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Summary. — Integrability conditions for embedding a Riemannian
manifold in a pseudo-Euclidean space of higher dimensions are derived.
They are used to show that essentially the only physically significant
solutions of the Einstein field equations which can be embedded in five
dimensions are the Friedmann universes. The relation between sym-
metry properties and embedding properties of a manifold is discussed,
golting upper bounds to the embedding eclass-in certain cases.

1. — Introduection.

General relativity postulates that the world is a four-dimensional Rieman-
nian manifold. It is well known (although the correct proof for indefinite
metrics has only been given recently by FRIEDMANN (1)) that such a manifold
can always be regarded, at least locally, as embedded in a pseudo-Euclidean
space of ten dimensions. This is usually regarded as irrelevant since all geo-
metrical properties can be obtained from the intrinsic structure of the mani-
fold, the metric tensor g, and its derivatives. However embedding introduces
some suggestive features that have led to a resurgence of interest in this prob-
lem, (%), especially in its possible connection with clementary-particle physics.
We may say that a curved space-time introduces in a natural way a pseudo-
Kuclidean space of as many as ten dimensions (and possibly more if a global
embedding is required, although no clear-cut answer is known to this question)

(*) This work was supported by AFOSR Contract AF49(638)-15627.

(1) A. riepmaxy: Journ. Math. Mech., 10, 625 (1961).

(3) I.Rominsox and Y. NE'EMAN: Rev. Mod. Phys., 37, 201 (1965), and the articles
following this introduction.
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and in so far as this space is a consequence of the curvature of space-time
it is of physieal interest, even if only indirectly.

The higher-dimensional space introduced from embedding has one clear-cut
advantage over the original manifold, and that is in its symmetry. JOSEPH (%)
points out that we have reduced the parameters in our allowed co-ordinate
transformations from an infinite number to 55 by this process, and there is
no doubt that it is easier to discuss elementary-particle physics in a flat multi-
dimensional space than in a curved four-space. The Minkowskian tangent
space at each point of the manifold allows the action of the ordinary Lorentz
group, while the normal gpace is invariant under a (pseudo)-orthogonal group
leaving the point in question fixed. This latter group may correspond to an
«internal » symmetry or chiral group for elementary particles. NE'EMAN (%)
has remarked that embedding in ten dimensions implies the emergence of the
six-dimensional orthogonal group, a subgroup of which is the currently po-
pular §U,.

It is well, however, not to be too carried away with some of these ideas.
A principal difficulty is that it is not at all clear what sort of physical inter-
pretation to place on the added dimensions. In particular the question of why
nature chooses certain four-dimensional submanifolds as the arena of «ordi-
nary » physics (that is, of particle or photon paths) becomes a particularly
puzzling one. In this paper a more modest view is taken and we merely set
out to prove some theorems which may have bearing on the above discussion.
The main discussion will center around the minimal embedding problem. While
a general space-time will need ten dimensions for embedding, most known
metrics, on account of their symmetry properties, will need less. Explicit
embeddings for almost all known solutions of the field equations have been
given by RoSEN (%), and these bear out this assertion. Depending on the kind
of theory we envisage, as many as ten dimensions may ultimately prove an
embarrassment, and we may be especially interested in those solutions of the
field equations which can be embedded in fewer dimensions. In this regard
FrRONSDAL (%) has pointed out that all the experimental evidence for general
relativity has only verified the validity of the Schwarzschild solution, and this
can be embedded in six dimensions. It is probable that a good « approxi-
mation » to general relativity (whose deviations could not so far be detected
by experiment) could be obtained from a six-dimenional theory, in which the
gravitational field has the attractive feature of being determined essentially
by two scalar fields.

(3) D. W. JoskeH: Rev. Mod. Phys., 37, 225 (1965).
() Y. Ne'eMaN: Rev. Mod. Phys., 37, 227 (1965).
(%) J. Rosex: Rev. Mod. Phys., 37, 204 (1965).

(8) C. FroNsDAL: Nuove Cimento, 13, 988 (1959).



1064 P. SZEKERES

The only theorem one has on minimal embeddings is that no Riemannian
manifold R, with 2, =0 can be embedded in five dimensions. However as
we shall sec in Sect. 3 the proofs given to date for this theorem are only valid
for positive definite metrics, and are therefore not applicable to general rela-
tivity. We shall give a correct proof of this theorem for normal hyperbolic
manifolds, and show that the method can be extended to find all solutions of
the fleld equations with incoherent matter which can be embedded in five
dimensions. Thege turn out to be the Friedmann universes.

In the finul Seetion we derive some relations between the symmetry and
conformal properties of a manifold and its embedding class.

2. — The formalism of embedding.

Let R, be a Riemannian 4-space embedded in a pseudo-Euclidean space F,,.
We may set up normal Gaussian co-ordinates in £, using R, as an initial hyper-
surfaces as follows., Let 2¢(a=1, ..., 4) be co-ordinates in R,, and at each
point of R, choose n — 4 mutually orthogonal straight lines all normal to the
initial hypersurface. In the normal E,_, so formed the first four co-ordinates
of any point are taken to be 27, while the remaining » —4 co-ordinates z*
(4 =05, ..., n) are given with respect to the pseundo-Cartesian frame defined by
the selected normals. This defines co-ordinates z¢ {(u=1, ..., ») in the K, in
a neighborhood of B,. R, is the hypersurface #* = 0. Since the straight lines
normal to I, have equations

2t = const at = V4 (V4 = const),

we find from the geodesic equations that the Christoffel symbols I, vanish.
That is

"]z’gm(gv,i,zs + Jona— g,ut,») =0.

