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DIAGONAL MAPS AND DIAMETERS IN KOTHE
SPACES

BY
L. CRONE anp W. ROBINSON

ABSTRACT

First, an investigation is made of the nature of diagonal maps in Kéthe spaces.
The central theorem relates the existence of a non-compact map between
power series spaces to the existence of a common complemented basic
sequence in the two spaces.

Given a pair of locally convex spaces, a natural question to ask is: what are
common properties of these spaces? Very often this can be answered by
studying the types of maps between the spaces. Within the class of nuclear
Kothe spaces, there have been two significant efforts recently. In [9], and [10]
Ed Dubinsky studies possible embeddings of infinite type p.s.s. into arbitrary
p.s.s. In [18], V. P. Zaharjuta shows that all maps from a space of type (d,) into
a space of type (d,) are compact, and makes use of this to isomorphically
distinguish products of (d,) and (d,) spaces.

In this paper, we first consider results on diagonal maps between nuclear
Kothe spaces, and then obtain precise statements concerning pairs of infinite
type p.s.s. The principal result is Theorem (3.2), which relates the existence of a
non-compact map between A.(a) and A.(B) to the existence of a non-compact,
generalized, diagonal map, and this, in turn, is shown to be equivalent to the
existence of a common, complemented, basic sequence in A.(a) and A.(B).
Moreover, a precise condition on « and B is given which is equivalent to these
statements.

1. Preliminary definitions

By a sequence space, we mean a vector space A of infinite sequences which
contains ¢, the space of finitely non-zero sequences. If a and b are sequences,
a - b is the sequence (a.b,), and for a sequence space A,a ‘A ={a-b: b € A}.
We say that a dominates b, written b < a, if there exists M >0 such that
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b, =Ma, foralln=12,--- Wesay b=a if b, =a, forn=12,---.If a <b,
a/b is the sequence whose nth coordinate is a,. /b, if b, #0,andis0if b, =0. A
is a solid sequence space (or normal) if whenever a < b and b € A, then
a € A. 1, is the space of sequences whose p th power is summable, for p <, L.
is the space of bounded sequences, and ¢, is the space of null sequences. e" is
the sequence with 1 in the nth coordinate and zero on all other coordinates.

Let P be a collection of non-negative sequences such that (i) for each a,
b € P, there exists ¢ € P with a < ¢ and b < ¢, and, (ii) for each n, there
exists a € P such that a,#0. P is called a Ko6the set. A(P) is the sequence
space A(P)={t:||t|.=Za.|t.| < + = for all a € P} topologized by the semi-
norms || .. A(P) is a complete l.c.s., and A(P) is nuclear, if and only if for each
a € P, there exists b € P such that a € b - [,. ([14], 6.1.2)

If the Kothe set P is countable, we may assume that P = {a*: a* = a**' for
all k}, and we write || [ for |« For the most part, we will assume that 0 <a¥
for all k and n, and in this case, we write A(P)= N(1/a*)-1,. N(1/a*) 1, is
called a Kothe space. Given a sequence space A, the Kdothe dual of A is
A*={t:t-x €1, for all x € A} and if N** =\ we call A perfect. If A =
N(1/a*)-1, then A is perfect and A* = U2 - [, [13].

If E isal.c.s., asequence (x") in E is a (absolute) basis for E if for each
x € E, there exists a unique sequence of scalars (t,) such that x = Z¢.x", with
(absolute) convergence in the topology of E. Thus, anyl.c.s. E withabasis (x")
can be identified with the associated sequence space {(,): Zt.x" converges in
E}. Two bases are said to be equivalent if they have the same associated
sequence space. In particular, any Frechet space E with a continuous norm and
an absolute basis (x") can be identified with a Kothe space. In fact, one may
choose any increasing sequence of norms (|||« ), defining the topology of E and
let |x"|lx = ax. Then the associated sequence space is N(1/a*)-I,. Bessaga
calls (a%) a matrix representation of (E, (x")) [1].

