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A N O N - S T A N D A R D  REPRESENTATION FOR 
BROWNIAN MOTION A N D  ITO INTEGRATION 

BY 

ROBERT M. ANDERSON' 

ABSTRACT 

In a recent paper [10], Peter A. Loeb showed how to convert non-standard 
measure spaces into standard ones and gave applications to probability theory. 
We apply these results to Brownian Motion and It6 integration. We first 
develop a number of new tools about Loeb spaces. We then show that Brownian 
Motion can be obtained as the Loeb process corresponding to a non-standard 
random walk obtained from a *-finite number of coin tosses. This permits a very 
constructive proof of a special case of Donsker's Theorem. The It6 integral with 
respect to this Brownian Motion is a non-standard Stieltjes integral with respect 
to the random walk. As a consequence, an easy proof of It6's Lemma is 
possible. The results in this paper were announced in [1]. 

I. Introduction 

Non-s t anda rd  analysis, in t roduced  by A b r a h a m  Rob inson  in 1960 [14], 

provides a r igorous means  of developing analysis using infinitesimals.  It is 

part icularly at tract ive as a means  of reducing con t inuous  processes to discrete 

ones.  For  this reason,  a n u m b e r  of authors  have applied non- s t anda rd  analysis to 

problems in measure  and  probabi l i ty  theory.  The  following are of special 

re levance to the subject  mat te r  of this paper.  

Berns te in  and W a t t e n b e r g  [2} showed that  Lebesgue  measure  on [0, 1] can be 

realized as coun t ing  measure  on a *-finite collection of points  in *[0, 1]. More  

specifically, they proved that  there  exists an in te rna l  subset  F of *[0, 1] such that,  

for all Lebesgue  measurab le  sets B, the Lebesgue  measure  of B is given by 

~ ([ F D *B I / 1 F  I), where I ~ I denotes  ( internal)  cardinal i ty.  

D. W. Mfiller [13] used non- s t anda rd  analysis to give a new proof of the 

D o n s k e r - P r o k h o r o v  invar iance  principle,  and  thus establish the existence of 

* This work was carried out while the author was supported by a Canada Council Doctoral 
Fellowship. The author is grateful to Professors D. J. Brown, J. L. Doob, S. Kakutani, H. J. Keisler, 
P. E. Kopp, and P. A. Loeb for their helpful suggestions and criticisms. 
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Brownian Motion. His proof relied on a non-standard characterization of tight 

measures; it thus did not provide a non-standard representation of Brownian 

Motion per se. 

Reuben Hersh [5] produced a discrete non-standard analogue of Wiener 

measure. In an approach reminiscent of that of Bernstein and Wattenberg, he 

constructed a *-finite set F of polygonal functions and set i x ( B ) =  

([ F N *B [/[ F [) for any subset B of C([0, 1]). However,  Hersh's measure is not 

countably additive on the Borel subsets of C([0, 1]) and, indeed, is supported on 

a countable set. Our approach will make use of a related set of polygonal 

functions; however, we shall induce a countably additive extension of Wiener 

measure on C([0, 1]). 

Allan F. Abrahamse [0] considered Brownian Motion and White Noise in the 

context of generalized random processes. He constructed an internal stochastic 

process defined on *R by summing a *-finite number of independent random 

variables, and demonstrated that this process generates essentially the same 

generalized random process as Brownian Motion. This is a reasonable character- 

ization of Brownian Motion among standard stochastic processes. However,  it 

leaves room for very bad local behaviour in non-standard stochastic processes/  

Hersh and P. Greenwood [6] used non-standard increments to obtain some 

interesting results about standard increments (including quadratic variation) in 

Brownian Motion and other stochastic processes. Their  methods, however, did 

not produce a non-standard formulation of the It6 integral or a proof of It6's 

Lemma. 

Peter A. Loeb [10] recently introduced a new technique for formulating 

probabilistic processes in non-standard terms. He showed how to convert a 

non-standard measure space (X, M, v) into a standard space (X, tr ( M ) , L ( v ) )  

which inherits most of the structural properties of the original space. This is 

particularly useful if M is *-finite. Loeb gave applications to coin tossing and the 

Poisson process. H. Jerome Keisler has used Loeb spaces to facilitate a synthesis 

of continuous and discrete processes in Economics. 

In the next section, we develop a number of tools which will be needed for the 

application of Loeb spaces to probabilistic problems. We first extend Loeb's  

integration theory to unbounded functions and to spaces X with L ( v ) (X )  = + oo. 

In particular, we define SL p (X, M, v), a well-behaved factor space of a subspace 

of *L~(X, M, v) and show (Theorem 11) that it is isometrically isomorphic to 

L p (X, L (M), L (v)) via the standard part map; here (X, L (M), L (v)) denotes the 

* It can be shown that Abrahamse ' s  process satisfies a continuity condition similar to our 

Theorem 27. Thus, his process could have been used to induce a Brownian Motion on R. 
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completion of (X, o'(M), L(v)). This permits us to transform functions from one 

space to the other  while preserving integration properties. We show (Corollary 

17) that the Lebesgue measure space is the image under a measure-preserving 

transformation of a *-finite Loeb space. This may be thought of as an easier 

alternative to the Bernstein-Wattenberg [2] construction of Lebesgue measure. 

The construction may be generalized to any ~r-finite Radon measure on an 

arbitrary Hausdorff space; the details will be presented in another article. We 

show (Theorem 22) that the Loeb space of a product X • Y is closely related to 

the product of the Loeb spaces of X and Y. Finally, we prove an analogue of the 

Central Limit Theorem (Theorem 21). 

In the third section, we show that Loeb spaces permit a natural representation 

of Brownian Motion. Our method will be to consider a non-standard *-finite 

random walk X. An easy computation shows that /3, the standard part of this 

random walk, is Brownian Motion (Theorem 26). Path continuity follows easily 

(Theorem 27); hence we get Wiener measure on C([0, 1]). In addition, this 

provides a natural setting for proving a special case of Donsker 's  Theorem 

(Theorem 29). The weak convergence of the measures induced by the finite 

random walks is demonstrated by exhibiting their weak limit as the measure 

induced by X. In another article, we shall show how the argument can be 

generalized to give a natural characterization of weak convergence; similar 

results have been obtained independently by Salim Rashid. 

In the fourth section we use the *-finite random walk formulation to develop 

the theory of It6 integration. The fin difficulty in the standard theory is that 

almost all paths of Brownian Motion are of unbounded variation. However,  

every path of X is of *-bounded variation. Hence, given a *-integrable function g, 

we can define a *-Lebesgue-Stieltjes integral f gdx. We shall show (Theorem 33) 

that, if f is It6-integrable with respect to /3, there is a lifting g of f such that 

~ = f  and ffd/3 =~ It then follows that almost every path of ffd/3 is 

continuous (Theorem 35) and that f fd/3 is itself It6-integrable (Theorem 36). 

Moreover,  X has the property that, over appropriate infinitesimal intervals 

[a, b], (dx) 2= (x(b)-x(a)) 2= b - a  = dt. This simple observation leads to a 

direct and easy proof of It6's Lemma (Theorem 37). 

Further applications to the theory of stochastic integration and stochastic 

differential equations will be given in another article. 

2. Properties of Loeb measure spaces 

In this section, we study the properties of Loeb spaces. We assume throughout 

that we have a structure containing the real numbers R, and a denumerably 
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comprehens ive  en la rgemen t  of this s tructure.  Assume  that  X is an internal  set in 

this en la rgement ,  `d an internal  a lgebra  of subsets  of X, and v an internal  finitely 

addit ive set function v: `d ~ * R § 

Loeb  showed that  ~ must  necessari ly be  countably  addit ive and used the 

C a r a t h e o d o r y  Extension T h e o r e m  to fo rm a s tandard  measu re  space  

(X, tr(`d), L(v)) where  tr (`d) is the smallest  t r -a lgebra  containing `d, and L(v)  is 

the unique extension of ~ to tr(`d).* We  shall find it convenient  to consider  

instead the comple t ion  of (X, tr(`d),  L (v ) ) ;  we deno te  this comple te  measu re  

space by (X, L(`d),L(v)),  and refer  to it as the Loeb  space of (X,`d,  v). 

DEFINITION 1. f:X---~*R is finite if 

i) f is d - m e a s u r a b l e ,  

ii) there  exists n E N such that  [f(x)]< n for  all x E X, 

iii) ~ :f(x)~ 0})< +oo. 

