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ABSTRACT 

An example is given of a nonreflexive Banach space J~that is uniformly nonoc- 
tahedral (or uniformly non-lr in the sense that there is a 2 > 1 such that 
there is no isomorphism T of I~ 3) into~ for which 

2 - ,  II x 11 --< II T(x)II :-< 2 II x II i f  x ~ l~ 3). 

It is known that a Banach space B is reflexive i fB  is uniformly convex (see [16] 

and 1-18]) or if B is uniformly nonsquare [13, Th. 1.1, p. 543], and that B**/B 
is reflexive if B is uniformly nonoctahedral [4]. It has been conjectured that a 

Banach space is reflexive if it is uniformly nonoctahedral. It is known that a 

Banach space is super-reflexive if and only if it is isomorphic to a uniformly 

convex space or if and only if it is isomorphic to a uniformly nonsquare space [5]. 

It has been conjectured that a Banach space is super-reflexive if and only if it is 

isomorphic to a uniformly nonoctahedral space. The example ~ shows that 

both of  these conjectures are false. 

It has also been conjectured that l I is finitely representable in each non- 

reflexive Banach space X;  that is, for each n and each 2 > 1 there is an iso- 

morphism T~ o f  l~)onto a subspace of  X for which 

2 - ,  II ~ II -< II ~<~)11 --< 2 II x II if x ~ z;": 
This conjecture is known to be true if X has an unconditional basis or is a Banach 

lattice, in fact, X then contains a subspace isomorphic to co or 11 (see [7, Th. 6, 
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p. 142], [I0], [13, Th. 2.2, p. 549], [17, Th. 16, p. 647]).It is also true i f X  has 

local unconditional structure [15]; or if RR(X)is nonreflexive for all k,  where 

RX(y) = Y**/Yand Rk+I(Y) = RI[Rk(y)] for k ~ 1 and YanyBanach space 

[4]. It was shown by A. Beck that a certain law of large numbers for random 

variables with values in a Banach space X is valid if and only if Ix is not finitely 

representable in X; he called such a space B-convex [1]. 

The nonreflexive Banach space )7 to be defined is uniformly nonoctahedral 

because there is a positive number A such that, if 11 x II = l[ Y 11 = Ilz If = 1, 

then there is an arrangement of signs for which 

(1) fix ! y ___ zl[ < 3 - A .  

The number A is rather small in comparison to the known fact that if 6 > 3/4, 

then in the unit ball of each nonreflexive Banach space there are elements x, y 

and z for which II x ___ y _ z II >-- 3 - 5 for all choices of signs [8]. However, it is 

known that if l(~ ") is uniformly representable in a space Y (that is, 11 is crudely 

finitely representable in Y in the sense that there is a 2 > 1 such that for each n 

there is an isomorphism T, of l~ ") onto a subspace of Y for which 2 -I l l  x II 
-< II To(x)II <-- ~ II x II if x e l~")), then l I is finitely representable in r [6, Th. 1, 

p. 62]. Thus, however small A may be for the space ~, it follows that, for any 

2 > 1, there is an n for which there does not exist an isomorphism T of  l(x ") 

onto a subspace of . (  with the property that 

~-1 II x 1[ <-- 11 r(x)II --- ~ II x II if x ~ l?'. 

It is known that if X is a nonreflexive Banach space and 6 > 0, then there 

are n members {x,} of X such that 11 x, II -- 1 for each i and 

(2) IIx, -+ x~ +_ Jr x.II > n - ~  

for n choices of signs. These choices of signs can be the ones for which all positive 

signs precede all negative signs (see [13, Th. 2.1, p. 547] and [19, Th. 2.2, p. 164]). 

