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S u m m a r y .  - -  Integrabil i ty conditions for embedding a Riemannian 
manifold in a pseudo-Euclidean space of higher dimensions are derived. 
They arc used to show that  essentially the only physically significant 
solutions of the Einstein field equations which can be embedded in five 
dimensions axe the Friedmann universes. The relation between sym- 
metry properties aml embedding properties of a manifold is discussed, 
setting upper bounds to the embedding class in certain eases. 

1.  - I n t r o d u c t i o n .  

Genera.1 rcb~tivity postulates tha t  the world is ~ four-dimensionM Rieman- 
nian manifold. I t  is well known (although the correct proof for indefinite 

metrics h~s only been given recently by FRIEDMANN (1)) tha t  such ~ manifold 
ea,n always be regarded, at least locally, as embedded in a pseudo-Euclidean 

space of ten dimensions. This is usually regarded as irrelevant since all geo- 
metrical properties can be obtained from the intrinsic structure of the ma, ni- 
fold, the metric tensor g~b ~nd its deriw~tives. However  embedding introduces 

some suggestive fe~tm'es tha t  have led to ~ resurgence of interest in this prob- 
lem (2), especiMly in its possible connection with clementary-pa.rtiele physics. 

We m" W say tha t  a era'red space-time introduces in a natural  way t~ pseudo- 
Euclidean space of ~s many  ~s ten dimensions (and possibly more if a global 

embedding is required, e, J though no clear-cut ~mswer is known to this question) 

(*) This work was supported by AFOSR Contract AF49(638) 1527. 
(*) A. F~IEDMA~,-~: Journ. Math. Mech., 10, 625 (1961). 
(2) [.[~OBINSOI~- and ¥. NE'~':~fAN: l~ev. Mod. Phys., 37, 201 (1965), and the articles 

following this introduction. 
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~nd in so far  ~s this sp~ee is u consequence of the eurv~tm'e  of space- t ime 
it  is of physica l  interest ,  even if only indirectly.  

The higher-dimensionnl  space in t roduced f rom embedding  has one clear-cut 
advan tage  over  tile original manifold,  and  t ha t  is in its symmet ry .  JOSEPH (3) 
points  out t ha t  we have  reduced the pa ramete r s  in our allowed co-ordinate 
t rans format ions  f rom an infinite n u m b e r  to 55 by  this process, ~nd there is 
no doubt  t ha t  it is easier to discuss e lementary-par t ic le  physics in u flat multi-  
dimensional  space t han  in a curved four-space. The Minkowskiun tangent  
space at  each point  of the manifold  allows the act ion of the ordinary Lorentz  
group, while the normal  space is invur ian t  under  a (pseudo)-orthogonal group 
leaving the point  in question fixed. This Ia t ter  group m a y  correspond to an 
((internal)) s y m m e t r y  or chiral group for e lementa ry  particles.  :NE'E~IA~ (4) 
has r emarked  tha t  embedding in ten dimensions implies the emergence of the 
six-dimensional  or thogonal  group, a subgroup of which is the current ly  po- 
pular  S U  3. 

I t  is well, however,  not  to be too carried ,~way with some of these ideas. 
A pr incipal  difficulty is t ha t  i t  is not  at  all clear wha t  sort  of physical  inter-  
p re ta t ion  to place on the ~dded dimensions. I n  par t icular  the question of why  
na ture  chooses cer tain four-dimensional  subm~nifo]ds as the arena of (( ordi- 
n'~ry )) physics ( that  is, of part icle  or pho ton  paths)  becomes a par t icu lar ly  
puzzl ing one. ]n  this paper  a more modest  v iew is t aken  and we merely  set 
out  to prove  some theorems whieh m a y  have  bearing on the above discussion. 
The main  discussion will center around the min imal  embedding problem.  While 
~ general  sp:we-time will need ten dimensions for embedding,  mos t  known 
metrics,  on account  of thei r  s y m m e t r y  properties,  will need less. Expl ic i t  
embeddings  for ahnost  .~ll known solutions of the field equations have  been 
given by  ROSEN (z), and these bear  out  this assertion. Depending on the  k ind  
of theory  we envisage, ~s m a n y  as ten dimensions m a y  u l t imate ly  prove  an 
embar rassment ,  ~nd we m a y  be especially in teres ted  in those solutions of the 
field equations which c~n be embedded  in fewer dimensions. I n  this regard 
FRO:NSDAL (~) has poin ted  out tha t  all the exper imenta l  evidence for general 

re la t iv i ty  has only verified the val id i ty  of the Schwarzsehild solution, and this 
can be embedded  in six dimensions. I t  is probable  t ha t  a good ~ approxi-  
mat ion  )) to general re la t iv i ty  (whose deviations could not  so far  be detected 
by  experiment)  could be obta ined f rom a six-dimenional theory,  in which the 
gr~vit,~tional field has the a t t rac t ive  feature  of being determined essentially 
b y  two sc~l~r fields. 