REMARK 2. Loeb  showed that,  for  each B E t r ( A )  with L(v)(B) < + 0% there  

exists A E ` d  such that  L(v ) (BAA)=O,  where  B A A  denotes  symmet r i c  

difference.  This  s t a tement  also holds for  all B ~ L ( ` d )  such that  L(v)(B) < + oo. 
H e  fur ther  showed that,  if f:X---~*R is `d -measurab le ,  then ~ 
R U { + ~, - oo} is o-( `d)-measurable .  Finally, he showed that  if f :  X---~*[ - n, n] 

for some  n E N, then ~ = fA fdL(v)  for  each A E `d with L(v)(A ) < + oo. 
It follows that  if f is finite, then ~ is L (v) - in tegrable  and ~ = fOAfdL(v) for  

each A E `d. 

DEFINITION 3 (Cf. [2, p. 185]). f :  X - * * R  is S-integrable if 

i) f is , d -measu rab le ,  

ii) ~  +o% 
iii) A E ` d , v ( A ) = O ~ f A l f l d v = O ,  
iv) A E `d, f (A )Ctz(O)~ fA[f l  dv =0 .*  

THEOREM 4. Suppose f: X ~ * R is `d-measurable. Then f is S-integrable if and 

only if there exists a sequence of finite functions {f,},~N such that 

~  [ f - f .  ldv)--~O as n----~oo. 

PROOF. Suppose  f is S- in tegrable .  For  n ~ *N, define 

* The uniqueness in the case "~,(X)= + ~ was supplied by Ward Henson. 
* If L(v)(X)< +~, condition (iii) in Definition 1 and condition (iv) in Definition 3 are 

redundant. This is the only case required for Sections 3 and 4. 
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f O if [f(x)l<l/n, 
+ n  if f (x)>n,  

f . ( x ) =  f(x) if 1/n<-lf(x)l<=n, 
- n  if f ( x ) < - n .  

For all n E *N, f. is Z-measurable; for n E N, f, is finite. For each to ~ *N - N, 

< l f ~  v({x:lf(x)]>oo})=~ [f(x)ldv~-O. 

Hence 

L (x)l>~o (x)l<l/~o 

Hence ~ dv/--,0 as n ---, ~. 
For the converse, let {fn} have the given properties, and sup I/n I < n. It is clear 

that ~ Ifl dr)< +~. Suppose we are given e E R +. Find n E N such that 

~ I f - f .  I d~,)< el2. Suppose A E M, v ( A ) <  e/2n. Then 

f~ Ifldv<-nv(A)+fA t f - f .  ld~<~/2+~/2=~. 

particular, if v ( A ) = 0 ,  L ] f ] ~  < e  for all e ~ R + ,  so L If]dv=O" In 

If A E M and f (A) C ~ (0), then there exists some ~/-- 0 such that I f ( x )  I < 71 
for all x E A.  Let 

i f ( x ) =  ~f,(x) if If.(x)[ =< [f(x)l,  
i f ( x )  if [ f . (x) l  > If(x)[.  

Then fA If(x)ld,,<= f,, If'la,,+ fA [ f - f ' l d v  

<- n•({x:f'(x) ~ 0}) + fx I f -  f. [ d~. 

Since the first term is infinitesimal for all n U N, and the second term tends to 

zero, fA [ f(x) [ dv = O. 

COROLLARY 5. Suppose f is S-integrable, g is M-measurable, and I g(x) l  ---- 
If(x)l for all x E X. Then g is S-integrable. 
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PROOF. 

Let 

Let jr, be a sequence of finite functions such that "fx I f -  [, I dv ~ O. 

g . ( x ) = [  g(x ) if I[.(x)l >-Ig(x) l  

I [/.(x)l g(x) if l i . (x)l  < Ig(x)l. 
Ig(x)l 

Then g. is finite, and ]g(x)-g.(x)l<=lf(x)-L(x)] for 

"fxtg-g.  ld,'--'O. 
all x. Hence  

THEOREM 6. Suppose f: X--* *R is S-integrable. Then ~ is L(v)-integrable 
and ~ = fa*fdL(v)  for any A E M. 

PROOF. Let {f,}.~N be a sequence of finite functions such that ~  

f, ldv) -~O as n - -*~ .  ~ is L(v)- integrable  by Remark  2. For each e ~  R +, 

L(v ) ( {x : [~  ~ > s })--~ 0 as n --* o% so ~ --~ ~ in measure (with respect 

to L(v) )  

f '~176 IdL(v)=~ lf.-f,~ Id,,)<-'(f lf.-ild~,)+'(f li.-f,dv)---~O 
as m, n ---~ oo. 
Therefore,  {of.} is a Cauchy sequence in L~(X, L (M) ,L (v ) ) .  
Hence ~ E L ~(X, L(M),  L(v)) ,  and 

THEOREM 7. Suppose g:X-- -~R is L(v)-integrable. Then there is an S- 
integrable f: X--~ * R such that *f = g (almost everywhere with respect to L ( v ) ). 

PROOF. Loeb gives L. C. Moore Jr. 's  proof  of a result containing a special case 

of this theorem: it is assumed that g is bounded and tr(M)-measurable,  and that 

L(v ) ( {x :g (x )  # 0})< + oo: f is found to be finite. By Remark  2, Moore ' s  proof 

goes over  immediately to the case where g is bounded and L (M)-measurable.  

We now turn to the general case. Let 

g.(x)  = 

+ n  g ( x ) >  n, 

g(x) 1/n <= I g(x)l-<- n (n ~ S),  

- n  g ( x ) <  - n, 

0 I g ( x ) l < l / n .  
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By the D o m i n a t e d  Conve rgence  T h e o r e m ,  fxlg-gn]dL(v)---~O as n--~oo. 

Since g is in tegrable ,  L(v)({x: gn(x)~ 0})<  + oo. In addit ion,  g, is h o u n d e d  and  

L(~r  so we may  find fi finite such that  ~ = g,(L(v)-almost 
everywhere) .  

Using the fact that  our  en la rgemen t  is d e n u m e r a b l y  comprehens ive ,  we may  

ex tend  {f i}~N to an internal  sequence.  Then  there  must  exist ~o E * N  - N such 

that  f~ is s~-measurable  and ~ - f~  I dv)---~O as n ---~ ~. Wri te  f = f~. Thus  f 

is S- in tegrable ,  so by T h e o r e m  6 ~ is L (v ) - in t eg rab le .  

fx  ]~  dL(v)<= fx , ' f -~  fx ,~  

=~ I f - f ~  Ign-gldL(v)- -~O as n--~oo. 

T h e r e f o r e  f• l~  g tdL(v) = 0, so ~ = g (L (v) -a lmost  everywhere) .  

COROLLARY 8. Let f and g be as in Theorem 7. Then for A E sO, fa fdv 
f A gall (v). Moreover, f is uniquely determined in the sense that, if fl is S-integrable 
and ~ = g(L(v)-almost everywhere), then f x l f  - fll dv ~ O. 

PROOF. Immed ia t e .  

THEOREM 9. Suppose f: X--~*R is ~-measurable. Then the following are 
equivalent: 

i) f is S-integrable, 
ii) ~ is L ( v )-integrable and ~ l f l dv = f f~ dL ( v ), 
iii) ~ is L (v)-integrable and ~ l f l du <= f l~ dL (v). 

PROOF. 

(i) => (ii): If f is S- in tegrable ,  then so is I f ]  and  the conclusion follows f rom 

T h e o r e m  6. 

(ii) =), (iii) is obvious.  

(iii) ::~ (i): Suppose  ~ is L (v ) - in t eg rab le .  By T h e o r e m  7, we may  find g 

S- in tegrable  such that  ~ = ~ everywhere) .  By Corol la ry  5, we may  

assume there  exists a :  X--~  *[0, 1], g(x) = a(x) f (x)  for  all x. 

L (v)({x : ~ ~ ~ = 0. H e n c e  L (v)({x : [ g(x) - f(x)]  > l /n})  = 0 for  n E N, 

so v ( { x : [ g ( x ) - f ( x ) l  > l / n } ) = 0 .  Let  I = { n : u ( { x : [ g ( x ) - f ( x ) l > l / n } ) <  
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1/n}. Then I is internal, and contains all finite n. Thus, it contains some infinite 

r Let a = { x : [ g ( x ) - f ( x ) l >  1/r v (A )=O.  

~ Igfd =f,f~ (since g is S-integrable) 

fx-A [~ I dL(v)  

= ( [ ' f[dL(v) (since " f= 'g  on X - A )  
$ x  - A  

fx  [~ dL(v)  

>-'fx ]fl dv (by (iii)). 

