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DIAGONAL MAPS AND DIAMETERS IN KOTHE 
SPACES 

BY 

L. CRONE AND W. ROBINSON 

ABSTRACT 

First, an investigation is made of the nature of diagonal maps in K6the spaces. 
The central theorem relates the existence of a non-compact map between 
power series spaces to the existence of a common complemented basic 
sequence in the two spaces. 

Given a pair of locally convex  spaces,  a natural question to ask is: what  are 

common  propert ies  of  these spaces?  Very often this can be answered by 

studying the types of  maps between the spaces.  Within the class of  nuclear 

K6the spaces,  there have been two significant efforts recently.  In [9], and [I0] 

Ed Dubinsky studies possible embeddings  of  infinite type p.s.s, into arbitrary 

p.s.s. In [18], V. P. Zahar ju ta  shows that all maps f rom a space of type (d2) into 

a space of type (dO are compact ,  and makes  use of this to isomorphical ly 

distinguish products  of (dO and (d2) spaces.  

In this paper,  we first consider results on diagonal maps between nuclear 

K6the  spaces,  and then obtain precise s ta tements  concerning pairs of infinite 

type p.s.s. The principal result is Theorem (3.2), which relates the existence of a 

non-compact  map be tween A~(a) and A~(/3) to the existence of a non-compact ,  

generalized, diagonal map, and this, in turn, is shown to be equivalent  to the 

existence of a common,  complemented ,  basic sequence in A| and A~(/3). 

Moreover ,  a precise condition on a and/3 is given which is equivalent  to these 

s tatements .  

I. Preliminary definitions 

By a sequence space, we mean a vector  space h of infinite sequences  which 

contains ~b, the space of finitely non-zero sequences.  If  a and b are sequences,  

a �9 b is the sequence (a,b,) ,  and for  a sequence space A, a �9 A = {a �9 b : b E h }. 

We say that a dominates b, written b < a, if there exists M > 0 such that 
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bn<=Ma, for  a l l n  = l , 2 , . . . W e s a y b = < a  i f b , - < a ,  f o r n = l , 2 , . . . . I f  a < b ,  

a/b  is the sequence whose n th  coordinate  is a~/b~, if b, / 0, and is 0 if b, = 0. A 

is a solid sequence space (or normal) if whenever  a < b and b E A, then 

a E A. I, is the space of sequences whose p th power  is summable ,  for  p < o% l~ 

is the space of bounded sequences,  and Co is the space of null sequences,  e" is 

the sequence with 1 in the n th coordinate  and zero on all other coordinates.  

Let  P be a collection of non-negative sequences such that (i) for  each a, 

b E P, there exists c C P with a < c and b < c, and, (ii) for  each n, there 

exists a ~ P such that a , / 0 .  P is called a K6the  set. A(P) is the sequence 

space A(P) = {t : lit I1" -- y~a~ I to I < § ~ for  all a E P} topologized by the semi- 

norms II If'. A(P) is a complete  l.c.s., and A(P) is nuclear, if and only if for  each 

a C P, there exists b E P such that a ~ b -11. ([14], 6.1.2) 

If  the K6the  set P is countable,  we may assume that P = {a k : a k =< a T M  for  

all k}, and we write II IIg for I~. For  the most  part,  we will assume that 0 <  a ,  k 

for  all k and n, and in this case, we write A ( P ) =  A( I /ak ) ' l~ .  N ( l / a ~ ) . l ,  is 

called a K f t h e  space. Given a sequence space A, the K6the dual of A is 

A ~ = { t : t . x  E l ,  for  all x E A }  and if k~• we call A perfect. I f  A = 

A ( 1 / a k ) ' l ,  then A is perfect  and A • = LI~ .l| [13]. 