(3) D. W. JOSEPH: l~ev. ]Iod. Phys., 37, 225 (1965). 
(4) y .  Ne:'E~,~N: Bey. Mod. Phys., 37, 227 (1965). 
(5) j .  ROSe, N: Rev. Mod. Phys., 37, 204 (1965). 
(6) C. F[CONSD~L: NUOVO Cimento, i3, 988 (1959). 
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The only t,heorem one has on minimal embeddings is tha t  no Riemannian 

manifoht R~ with R~--~ 0 can be embedded in five dimensions. However an 
we shall see ill Sect. 3 the proofs given to date for this theorenl are only valid 

for positive deiinite metrics, ~nd ~re therefore not  applicable to general rela- 
t ivity.  We shall give a correct proof of this theorem for normal  hyperbolic 

manifolds, ~t.nd show theft the inet,hod can be extended to find ~l,ll solutions of 
the field equat,ions with incoherent mat ter  whi(,h can be embedded in five 
dimensions. These turn out to be the Friedmann universes. 

In the fina.l Section wc derive some relations between the symmetry  and 
eonformal proi)erties of a manifold a.nd its embedding elass. 

2.  - Th e  f o r m a l i s m  of  e m b e d d i n g .  

Let R4 be a Riemannian 4-space embedded in t~ pseudo-Euclidean space E,,. 
We may  set up normal Gaussi~m co-ordinates in E~ using R4 as an initial hyper- 
surf:tees as follows. Let, x ~ ( a = ] ,  ..., 4) be co-ordinates in R4, and a,t each 

point  of I¢.~ (~hoose n - - 1  nmtual ly  orthogonal straight lines all normal to the 
initbd hypersurface. I n  the normal E,,_~ so formed the ill'st fore" co-ordinates 

of any point  are taken to be x% while the remaining n - - 4  co-ordinates x -* 
(A -- 5, ..., n) :u'e given with respect to the psendo-C~rtesian frame defined by 
the seleet(*d uormals. This defines eo-ordin~t,es x*' ( # = 1 ,  ..., n) in t,he E,, in 
a neighborhood of Ra. ll~ in the hypersnrface x<t= 0. Since the strtdght lines 

normal to h'~ ha, re  equations 

x" = c o n s t ,  x ~ = V~t ( V A = c o n s t ) ,  

wc lind fr()m the tzeodesie equations that  the Christoffcl symbols ]'~'e vanish. 

That  is 

1 ~ft),([~ 

Now g<,~j ~'A6a, (~:., ==-~:1, the signs depending on tile signature of tile ent- 

bedding spa('e E,,) everywhere, so gA~,,~= 0, and we are, left with 

( I )  g,,A ,a + g~, .4 =:  0 . 

Thus 

gaA,A- 0 

and differentiating (1) with respect to x ~ gives 

g < . l , p ~ - -  O .  



iklld the  sumn~ntion cwnvention over thc. indices A, B is adopted. 
The motrick g,Lv of B, Ilas the form 

At, R,, .r" = 0, so the go, vanish and g<&, becomes the rnetric of B,. 
A c;dcul:~t ion of tho Christol'el symbols at l?, giws 

and the indicw A,  R a,rc raised and lowered by mesns of the metric: ydR, g,,, 
while a, b :i,w r i t isd and lowered with gab(&). 

Pifiiilly ~ v c  oalcul:%tt? the Riemann tensor for I<,,, 

Sinec 1g7* i s  fht this must vanish, and celculating successively IZfLbcd1 IZAbcd, 
RA,o,, R.lbllil gives t h e  following integrability conditions for R, to  be embedded 
in an  17,: 

Cornlnas tl(mott1 ordinary derivatives, while semicolon denotes covarisnt deri- 
vative in 12,. I t  is clear by reversing the above argument that any R, which 
has tcinsors Ir' , , L b ,  P ,,a satisfying (5), (6), (7 )  can be embedded in an  3,. The 
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eq. (8) tells nothing about R4 since it is only an equation for the extrinsic deri- 

vatives of KA~ ~. Since any R~ can be embedded in ten dimensions we see that  
there must  exist a set of six tensors K~.b, and fifteen vectors P~,~ = - - P B A .  
(A, B = 1, ..., 6) s~tisfying eqs. (5)-(7). 