Now note that it follows by induction that if we are given n + 1 elements of  type 

xl _ x2 + Xa _ "'" - x,, then there exist i and j for which xl _ x~ _ xj occurs 

as part of one of these n + 1 elements for each of the four possible choices oj 

signs (if such i and j do not exist, then there must be at most n -  1 different com- 

binations remaining if x, is discarded from each of the given n + 1 combinations, 

but at least two of these must have occurred with both + xn and - xn). There- 
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fore if there are n + 1 choices of signs for which (2) is satisfied and if i and j are 

chosen in this way, then 

IIx, - x, _+ xjll > (n-6) - (n-3)=  3 - 6  

for all choices of signs. Thus it follows from the theorem of this paper that there 

exists a nonreflexive Banach space )7 for which I] ") cannot be embedded iso- 

morphically in X with all points on n + 1 of  the faces of  the unit ball of  1[ ") 

having norms nearly equal to one. 

A Banach space is said to be stable if for each bounded sequence {x,} there is 

a subsequence {x,,} and an x such that, for each 8 > 0, there is an N for which 

[I X -- n-X(xk,  q - . . -  -b Xk. ) II "< g 

if {k~} is a strictly increasing sequence of positive integers and n > N; the space 

is ergodic for isometries if, for each linear isometry T, the sequence of  Cesaro 

averages {n- l (T  1 + ... + Tn)} converges in the strong operator topology; and 

the space is (r,e)-convex if, whenever [Ix i I1 z 1 for i < r, there is a choice of 

signs such that 

l{ x, +_ x.  _+... _+ x. l{ < r (1 -  e). 

It is known [2, Th. 1] that all (r, e)-convex spaces (r > 2) are stable if all (r, e)- 

convex spaces are ergodic for isometries. Since all stable spaces are reflexive, it 

follows from the theorem of this paper that if  e < (.0432 + )/3, there is a (3, e)- 

convex space that is not ergodic for isometries. Also, there exists a reflexive 

stable space which is B-convex and not super-reflexive [9, Ex. 3]. Surprisingly 

there is a Banach space that has an equal-signs-additive basis and is B-convex, 

linearly isometric to its second conjugate, and quasi-reflexive but not reflexive [3]. 

The reader may wish to convince himself that the example constructed in the 

proof of the theorem behaves much as the quasi-reflexive spaces discussed in [11] 

and [12]. It has a natural basis {e,} for which the nth component of e, is 1 and all 

other components are zero. This basis is monotone and shrinking. The space is 

quasi-reflexive of order one; that is, its natural image in the second dual has 
codimension 1. 

The following special conventions will be used. A bump is a sequence of real 

numbers x = {x,) for which there is a bounded interval I and a number a such 

that x, = a if n ~ I and x, = 0 if n ~ I. The altitude of the bump is a, its si#n is 

sg(a), and the left and right ends are the first and last integers in I. For two 

bumps with associated intervals 1 and J, the two bumps are disjoint if I ~ J is 
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empty, they intersect if I (3 J is not empty, and the first bump contains the 

second if I ~ J. The following combinatorial lemma will be a basic tool for 

estimating the number A in (1). 

LEMMA. Let 4, ~l, and ~ be three sequences of real numbers each of which 

s afinite sum of disjoint positive bumps of altitude 1. Let the respective numbers 

of bumps be p, q, and r. Then, for each arrangement of signs ~ for which at 

most one sign is negative, there is a set of three sequences {~,,~/~, ~,} such that ~ 

and ~ are sums of disjoint bumps of altitude 1, tl~ is the sum of disjoint bumps 

of altitudes + 1 or - 1 according as all signs in ~ are positive or exactly one 

sign in ~ is negative, and: 

(i) ( _ + ~ + _ ~ + 0 ~  = r + n~ + ~ ;  

(ii) p~ + q~ + r~ < p + q + r for each ~, where p~, q,, and r~ are the numbers 

of bumps in ~ ,  ~l~, and ~,  respectively; 

4 

(iii) 2g (p~+q~)<_2(p+q+r) .  

