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ABSTRACT 

It is shown that if B is the unit ball of a non-separable Hilbert space with its 
weak topology, then for every number 2 _> 1, there exists a space K x containing 
B, such that the constant of simultaneous extension from C(B) to C(K.O is 
exactly 2. This gives a negative answer to the question whether the constants of 
simultaneous extension ought to be odd integers, as was suggested by examples 
of Corson-Lindenstrauss and Corson-Pelczynski. 

Let  K be a compac t  Hausdor f f  space, and S a closed subset o f  K .  A bounded  

linear opera tor  T f r o m  C(S) into C(K) is called a s imultaneous extension opera to r  

(seo) if for  every f in C(S), Tf  is an extension o f f  to a cont inuous funct ion on K .  

Set ~/(S, K)  = inf{ IIT II T is seo f rom C(S) to C(K)}.  

The  Borsuk-Kaku tan i  theorem (see [3]), ensures the existence o f  a n o r m  one 

seo provided S is metrizable.  On  the other  hand there are known examples  

where r/(S, K)  = oo, that  is, there exists no bounded  extension opera to r  f rom 

C(S) to C(K). 

Corson  and Lindenstrauss [1] were the first to compute  the constants  o f  si- 

mul taneous  extension r/(S, K)  for a pair  S, K where none of  these extreme cases 

happen.  They showed that  if  S is the one point  compactif icat ion of  an uncountable  

discrete set, then for  every K containing S, r/(S, K)  is an odd integer (or  infinity). 

Moreover ,  for every integer n there exists a Kn containing S,  with ~/(S, K,)  = 2n + 1. 

Another  example of  a space S with extension constants r/(S, K)  different f rom 
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1 or oo, was constructed by Corson and Pelczynski ['2]. In their example as 

well, the only possible values of q(S, K) for different K are odd integers. 

These two examples led to the question ([2] Prob. 11), whether the numbers 

~/(S, K) are always odd integers. 

It is the purpose of this note to show that the answer to this question is 

negative, and that every 2 > 1 can be attained as an extension constant q(S, K) 

for some pair S and K.  

For a compact Hausdorff K,  we shall identify C(K)* with the space of all 

finite regular Borel measures on K.  The measure of unit mass concentrated at 

a point k will be denoted by 6(k). 

THEOREM 1. Let B be the unit ball of a non-separable Hilbert space with 

its weak topology. For every 2 >= 1, there exists a compact Hausdorff K~ con- 

tainin9 B,  such that q(B,K~) = 2. 

Denote by E the unit ball of C(B)* with its o)*-topology. If K contains B, then 

t/(B, K) __< 2 iff there exists a co*-continnous function f mapping K into 2E such 

that f(b) = 6(b) for every b in B. In particular, if we take K~ to be 2E and embed 

B into 2 E canonically by b ~ 6(b), we have that r/(B, 2 E) < 2. In order to prove 

that ~(B,2 E)=  2, we only have to show that for every 2~ < 2 there exists no 

to*-continuous map of 2Z into 2~ E with ~(6(b)) = 6(b) for b ~ B. 

Let {e,},~ a be an orthonormal basis for the Hilbert space whose unit ball is B. 

Theorem 1 follows easily from the following two propositions. 

PROPOSITION 2. Let n be a natural number and 2 > 1. There exist open 

sets V~ in 2E with 6(n-le~)~ V~such that the intersection of any �89 + 1)n 2 + 2 

of them is empty. 

PROPOSmON 3. Let n be a natural number and 2 > 1. I f  (G~} is any system 

of open sets in 2E with 6(n-ae,)~G~, there exist �89 + 1)n 2 -  1 different G's 

with non-empty intersection. 

To deduce the theorem, assume that 2 > 21 and that ~ is a continuous map 

from 2E into 21E with @(6(b))= 6(b) for b ~ B. Choose n large enough so that 

�89 + 1)n2> �89 + 1)n2+ 4 and let V, be the neighbourhoods of 6(n-%~) in 

21Z given by Proposition 2, that is, the intersection of every �89 + 1) n2 + 2 

different V, is empty. Since ~(6(n- le , ) )=6(n- le , )  we obtain that G~=@-I(v,) are 

open neighbourhoods of 6(n-le,)  in 2E, and clearly every �89 1 ) n 2 +  2 of 

them has empty intersection. By the choice of n this is a contradiction to Propo- 

sition 3. 
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For the proof of the first proposition we shall need the following lemma. 

LEMMA 4. For every 2 < oo, 8 > O, 0 < a < 1 and every open sub-interval I 

of [ -  1, 1] containing a, there exist 8 > 0 and an integer k such that for  every 

measure I~ on [ - 1 ,  1] satisfying 

(i) l] # II --- aria 

we have #+(I) > 1 - 8 (where #§ denotes the positive part of #). 