Of particular interest in this paper will be the power series spaces (p.s.s.)
Ai(a) and Au(a). Given 0 < a; = a, = - - -, the finite type p.s.s. generated by « is
the Kothe space A (a) whose representing matrix is (a%) = ((e™"*)™);and the
infinite—type p.s.s. generated by « is the Kothe space, A.(a), whose represent-
ing matrix is (ax) = ((¢*)™). Given R >0, we write R“ for the sequence (R*").

The following theorems are well-known.

THaeorem (1.1). [14] A Kithe space N(1/a*) -1, is nuclear if and only if the
system of norms ||x | =sup.ax|x.| is equivalent to the system of norms
lxllk=Znan|xa].
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THeoReM (1.2). [13] A Kéthe space N(1/a*)-1, is a Montel space if and
only if for each k there exists m such that a./a. € c,.

If (y") is a sequence in a l.c.s.which is a basis for its closed linear span [y"],
then (y") is said to be a basic sequence. If (y") is a basic sequence and if [y"] is
complemented, (y") is said to be a complemented basic sequence (CBS). The
following important theorem is due to Bessaga in [1] (cf. also [7]).

THEOREM (1.3). Let A be a nuclear Kéthe space with representing matrix
(a¥). Let (y") be a CBS in A. There exists a sequence (d,) of positive numbers
and integers k, - % such that (d,a},) is a representing matrix for ([y"],(y")).

This result, and similar considerations led Dragilev to define the following
invariant of a nuclear Kéthe space A. K(A) = {[d.e**]: d. >0 for all n, and such
that limk, =}, ([8]). If k. <k.., for all n, and if I =(k,) we will write
Ar=[e*]. A; is called a step space of A.

We will say that a Kothe space A is (D)) if A = N (1/a*)-1,, where the
matrix (a¥) satisfies these conditions: (i) for all k,n,(a*)/(a%*") = (a%.)/(akt);
(i) ar=1 for all n, and (iii) for all k there exists p such that a*-a*“ =a”. A
representing matrix (ax) satisfying condition (i) is said to be regular [7].

inen Kothe spaces A and u we will denote the collection of continuous
linear (compact) maps from A to w by L(A,u) (respectively LC (A, w)). If
LA, n)=LC(A, u), we say the pair (A, i) is in relation R and write (A, ) € R
(cf [16] for a discussion of Kothe spaces in relation R). Foreach T € L (A, ),
we say T is represented by the infinite matrix (¢;) if for all i, j, (Te',e’) = t;. We
write T ~ (t;). T is a diagonal map if t; =0 whenever i#j. If t; = ti, then
Tx =t -x for all x € A. The space of diagonal maps from A to u is then
DMup)={t:t-x€eun for all x € A}. Since Kothe spaces are perfect,
DA,u)=( ™) [3]. We will use the notation DC(A, ) for the space of
diagonal compact maps from A to w.

2. Diagonal maps

We begin with an investigation of diagonal compact maps between Kothe
spaces. The first lemma is implicitly in [18].

LemMMA (2.1). Let A and p be Kdthe spaces.
a) T € L(A, ) if and only if for each m there exists k such that
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sup ”%lﬂﬂ< + 0,

b) If uis Montel, then T € LC(A, ) if and only if there exists k such that for
all m,

sup W< + o,

Proor. We prove (b) and note that a proof of (a) is similar. T € LC(A, p) if
and only if there exists k such that {Tx: | x ||« = 1} is bounded, since in Montel
spaces bounded sets and precompact sets coincide [13]. Thus T € LC(A, p) if
and only if there exists k such that for all m,

17 [l
[ e

sup{ :xEA,x#0}<+°°,

so in particular

P { el

Now suppose there exists k such that for all m,

n

sup ”WT;—en—“[Iﬂ=C(m)< + o,
n k

Let x € A. Then || Tx |ln =||ZwxaTe" |n = C(m)D, |x.| le"k = C(m)|x ||, so
T € LC(A, ). "

LemMa (2.2). Let A and p be Kdthe spaces with w a nuclear space. Then
DC(A,p)y=p A%

Proor. By (2.1) t € DC(A, 1) if and only if there exists k such that for all
m,

sup L€l
if and only if there exists k such that for all m, t/a* -b™ € L., so that

te LkJ O ’b—m'lm=)\x‘[.l,.