PROOF. It is sufficient to prove the lemma for the case the support of 4 + ~/+ 

is an interval of integers, since otherwise ~ ,  t/~, and ~ could be defined piece-wise 

on the intervals whose union is the support of ~ + t / +  [ and which have the 

property that any two intervals are separated by integers at which each of ~, t/, 

and ~ is zero. Assuming the support of ~ +~/+  ~ is an interval of integers, we 

represent it as the union of intervals of maximal length which have the property 

that each of ~, ~/, and ~ is constant on each interval. We shall let f~ denote the 

collection of such intervals and let a be the number of intervals in ~ on which 

exactly one of 4, t/, or ~ is nonzero, fl the number of intervals in ~ on which 

exactly two of ~, t/, or ~ are nonzero, and ~ the number of intervals in f~ on which 

all of 4, ~/, and ~ are nonzero. Let us observe that 

(3) a + f l +  y =< 2(p + q +  r ) -  1. 

That this inequality is true can be seen by noting that the intervals in f~ are dis- 

joint; their union is an interval; for two consecutive intervals I and J in f~, either 

the right end of I or the left end of J is an end of a bump; the left end of the first 

interval and the right end of the last interval are ends of bumps; and there are at 

most 2(p + q + 1-) ends of bumps. 

If  tr denotes the arrangement of signs in + 4 + r / +  ( for which all signs are 
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positive, let 4, be identically 1 on the support of 4 + ~/+ ( and let ~/~ be identically 

1 on all intervals in fl on which all of 4, t/, and ( are nonzero. Then 4 + ~/+ ( 

- (4, + ~/,) = ( ,  is a sum of disjoint bumps of altitude 1. Note that 4~ has 1 

bump and ~/~ has ~ bumps. 

Now suppose tr denotes an arrangement of signs in +_ ~ + ~/+ ( for which 

exactly one sign is negative. Let ~ be identically 1 on all intervals in fl on which 

( +  ~ - ~/+ O~ is identically 2; that is, on all intervals in t) on which the two of 
_+ ~, + ~/, and + ( with positive signs are identically 1 and the other is identically 0. 

Then 

4 

(4) • po--- 1 + f t .  
o . = 1  

Let ~/, be identically - 1 on all intervals in s on which ( + 4 + '1 + O, is iden- 

tically - 1; that is, on all intervals in ~ on which the one of  +_ ~, + ~/, and +_ ( 

with negative sign is identically - 1 and the others are identically 0. Then 

4 

(5) X q~ = ~+~,  
t r = l  

and ( + ~ _+ ~/+ ()~ -(Go + ~/,) = ( ,  is a sum of disjoint bumps of altitude 1. 

To show that (ii) is satisfied, we note first that the variation of 4, + r/o + ( ,  is 

2(p, + q, + to). Then it follows from (i) that the variation of ( _+ 4 + '1_ (), is 

2(p~ + q, + r,). Since the variations of 4, r/, and ( are 2p, 2q, and 2r, we can 

conclude that (ii) is satisfied. It follows from (3), (4), and (5) that 

4. 

E ( p , + q , )  = l + c ~ + f l + 7  < 2 ( p + q + r ) ,  
o ' = |  

so (iii) is satisfied. 

THEOP.EM. Let A satisfy A < 3 - ( 3  ~r+�89 ~r) = .0432+.  Then there is 

a nonre.flexive Banach space ,~ such that, i f  x, y, and z are members of  .~for 

which H x ]] = I] Y ]1 = [] z ]l = 1, then there is an arrangement of  signs for  which 

tlx +_ y _+z II < 3 -  A. 

PROOF. Choose 0 so that 0 < 0 < 1 and 

(6) 3 - (3 ~ + �89 6�89 - ~ > A. 

Since u = v = w = (1 + 203) -1 is a solution of the system 

u+Oav+Oaw= 1, Oau+v+Oaw= 1, Oau+Oav+w--- 1, 
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we can choose ~ so that 03 < 2 < 1 and, if 03 < a 0 < 03/2 for all i and j ,  then 

there are positive values of u, v, and w for which 

(7) u + a12v + aiaw = 1, a21u + v + a23w = 1, a a i u  + aa2v + w = 1. 