3. - E m b e d d i n g  in  f ive d i m e n s i o n s .  

A frequently quoted theorem on minimal embeddings is tha t  no vacumn 

solution of the Einstein field equations can be embedded in five dimensions (7). 
I t  is worth noting however tha t  the proofs given in the literature (8 9) for this 
theorem depend on diagonalizing a symmetric  tensor by a local rotat ion,  a 

procedure which is invalid for indefinite metrics. We give a correct proof of 
this theorem for normal hyperbolic manifolds (one minus sign in the signature). 

I t  will also be seen tha t  the procedure breaks down completely if the metric 

has more than  one minus sign. 
For  a five-dimensional embedding the eqs. (5)-(7) reduce to 

(9) R.b~d = 2sK.[  K~]~ 

(10)  K [~;~] = 0 ,  

where square brackets denote ant isymmetr izat ion over the enclosed indices. 

The Ricci te, nsor, R~ = R~b~o, is given by 

(11) Rbc = a(KbaKa c -  (Kaa)K%) . 

THEOt~I~I 1 : No nonflat  vacuum metric can be embedded in  f ive dimensions. 

Proof: For vacuum, R% = 0, and eq. (11) may  be writ ten in matr ix  form 

(12) K ~ -  ( T r K ) K  ---- O. 

The usual proof (s,s) involves setting up a local Minkowski frame and diago- 

nalizing K~ by a local rotation. For  indefinite metrics this cannot be done 

in general. For  example the tensor K b = k k~,, where k is a null vector, can- 
not  be diagonalized by a Lorentz transformation. Tile canonical forms for 

symmetric  tensors in Minkowski space have been given by PIRANI (1% but  

(7) L. P. EISENIIART: Riemannian Geomet W (Princeton, 1960). 
(s) j.  A. SCIIOUTEN and D. J. STRUIK: Am. Journ. Math., 43, 213 (1921). 
(0) E. KISSER: Am. Journ. Math., 43, 130 (1921). 

(lo) F. A. E. PIRANI: to be published. 
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we shall refrain from using the full formMism here. We proceed as follows. 

Equat ion  (22) shows tha t  the eigenvalues of K must  satisfy 

2 2 _ ; t T r K =  O. 

'[[enee 2 = 0 or T r K .  Since T r K  is equal to the sun: of the eigenvalues, we 
see that  the only possibilities are tha t  all eig~nvalues vanish ( T r K =  0), or 

tha t  three of the eigenvahtes vanish and the fourth is equal to T rK.  

Cas'c a): T r K =  0. I n  this case K : =  0. T h e n y " = K ' ~ b x b  is an eigenvector 

of K for any ~ector x ~, 

K ~ y ~ =  O.  

From the symmet ry  of K ~  we have tha t  

y ~ K ~ x  b = 0 = y~y" . 

Hence y'~ is "/. null vector. Take any other vector x/', and similarly y ' ~ - - K ~ x  '~ 

is a null eigenvector. Fm' thermore 

y ' ~ K ~  x b -  0 = y'~y~'. 

The two mill vectors y~ and y'~ are orthogonM, hence for a normal hyperbolic 

metric they must  be proport ional  and we have that  y : K ~ x ~ =  0 for any  

arbi t rary vector x% Hence y E K b , ~ =  0, and since K b is symmetric  we must  

have K b = A y ~ y  b, But  this implies tha t  R,b~a= 0 from eq. (9). 

Case b): T r K # 0 .  In  this case the only nonvanishing eigenvalue is 
2 = Tr K, and this eigenw~lue is nondegenerate. There exists a unique eigen- 

vector  lc ~ (determined up to a factor) corresponding to +~. Now for any  vector x% 

by eq. (12) the vector ya =: K,~bXb is an eigenvector corresponding to ;t. Hence 

y, oc k ~, and an identical argument  to tha t  above shows that  K ~ o c  k kb, and 

R b, ~ = O. 

Hence if a vacuum metric can be embedded in five dimensions it must  
be fiat (Minkowski space). 