Vol. 20, 1975 KOTHE SPACES 17

Lemma (2.3). If A and p are Kdthe spaces such that A - u™ is perfect, then
DC(u,A)= D(u,A) whenever DC(A, n)= D(A, ).

ProOF. DC(p,A)=p A =(u*-A)*=DAu) =DCA,p) =A™ u)
=D(u,A).
We now consider the special case in which A and u are power series spaces.

THEOREM (2.4). If A.(a) and A(B) are nuclear and if a/B € ¢, then
D(Aa),A«(B)) = A(8) = DC(Aa),A-(B)) and D(A-(B),A«a)) = DC(AB),
Ala)) = A(B)".

Proor. First we compute A.(a) - A(B)™ = {t: there exists k such that for all
m, t-m*/k® € 1.} ={t: there exists k such that for all m there exists M >0
such that for all n, ||f,| =M k®[/m*}={t: there exists k such that for all m,
lim, [t.|" =k lim, (1/m)~* =k} = A.(8)". Thus D(A(a), A.B))=
A(B)Y™ = AAB). Next observe that A.() - A-(a)* = A.(B) by a similar comp-
utation so the first claim is true. For the second, we apply Lemma (2.3) with
A = Aula), p = A(B).

We are now in a position to characterize those pairs of & and 8 for which
D(ALa), A(B)) = DC(A(a), AAB)).

THEOREM (2.5). Let AAa) and AAB) be nuclear p.s.s. The following are
equivalent :

1) D(ALa), A(B)) = DC(A(B), Au(a)).

2) D(AAB), Ala)) = DC(A=(B), AAa)).

3) alBEco, or Bla Eco, or N=1, UL, 1,,1, infinite disjoint sequences
such that limnc,, a./B. =0 and lim.c,, a./B. = .

Proor. 3)— 1) and 2) by means of Theorem 2.4. Suppose there exists an
infinite subsequence I C N such that 0 < lime; @, /8. = limaer a./B. < + =
Then Aa); = A(B): so D(Aa), ALB)) # DC(AA(a), AB)). Hence, if 1) is
true we obtain the fact that for every infinite subsequence I C N either
lim (@./B,)=0 or lim (@)/(B)=. Let I,={n:(a./B.)=1} and I,=
{n: (@./B.) > 1}. If either set is finite then we know that /8 € c,0r B/a € c,.
Suppose both.I; and I are infinite. Then for all I C I, lim, ¢, (@./Bx) =0, so
lim, e, (@./B.) =0, and similarly lim,e,, (a./B+) = . Thus, 1) - 3). By a sym-
metric argument 2) — 3).

ReEMARK (2.6). 1) The symmetric nature of (2.5) is somewhat surprising and
is in marked contrast to the situation involving the sequence spaces [,, p > 1,
where L(l,,1,)=LC(,1,) if and only if p > q [11].
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2) Since A.(a), A-(B) are nuclear, we know that the compact maps are in
fact nuclear maps [4].

3) The condition that all diagonal maps from A.(a) to A.(8) are compact is
not sufficient to conclude that all linear maps from A.(a) to A.(8) are compact.
Indeed, for any & choose B to be any subsequence of a for which a/g € c,.
Then by Theorem (2.5), D(Aa), AAB)) = DC(ALa), A{B)). However, A.(B)
is a complemented subspace of A.(a), so there exists a non-compact projection
of A.(a) onto A.(B). More generally, it is easy to see that if A.(a) and A.(8)
have a common complemented subspace, then there exists non-compact maps
from A.{a) to A-(B) and from A.{() to A-(a). We investigate the converse to
this fact below.

4) It is straightforward to prove that Theorem (2.5) is true with A.(a) and
A(B) replaced by A(a) and A(B). As a consequence of a theorem of
Zaharjuta [18], it is known that L(A{a),A=(B))= LC(A(a),A(B)) for all
pairs of « and B. However, there can be non-compact maps, even isomorph-
isms, from certain spaces A-(a) to subspaces of certain of the spaces A,(8) (cf

(16}, [9D).