But since g(x )= a(x ) f (x )  for all x, 

~ Ig-fldv=~ I f l - l g ldv<- -O .  

Therefore  f• [ g - f l d v - - - 0 .  If g. is a sequence of finite functions such that 

~ ] g. - g ] dv --* 0, then "f ] g. - f l dv --, O. Thus f is S-integrable by Theorem 4. 

DEFINITION 10. For 1 < p < oo, let SLP(X, M, v) be the collection of equiva- 

lence classes of all f : X - - > * R  such that f is M-measurable and If]  p is 

S-integrable (with respect to v), under the equivalence relation f x - f 2  

(flf ,-f2JPdv)'/P~-O. We may define a norm by Ilfllp = ' ( f i l l "dr )  '/p. As is 

customary in standard analysis, we shall often think of an element of SL" as a 

function, rather than as an equivalence class of functions. 

THEOREM 11. 

i) Suppose f: X---~ * R is M-measurable. Then 

f ~ SL" (X, M, v) r162 ~ E L p (X, L (d) ,  L (v)) and II f lip -- Ilof I1. 

r ~ L P ( X , L ( M ) , L ( v )  ) and 11f]1.--<117tl.. 

ii) If g : X ~ R is in L" (X, L (M), L (v)), there is a unique f E SL" (X, M, v) 
such that ~ f = g ( L ( v )-almost everywhere). 

iii) S L P ( X, M, v) and L P ( X, L ( M ), L ( v ) ) are isometrically isomorphic via the 
standard part map f---, of. 

iv) Suppose " v ( X ) < + o o ,  f E S L " ( X , M , v ) ,  and l<-q<=p. Then f E  
SL "(X,~r v). 
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PROOF. 

i) Assume f is .~-measurable. Then f E SLP(X, ~r v) r I f  [P is S-integrable 

r [~ is L (v)-integrable and ~ Cz~~ 
LP(X, L(~r L(v)) and I[ flip = [[~ The proof of the second equivalence is 

identical. 

ii) Let B = { x : g ( x ) > 0 } .  By Remark 2, we may find A E~r such that 

L (v)(A A B) = 0. Hence we may lift max (g, 0) and rain (g, 0) separately. It is thus 

sufficient to consider the case where g is positive. 

Since g E LP(X, L(~r L(v)), gP is integrable. Hence by Theorem 7, there 

exists fl S-integrable such that ~ = gP(L(v)-almost everywhere). Let f =  

(max(f1,0)) 1/p. f" is S-integrable by Corollary 5 and "f=g(L(v)-almost 
everywhere). Uniqueness follows from Corollary 6. 

iii) This is now clear. 

iv) If A E ~,  

fA [f,qdv= f*.,ll~, ,fJqdv+ ]f[qdv<- fA ,f,Pdv+ v(A). 

In particular, ~ If ]qdv .~ + oo and, if v(A) - 0, fA If  [qdv -~ 0. 

THEOREM 12. Let P be an internal partition of X with P C ~r and let 5g' be the 
internal *-algebra generated by P. 

i) Suppose f is L (~)-measurable, f [A is constant for each A E P, and there exist 
C. C R, U . C .  = R U { + ~, - oo} - {0}, such that L(v)(f-'(C.)) < + oo for all n E 
N. Then f is L(sg')-measurable. 

ii) Suppose P is *-finite, L(v)(X)< +% and h ESL~(X,s~,v). Then 
E(h I sr E SLP(X,.~4 ', v) and ~ [.~1') = E(~ [ L(sg')). 

PROOF. 

i) For x E X ,  let A~ be the element of P such that x E A x .  Let a E R ,  

B = { x : f ( x ) ~ O ,  f (x)<a} .  Let B.=BMf-~(C.) ;  thus B = U , B , ,  B . E  
L(sg),L(v)(B,)< +o%x E B ,  :~ A, CB,. 

Given e E R  § we may find F, G E ~  such that G D B .  DF, v ( G - F ) < e .  
Define G'={x :A ,  CG}, F ' = { x : A ~ A F ~ ) } .  Then G',  F ' E ~ ' ,  and G D  

G ' D B ,  DF'DF,  so v ( G ' - F ' ) < e .  Since e is arbitrary, B, EL( ,~ ' ) ,  so 

B E L (~ ' ) .  Thus f is L (~')-measurable. 

ii) Let g = E(h I~ ' ) .  Since P is *-finite, 

v(A )=0 
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thus, we may assume that v ( A ) > 0  for all A E P. Then for x E A, 

1 
g (x) = --(-~f,, hdv. 

If B E M', write B = UT=IA,,  where to E *N, A,  ~ P. Then 

n = l  n 

1 hdv p 

<=~_~v(a,)fa IhFdv 
n 

I h 

In particular, "fxlgf~dv<+oo and, if v ( B ) = 0 ,  f~lg[~dv=O. Thus, 

g E SLP(X,  s~', v). 

By Theorem 11(iv), g, h E SLI(X, sg, v). If D E L(~r there exists C E ~r 

such that L(v) (CAD)= O. Hence 

Since ~ is L (M')-measurable, "g = E (~ l L (M')). 

We now prove a representation theorem for Lebesgue measure on the unit 

interval. We shall show (Corollary 17) that there exists a *-finite measure space 

(X, M, v) and a measure-preserving transformation from (X, L(M), L(v)) onto 

[0, 1]. The idea of using the standard part map in the following construction was 

suggested by Donald J. Brown. Standard part maps have appeared in many 

guises in nonstandard constructions, and seem to be fundamental tools. See also 

Corollary 28 and the article by Peter A. Loeb, Applications of nonstandard 
analysis to ideal boundaries in potential theory, in this volume. 

NOTATION 13. Let 71 E *N - N, Y = *[0, 1], with 0 and 1 identified. Let ~ be 

the *-algebra of all internal unions of intervals of the form [i/Th (i + 1)/~ ), where 

0 =  < i < r/, i E * N .  Let 3. be the *-finitely additive set function such that 

h([i/r/,(i + l ) / r / ) ) =  I/r/. Let st:*[0,1]---~[0,1] denote the standard part map 

x ---~'x. Finally, let (W, ~ , /~)  denote the Lebesgue measure space on [0, 1], with 0 

and 1 identified. 
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THEOREM 14. With the notation above, st: (Y, L(C~), L(A))--> (W, ~,  ~ )  is 

measurable and measure-preserving (i.e. B E J3 ~ st -1 (B) E L(c~), 
L (A) (st- '(B)) = /z  (B)). 

PROOF. First consider an interval [a,b). Then 

st-,(Lo, ,9, E L(C~), 

since it is a countable union of countable intersections of sets in cC Moreover, 

L.)(st-'(ta, b)) : b-a +!_• ): b-a : ,.,.([a, b)). 

Hence if B is any finite disjoint union of such intervals, L (A)(st-'(B)) = /z  (B). 

Since L ( ~ )  is a a-algebra, {B: st-l(B) ~ L(c~)} is also a or-algebra. Thus, if B 

is any Borel set, st-~(B)EL(C~). Thus, /z~(B)= L(A)(st-t(B)) determines a 

measure on the Borel sets which agrees with Lebesgue measure on the ring of 

finite disjoint unions of left-closed, right-open intervals. By the uniqueness 

portion of the Caratheodory Extension Theorem, p.~(B)=/z (B) for any Borel 
set B. 

Finally, if B E ~,  find F, G Borel sets such that F C B  CG, /z(F) = / z (G) .  

Then st-~(F) Cst-~(B)Cst-~(G), and L(A)(st-~(F)) = / z ( F )  = / z ( G )  = 

L(A)(st '(G)). Since (Y,L(C~),L(A)) is complete, s t - ' ( B ) E L ( ~ ) ,  and 

L(A)(st- '(B)) = /z  (B). 

COROLLARY 15. Suppose f: W---~ R is tz-integrable. Then g = los t :  Y-- .  R is 
L (A)-integrable, and fy gdL (A) = fwfdtz. 

PROOF. If f is a simple function, the result is immediate. The general result 
follows from a routine limit argument. 

COROLLARY 16. Theorem 14 and Corollary 15 hold if (Y,L(C~),L(A)) is 
replaced by (Y, L(*~3), L(*p.)). 

PROOF. Immediate. 

COROLLARY 17. Let X = {1,-. -, 7/}, ~ the *-algebra of all internal subsets of 
X, and v the counting measure ~(A ) = [ A I/~l. Then there is a measure-preserving 
transformation T : (X ,L (~) ,L (v ) ) - ->(W,~ , I z  ). Hence if f : W - - > R  is iz- 

integrable, fo T: X--> R is L(v)-integrable and f x f o  TdL(v) = fwfdtz. 