I t  is .~lso clear now that  the theorem breaks down if the metric is not  
normal hyperbolic, for then we may  find two distinct orthogonal null vectors 

k% m '~, and the tensor K ~  = k k b ~ - m a m  ~ gives R~ = 0 and / ~ # 0 .  
We can use similar argntments to find canonicM forms for I~b if a solu- 

t ion of the field equations with cosmological constant 

(13) Rub = - -  Ag~b 
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is to  be e m b e d d e d  in five dimensions.  The m a t r i x  K m u s t  now sat isfy 

(14) K s -  (Tr K ) K  = - -  e A I  . 

The  eigenvalues  of K t h e n  sat isfy  

2 2 - - 2 T r K + e A  = 0 ,  

A n d  since Tr  K = ~ 2o we ge t  
i 

Hence  ~tone of the 2~ wmish a nd  sub t r a c t i ng  the  var ious  equa t ions  gives three  

equa t ions  

( ~ 1 - - & ) ( 2 3 +  24) = 0 ,  

(2~-- &)(4~ + 4,) = 0 ,  

( 2 ~ -  4,)(2~ + 4~) = O. 

I t  is easily seen t h a t  if 21~= 4~ then  23=41  or 22. Hence  some pa i r  of 4's 
m u s t  be equal  and  we end up  wi th  two possibi l i t ies:  

a) All 2's are equal ,  2 = 2x = 22 = 2a = 24, eA  = 3).", 

b) 2 , - - 2 2 = 2 = - - & = - - 2 4 ,  e A = - - 2  ~. 

I n  case a) i t  can  be p r o v e d  t h a t  K =  4I .  This is nms t  easi ly seen f rom 
the  C a y l e y - H a m i l t o n  equa t ion  for  K~ which  takes  the  f o r m  

K ~ -  44K ~ + 622K 2 ~ 44SK + 441 = 0 . 

Subs t i t u t e  eq. (14) wi th  T r K =  44, eA = 342, and  then  we have  

3 2 2 K 2 -  423K d- 241 = 0 . 

A final compar i son  wi th  {14) gives the  resul t  K =  M.  
I n  case b ) w e  h a v e  T r K =  0 and  the  C~y ley -Hami l ton  equa t ion  gives 

n o t h i n g  new. E q u a t i o n  (14) becomes  K ~ =  2'aI. Le t  x" be an  a r b i t r a r y  vec- 

tor ,  t h e n  

K~b(4- 4x  ° + Kbox ~) = ± 4(3:  2x  ~ + K~bx b) , 
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so y ~ =  ::E.aX~q-K~bxO is an eigenvector corresponding to the eigenvalne ± k. 

Now if x ~ is ~ unit  timelike vector, x ~ x ~ = - - l ,  then y ~ y ~ = - - 2 ) . 2 ~ 2 ) . K b x ~ ' x ~ '  

Clearly one of the two eigenvectors y~ must  be timelike. Let  u ~ be the unit  

timelike vector in this direction, and suppose it corresponds to the eigenvalue 
--~t (the choiee -]-~ would of course be quite similar). We can now set up 

local Minkowski frame with u a as t ime axis. K b has the form (0) 
0 

K' 0 
• i ~  v 

o 0 o + 2 

and by a rotat ion in the Euelide~m three-space orthota'onal to u", we can diago- 
nalize K ' ,  giving for K~ the final form 

'--2 0 i 
o 

Thus we have two possible canonical forms for K b 

a) K ~  = 2g~t ' , s A  = 3~  ~ , 

b) K ~ = +~g~ + 2 ~ % % - -  2 ~ s ; % ,  e A  = - -  ,t 8 , 

where u~, .% are orthogon'd unit  vectors, time]ike and spucelike respectively, 
_ _  ~ . U a  ~ ,%,~,,a ~ 1~  +tt~8 '~ ~ O .  

A sinfilar analysis may  be carried out for the case of ~ perfect fluid solution 
of the field eqm~tions, which can be writ ten in the form 

(15) R a  b ~ __ (p  ~_ /A)Ua(lt b 1 + ~ (P  - -  # - -  2 A ) g o b ,  

where p is the pressure, # the density of the fluid. 
for K: 

(16) 

where 

This yields an equation 

(K s - -  (Tr K ) K ) %  = - -  X u ~ %  q- 17~b , 

X = s(p + # ) ,  17 = ~-~(p --/~ - -  2A) .  
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We first show tha t  u ~ is an eigenvector of K(~. Suppose K~b U b = V ~'. Then 

K ~ v  b = K ~ o K ~  u ~ = (Tr K ) v  ~ ~- ( X  @ Y ) u  ~ 

by (16). Applying K ~  again to this equation ~'ives 

K". K~bv~ ~ (Tr K ) K ~ v  b ~ ( X  ~ Y ) v  a 

while from (16) we have 

K "  K ~  v b ~ (Tr K ) K ~  v b - -  X ( %  v~)u '~ -~- Y v  ~ . 