3. Generalized diagonal maps and complemented subspaces

DerNiTION (3.1). Let A and u be sequence spaces. A linear map T: A —> p
is said to be a generalized diagonal map if there exists a sequence t € w and an
injection o0: N = N such that Te" = e’ for every n € N.

THEOREM (3.2). Let A.(a) and A-(B) be nuclear p.s.s. Let (m;) and (n;) be
increasing sequences of positive integers such that Bm-1 = an,_, EQny_j11 =+ =
At < B S = Bme-1 =, =+ for all i. The following statements are
equivalent ;

1) (Afa), A(B)) € R.

2) (A(B), A(a)) ER.

3) No step space of A-(a) is isomorphic to a step space of A(B).
4) Every generalized diagonal from Aa) to A.(B) is compact.

5) Every generalized diagonal from A.(B) to A.{a) is compact.

6) (a) lim; (Bum,/an-1) = and (b) lim; (an,/Bm,.,-1) = .

7) K(Aa)) N K(AL(B)) = 2.

8) No CBS in A.{a) is equivalent to a CBS in A{(B).
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Proor. Clearly 1) — 3) and 2) » 3) as in Remark (2.6), (4). To see that
3) - 4), we suppose that there exists a generalized diagonal map T: A(a) —
A.(B) which is not compact, say Te" =t,-e"™; foralin. Let I ={n: t.#0}. I
must be infinite, so write I =(i,), in <in1<-'-. Let ar=a;, and B, = Boi,-
Since T is non-compact, D(A(a’), A(B') # DC(AAa), A(B)). By Theorem
2.5, 3) > 1), we obtain an infinite set I' C I such that 0< lim.e, (a./81) =
limeer (@Bl <®, so Ada’); = A«(B’).. Hence A.(a) and A.(B) have a
common stepspace. A parallel argument will establish that 3) - 5).

Now assume that 6) fails. If lim; (Bm,/an-1) # , then there exists an infinite
set ] C N and 1 <M < + such that 1 = (a,,/Bm.,-1) =M for all ¢ € I. Thus
Aw((an;—l)iel) = Am((ﬁm.- )iel)- .

Moreover, if lim; (a,, /Bm;.,-1) # ©, then there exists an infinite set I C N and
1 <M < such that 1= (an/Bm..-1) =M, so that Au(an),_) = Ad(Bm.i-1):_,)-
Thus if 6) fails we see that there exist infinite sets I = (i,) and J = (j.) in N such
that A.(a); = A(B).,.

Define

e if j=ja

Te ={0 if j&J.

Then it is easy to check that T is a non-compact generalized diagonal map from
A<(a) to A(B). Thus 4) > 6). By adjusting T in an obvious way we also obtain
(5) > (6).

Next, we establish (6) — (1).

First, observe that L(A-(a), A«(8)) is solid; i.e., if T ~ (¢;) and if |s;| =|t;|
for all i, j, then the map S ~ (s5;) € L{A(a), A{B)) whenever T € L(AA(a),
A(B)). Thus, it suffices to deal with T ~ (¢;) where t; >0 for all i, j. Next write
t; = exp (— riB:). Since Te’' =Z.t;e' € A(B), we must have lim; r; = for
each j. T € L(Aa), A(B)), if and only if for all p there exists g such that
sup; || Te'|l,/||e’ly < +, by Lemma 2.1. But ||Te’[, = exp {(p — ripis)Biwi}
for a suitable choice of i(p,j), for each p and j. Now we write p — ripj); =
¢,; (@;/Biwiy), and we see that for all p, there exists g such that sup; (c,; -
q)a; < +o, so that for all p, sup; (c,;) < + . But for each j, the sequence
(| Te'|l,), is non-decreasing in p, so for each j, (c,;), is non-decreasing in p. By
definition of i(p, j), we have for each p and each j, sup; (p — r;) B: = ¢,a;. Then
for all s, p, and j, (P — Fiini) Bicir= Coictj, SO that (p — §) Bien = (¢ — ¢5) i
Then (Bi.,»), < (a;), for each s. But if Bi.;, > a; infinitely often, condition (a) of
(6) implies that lim; Bi.»/a; = ©. Hence, for each s, Bi.n = & for sufficiently
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large j. Now if s > p, we know that for all j (Bis/a;) = (¢ —c;)/(s —p)=0,
and condition (b) of (6) implies that lim; (¢c; — ¢,;) = 0.