PROOF. Since any q-measurable function must be constant on each interval 

[i/~l, (i + 1)/77), there is an obvious measure-preserving transformation from X 

to (Y, c~, A). Let T be the composition of this with st: Y---~ W. 
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REMARK 18. L e t  

~ ,  = {B C [0, 1] : st- '(B) E cr(*~)}, 

~2 = {B C[0, 11 : st- '(B) ~ L(*~)},  

~3 = {st(B) : B E o'(*~)}. 

Ward Henson has shown that ~ ,  is the class of all Borei sets, and that ~3 is the 

class of all analytic sets. It follows that ~2 is exactly the class of Lebesgue sets. 

It is natural to ask what is the relationship between *f and los t .  We have the 

following theorem: Suppose f: [0, 1] ~ R O { + ~, - 00} is ~-measurable.  Then 

~176 for L(*g)-almost all t. Moreover, if f E L  p, *rE 
SLY(*[0, 1] ,*~ ,*g) .  Since this result is not required for the development of 

Brownian Motion and It6 Integration, we shall not prove it here.* 

We now turn to a non-standard version of the Central Limit Theorem. 

DEFINITION 19. A random variable on (X,M,v)  is a function x :X- -~*R  
which is M-measurable. A collection {x~ } ~  of random variables is *-independent 
if, for every *-finite internal subcollection {x, . . ., x,,} (m E *N), and every 

internal m -tuple (a , , .  �9 -, cz,.) E *R ~', 

, ,({o,: x, ( , , , )  < , ~ , , . . . ,  x .  (,, ,) < a .  }) = I~I ,,({,, ,: x~ (,,,) < ,~  }). 
k=l  

The collection {x~},E, is S-independent if, for every finite subcollection 

{x , , . . . ,  x,,} (m E N), and every m-tuple (or1,..., a , , ) E  R "  

,,({,o : x , ( , , , )  < ,~,, �9 �9  x~ (,,,) < ,~ .})  = I~I ,,({,,, : xk (o,)  < o~k}). 
k=l  

LEMMA 20. Suppose {x, },E, is an S-independent collection of random variables 
on (X, M, v). Then {'x~}~ is an independent collection of random variables on 
(X, L(M), L(v)). 

PROOF. Suppose m E N , ( a , , - - . , a , , ) E  R ' .  

L (,,)({~o : "x , , (~)  < a , , . . . , ' x , .  < ~, ,})  

=lim._| *l/({o) ~ xil(o)) < o~1 - - 
1 . . .  _ 1 ] ' ~  

xim ( ( o ) <  (Xm 
n '  

' This result will be proved in another  article, along with a generalization of this representat ion 
of Lebesgue measure  to Radon measures  on arbitrary Hausdort t  spaces. 
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= lim ~  v({to: x,~ < a, - 1 } ) )  

= f i  !!m ~ xlj < aj _ 1 } )  

= I~I L(~) ({ ,o :  "x,,(,o) < ~,}). 

THEOREM 21. Suppose {x,}.~.u is an internal sequence of *-independent 

random variables on (X, M, u) with common standard distribution [unction F. 

Suppose [urther that E ( x, ) = O, E ( x ~.) = 1. Then [or any n ~ * N - N and a E * R, 

v ( { w  1 " 

where tO(a) is the standard Gaussian distribution. 

PROOF. Let G be the distribution function of *x, as a random variable on 
(X, L(sg),  L(v) ) .  We shall show that G = ~ and hence F = *G. 

Fix a E R, e ~ R § F is *-right continuous. Hence there exists m E *N such 

that F(a  + l / m ) <  F ( a ) +  e. Since F is standard, we may find m E N such that 

F(a  + 1/m ) < F ( a )  + e. 

G ( a )  = L(v){o~ :~ a})= lim| : x,(w) < a + l/m}) 

= lirn=F(a + 1 / m ) =  F(a) .  

Thus, {*x.}.~, is a standard sequence of identically distributed random 

variables. By Lemma 20, it is an independent collection. 

ECx.)= f. adG(a)= f. R a d F ( a ) = O .  

Similarly, E(~ = 1. Hence by the standard Central Limit Theorem, with a and 

e fixed as before, there exists no E N such that 

I ({ 1 ~ })  n > n o ~  LO, ) o J : ~ n  ~ - t O ( a )  <e .  
k = 0  

Since {~ is independent, the distribution function of ET,=o~ is G", the nth 

convolution product of G. Thus 
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n > no ~ [ G" (V~na)- ~(a)l < e. 

But F = *G. Thus, by the Transfer Principle, for any n E * N - N  and any 

a E R, F" (Vnn a) - ~b(a). But since {x,},,~.N is a *-independent collection, F" is 

the distribution function of ET,~o xk. Hence for a E R, 

~,({to 1 " :~n~o x~(,o)--<,~})--- g'(,~). 

Since ~ is continuous and both sides of the last equation are increasing, and 

*W(a) = 1, *',It(- a )  - 0 whenever *a = + ~, the last line holds for all a E *R. 

Finally, we study the Loeb spaces of products. 

THEOREM 22. Suppose we are given (X, M, v) and (X', M', v') with L(v)(X)  < 
+oo and L(v ' ) (X')< +oo. Consider ( X x  X ' , L ( M  x M') ,L(v x v')) and the 
(complete) product (X x X',  L(M) x L(M'),  L(v) x L(v')) ,  where M x ~ '  is the 
internal algebra generated by the Cartesian product of ~ and M'. Then L(M x 
M')D L ( M ) x  L(M') and 

L(v  x v')[ L~)• L(~)  X L(v ' ) .  

PROOF. Fix A '  E M'. {M E o ' (~ )  : M x A '  E g ( ~  X ~r is a g-algebra, and it 

contains ~.  Thus, it must equal g ( ~ ) .  Fix any M E  g(M). {M'E  o'(~r M x 

M ' E  g(M x ~r is a g-algebra, and contains ~r so it equals g(M').  Thus 

g ( ~ )  x o - ( , ; 4 ' )Cg( J  x ~ ' ) .  By the uniqueness portion of the Caratheodory 

Extension Theorem, 

[ =L(v) xL(v') I L(v x v') ~ ) x ~ , )  ~ ) x ~ , )  

Thus, L(~t  • .d') contains the completion (with respect to L(v)•  L(v')) of 

g(~4) x g(~r It is now sufficient to show that L ( ~ )  x L(~4') is exactly the class 

of measurable sets in this completion. 

Since L (.~) • L (M') is the g-algebra of the complete product, it contains any 

set measurable in the completion of o , ( ~ g ) x g ( ~ ' )  (with respect to 

L (v )xL(~ , ' ) ) .  On the other hand, suppose M = A  •  where A E L ( ~ ) ,  

A ' E L ( , d ' ) .  Then by Remark 2, we may find B E ~ ,  B ' E  ~ '  such that 

L (~,)(A AB ) = L (v')(A 'AB') = 0, where A denotes symmetric difference. Then 

L(v) x L(v')(B • B 'AA  x A')<= L(v) x L(v ' ) (BAA )x ( A ' U  B') U(A U B) 

x (B'AA ')) = O. 
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T h e r e f o r e  M is measurab le  with respect  to the comple t ion  of ( X  x X ' ,  or(M) x 

o'(M'), L(v)  x L(v')). H e n c e  any set in L ( M )  x L ( M ' )  is measu rab le  with respect  

to the comple t ion  of (X  x X ' ,  or(M) • or(M'), L(v)  • L(v')). 

REMARK 23. T h e  assumpt ion  that  L(v ) (X)<  + o% L(v ' ) (X')< + oo, is neces- 

sary, as is shown by the following example .  Let  

x = {x}, M = {0 ,  {x}}, ,,({x}) = 

X' = {x'}, ~ '  = {0 ,  {x % ~,'({x'}) = 1/o, 

where  a = 0. Then  L(v  x v')(X x X') = ~ x v')(X x X ' )  = "(a ~) = 1; howeve r  

L(v)  x L(v ' ) (X x X ' )  = *a~ = 0 ( +  ~)  = 0. An  ana logue  of T h e o r e m  22 is 

true,  however ,  for  or-finite subsets  of  (X, L(M), L(v)) and (X', L(M'), L ( v ' ) ) ;  

this will al low one  to deal  with in tegrable  functions.  (X, L(M), L(v)) is neve r  

or-finite itself unless L(v ) (X )<  + ~. 