Comparison of these two equations shows that  

X v  ~ : - -  X ( %  v ~) u ° . 

Thus x"oc u '~ and u" is an eigcnvector of K% (assuming X V - 0 - - X - - - - 0  reduc- 

es to the previous example of vacuum with cosmologic:}l constant). Let  24 

be the eigenvalue corresponding to the eigenvector u ~. We then have equa- 
tions for the eigenvalues of K%: 

- -  24(;h + ~ -~- 23) = X ÷ 17 , 

- -  ~ ~ ~, = ]( (/, j = ~, 2, 3).  
j-¢ i 

Solving these equations in the same way as for the vacuum case we finally 

get the following two canonical forms for K~,,: 

x --- 2 ) , (2  - -  ~ ) ,  I ~ = - -  ~(2,~ + ~ ) ,  

(b) K~, = 2g,~ + 22%u~,-~- ( 2 -  v).%s~, s . s  b = 1 , s . u ' ~ =  0 ,  

For p = / t  = 0, we have X = 0 and these reduce to the vacuum forms derived 

above. 
So far we have only used the properties of K ~  at a single point  of the 

manifold. To get further information we must  use the differential identities (10). 

These will allow us to prove some valuable theorems. Let us apply (10) to 
the form (b) obtained above for K~b. We set up an orthonornal  te trad con- 

sisting of w', s " obtained from the canonieM form of K~b, and completing it 
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with two fur ther  uni t  orthogon~l sp~celike vectors e ~ and f~. Now we c~n 
write the  second covar ian t  der ivat ives  of the t e t r ad  vectors in the  form 

(17a) ~;b : s~Ab q- eaBb q~ faCb,  

(17b) sa;b ~ uaAb ~ eoDbq- f~E~,, 

(17c) e<~;b ~ UaBb - -  8aDb -~- faGb 

(17d) f~:~ = u , C b - -  s~Eb - -  e~G~. 

Subs t i tu t ing  these into (10) and contract ing with the  different t e t rad  vectors 
gives, a f te r  a somewhat  tedious c,~]cul,~tion, the  ~ollowing equat ions:  

(18a) A~ - -  (),ms~Zub - V aUaSb-] - P e b +  Qf,D/(~ q- v) , 

(18b) Bb : ( P s i - -  ~ auaeb)/2~ , 

(18e) C~ --  ( Q s ~ - -  ~ ~u~f~)/2,~ , 

(18e) Eb - -  (Pub q~ v ~f~s~-~ - 2 . d s ~ f ~ ) / ( v -  2) . 

There is no equat ion for G~ and we have  assumed tha t  2, ~ - - 2 ,  v-~-2 all do 
not  ~ n i s h .  P and (2 are a rb i t r a ry  sc,~lar functions. 

We shall a.lso make  use of the  l~icci identit ies 

Subs t i tu t ing  f rom (9) ~ud contract ing with e ~, f~ gives two equations 

(19a) B~(;,~ 1 + AE D<~ ~ + Gi~Cdl ~- e~ ~ ef¢%~ , 

We could obtain  eqm~tions for the cur]s of all vectors A~ .., G bu t  these ~re 

the  only ones we shall need. 

THEOnE~ 2: T h e  on ly  v a c u u m  so lu t ions  o f  the E i n s t e i n  f i e ld  equat ions  w i th  

cosmological  c o ~ s t a ~  wh ich  can be embedded in  f i v e  d i m e n s i o n s  are spaces o f  

~onstant  curvalure .  

P r o o f :  Pu t t i ng  p = l z = 0  in eq. (b) gives v ÷ 2 = 0 ,  c A = - - 2  ~. Hence  
eqs. (18) arc no~ v~did as they  stand.  We get instead 
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W h e n  s u b s t i t u t e d  in  (19a) or  (19b) these  g ive  ~ = 0, a n d  hence  K~b ~ 0. Thus  

e~se b) is e l i m i n a t e d  a n d  we are  l e f t  w i t h  case a), 

K , ~ ,  = ~ g ~  , e A  = 3,~ 2 . 