If E is a l.c.s., a sequence (x ~) in E is a (absolute) basis for  E if for  each 

x E E, there exists a unique sequence  of scalars (t ,)  such that x = Y.t,x", with 

(absolute) convergence  in the topology of E. Thus,  any l.c.s. E with a basis (x ") 

can be identified with the associated sequence space {(t,): Et,x" converges  in 

E}. Two bases are said to be equivalent if they have the same associated 

sequence space. In particular, any Frechet  space E with a cont inuous norm and 

an absolute basis (x ") can be identified with a K6the space. In fact ,  one may 

choose any increasing sequence of norms (l[ Ilk), defining the topology of E and 

let [Ix~llk = ak,. Then the associated sequence space is tq (1/ak) �9 l~. Bessaga 

calls (a~) a matrix representat ion of (E, (x")) [1]. 

Of particular interest in this paper  will be the power  series spaces (p.s.s.) 

A, (a)  and A~(a). Given 0 < o~ _-< a2 < �9 �9 ", the finite type p.s.s, generated by a is 

the K6the space A,(a)  whose representing matrix is ( a ~ ) =  ((e-~/~)'~);and the 

infinite-type p.s.s, generated by oe is the K6the space, A~(a), whose represent-  

ing matrix is (a ~ ) = ((e k)o, ). Given R > 0, we write R ~ for  the sequence (R ~o ). 

The following theorems are well-known. 

THEOREM (1.1). 

system of  norms 

Jlxll' =  na lxol. 

[14] A K6the space A (1/ak) �9 l, is nuclear if and only if the 

Ilxll~---supoa~ Pxol is equivalent to the system of  norms 
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THEOREM (1.2). [13] A K6the space N (1/ak) -l, is a Montel space if and 

only if for each k there exists m such that ak/am E Co. 

If (y") is a sequence in a l.c.s.which is a basis for its closed linear span [y"], 

then (y ") is said to be a basic sequence. If (y ") is a basic sequence and if [y" ] is 

complemented, (y") is said to be a complemented basic sequence (CBS). The 

following important theorem is due to Bessaga in [I] (cf. also [7]). 

THEOREM (1.3). Let h be a nuclear KSthe space with representing matrix 

(a~). Let (y") be a CBS in h. There exists a sequence (d,) of  positive numbers 

and integers k, -> ~ such that (d,a ~. ) is a representing matrix for ([y" ], (y" )). 

This result, and similar considerations led Dragilev to define the following 

invariant of a nuclear K6the space A. K (A) = {[d,e k. ]: d. > 0 for all n, and such 

that li/nk, =~}.  ([8]). If k. < k , . l  for all n, and if I = ( k . )  we will write 

AI = [e*-]. AI is called a step space of A. 

We will say that a K6the space )~ is (D~) if A = tq (1 /a~) . l l ,  where the 

matrix (a ]) satisfies these conditions: (i) for all k, n, (a ~)/(a ~ § >__ (a ]+,)/(a ]~);  

(ii) a ' , =  ! for all n, and (iii) for all k there exists p such that a k . a  k _-<a p. A 

representing matrix (a~) satisfying condition (i) is said to be regular [7]. 

G~iven K6the spaces A and ~ we will denote the collection of continuous 

linear (compact) maps from A to /z by L(A,/~) (respectively L C  (A,/z)). If 

L(A,/z) = LC(A,/x), we say the pair (h,/x) is in relation R and write (h,/x) E R 

(cf [16] for a discussion of K6the spaces in relation R). For each T E L(A,/x), 

we say T is represented by the infinite matrix (t~i) if for all i,], (Te i, e j) = &j. We 

write T -  (t~). T is a diagonal map if t, = 0  whenever i / j .  If t~ = t,, then 

T x = t . x  for all x EA.  The space of diagonal maps from h to /x is then 

D(h, l z ) = { t : t . x ~ t z  for all x CA}. Since K6the spaces are perfect, 

D(A,/x)= (A ./zx) x [3]. We will use the notation DC(A,#)  for the space of 

diagonal compact maps from h to /z. 

2. Diagonal maps 

We begin with an investigation of diagonal compact maps between K6the 

spaces. The first lemma is implicitly in [18]. 