THEOREM 24. Suppose f: X---~ *R is M-measurable and g: X--> R is L(M)- 

measurable. If  ~ fdv = fa gdL (v) for all A E M, and X has no atoms of infinite 
measure, then ~ = g(L(v)-almost everywhere). 

PROOF. If not,  we may  find B E L ( M )  and / 3 > a ~ R  such that  

L(v ) (B )E  (0, + ~ )  and ~ > a >= g(x) for  all x E B. By R e m a r k  2, we 

may find A E M such that  L ( v ) ( A A B )  = 0, and f(x)>=/3 for  all x E A. Then  

~ >= ~ )) =/3L(v)(B), while fagdL(v)  = f . g d L ( v )  <-_ otL(v)(B), con- 

tradict ion.  

3. Brownian Motion and Wiener  measure 

A Brownian  Mot ion on a probabi l i ty  space (~,  9 ,  P )  is a funct ion 13 : [0, i] x 

12--~ R such that  

i) /3 is a stochastic process;  i.e. for  each t E  [0,1], /3(t,o) is a measurab le  

function of to. 

ii) For  s < t E [0, 1],/3(t, t o ) - / 3 ( s ,  to) has a no rma l  distr ibution with mean  0 

and var iance  t - s. 

iii) /3 is a differential  process;  i.e., if 

then 

S l < t l < = S z < t e < - ~  " ' "  <=s, <t ,E[O,  1], 

{/3 (t,, to ) - /3 (S l ,  t o ) , . . . , / 3  (t., to) - / 3 ( s , ,  to)} 

is an independen t  set of r a n d o m  variables.  



30 R . M .  A N D E R S O N  Is rae l  J. M a t h .  

It is shown in the standard theory that, if f l  is the Lebesgue measure space on 

[0, 1], there is a Brownian Motion defined on fL 

Two stochastic processes X, X' are said to be equivalent if, for all t E [0, 1], 

P({to : X(t, to) # X'(t, to)} = 0. It might happen that, for a Brownian Motion/3, the 

"path"/3(o,  to) is not continuous for any to. However, it is shown in the standard 

theory that any Brownian Motion is equivalent to a Brownian Motion in which 

all paths are continuous. 

We shall construct directly a probability space and a Brownian Motion on this 

space in which almost all paths are continuous. 

NOTATION 25. Let ?7 be a fixed element of *N , f~={-1 ,1}"  ={internal 

?7-tuples of - l 's  and + l's}. Let M be the *-algebra of all internal subsets of f~, 

and let v be the counting measure u ( A ) = I A I / 2  ~. We set (fl, 9, P ) =  

(~, L(M),  L(u)). Thus, (~, 9, P) is a standard probability space. We define a 

*-random walk on (fl, M, v) by 

= " ~  i=l ('Oi "~- (?Tt -- [?7/])tol'r/t]+, 

where t E *[0, 1], to E f L  Let /3(t, to) = "x(t, to) for (t, to) ~ [0, 1] x lq. 

THEOREM 26. If  ?7 E *N - N, fl is a Brownian Motion on (fl, 9,  P). 

P R O O F .  

i) Fix t E [0, 1]. X(t, o ) is an internal function of to, so it is v-measurable. Hence 

by Remark 2, f l ( t , o )  is 9 = L(~C)-measurable. 

ii) Fix s < t E [0, 1]. 

P({to : fl( t, to)- /3(s ,  to)<= a}) 

= P({to :'X(t, t o ) -  ~ to) <-- ot}) 

/ r  }) 
=Pt / to :  ~ z t o ' <  

({ v a l  [~,1 }) 
= [im'v to:S-~ ~ t o k ~ X / ? 7 / ; t ( a + l / n )  (where a=[?Tt]-[?Ts])  

~ =(,~sl 

= lim~ + I/n)) (by Theorem 21) 

= lim~(~ + I/n))) 
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P({to :/3(t, to) - /3(s ,  to) < aX/ t  - s}) = * ( a ) ,  

so fl(t, to)- /3(s ,  to) has a normal distribution with mean 0 and variance t -  s. 
iii) Suppose sl < tl _-< s2 < t2 -< .. �9 _-< s. < t, E [0, 1]. Then 

t o 

is *-independent,  and hence S-independent .  By Lemma 20, 

{/30.0)-/3(s~, o), . . . , /30.,0)-/3 (s., 0)} 

is independent .  

THEOREM 27. /3 (o, to) is continuous and finite for almost all to. In fact, X (~ to) 
is near-standard in *C[0, 1] for almost all to. 

PROOF. If ~7 E N, the result is obvious. Now suppose ~7 E * N - N .  For 
m, n E N, define 

f L . . = { t o : 3 , < ,  sup X(t. t o ) -  inf X(t, t o ) > l / .  
t~[i/n,(i+l)/n] IE[i/n,(i+l)/n] 

Note that fL,. is internal. 

v(l~. . )  << _ nv (  {to: ( s u p : / ! n f ) x ( t ,  to) > 1 } )  

<--nv({to:max ~ t o '  ~ (where h = r / / n + l )  

<=nv to:max~x ~1 to, 2m--m J /  + n v  to:mink_~x l to' < - 2 m  

< 2 n v  [ w:-(3)i>l to:  1 OOi<- -  

: ~ - - ~  to' > em 

(by Theorem 21) 
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Let 

471 / "  
- ~--2--"-~Jv./2,. e-'2/z dt 

2n ( e -'/2 dt (provided ~r > < 1) 
J v  n /2m  

= an e-'/"/4". 

a'--a- 6 cSa.. 
m = l  n = l  

P ( I T ) =  1 - s u p  inf u(~ , . . )_-  > 1 sup inf 4ne  -v"/ '"  = 1. 

Suppose that s = t E * [ 0 , 1 ]  and X(s, t o )#x ( t ,  to). Then if m >  

2/~ to ) -X( t ,  to)l, to E f t , , ,  for all n, so to~ f~'. If "X(s, to)= +oo for some 

s E *[0, 1], then to E 1~,,, for all m and n, and again tog  1"~'. 

Suppose to E IT. By the preceding paragraph, /3(t, to) is finite for all t. Fix 

t E [0, 1] and suppose we are given e E R +. 

{n : [ t - s 1< 1/n ~ IX(t, to) - X(s, to)l < e/Z} is internal and contains all in- 

finite n. Hence it contains some finite n. Thus if It - s I<  1/n,[x(t, to ) -  X(s, to)[ < 

e/2, so I/3 (t, to) - / 3  (s, to)[ < e. Hence /3  (o, to) is continuous.  
It remains to show that g (o ,  to) is near-standard.  Since/3(0,  to) is continuous,  

t = s ~ */3(t, to) = */3(s, to). Hence,  for t E *[0, 1], 

1*/3(t, to ) -  X(t, to)l<=l*/3(t, to) - /3( t ,  to)O+ l/3ft, to ) -  Xft ,  to)l 

+OX(*t, t o ) -  x(t, to)l = 0 .  

Hence [1 */3(0, w ) - X (  o, to)I[= = 0, so /3(0, to) is  near-standard in *C[0, 1]. This 

completes the proof. 

Wiener  measure is defined to be the unique Borel measure on C[0, 1] such 

that the following two conditions are satisfied: 

i) The measure of {f: f ( t ) <  a} = ~(alX/-t), 
ii) If S l<  tl--<'"--< s. < t, E [0,1], then the random variables { / ( t l ) -  

f ( s d , . . . ,  f ( t . )  - f(s,)} are independent .  

Sets in the ring generated by sets of the form {/: f ( h ) <  a ~ , - - . , f ( t , ) <  a,} are 

called finite cylinder sets. The uniqueness of Wiener  measure follows from the 

fact that the finite cylinder sets generate the Borel g-a lgebra  on C[0, 1].* 

' See [3]. 
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Because  of T h e o r e m  27, the space  (D, 50, P )  induces a measu re  space  

(C[O, 1],~,P') by E ~ ~ r to) U E} ~ ~ and  P'(E)= 
P ( { t o : / 3 ( o , t o ) E  E}) wheneve r  E E ~'. Since ~' contains  all the finite cyl inder  

sets, it must  contain  all the Bore l  sets. Moreove r ,  the condi t ions  in the definit ion 

of Wiene r  measu re  are satisfied. Hence ,  we have  the following result:  

COROLLARY 28. ( C [ 0 , 1 ] , ~ , P ' )  is an extension of Wiener measure if 
71 ~ * N - N . *  

W e  now wish to p rove  a special case of  D o n s k e r ' s  T h e o r e m .  We  in t roduce  a 

subscript  ~/ to indicate the d e p e n d e n c e  of l~,/3~, P~, etc. on 77. 