Now define a functional ~ ~ whose domain is the set of all sequences x of real 

numbers which have support in a bounded interval ! and also have representations 
co i X I as ~ t x ,  where each is the sum of m i disjoint bumps with support in I and 

equal altitudes ai and the quotient of the altitude of a bump of x J and the altitude 

of a bump o f x  ~ for i < j is 2P for some positive integer p (and therefore the bumps 

of x i and of x y have the same sign for all i and j). For each such x, let 

(8) [x~ = inf m i a  i : x = x ~ as described above . 
i 

For an arbitrary sequence x with finite support, let 

[ [ x l l = i n f { ~ l  ~xk]: x = ~1 xk } ' 

and let X be the resulting normed linear space. Let us verify simultaneously 

that II x I1 > 0 if x # 0 and that the completion �9 of X is not reflexive (see 

[14, Th. 3(23), p. 109]), by noting that: 

(a) II II z 1 if x, = 1 when i < n and x, = 0 when i > n; 

(b) Ilxll > (1 -   )sup{lx, I}. 
To establish (b), observe that if the altitudes of the bumps making up an x k = {x, k- } 

are a2 ~-l f o r j  > 1, then we have 

= j = l  - - f - - - T  = l - g '  

so that [xl~ > (1 - g)sup{lx~ ]} and it follows from the definition of I111 that 

Ilxll (1-x)sup{lx, l}. 
For the definition of ][ [{ to be valid, it is necessary that the domain of ~ ~ be 

such that each x in X is the sum of members of the domain of ~ ~. This is rather 

clearly satisfied, since each x in X has only finitely many nonzero components 

and each x with only one nonzero component is in the domain of W 1. Actually, 

the domain of [[ ~ is the set of all x e X whose nonzero components all have 

the same sign. To see this, suppose x = {x~} with x, >= 0 for all i and choose any 
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a so that  a ( ~ ~  s) > sup {xs}. Now define x 1 by letting x * = {e~a}, where 8~ = 1 

ifxs >_- a and 8~ = 0 otherwise; then let x 2 = {e~a2}, where e~ = 1 if x, - ~ __> a2 
k and e~ = 0 otherwise; and, in general, let x k= {8~a2k-l}, where es = 1 if  

xs - ~J=l-~k-l"J => a2 k - I  and e~ = 0 otherwise. 

I f  I x ]  exists, Ix]  is actually at tained as (Y~~ ~. To see this, note  first 

that  if x, = 0 when i > N, then in (8) we can always have m s < N. Therefore,  if 

lim [ ~, m~(2S-'ak)'])= ~x~ 
k-=* oo S=l  

with m k # 0 for  all k, and if  a is an accumulation point  o f  {a k �9 k >= 1}, then there 
are numbers  m s _>_ 0 for  which 

'a>'] 
A brief sketch will be given of  a p roo f  that  ~x + y~ =< [x~ + [y~ need not  be 

true even if  x, y, and x + y are in the domain o f  ~ ~. The  purpose o f  this is to  

show that  the introduct ion o f  II II was badly needed, both  because the domain 

o f  ~ ~ is not  X and because ~ ~ does not  satisfy the triangle inequality. It can 

be shown that, subject to m, ____ 1, m,  and each m s being a nonnegative integer, and 

a ( l +  ~ ei2 s ) =  1 with e s = 0  or 1 
1 

according as m s > 0 or ml = 0, the min imum of  a2(ml  + ~E ~mi~. 2s) is (1 - 2) 

(1 + 2) -  1 and this minimum is at tained only when m i = 1 for  all i and a = 1 - 2. 

Now choose 6 < 1 and an integer n so that  n[6(1 - 2 ) ]  = 1. For  each k < n, 

let x k have constant  value 6(1 - 2) on the interval [1, k] and zero terms otherwise. 