LEMMA (2.1). Let h and i ~ be KSthe spaces. 

a) T E L(h,  tz) if and only if for each m there exists k such that 
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sup ~ <  +oo. 
. Ire Ilk 

b) I[ Ix is Montel ,  then T ~ L C ( A ,  Ix) i[ and  only  i[ there exists  k such that  for  

all m,  

sup ~ <  +oo. 
lie Ilk 

PROOF. We prove (b) and note that a proof of (a) is similar. T E LC(A, Ix) if 

and only if there exists k such that {Tx:  I[x ilk --< 1} is bounded, since in Montel 
spaces bounded sets and precompact sets coincide [13]. Thus T E LC(A, Ix) if 

and only if there exists k such that for all m, 

so in particular 

sup ~lt Tx I1~ } t Ilxllk :xEA,  x~O <+oo 

sup [ ~ / <  + oo. 
. ( ) l e " [ [ k  J 

Now suppose there exists k such that for all m, 

sup Te[I-TL~ C ( m ) <  +o0. 
. lie"Ilk = 

Let  x @ A. Then  IITx lira = IIX.x.Te" II- ~ C ( m ) E  Ix.I Lie"Ilk = C ( m ) l l x  Ilk, so 
T E LC(A,~). 

LEMMA (2.2). Let  h and  IX b~e K 6 t h e  spaces  with IX a nuclear  space.  Then 

DC(A,  IX) = tx �9 h • 

PROOF. By (2.1) t E DC(A ,  Ix) if and only if there exists k such that for all 
m,  

sup Ilt " e"]lm < +oo 
lie"Ilk 

if and only if there exists k such that for all m, t / a  k �9 b m ~ L ,  so that 

a k 

n 



Vol. 20, 1975 KOTHE SPACES 17 

LEMMA (2.3). I f  A and tz are K6the  spaces such that  A �9 Ix* is per[ect, then 

DC(/~, A) = D(/x,A) whenever DC(A,/~) = D(A,/z). 

PROOF. DC(/x,A) = / x * ' A  = (/z • = D(A,g )  • = DC(A,/x) • = (A • �9 • 

= D(/~,A). 

We now consider the special case in which A and g are power series spaces. 

THEOREM (2.4). If  A=(a) and A=(/3) are nuclear and if a//3 E Co then 

D (A|174 = A| ) = DC(A| ),A| )) and D (A|174 )) = DC(A| 

A| = A|215 

PROOF. First we compute A=(a).  A=(/3)* = {t : there exists k such that for  all 

m, t �9 m ~ / k  ~ E l=} = {t: there exists k such that for  all m there exists M > 0  

such that for  all n, lit, I <-_M kZ . /m  ~.} = {t: there exists k such that for all m, 

lira, ]t,] ~/~. _-< k lim, ( l /m)  ~ = k} = A~(/3)*. Thus D(A| A=(/3)) = 

A| = A| ). Next  observe that A=(/3)- A=(a)* = A=(/3) by a similar comp- 

utation so the first claim is true. For the second, we apply Lemma (2.3) with 

A = A=(a), /x = A~(/3). 

We are now in a position to characterize those pairs of a and/3 for which 

D(A| A=(/3))= DC(A=(a),  A=(/3)). 

THEOREM (2.5). Let  A~(a) and A~(/3) be nuclear p.s.s. The [ollowing are 

equivalent : 

1) D(A=(a), A=(/3))= DC(A=(/3), A=(a)). 

2) D(A=(/3), A=(a))= DC(Ad/3),  A~(a)). 

3) a//3 E Co, o r / 3 / a  C co, or N = I, U L ,  I,, I~ infinite disjoint sequences 

such that  lim.~,, a. / /3.  = 0 and lim.~,= a~ = ~. 

PROOF. 3) ~ I) and 2) by means of Theorem 2.4. Suppose there exists an 

infinite subsequence I _C N such that 0 <  lirn,~ o~.//3. =< tim.~, o~./fl, < + ~ .  