PROOF. If  the lemma were false, we would have a 8 > 0, sequences 8. ~ 0 

and k. -* oo, and measures/l, satisfying (i) and (ii) for ~., k. such that p.+(l) < 1 - & 

By passsing to a subsequence, if necessary, we can assume that the sequence p. 

converges in the o*-topology to a measure v. Since v satisfies (ii) with ~ = 0 

and for every j,  we obtain, by the density of the polynomials in C [ -  1.1], that 

v = 8(a). Let f be a non-negative continuous function on [ - 1 ,  1], supported 

in I .  such that f ( a ) =  Ilzl] = 1. Then we have 

1--f(a)=limffd.n<=liminfffd.+. N1-8, a contradiction. �9 

PROOF OF PROPOSITION 2. Suppose 2 > 1, 8 > 0, and n are given, and let 

e, k be those attained by Lemma 4 for a = 1In and I = ((n + 8) -1, (n -8 ) -1 ) .  

Define V~-- {g~2Z:lfxjd~-n-q<e j = 0 , . . . , k }  where  x~ is the 0t-co- 

ordinate function on B, that is, if b -- {b,} ~ B then x=(b) = b~,. 

Let n,: B--, [ - 1 , 1 ]  be the natural projection of B on the a-coordinate. I f  

/~ e V~ a n d / ~  is its image under n, ,  then/~, satisfies the conditions of Lemma 4, 

and thus we have that /~+(I)> 1 - 8 .  

Set B, = {b ~ B: (n + 8)- 1 < b, < (n - 8)- l} = 7r~- 1 (/); then clearly 

/~+(B~) >- #+(I) > 1 - 8 .  

Suppose now that # ~ V~, r3 ... r3 V~, and let {C~} be the atoms of the partition 

generated by B~,, ..-, B~ .  Since the intersection of every (n + 8) 2 + 1 different 

B'~s is empty, we obtain that each C, is contained in at most (n + 8) 2 different 

B'~s. Hence 

m 

re(X-8) __< z z z  +r _-< z �9 
] = l  j Cu~BJ k 

But !! 1t -<- x and I f  l d / ~ -  11 < e  imply that I1,+ II =< + 1 + e), and thus 
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we get t h a t m < � 8 9 1 8 9  2 + 1  provided 3 is 

small enough. �9 

For the proof of Proposition 3 we shall need the following simple combinatorial 

lemma 1-11. 

L~MMA 5. Let A be an uncountable set, and m an integer. For every 

in A ,  let ~(~) be a subset of A whose complement is finite. Then there exist 

{cti}i~ l in A such that ~i~r for  every i ~ j .  

PROOF OF PROPOSmON 3. Let2 > i ,  n and a rational number 1 < s/t < �89 

be given, and suppose {G,} are open neighbourhoods of 6(n-le~) in 2E. 

The algebra generated by the coordinate functions, {x~} is, by the Stone- 

Weierstrass theorem, dense in C(B). Thus every G~ contains a subset of the form 

where each P1 is a monomial in the coordinate functions, such that at least one 

of its variables is different from x~. 

Let A~ be the finite set of all the indices of the variables appearing in the def- 

inition of G'~, and apply Lemma 5 with ~b(ctj) = A \A~ and m = [(sit)n2]. We 
m 

thus get a subset {~,}~=t of A such that for every i ~ j ,  ~ ~A~ .  Define now 

Zk =- -  Y~ e(,.k~ and / t =  i -  c5(0)+~- Zk) 
n r = l  = 

where (r,k) is an enumeration of ~1, "",~m, such that every ~ appears exactly 

t times and for t different k. (It should be understood that if t[(s/On 2] < sn 2 , 

we shall have only n 2 - 1  summands for some Zk). One such ordering is given by 

(r, k) = ct/, where j = [ ( r -  1)s + ( k -  1]/)t + 1. 

We shall show that #~  G'~ n ... n G" m, and thus, provided only that sit is 

a good enough approximation of  �89 + 1) we shall get that m = [(s/t)n 2] > 

�89 2 - 1. 

We proceed to show that ~ e G'~, for every i < m. 

(i) I I # l l = ( t - 1 )  + s  = 2 s - 1 < 2 2 + 1  I t  t = - - - 2  = 2. 

i - = l .  

k 

(iii) Since at appears for exactly t different k and exactly once for every such 

we obtain that 
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1 ExJ_(  1- er = 7 " t  = n- l .  x~d# =7 k=l \n  =i 

(iv) Every monomial Pt appearing in the definition of G~', has at least one 

variable xp with/~ # ~i. Since by definition f le A~,, we obtain, by the choice of 

{~j}~, that fl # % for every j < m. Thus the function x B and clearly also Pt ,  

is identically zero on the support of # which implies that f Ptdlz = O. �9 
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