I n  th i s  c~se (9) g ives  for  t h e  ICiem'mn t e n s o r  

R~b~d = 2 e~ 2 g~r,~gdlb • 

Thus  the  space  is a space  of c o n s t a n t  curv~,ture.  I t  is one of t he  two  d e S i t t e r  

sp~ces ( the  u s u a l  d e S i t t e r  u n i v e r s e  has  p o s i t i v e  c o n s t a n t  c u r v a t u r e  a n d  we 

m u s t  t a k e  v -  + 1 ,  b u t  t h e r e  is a n o t h e r  one w i t h  n e g a t i v e  c u r v a t u r e  h a v i n g  

t h e  u n p h y s i c a l  p r o p e r t y  of possess ing  c losed t i m e l i k e  l ines  (1~). 

e THEOREM 3: Yh .  only solutions of the f ield equations with incoherent matter 

(p = O) which can be embedded in  f ive dimensions are the F r i e d m a n n  cosmological 

models. 

Proof: Suppose  K,b has  t he  fo rm (b) w i t h  v - - ~ : A 0 .  T h e n  eqs.  (18) a re  

v a l i d  ~md we e~m s u b s t i t u t e  t h e m  in to  (19a) a n d  (19b). C o n t r a c t i n g  (19a) w i t h  

f l u  d resu l t s  in  

P 0  
- - - 0  . 

,~2 _ _  ]~2 

H e n c e  e i the r  P or Q van i shes .  A s s u m e  P =  0 ( the a r g u m e n t  is i d e n t i c a l  

for  Q = 0). ~ • " C o n t l a e t m g  (19a) w i th  e*u~ a n d  (19b) wi th  f~ua, r e su l t s  in  two  

e q u a t i o n s ,  

(~.~, , /2~).cu o (~.~u~/2~) ~ -  (~.~s~)~/O,~-- ~ )  - -  s ~  = o ,  

(~.,~u~f2).,u ~ -  (~, ou~12,~V-- (~ ~s~)~l(v~-- ~ )  - -  ~ + 27~l(v : -  ~ )  - -  o .  

C o m p a r i n g  these  two  equ,~tions we see th,~t (2 = 0. 

N o w  X + 2 Y  2 s ( p - - A ) - - ) ~ 2 .  H e n c e  if  p = 0 ,  ~ = - - 2 s A = c o n s t a n t .  

Th is  m e a n s  t h a t  ~ , , =  0 a n d  f r o m  t h e  f irst  of t he  a b o v e  e q u a t i o n s  we g e t  

t h a t  ) t ~  O. B u t  t h e n  

K a b  ~ '])~aSb 

01) J. L. SYN(~E: Relativity, the General Theory (Amsterdam, 1960). 
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and the Riemann tensor vanishes. Thus we see tha t  K~b must  be of the 

form (a), or (b) with v - - 2 =  0. In  either of these cases K ~  takes the form 

Kab = ~g~b @ flUaUb. 

Equat ion  (10) for a Ko~ of this form implies tha t  u~;~ has the form 

U~;b = O(e~eb H- f . fb-~ s~sb) ~- q~ub. 

Hence the streamlines of the fluid have no shear and rotation. But  this is just 

the characterization of the Fr iedmann cosmological models (t2), hellce our 
theorem is proved. The converse, tha t  the Fr iedmann solutions can be em- 
bedded i~ five dimension is settled at once since I~OSEN (5) has given the ex- 

plicit embeddings. 

T~EOI~E~ 4: No perfect f luid solution with rotating matter can be embedded 

in  five dimensions. 

Proof. We have shown in the preceding theorem even without  the as- 
sumption p = 0, tha t  p = Q = 0. Subst i tut ing into (17a) from (18) now gives 

tha t  

U[a;bUc] = 0 • 

Hence the fluid trajectories are normM (orthogonal to hypersurfaees), which 
is the relativistic s tatement of no rotat ion (11). 

4. - Embedding  in higher dimensions .  

In  the previous Section we showed tha t  except for the Er iedmann uni- 
verses~ essentially all physically meaningful solutions have a lower bound of 
2 on their embedding class (embedding class being defined as the minimum 

number  of extra dimensions needed to embed the manifold). I t  appears im- 
possible to derive any general theorems of this kind for higher-dimensional 

embeddings. The integrabili ty conditions (5-7), reduce for a six-dimensional 

embedding to 

R,~cd = 2 ( q K  ~t~K~jb + s~Ha~cH~jb) 

K.tb;~l = _ _  e ~ H  , t b P  j , 

(t~) O. HECKMA~'N and E. SCH~CKI~G: article in Gravitation, and Introduction to 
Curre~t Research, edited by L. WITT]~" (New York, 1962). 