Then A~(c~)~ = A~(/3), so D(A~(a),  A~(/3))~ DC(A~(a) ,  A~(/3)). Hence,  if 1) is 

true we obtain the fact that for every infinite subsequence I C_ N either 

l i m ( a , / / 3 , ) = 0  or l im(o t . ) / ( f l , )=~ .  Let  I , = { n : ( a . / f l . ) < = l }  and I2 = 

{n: (o~,//3,) > 1}. If either set is finite then we know that o~//3 E co or ~ / a  E Co. 

Suppose both .L and I2 are infinite. Then for all I _C I,, l im ,~  (c~,//3,)= 0, so 
I 

lim,~,(t~,//3,) = 0, and similarly l im.~ ,~(a , /~ , )  = ~. Thus, 1) --, 3). By a sym- 

metric argument 2) ~ 3). 

REMARK (2.6). 1) The symmetric nature of (2.5) is somewhat surprising and 

is in marked contrast  to the situation involving the sequence spaces lp, p > 1, 

where L(lp, lq)= LC(ip,  lq) if and only if p > q  [11]. 
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2) Since A~(a), A| are nuclear, we know that the compact maps are in 

fact nuclear maps [4]. 

3) The condition that all diagonal maps from A| to A~([3) are compact is 

not sufficient to conclude that all linear maps from A~(a) to A| are compact. 

Indeed, for any a choose fl to be any subsequence of o~ for which or~f3 E Co. 

Then by Theorem (2.5), D(A~(a), A~([3)) = D C ( A ~ ( a ) ,  A~([3)). However, A~(fl) 

is a complemented subspace of A| so there exists a non-compact projection 

of A~(o~) onto A| More generally, it is easy to see that if A~(a) and A| 

have a common complemented subspace, then there exists non-compact maps 

from A| to A| and from A~([3) to A| We investigate the converse to 

this fact below. 

4) It is straightforward to prove that Theorem (2.5) is true with A~(a) and 

A~([3) replaced by A~(~t) and A~([3). As a consequence of a theorem of 

Zaharjuta [18], it is known that L ( A , ( a ) , A |  for all 

pairs of a and [3. However, there can be non-compact maps, even isomorph- 

isms, from certain spaces A| to subspaces of certain of the spaces A~([3) (cf 

[16], [9]). 

3. Generalized diagonal maps and complemented subspaces 

DEFINITION (3.1). Let A and/.t be sequence spaces. A linear map T: A --> .p. 

is said to be a generalized diagonal  m a p  if there exists a sequence t E to and an 

injection tr: N -> N such that Te n = the ~") for every n ~ N. 

THEOREM (3.2). Le t  A.(a)  and A| be nuc learp . s . s .  Le t  (m,) and (n~) be 

increasing sequences  o f  posi t ive  integers such that  [3,,,_~ ~ a .... _-< cr ..... t_-<... _-< 

an,-~ < [3,,, <-'" �9 <- [3 . . . .  -~ <= an, <--" "" for  all i. The fol lowing s ta tements  are 

equivalent  : 

I) (A~(a), A~([3)) E R. 

2) (A| A~(a)) E R. 

3) N o  step space  o f  A~(a) is i somorphic  to a step space  o f  A| 

4) Every  generalized diagonal  f rom A| to A~(fl) is compac t .  

5) Every  generalized diagonal  f rom A~([3) to A~(a) is compac t .  

6) (a) lim, (flm,/a,,-,) = oo and (b) lim, (a, , / f l  . . . .  _,) = oo. 

7) K(A| N K(A~([3))= ~. 

8) N o  C B S  in A| is equivalent  to a C B S  in A| 
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PROOF. Clearly 1)--, 3) and 2)---, 3) as in Remark  (2.6), (4). T o  see that  

3) ---> 4), we suppose  that  there  exists  a genera l ized  diagonal  map  T:  A| 

A| which  is not  compac t ,  say Te ~ = t, �9 er fo r  all n. L e t  I = {n : t. ~ 0}. I 

must  be infinite, so write I = (i .) ,  i. < i.§ < . . . .  Le t  a "  = a,. a n d / 3 ;  =/3~(,.). 