Finally we suppose that T is not compact. Then for all g, there exists p such
that sup; (c¢,; —q) a; = . Hence for all g, there exists p and an infinite set I
such that c,; >q for j € I. Choose some p, and let g = sup c,,;. Then, there
exists p >po and an infinite set I such that ¢, >2q for j € I. But then
Cpi — Cpoi > q infinitely often, contrary to the fact that lim; (c,; — ¢,;) = 0. Hence
6) — 1), and a symmetric argument shows that 6) — 2). Thus we have estab-
lished the equivalence of the first six statements.

(6) = (7): Let (k,) and (k) be non-decreasing sequences of positive integers
converging to © and [d.e*] € K(AL(e)), [die*"] € K(A(B)). [due*"] =
[die¥~] if and only if [e*]=[e*"] [2], and this is true if and only if
0 < inf, (ax,/Bx,) = supa (o, /Br,) < +.

Now if ay, = B, infinitely often, then by (a) we have inf, (a,/Br.) =0, and
if o, = i, infinitely often, then by (b) we have sup. (a./Bi,) = *. Hence
K(ALa)) 0N K(ALB)) = 2.

(7) = (8) is a consequence of Bessaga’s Theorem (1.3). (8) — (3) trivially, so
the proof is complete.

REMARK (3.3). It can be shown that Theorem (3.2) is valid with the infinite
type p.s.s. A(a) and A(B) replaced by nuclear finite type p.s.s. A(a) and
A(B), respectively.

4. Diametral dimension and A - A~

In (2.3), we made use of the hypothesis that A - g™ was perfect. It is easy to
see that it is always normal, and by making a connection between A - A ™ and
diametral dimension, we show that in general A - A ™ is not perfect.

DEFINITION (4.1). We say that the Kéthe space A = N(1/a,) - [, is regular if

for all p and g, (@pn/dsn). is monotone. Let U, ={t €A:|t|, =1}. Then
whenever A is regular, d.—(U,, U,) = (apn/a,.) for all n and for all g 2 p [7].
The diametral dimension 8(1) (of [2]) is then equal to {¢: there exists p such
that for all g, t - (a,/a,) E L} = U, N4(a,/a;) -1, =A -A™.}. Also the diametral
dimensionI'(A) = N, U (a./a,)-l;=( - A*)" = D(A,1). Observe that §(A )" =
T'(A). In [6], Dragilev shows that the diametral dimension I does not distinguish
the class of spaces with a regular basis, by constructing two regular spaces A
and p with regular bases such that A is not isomorphic to p but such that
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[(A)=T(w). (Theorem 2, [6]). Moreover, u is a (D,) space so (by Prop. 2.5 of
[15]) 1 - 1™ = p. We claim that the space A is such that A - A ™ is not perfect. For
if A-A* is perfect, then the fact that I'(A) =T(u) implies that A -A™=
A A" =(u - ™)™ = u. But, by applying Lemma 2 of [5], we see that there
exist d, >0 such that A = d - u, which is a contradiction.

REMARK (4.2). We now give an example of a nuclear sequence space A(P)
which has the property that A(P);= U.cpa -l.Z A(P)*. Such spaces are
mentioned in [17] and [12], but to our knowledge, no examples have been
presented. For this, welet P={a:a € A -1, a =0}, where A = N (1/ax)- 1,
the space in (4.1). Then AP)=(QA-A7)" and A(P);=A A= U
aera 1. Z A(P)*. To see that A(P) is nuclear, we apply the Grothendieck-
Pietsch criterion [14]. In fact, observe that if a € P, then there exists k such
that a € a* - A. Now if t € A, (n’,) € A by nuclearity of A [14], so (n®a.) €
a“- A. Thus, for all a € P, there exists b € P such that a/b € ..
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