TrtEOREM 29. {P~}~N converges weakly to P' (i.e. if F is a bounded continuous 
function from C[0,1]  to R, then f FdP'--~fFdP'). 

PROOF Let  "q~, 7/2 ~ * N  - N, and let ~ be  the Bore l  o ' -a lgebra  on C[0,  1]. W e  

have  shown that  P~,,[~ = P ' I ~  = P ' .  Hence ,  if F is a rea l -va lued b o u n d e d  

cont inuous  funct ion on C[0,  1], 

T h e r e f o r e  

"2 [0,11 

Since F is cont inuous  and X, , (o , to)  is nea r - s t andard  for  P~,-almost all to, 

* F ( x , , ( o , t o ) ) =  *F(*/3~, (o , to) )=  F([3,,(o, to)) for  P~,-almost all to. Since F is 

bounded ,  *F(x~,(o,  to)) @ SLY(D,,). Hence ,  by T h e o r e m  6, 

n., *F(x"'(~ to))dv~,(o)= fn~, 

~2 

F ([3,,( o, to ) )dP,,(to ) 

F(13,~(o, to ))dn,~(to ) 

- -  * F(x ,2(  o, 

There fo re  

' Ward Henson's result referred to in Remark 18 shows that fg is in fact the completion of the 
Borel (r-algebra on C[0, 1]. 
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exists and equals 

R. M. ANDERSON 

lim I F(X ~ (o, to))dv~ (to) 
n ~ J fl,~ 
n E N  

~ * F(x~'( ~ to ))dv"'(t~ ) = fqo.u FdP'.  

Israel J. Math. 

4. S tochas t i c  in tegrat ion  a n d  l tb 's  L e m m a  

In a sense, the stochastic integral with respect  to Brownian Motion may be 

thought  of as a general ized Stieltjes integral. However ,  the s tandard approach to 

stochastic integration masks this analogy;  the problem is that almost all 

Brownian Motion paths are of unbounded  variation. However ,  the r andom walk 

X defined in Section 3 is a function of bounded  variation in the non-s tandard  

sense. Hence ,  one  can define a Stieltjes integral with respect  to X. We shall show 

that this Stieltjes integral is the same as It6 's stochastic integral. While this 

process is of difficulty comparable  to that of giving It6 's  original definition, 

subsequent  computa t ions  (including the proof  of It6 's Lemma)  are substantially 

simplified. 

The  s tandard It6 integral is defined in the following way ([8], [11]). Suppose /3  

is a Brownian Motion on any probabil i ty space (l), 9 ,  P).  Let  {9,},~1o.i I be a 

collection of o--algebras such that 

i) 9 ,  D 9 ,  if t > s .  
ii) f l ( t ,o)  is ~ , -measurable .  

iii) if t = < s l < t , = < s 2 < t 2 = < - . - = < s , < t , ,  then 9,  is independen t  of the o'- 

algebra genera ted  by 

{/3(t,,o)-/3(s,, o),...,/3(t., o)-/3(s,, o)}. 

Let ~3o be the set of all g such that 

i) g E L2([0, 1] x f~) (the comple te  product) .  

ii) For  each t E [0, 1], g Ito.d• is ~ x 9 , -measu rab le  (g is said to be progres- 

sively measurable).* 

Let  ~ be the subset of go satisfying the addit ional  assumption 

iii) There  exist 0 = to < t~ < �9 �9 �9 < t. = 1 such that, for  each to, g(t, to) = g(tl, to) 
for  t E [t, t,+l). 

For  g E ~d~, the stochastic integral is defined by 

* The assumption g E L 2 can be weakened to g(o, to)E L2([0, l]) for almost all to. For if one 
defines g.(t, to)= g(t, to) if IIg(o,to)ll2_-_ n, and 0 otherwise, then g. E L 2. One then defines 
f gd~(to) = f g.d[3(to) where n _>- 11 g(*, o,)ll2. 
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fo 
t k - 1  

g(r, co)d/3(r, co) = ~ g(t,, co)(/3(t~+~, co)-/3(t ,  co)) 
i = 0  

+ g(t~, co)(/3(t, co) - /3(t , ,  co)), 

where k = max {i: tl =< t}. Thus, the stochastic integral is a stochastic process. 

One shows that, for g E ud~, Ilf gd/3 t12 = II g 112, and that ~d~ is L2-dense in <go. 
Hence one can define f gd/3 for all g E :go by extension. However, in order to 

establish several important properties of the stochastic integral (including 

continuity in t), one must give additional arguments involving uniform con- 

vergence on subsequences. 

We shall deal with the Brownian Motion/3 and the probability space (fL 9, P) 

defined in Section 3. However, in order to allow integration of functions g which 

depend on information not contained in /3, it is convenient to modify the 

definition slightly. 

Let 12 = { -  1, 1} r  ' ' )  = {internal (2"0 + 1)-tuples of + l 's  and - l 's  indexed 

by the set { -  r/,- �9 "0 }}. As before, ~/is the *-algebra of internal subsets of fl, v 

counting measure, and (f~, 9, P) = (fL L(g/),  L(u)). /3 and X are as defined 

before. Thus, /3(0,0)  and X(o,co) depend only on coi for i > 0 .  Let ~ ' =  

{co: (col,. . . ,  co~) belongs to ~ '  as defined in Section 3}. 

For i E{0,1,- . . ,"0},  let - i  be the equivalence relation on fl  defined by 

c o -  :o'r coj = co~ for all j <= i. Let M, be the *-algebra generated by the 

partition of f~ into equivalence classes with respect to ~,, and let ~ be the 

external algebra of all unions of these equivalence classes. By abuse of notation, 

we shall let L(sg,) denote the inte.~ection of Y(~ and the completion of cr(Mi). 

For t E [0, 1], let 9, be the or-algebra generated by 

N L(M,) 
i ~ o  

i/v~=t 

and /3(t,o). Then {9,},~t0.q is a family of ~-algebras as outlined above. 

Define q3 to be the set of functions g such that 

i) g E L2([0, 1] • fl). 
ii) For each t E [0, 1], g(t,o) is 9,-measurable. 

Thus, q3 D q3o. The *-finiteness of the measure spaces 1~ and (Y, cr h) will make 

the assumption of progressive measurability superfluous. 

We shall employ Notation 13. We shall define the stochastic integral for the 

following class ~ containing q3. 

DEFINITION 30. Suppose f:  [0, 1] • ~ --> R O { + ~, - oo}. We say that g is a 

p-lifting of f if 
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i) g~SLP(*[O, 1 ] x f ~ , ~ x M ,  A X v ) .  
ii) ~ to) = f(~ to) for L(A x v)-almost all (t, to). 

iii) For all t E *[0, 1], g(t, o) is Mr,,i-measurable. 

Let ~ be the class of all jr having 2-1iftings. 

LEMMA 31. Suppose f E L P ( [ 0 , 1 ] x f ~ )  and, for each tE [0 ,1 ] ,  f(t,o) is 9,-  
measurable. Then f has a p-lifting. In particular, o ~ D cg. 

PROOF. Suppose f E L p ([0, 1] x 1~) and f(t, o ) is ~,-measurable (t E [0, 1]). Let 

~',= A L(sr 
i ~ 0  

We shall first modify jr on a set of P-measure 0 to find a function f '  such that 

f'(t,o) is @',-measurable. 

Define an equivalence relation - ,  on ~ by to - , t o '  r toj = to; for all j =<0 

and all/ '  such that ~ t. Let 

f(t, to') if there exists to 'E  f~' such that to - , t o '  

f'(t, to) = 
I 0 otherwise. 

In order to see that f '  is well-defined, suppose to', to"E f~', and t o ' -  ,to". Then 
[3(s, to')=[3(s, to") for all s < t ;  since to', to"El~',  /3(o,to') and /3(o,to") are 

continuous; thus, /3(t, to ')=/3(t ,  to"). Since jr is ~,-measurable, and t o ' - , t o " ,  

f(t, oo') = f(t, to'). 
Suppose i E * N ,  i>=O, (i/*7)=t. Then, for any to ' , to"Ef~, to ' -~ to"  

f'(t, to') = f'(t, to"). By Theorem 12, f'(t,o) is L (~r Hence f'(t,o) is 
~',-measurable. Since f ' (o,  to) = f(o ,  to) whenever to E f~', we may substitute f '  
for f and assume without loss of generality that f is ~ ' :measurable.  