Then ~xk~ = t5(1 -- 2)3/2(1 + 2)-1/.2Also, if ~x + y-~ _-< ~x~ + ~y~ whenever x, y, 

and x + y are in the domain o f  ~ 1, then 

__< (I - 2) (I + 2)- �89 
I 

However,  there is a number  a for  which there are bumps with altitudes a2 p(~ such 

that  p(0) = 0 and 

_ I _ 1 1 

But then p(i)  = i for  all i, a = 1 - 2, and ~ ~ x k is the sum of  bumps o f  altitudes 
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(1 - 2)2 i for i >= 0, as well as the sum of n unequal bumps of altitudes t~(1 - 2) 

< 1 - A. This is not possible. 

Now let x, y, and z be arbitrary members of X for which Ilxll-- Ilyll-- IIzl[-- 1. 
p k Choose representations for x, y, and z so that x = ~lx~,  y = E~y k, z = ~ z  k 

and 

llxll > 0~ ~x~, Ilyll > 0 ~ ~y~, IIzll > 0 ~ ~z~. 
1 l 1 

Next, replace these representations by {(xtz, ~ yz, zA): k =< s}, so that 

II x 11 > o ~ ~ ,  II y II > 0 ~ [ y ~ ] ,  It z II > 0 ~ ~zg~, 
1 1 1 

w h e r e x =  Y,' k i xA, y = E ~ y2 t, z = ~' l  z2,k and 

(9) inf{~xk], [yk~, [ZAt]} ~ 0 asup{[xt2~,~yAt~, [Z~}. 

This can be done by  choosing s large enough so that, for eachx k, there is an 

integer n k such that Y~ xPnk = s and 

P P 

o o ~c [ ~  [~,~ o-~ ~ [x~ o_~ 
1 l - <  < ~ <  < - -  

S $ n k S S 

with similar statements for y~ and z~. Then divide each x~ into n k vectors, each 

equal to x~/nk, with similar divisions of each y~ and zt k. These give the {x*2}, {y~}, 

and {z[}. They satisfy (9) however they are ordered. 

Finally, choose {(Xk, yk, zk): 1 < i < n} So that 

I n 

1 1 1 

w h e r e x =  ~ x  ~ , y =  Y~]yk, z =  ~ ] Z  k, 

(11) inf{[xk~, [yk], [zk]} > 0 6 . sup {[xk], [yk], [Z*]}, 

and there are representations, x k =  ~1=1~'~~ Z,,i, yk = Y92=t y k'~, Z k = ,1,~=1~'*~ zk,t, for 

which [x~), ~-yk], and [zk) can be evaluated by use of (8) and x k, yk, and z k have 

A-compatible altitudes (that is, the quotient of  the altitudes of two bumps is 
+ 2 p for some integer p if each of these bumps is used in one of x k, yk, or zk). 
This is done as follows. For each k, choose {a~y} so that 0 3 < a~j < 0a/2; 

a21yA, aatzA) have A-compatible altitudes; (alAxA, y2, aaAz)) have A-com- 

patible altitudes; and (a13x~, k k aAayA, zA) have A-compatible altitudes. Choose a 
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solution (u, v, w) of  (7) for which u, v, and w are positive and let each of 
(ux~2, uaz,yk, u%,zg), k k k (va,zxz, vyz, vaazzz), (wa,3x~, wa2~y k, wz~2) form a triple 

of type (x', y~, z~). The vector sum of these three new triples is (Xk2, Y~2, Z~) 

Inequality (11) follows from (9) and the fact that 03 < a,l < 1 for each a~i. 

In what follows, we let (~,r/,O denote (+  x ~, + y~, + z  ~) for a particular value 

of  k and a particular arrangement of signs. Then 

(12) inf{~],~r/] ,~(]} > O~ �9 sup{~] , [~ /~ ,~} .  

Also, ~, r/, and ( have representations as ~ = Z * ~  t, ~/= ~ ' r / t ,  ( = y ~ [ i  for 

which 

~ = ~ pt(a,) z ~ ~rl~ = ~ q,(a/) ,~ ( ]  = ~ ri(a,) z * 
1 I 1 

where ~,  ~/~, and (~ have bumps of altitude a~ and the respective numbers of  

bumps are Pt, qt and rt for each i. The quotient aJa~ for i < j is 2 p for some 

positive integer p. We assume that the signs in ( +__ x k, + yk, + Z k) have been 

chosen so that a t > 0 and all bumps used in ~,  r/t, or (~ have positive altitudes 

for all i. 