Since T is non-compac t ,  D(A|  A| DC(A| A| By T h e o r e m  

2.5, 3)-->1), we obtain an infinite set I 'C_ I such that  0 <  lim.~,,(o~'//3")_- < 

l im,~,.(a' , /[3")<oo, so A=(a ') ,  =A=(/3')~. H e n c e  A| and A=(/3) have  a 

c o m m o n  s tepspace.  A parallel a rgument  will establish that  3)--> 5). 

N o w  assume that  6) fails. If lim, (/3m,/a.,-,)~ oo, then there  exists  an infinite 

set I C_ N and 1 < M  < +oo such that  1 _-< (a,,//3 . . . .  _ , )< -M for  all tr E I. Thus  

A=((a,,_,),~,) = A=((/3m, ),~,). 

Moreove r ,  if lim, (a.,[/3 . . . .  _,) ~ 0% then there  exists  an infinite set I C_C_ N and 

1 < M < ~ such that  1 = < (a.,/[3 . . . .  _,) = < M, so that  A=((a.,),~,) = A| . . . .  -0,~,). 
Thus  if 6) fails we see that  there  exist  infinite sets I = (i ,)  and J = (j ,)  in N such 

that  A| = A| 

Define 

{e~- if j =j,, 
TeJ = if j E 3. 

Then  it is easy  to check  that  T is a non -compac t  genera l ized  diagonal  map f rom 

A| to A| ). Thus  4) ~ 6). By  adjust ing T in an obvious  way  we also obtain 

(5) ~ (6). 

Nex t ,  we establish ( 6 ) ~  (1). 

First,  obse rve  that  L(A|  A| is solid; i.e., if T ~ (t,~) and if Is,j[--< [t,~l 
fo r  all i,j, then the map S - (s0) ~ L(A|  A| w h e n e v e r  T E L(A|  

A| Thus ,  it suffices to deal with T - (t,j) where  t~j > 0 for  all i, j. N e x t  write 

t~ = exp  ( - rJ3,). Since Te ~ = E~t,je' E A=(/3), we must  have  lira, r,j = ~ for  

each j. T E L (A| A| if  and only if fo r  all p there  exists  q such that  

supj [[TeJ[lp/[[eJl[q < +oo, by  L e m m a  2.1. But  [[TeJ[[p = exp  { ( p -  r,(~.~)j)/3,p.~)} 

fo r  a suitable choice  of  i (p , j ) ,  fo r  each p and j. N o w  we wri te  p -r,~,~),i = 

cp.~ (ajl/3,p,,), and we see that  fo r  all p, there  exists  q such that  supj (c~. j -  

q)  otj < + oo, so that  fo r  all p, supj (cp.~)< + oo. But  fo r  each  j, the  sequence  

([1Tei[[~)p is non-decreas ing  in p, so fo r  each  j, (c,j),  is non-decreas ing  in p. By 

definition of  i (p, j ) ,  we  have  for  each  p and each  j, supl (p - r~j)/3~ = cplaj. Then  

for  all s, p, and j, ( p -  r,, . , ,i) /3,(,., = < c~aj, so that  ( p -  s)  /3,(,.~-< ( c ~ j -  c,~) a j. 

Then  (/3,(~.,), < (aj)~ fo r  each s. But  if/3,,,i) > at infinitely of ten ,  condi t ion  (a) of  

(6) implies that  limj r = ~. H e n c e ,  fo r  each  s, ~,,.~ _-< as fo r  sufficiently 
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large j. Now if s > p, we know that for  all j ([3~t~,,/a~)>-_ (c~j - cp j ) / ( s  -p)>>-O, 

and condition (b) of (6) implies that limj (c~j - c~j) = 0. 

Finally we suppose that T is not compact .  Then for all q, there exists p such 

that supi (Cp~ - q) at = ~. Hence  for all q, there exists p and an infinite set I 

such that Cpj > q for j E I. Choose some po and let q -> sup coo.J. Then, there 

exists p > p o  and an infinite set I such that cp i>2 q  for j C I .  But then 

cpj - Cpu > q infinitely often, contrary to the fact  that lim~ (cp~ - cp~) = 0. Hence 

6)-> 1), and a symmetric argument shows that 6)--> 2). Thus we have estab- 

lished the equivalence of the first six statements. 