For (t, to) E *[0, 1] x ~ ,  let f~(t, to) = f(~ co). By Theorem 14, 

f, L'((*[O, 1] • • 9,  L(A) • e));  

by Theorem 22, 

fl E LP(*[O, 1] X ~,  L(C~ X s4), L(A x v)). 

By Theorem 11, there exists h E SLP(*[0, 1] x fl, ~ x M, A • v) such that 

~ to)=fl(t,  to)=f(~ to )L(Axv) -a lmos t  everywhere. Let ~ '  be the *- 

subalgebra of ~ • M generated by {[i/.7, (i + 1)/.7) • A : A E sr 0 _-< i < .7 }. Let 
g = E ( h ] M ' ) .  By Theorem 12(ii), g E S L P ( * [ 0 , 1 ] x f l ,  cg ' ,AXv)  and "g=  

E(~ I L(qg')) = E( f I [L (~ ' ) ) (L (A  x v)-almost everywhere). But f~ is L ( ~  • M)- 
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measurable,  and fl I,,,, ,,.,,,,,• is constant  if A is any equivalence class mod  - ,. 

By T h e o r e m  12(i), f is L (~ ' ) -measu rab l e ,  so E(f~lL(C~')) = f~(L(h x u)-almost 

everywhere) .  Since g is cr g(t,o) is sCt,,~-measurable. Hence  g is a 

p-lifting of f. 

DEFINITION 32. Suppose f E o%, and g is a 2-lifting of f. Define 

I(t,w)= fo' f(r,w)dt3(r,o,)=~ g(r,w)dx(r,w), 
where  the last integral is a *-Stieltjes integral. 

THEOREM 33. Definition 32 is independent of the choice of g, and coincides 
with It6' s definition of the stochastic integral on go. I(t, o ) is ~-measurable for all 
t~[0,1]. 

PROOF. It is clearly sufficient to establish the result for  t = 1. Let  G ( w ) =  

f~g(t, to)dx(t, to). G is ~/-measurable,  so I(1, o ) i s  O-measurable .  

of. G(to)2dv=ofo ( ~ _ i g ( k / o , w ) ~ ) 2 d v  

k =o ~/ j<k T/ 

= ~  1 g2(t'to)dhdv (since g ( o , t o )  is ~g-measurable) 

i<k "tl 

(since g(k/Ti, o), g(j/~7, o), and wj+~ are all ~r while tok+l is 

independen t  of ~k ) = [[ g [[22 + 0 (since f ,  to~+, du = 0). The re fo re  

f I~ <= [[ g [[I. Thus,  if g, and g2 are liftings of [, and G, and G2 are the 

resulting integrals, 

f. I~176176 Ia,-G=l=d~=llg.-g=ll~=O. 
Thus, ~ = ~ everywhere) ,  so the integral is well-defined. 

We will now show that Definit ion 32 is the same as I t6 's  definition. Suppose 

first that f U ~3~. Then  we have 0 = to < t~ < . . .  < t, = 1 such that f(t, ~)  = f(t~, to) 
for  t ~ Its, t~+l). Thus,  we may take g a lifting of f such that g(t, w) = g(t, to) for  

t E *It,, t,+l), and ~ to) = f(t,, to) for  almost all to (with respect  to P).  Thus,  for  

such to, 
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n--I  n- - I  

G(to)  = ~ g(t,, to)(X(t,+l, to) - X(t,, to)) = ~. f(t,, to)(fl(t,+l, to ) - /~  (t,, co)). 
i = 0  i = 0  

Therefore, ~ is the It6 integral of f. Since ~3~ is L Z-dense in ~3o and It G 112--< II f IIz 
for f E ~3o the integrals coincide on ~30. 

We shall now give an example illustrating the utility of this characterization of 

the stochastic integral. 

EXAMPLE 34. Let f(t, to)=/3(t ,  to), Then in Definition 32, we may take 

g(t, to) = X([tr/], to). Then 

fo f(t ,  to)dfl(t, to) 

71--1 ~ - - I  k t o i t o k  = o ~  x(k /~ , to) to~+,= o ~  ~ to/tok§ o~  
k=o - ~  k~o j~l  "0 j<k 1"/ 

= _  X-" ._~__L = ~ 1 

= lo(xZ(1, to ) - 1)= �89 (/3z(1, to) - 1). 

THEOREM 35. Let f C ~,  and let g be a 2- lifting, of f .  Then for P- almost all to, 

Io GO, to) = g(r, to)dx(r ,  to), 

viewed as a Junction 4 t c *[0,1], is near-standard in *C[O, 1]. Hence, for 

P-a lmos t  all co, 

I ( t, to) = ~ ' f ( ~, to ) dfl O', r 

viewed as a function of  t E [0, 1], is continuous. 

PROOF. Let p be any element of *N such that pD? ~ O. Let ~p be the internal 

*-subalgebra of c~ consisting of internal unions of intervals from the collection 

{[ipD1, (i + 1)p/r/)  : 0 <= i <= [~l /P ] - 1} U {[[T1/p ]pD1, 1]}. 

Then, since f~ (defined by f~(t, to) = fCt, co)) is L(Cgp x M)-measurable, we may 
find g~ which is ~,  x M-measurable and which is a 2-lifting of f. Then 

11 g~ -  g IIz = 0. 
By Theorem 27, to E 12' ~ (s ~- t ~ X(s, to) ~- X(t, to)). Thus, for any m E N, 
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the set A ~ = { m : l s - t [ < p h  7 ~ rx (s ,m)-x( t ,  to) l<l /m} is internal and 

contains ~ ' ;  therefore v ( A ~ ) = l ,  so v ( A ~ ) > l - 1 / m .  Then we may find 

mo ~ *N - N, and A o E .ff such that 

v ( A ~  1 -  1/mo = 1 

t o g A  ~ ~ ( [ s - t l < p / r  I 

Let 

IX(S, to)- X(t, to)l < 1/mo = 0). 

go = g; Ig;l<= x/-~ 

- ~mm~ g ; < - v ~m~ 

Since g 'p E SL 2, go E SL 2 by Corollary 5 and 

rfgo - g 112- -< rrgo - g~ll2 + rrg~-  g ii~ = rfogo -og~f l2+  frg~-  g 112-- 0. 

Define 

Go(t, to) = fo' go(r, to)dx(r, to) for t E *[0, 1]. 

If s, tE*[O, 1] , l s - t l<p / r l ,  and to ~ A  ~ 

f '  go(T, co)dx(z, to) 

= g,(s, to)( x([  ~ ]~,to)- x(s, to) ) 

+ go(t, to)(X(t, t o ) - X ( [ ~ ] P ,  to)) 

--< 2V~mo~-p- -~ 0. 

For / '  = 0, 1,,-  �9 rt, 

Ifo"" (go(z, to ) -  g(z, to ))ax(z, to ) I 

is a positive submartingale. Hence by Doob's  Inequality [4, p. 317] 
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fn sup (G(t, to)- G,(t, <=4 1 co)- 
f 

o)))2d/. , (G(1, G,(1, m))2dv  
tEo[o,l] 

= 4 II g - g. I1~ = 0. 

Therefore, for P-almost all ~o, O(t, w) = Go(t, ~o) for all t. 

Fix m E N. Let B7 ={co: l s - t l<  p/~ ~ If;g(z,~o)dx(z,~o)l<l/m}. B7 is 

internal, and contains a set of P-measure 1. Therefore v(BT)=  1. 

Fix n E N. For any p E *N such that PD1 =0,  v(B~ ' )>  1 -  1/n. Hence, for 

every pair (m, n) E N 2, there exists p~, E *N, P,,,/~7 ~ O, and C,,, E M, such that 

1 
~,(C,~.) > 1 - -  

n 

oJE C,,, ,Is-tl<pm.DI :ff IG(t, oJ)-G(s, co)l< 1 .  
m 

Let C=l'qT,=~ UT=~ C,~.. e(C)= l. t oEC ~ ( s=t  ~ G(s, to)=G(t, to)). 
Then, as in Theorem 27, we conclude that co E C ~ G(o,  co) is near-standard in 

*C[0, 1], and I(o,  to) is continuous. 

COROLLARY 36. Suppose f E ~;. Then I E ~, I is ~ x ~-measurable, and ~ is 
LOg) >< ~-measurable. 

PROOF. 

O(t, to) = fJo' g(z, co )dx(r, co) 

~=o gk~ '  / v ~  ,o) ~ , , , - [ , , 1 ) .  

