-35+2-6H0-5 X [x¥],
k=1

and it follows from (10) and || x | = 1 that
4
Tltxtytz]| @ 3+2:6907|x| =@ 3t +2-696"7
a=1
= 12—-[12-(4-3*+2-6%)077].

Therefore there is an arrangement of signs for which
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lx+y+z] <3-[3-0G*+4-690"7],
and it then follows from (6) that, for this arrangement of signs,

Ix+y+z| <3-A
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