65  - II Nuovo Cimento A. 
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Given  a n y  specific form for the  R i c m a n n  tensor  R~b¢~, there  is i n  genera l  a 

f ami ly  of t enso r  pa i rs  K~b, H.b which will  sa t is fy  the  first of these  equa t ions ,  

a n d  th is  f a m i l y  c a n n o t  be  charac te r ized  in  a n y  s t r a igh t fo rward  canon ica l  

fash ion  as we m a n a g e d  to do i n  the  p rev ious  Sect ion.  Hence  the  r e m a i n i n g  

di f ferent ia l  i den t i t i e s  are qu i t e  iuappl icab le .  I n  fac t  there  appears  to  be n o t h i n g  

s igni f icant  t h a t  an  e m b e d d i n g  class g rea te r  t h a n  1 says a b o u t  the  man i fo ld .  

There  are however  a few remarks  one can  m a k e  wi th  r ega rd  to f ix ing a n  

upper  bound to the  e m b e d d i n g  class i n  t he  c'~se w h e n  ce r t a in  symmet r i e s  are  

p resen t .  

A n  R4 possessing a group of symmetr ies  with normal trajectories (hypersurface 

orthogonal K i l l ing  vector field),  can be embedded in  eight dimensions.  

Proof:  I f  the  t ra jec tor ies  are spacel ike or t imel ike  w i th  x 4 a co-ord ina te  

l abe l l ing  n o r m a l  hypersur faees ,  we can  wr i t e  the  me t r i c  i n  the  fo rm 

d s 2 =  g , ~ d x t ' d x ~  - e qJ:(dx4) ~ , 

where  /t, r = 1, 2, 3, ~ = ~(x"), gs. ---- g , , (# ' ) ,  a nd  s = ~ 1 d e p e n d i n g  on w h e t h e r  

the  t ra jec tor ies  are spaeel ike or t imel ike .  P u t  

T h e n  

u ---- F cosx  ~, v ---- ~o s i n x  ~ . 

e(du ~ ÷ dv :) = e(dv ~ d- ~2(dxd)~) , 

and  our  p rob l em has been  r educed  to  f ind ing  an  e m b e d d i n g  of the  three-  

d imens iona l  me t r i c  fo rm g#,dx"dx~--dcp 2, which can  a lways  be done in  a t  

mos t  six d imens ions .  

I f  the  t ra jec tor ies  are nu l l  l ines,  we can wr i te  the  met r i c  in  the  form (~) 

ds ~ ~ gl~ dx"  dx"  + 2 dx~ dx  ~ , 

g~ ,=g ,~(x ' ) .  P u t  u =  1/~/2(x3d-xd),  v = l / ~ / : i ( x 3 - - x  4) a n d  we have  

du  ~ - -  dv 2 = 2 dx 3 dx ~ . 

Hence  we can  aga in  f ind a n  e igh t -d imens iona l  e m b e d d i n g  of the  mani fo ld .  

I f  the t ra jec tor ies  i n  the  above  t heo rem are spacelike or t imel ike  a n d  are 

geodesic we can  f l t r ther  reduce  the  e m b e d d i n g  class b y  one, since the  met r i c  

(13) Cf. I. RoBJNSO.~ and A. Tl~AV~AX: Phys. ]~ev. Lett., 4, 431 (1960). 
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can  be  w r i t t e n  in  t h e  f o r m  

ds 2 = gz d x ~ d x  ~ + (dx*) 2 . 

Th is  can  c l ea r ly  be  e n l b e d d e d  in  seven  d imens ions .  The  s t a t e m e n t  is  of no  

use  for  v a e u m n  m e t r i c s ,  s ince  a n y  v a c u u m  m e t r i c  w i t h  such a g r o u p  of s y m -  

m e t r i e s  m u s t  be  a p .p .  w a v e  (~4), a n d  t h e  g r o u p  t r a j e c t o r i e s  a r e  nu l l  l ines .  H o w -  

eve r  t h e  G6de l  u n i v e r s e  

ds  2 = a o. [(dx~)2 + 1 exp  [2x~] 2 (dx2) 2 + (dx~) 2 - -  (dx 4 + exp  [x ~] d x ' )  2] 

does  possess  such a g r o u p  ( t r a j ec to r i e s  a long  t h e  x 3 l ines) ,  hence  i t  can  be  

e m b e d d e d  in  seven  d imens ions .  W e  k n o w  f u r t h e r m o r e  f rom T h e o r e m  3 or  4 

of t h e  p r e v i o u s  Sec t ion  t h a t  t h e  G6de l  u n i v e r s e  c a n n o t  be  e m b e d d e d  in  five 

d i m e n s i o n s ,  b u t  w h e t h e r  i t s  e m b e d d i n g  class is 2 or  3 r e m a i n s  u n d e c i d e d .  