Thus G(t,o) is Mt~m,-measurable, so I(t,o) is L(Mt,ol)-measurable.  

Let 

I,(t,~o)=l I(t,o~') if 3o~'EC, o~-,oJ' 

] 
0 otherwise. 

Then as in the first paragraph of the proof of Lemma 31, I'(t, o) is Q',- 

measurable. 
For P-almost all ~o, G(o,  to) is near-standard in *C([0, 1]); hence, for such to, 

~ w)= I(~ co) for all t. Since I(o, to) is continuous for these ~o, and I(t,o) is 

Q-measurable for all t, I is ~ x Q-measurable. Therefore I '  is ~ x 9 -  

measurable, I 'E  L2([O, 1] x sq), and I'(t,o)is @,-measurable, so I 'E  ~. There- 
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fore I E . ~ .  Since I is ~ x ~-measurable,  ~ is L(qg)x ~-measurable by 

Theorem 14. 

We can now give a proof of It6's Lemma ([7]). 

THEOREM 37. Suppose h : R m - - * R  is C 2, f l E ~  (1 < j  < n , 1  < l  < m ) ,  

i l l , . . . ,  ft, are Brownian Motions arising from *-independent random walks  

X~, " " ", X, with increments toji/k/-~ (1 <= j <- n, 1 <-_ i < 77) in the manner  of  Section 

3. Suppose at E L~([0, 1] • 1), ~ • 9 ,  tx • P), and at(t,o ) is ~,-measurable.  Let  

fo'  fo' I,(t, to) = a,(r, t o ) d r +  f~ (~', to)d/3;(r, to) (1-</=<m) 
j=l 

I(t, to) = (Ii(t, t o ) , "  ", I,,(t, to)) 

H(t ,  to) = h(I ( t ,  to)). 

Then H is a stochastic integral; in fact, if  h~ and htk denote partial derivatives, 

Io H(t ,  to) = H(O, to) + 2 hj(I(r ,  to))a,(r, to)dr 
I=l 

+ 1 2  fo' h~k(IO"to)) f~(r ' to) f~(r ' to)dr  
L jkt 

fo + S h, UO', to))Y(,, to)d~j(~, to). 
w 

PROOF. The essential difficulty in the standard proof is assigning meaning to, 

and proving, the heuristic formula d[3, d[Jj = &jdt. In our formulation, over the 

interval [(i - 1)/7/, i/rl), we have 

: { _ _ ~ 2 =  1/77 : dt. (dx')~ \v'-4: 

The proof consists of an elaboration of this observation. 

For simplicity of notation, we shall assume that m = 1 and n = 2; the proof 

extends immediately to the general case. We shall write f l , f2 for f~ and f~ 

respectively, and let gl, g2, G1, and G2 correspond as in Definition 32 and 

Theorem 33. Using Lemma 31, let b be a I-lifting for a (=  al). 

If t is finite and 8 =0 ,  [ h " ( t ) - h " ( t + ~ ) l = O .  Therefore there exists 

M E * N -  N such that 

= sup I h " ( t ) -  h"(t  + ,~)[ = O. 
iO<m, tar<3n -1/~ 
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Let G(t, to) = f~ bO', o9)dh 0") + Gl(t, o9) + G2(t, to). By truncation, using Corol- 
lary 5, we may assume [b(t, to)], [gj(t, o9)l < min {~1 '/6, e-'/3} �9 Therefore 

I G(i/~7, to) - G((i  - 1)/~7, o9)[ < min {3,/-,/3, 3e -,/3 7/-,/2}. 

Let M~ = sup,~.t0,1jmax{[ G(t, to)[, I * h'( G(t, o9))1, I*h"( G(  t, o9))[}. For P-almost 
all to, G(o, to) is near-standard, so M,. is finite. 

Suppose t E [0, 1]. Then 

H(t, t o ) -  n (o ,  to) 

=~ o9))-*h(G(0, o9))) 

= ~ ( * h ( G ( ~ , o 9 ) ) - * h ( G ( i ~ l ,  o9)))) 

= ~  * h ' ( G ( i ~ l ,  og))(G(-~,o9)-  G(~-~-,o9))  

+~ ~ (. h"(G(L~ --~, to))+ e,)(G(~, to)- G ( ~  ---[, to))2 

where the e,'s are error coefficients. 

l e, I(G(iD1, to) - G((i  - 1)/77, o9)) 2 
i = l  

=< ~1 sup,, ]h"(G(i/~l, o9)+ 8 ) -  h"(G(i /n,  og))[(9e-2'3r/-') 
J 8 1 < 3 ~ -  / 

=<9e'/3-0, for almost all to. 

Hence we may neglect the e~'s. 
The first summation yields 

~ * h '( G(( i - 1)/n, og ))( G(i  /n, to) - G((i  - 1)/r/, to)) 
i = l  

0~' * h'( G((i  -. 1)D/, og ))b((i - 1)/~/, to) 

{nO 
+ ~  *h'(G((i  - 1)/~1, og))g,((i - 1)/r/, o9)o9,/%/'~ 

i = l  

InH 

+ 0~, *h '(G((i - 1)/n, og))g2((i - 1)/r/, o9)o92,/V"~-/. 
i = l  
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Let n E N, A,  = {to : M~ < n}. A.  is internal, and P ( U ~ = I A . )  = 1. For any 

B E ~ t ,  let B ~ = A ~ M B .  Since * h ' o G  B. is bounded by n and b E S L  1, 

b* h'o G Bo E SL 1 by Corollary 5. 

~  ~ *h ' (G( ( i  - 1)/r/, t o ) ) b ( ( i -  1)/7/, to)lTldv 
J B  

: ~ i]• 

: f(O, tlxB. 

*h '(G([r/r]/7/, to))b([n~-]/,7, to)d(X • ,,) 

~ to)))~ to)dL(A x v) 

o' h '( S (~ to))a(~ to )dL ( ~t ) d e  

(since h '  is continuous, and ~ ~ are 

L ( ~ )  x @-measurable) 

fo ' h'(I(,c, to))a(z,  o~)drdP (by 14). Theorem 

[m] 
~  *h  ' ( G ( ( i  - 1)/r/, aJ))gs((i - 1)/r/, to)to,,l~vi~ 

i = 1  

= h ' ( I (r ,  to))D (r, to)dfls(r , to) 

a 2-lifting 

for P-almost all to, by Theorem 33. 

It remains to evaluate 

of 

for P-almost all to in each A., and hence for P-almost all to. 

Restricting to A.,  *h'(G([rlr]/rl ,  to))gj([rlr]/~7, to ) is 

h '( I ('r, to ) )~ ( r, to). Hence 

Thus, by Theorem 24, 

o~l *h ' (G( ( i  - 1)/r/, to))b((i  - 1)it/, to)/~/ i=l 

= fo' h ' ( I (r ,  to))a(r,  to)dr 
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{ i -  1 "X \~ g~i-q-, tojto:,] 
+ v-4n / 

b / ( ~ . ~ ,  t o ) ~ { i - l ,  to) 2/i- l to) + g [--~-- + g2k---~--' 
2 17 11 "r I 

17 

\ \ "r/ ~/2 

1/3 
=< nM~ - ~ - o  (almost everywhere). 

[ *h"[G[i-1 to"bfi-l to\  {i-1 I 

< r/M,~/1/3 M,~ 
= rl3/2 = ~ = 0 .  

~V/'~ = ,~ 1/6 

If we define a new random walk X' using to~ = tol~tO2, we see that this integrand, 

when restricted to A,, is a 2-lifting of the identically zero integrand. Then by 

Theorem 33, for almost all to, 

/ = 1  )g ~ T '  )g ~ T  )tolito2i/~ 

fo - -  clx'(r ,  to)  = O. 
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Finally, 

~ 

~--- ~ ] x B n 

= f[Oa ]x B. 

= f[O,t]• n 

,h,,(G(i- 1, to'~ : / i -  1, to'~ , , ,7 JJg' -C Ja,, 
i=1 "17 

S / k  ~ ' 

h"(l(~ -, to))f~(~ ~)dL(X • ~) 

h "(I(~ to))f~(*r, to )dL (A)dP. 

By Theorem 24, for almost all to E A., 

. h , , (G( i -  l, to~ 2{i -  l, to~ 

i=l  77 

fo ~ h"(IC.,, to))f~Cr to)dL(a) 

fo = h"(I(r, to))f~(r, to)dr by Theorem 14. 

Putting these computations together, we have the desired result. 
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