It follows from the lemma that, for each i and each arrangement of signs tr for 
t t t which at most one sign is negative, we can replace {~, 1/t, ~t} by {~,,~/,, (,} so that 

~ and (~ are sums of  disjoint bumps of altitude ai, r/~ is the sum of disjoint bumps 

of  altitude a~ or -a~  according as all signs in a are positive or exactly one sign 

is negative, and: 

(a) ( _  ~t + F/' + ~')r = ~' + r/', + ~ ;  

(b) P , :  + q~.t + r~,t -~ Pt + qi + rt for each tr, where P,,t, q,.i, and ro.~ are 

the numbers of bumps in ~ ,  ~/~, and (~, respectively; 

(c) " ~I (.P~,.t + q,,:) < 2(Pt + qi + rl). 

Let (A~) 2 = ~ t ~ l  P,,i(at) 2, (B,) 2 = ~t~=1 q,,t(al) 2, and 

Then it follows from (a) that 

It follows 

therefore 

(C.) 2 = Z?= 1 r,,t(a3 2. 

I[(+e +7 +-O,l/< A,+B,+C,.  

from (b) that A~ + B~ + C~ <= ~~ qt+ rt) a2 = M*, and 
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Now let A 2 + 2 B 2 + 2 = Zr162 = Zo=xB~, 
4 Z~=I x~ < 2(X~=lx2) + to obtain 

4- 

x II(-+ r -+ ~ -+0+11 
a ' = l  

and 

Israel J. Math., 

use the elementary inequality 

4 4 

~= Z (A. T Br + Z [m 2 - (A 2 + B~)'] ~ 
a = l  r 

< 2(A + B) + 214M 2 - (A 2 + B2)] �89 

< 21-2(A 2 + B2)-I + + 21-4M 2 _ ( a  2 + B2)l+. 

The rate of change of the last member of this inequality with respect to A 2 + B 2 

is positive if .4 2 + B 2 < 8M2/3. Since it follows from (c) that A 2 + B 2 < 2M 2, 

we have 

4 

(13) ~ I1(-+ + -+ ~ -+ r II --< (4 + 2.2+)M. 
r  

Now, for each k, let M 2 = ~'xk]] 2 + [yk]]2 + [[zk]2. Then it follows from (11) that 

Mk < 3+O-6~Xk] if 1 --< k <_ n, 

and it follows from (13) that 
4 

x II + ~ -+ y~ + z+ I[ --< (4.3+ + 2 .6+)o-6bq,  
a ' = l  

where E~=i  indicates the sum over the four arrangements of  signs in + x  k + yk 

+ z k for which at most one of + x k, _ yk, and + z k has negative bumps. However, 

this could as well be the sum over the four arrangements of signs for which at 

most one sign is negative, so we have 

4 4 

I1 + x ! y + z  II = ~ II ~ < + x~ + yk + z k) ll 
r  r  k = l  

4 

z ~, xll+x~+y~+ell 
k=l a = l  

< (4" 3 + + 2" 6�89 - 6  ~ ~xk], 
k = l  

and it follows from (10) and ]1 x [1 = 1 that 

4. 

Y+ [I - + x - - y - + z ] [  _-< (4"3  +r+2"6~)0 -711xl] = ( 4 " 3  ++2"6 �89  -7 
O = I  

= 12 - [12 - (4" 3* + 2" 6+)0 - 7]. 

Therefore there is an arrangement of  signs for which 



Vol. 18, 1 9 7 4  NONOCTAHEDRAL BANACH SPACES 

l[ x +__ y _ z II =< 3 - [3 - (3 �89 + �89 6~)0 - 71 

and  it then follows from (6) that,  for this a r rangement  of signs, 

IIx +_ y _ z  II < 3 -  A. 
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