S ince  m o s t  k n o w n  so lu t ions  of t h e  f ie ld e q u a t i o n s  possess  a g r o u p  of mo-  

t i ons  w i t h  n o r m a l  t r a j e c t o r i e s ,  we  can  a c c o r d i n g l y  p u t  an  u p p e r  b o u n d  of 4 

on  t h e  e m b e d d i n g  class.  W h e n  f u r t h e r  g roups  a re  a v a i l a b l e  t h e  e m b e d d i n g  

class  can  f r e q u e n t l y  be r e d u c e d  s t i l l  f u r t h e r .  F o r  t h e  S c h w a r z s c h i l d  so lu t ion  

(or a n y  sphe r i ca l l y  s y m m e t r i c  s t a t i c  me t r i c )  t h e  e m b e d d i n g  class can  be  re-  

d u c e d  to  2. F o r  t h e  W e y l  c y l i n d r i c a l l y  s y m m e t r i c  s t a t i c  so lu t ions  i t  can  be  

r e d u c e d  to  3, a n d  in  spec ia l  cases  to  2. 

A f inal  t h e o r e m ,  a g e n e r a l i z a t i o n  of a t h e o r e m  of S c h o u t e n  (7), r e l a t e s  em- 

b e d d i n g  class to  t h e  c o n f o r m a l  s t r u c t u r e  of t h e  m a n i f o l d .  

I f  Ra has embedding class p ,  and S~ is eonformally  related to Ra, then $4 has 

embedding class at most p + 2 ,  and can be embedded i n  the nul l  cone of  an Er+ 6. 

_Proof: L e t  R4 h a v e  m e t r i c  t e n s o r  gos. Then  $4 has  m e t r i c  t e n s o r  ~ga~,  

for  some sca l a r  f u n c t i o n  T. Since  /?4 has  e m b e d d i n g  class p ,  t h e r e  ex i s t  p + 4  

f u n c t i o n s  yt,~_ y , ( x  ~) (t t = 1 ,  ..., p + 4 )  s a t i s f y i n g  

P u t  now 

%Y" ~y" ~ = gab • 

tt  

z" = q~y"(x~) , 

= ~ 2 1 . ' "  ) - , 

= v ( 2  + I ) .  

(14) W. KUNDT and J. EHLERS: article in Gravitation, and Introduction to Current 
t~esearch, edited by L. WITTEN (NeW York, 1962). 
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T h e n  ~ ~ z l ~ z f ~  z~'5 ~+5 z~+6 ~+~ _ . . . . .  b - -  ,~ ~ .b--q0~g~b • T h u s  $4 is of  e m b e d d i n g  

c l a s s  a t  n l o s t  p + 2 .  F u r t h e r m o r e ,  w e  h a v e  

%(z~9 ~ + (z~+~) ~ - -  ( z~+ ' )  ~ = 0 ,  
P 

so  tha,  t $4 h a s  b e e n  e m b e d d e d  i n  t h e  n u l l  c o n e  of E~+ 6. 

R I A S S U N T O  (') 

Si d i scu tono  le cond iz ion i  di  i n t eg rab i l i t~  pe r  adggigre  u n a  mol tep l i c i tg  r i emannia .na  
su uno  spazio pseudoeucl ideo.  Si u sano  ques te  condiz ioni  pe r  d i m o s t r a r e  che essenzial-  
m e n t e  le sole soluzioni  f i s icamente  s igni f ica t ive  delle equaz ion i  di ca m p o  d i  E i n s t e i n  
che  possono essere adag i a t e  su c inque  d imens ion i  sono gli un ive r s i  d i  F r i e d m a n n .  Si 
d i s cu te  la re laz ione f ra  le p rop r i e th  di s i m m e t r i a  e le p ropr i e t~  di  inserz ione  di  u n a  mol-  
tepl ic i t~ ,  p o n e n d o  in a leun i  easi  l imi t i  super ior i  all~ classe inserente .  

(*) T r a d u z i o n e  a cura  del la  R e d a z i o n e .  