(6) ~ (7): Let  (k.) and (k ')  be non-decreasing sequences of positive integers 

converging to ~ and [d~e k~] ~ K(A~(a)),  [d ' e  k'~ @ K(A~(/3)). [d,e ~] = 

[d'ek'-]  if and only if [ek-] = [e ~'~ [2], and this is true if and only if 

0 <  inf. (ako/fl~,~) < sup~(ak~//3k'~) < +oo. 

Now if ako </3k,. infinitely often, then by (a) we have inf, (ak.//3k,~) = 0, and 

if ak.->-/3k'n infinitely often, then by (b) we have sup, (ako//3k,.)= ~. Hence 

K(A~(a))  N K(A~(fl) )= 121. 

(7) ~ (8) is a consequence of Bessaga's Theorem (1.3). (8) ~ (3) trivially, so 

the proof  is complete.  

REMARK (3.3). It can be shown that Theorem (3.2) is valid with the infinite 

type p.s.s. A~(a) and A~(r replaced by nuclear finite type p.s.s. A~(a) and 

A,(13), respectively. 

4. Diametral dimension and A. A • 

In (2.3), we made use of the hypothesis  that h �9 x was perfect .  It is easy to 

see that it is always normal, and by making a connection between h �9 h x and 

diametral dimension, we show that in general h �9 h ~ is not perfect.  

DEFINITION (4.1). We say that the K6the space h = N (1lap). 1~ is regular if 

for  all p and q, (ao./aqM)n is monotone.  Let  U~={tEA:[[ t[[o<=l} .  Then 

whenever  h is regular, dn-i(Uq, Up)= (apn/aq.) for  all n and for all q _->p [7]. 

The diametral dimension ~(A) (of [2]) is then equal to {t: there exists p such 

that for  all q, t �9 (aq/ao) ~ L} = U p tq ~(ap/aq). I~ = A �9 A x.}. Also the diametral 
dimension F(A) = N p U q (a4/as)" 11 = (h �9 h x)• = D(A,A). Observe that 8(A)x = 

F(A ). In [6], Dragilev shows that the diametral dimension F does not distinguish 
the class of spaces with a regular basis, by constructing two regular spaces A 

and/.~ with regular bases such that A is not isomorphic to /~ but such that 
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F(A) = F(p.).  ( T h e o r e m  2, [6]). M o r e o v e r ,  p. is a (DO s p a c e  so  (by Prop.  2.5 o f  

[15]) /z  �9 t~ • = / z .  W e  c la im that the  s p a c e  )t is s u c h  that A �9 ~ ~ is no t  perfect .  F o r  

if ; t . ; t  • is perfect ,  then  the  fac t  that F ( A ) =  F(t t )  impl ies  that ; t - a x =  

(;t �9 ;t x)x• = (/x �9 ~ •  = ix. But ,  by  apply ing  L e m m a  2 o f  [5], w e  see  that there 

exis t  d, > 0 such  that A = d �9 w h i c h  is a contradic t ion .  

REMARK (4.2). We now give an example of a nuclear sequence space A(P) 

which has the property that A ( P ) ; =  U a~pa "/ |  X. Such spaces are 

mentioned in [171 and [12], but to our knowledge, no examples have been 

presented. For th is ,  w e l e t P  = { a :  a E ;t .)t ", a =0}, where ~ = O (1]aK).l~, 
the space in (4.1). Then A ( P ) = ( A ' A • 2 1 5  and A(P)~,=A.) t  •  U 

a ~ ' I = ~ A ( P )  X. To see that A(P) is nuclear, we apply the Grothendieck- 

Pietsch criterion [14]. In fact,  observe that if a E P, then there exists k such 

that a E a ~ �9 A. Now if t E A~ (n2t,) E A by nuclearity of )t [14], so (n~a,) 

a ~.A. Thus, for all a ~ P, there exists b ~ P such that a[b E l~. 
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