Now —,0 e, = -4-1, the signs depending on the signature of the em-
Al AAs A b = bl Rl
bedding space £)) everywhere, so g,, =0, and we are left with

(h [/ + Jop4 = 0.
Thus
Goaa =10

and differentiating (1) with respect to 2® gives

0.

Jon,n8 =
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Hence

(2) Gur = Pag®”

where

(3) Pip= P @), Pyt Py,=0,

and the summation convention over the indices 4, B is adopted.
The metric g, of K, has the form

gub(a"a’ wA) PABa{L‘B

¥4 A
P, @ £6,,

ABa

At Ry ' =0, so the g , vanish and ¢, becomes the metric of E,.

A caleulation of the Christoffel symbols at R, gives

T Y A A 1
1 1,“(, = -[;,a,ﬁ(Rzl) ’ F[, ¢ K be ? [Aab = KA’ZI, ’

FBAa:PA I''y,=0,

B ?

where
(4) K«"bn = Jjgbc,A(Rz() ’

and the indices 4, B are raised and lowered by means of the metric g*%, g¢,,,
while a, b are raised and lowered with g, (F,).
Tinally we calculate the Riemann tensor for #,,
" o /2 R 8/l
vgzx Fvag vQG+FyUFAQ_INQIaU'

Since £, is flab this must vanish, and calculating successively R¢, , R“, .,
Ry, B, gives the following integrability conditions for R, to be embedded
in an £, :

(5) ’Ii)’ubul = A’Aun'KAbd—— KAadKAbu = Z €4 (KA!M dba I(Aﬂd K‘“’C)
4=5
(6) 'KAbc;d — K Abdse KBbcPB KBMPBA,: ’
(7) P,uxa;b —P ABgia }‘ I(AduK KAde ¥ + PI)Aa PDB:; PD4bPD = ?

(8) I(Abd,l‘ + é(KA(l(/, KBab + KAab Kltad) + PDADPDIM + PDAd PD

Commaus denote ordinary derivatives, while semicolon denotes covariant deri-
vative in I8, It is clear by reversing the above argument that any I, which
has tensors K P, satisfying (5), (6), (7) can be embedded in an E,. The

Aab)?
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eq. (8) tells nothing about R, since it is only an equation for the extrinsic deri-
vatives of K, . Since any R, can be embedded in ten dimensions we see that
there must exist a set of six tensors K, , and fifteen vectors P,, =—P

(4, B = 1,..,, 6) satisfying eqgs. (5)-(7).

BAg

3. — Embedding in five dimensions.

A frequently quoted theorem on minimal embeddings is that no vacuum
solution of the Einstein field equations can be embedded in five dimensions (7).
It is worth noting however that the proofs given in the literature (*9) for this
theorem depend on diagonalizing a symmetric tensor by a local rotation, a
procedure which is invalid for indefinite metrics. We give a correct proof of
this theorem for normal hyperbolic manifolds (one minus sign in the signature).
It will also be seen that the procedure breaks down completely if the metric
has more than one minus sign.

For a five-dimensional embedding the eqs. (5)—{(7) reduce to

(9) R,.=2eK, K

abed dlp ?

(10) K

avsa = 05
where square brackets denote antisymmetrization over the enclosed indices.

The Ricci tensor, B, = RB°, , is given by

(11) R = e(K* K* — (K" )K",).
THREOREM 1: No nonflat vacuum metric can be embedded in five dimensions.
Proof: For vacuum, R’ = 0, and eq. (11) may be written in matrix form
(12) K— (TrK)K = 0.

The usnal proof (**) involves setting up a local Minkowski frame and diago-
nalizing K , by a local rotation. For indefinite metrics this cannot be done
in general. For example the tensor K =k k,, where k_ is a null vector, can-

a"b?
not, be diagonalized by a Lorentz transformation. The canonical forms for
symmetric tensors in Minkowski space have been given by PIRANI (1°), but

(") L. P. FxseNHART: Riemannian Geomelry (Princeton, 1960).
(®) J. A. ScrouTEN and D. J. StrRUIK: dm. Jouwrn. Math., 43, 213 (1921).
) E. Kasxur: Am. Journ. Math., 43, 130 (1921).

} F

F. A. E. Pirani: to be published.

(9
1

(O
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we shall refrain from using the full formalism here. We proceed as follows.
Equation (22) shows that the eigenvalues of K must satisfy

A—ATrK=0.

Hence A=0 or TrK. Since TrK is equal to the sum of the eigenvalues, we
see that the only possibilities are that all eigemvalues vanish (Tr K = 0), or
that three of the eigenvalues vanish and the fourth is equal to Tr K.

Case a): Tr K = 0. In this case K2= 0. Then y*= K¢ x* is an eigenvector
of K for any vector z¢

Ko, y*=0.
From the symmetry of K, we have that
Yoo @ = 0 = yy° .

Hence * is a null vector. Take any other vector #'%, and similarly y’“:K“bm’b
is a null eigenvector. Furthermore

Yalo,zt=0=y'.y".

The two null vectors y* and »'* are orthogonal, hence for a normal hyperbolic
metrie they must be proportional and we have that y K, #°=0 for any
arbitrary vector z*. Hence y K, =0, and since K is symmetric we must
have K = Ay y, But this implies that R, =0 from eq. (9).

Case b): Tr K 0. In this case the only nonvanishing eigenvalue is
A=Tr K, and this eigenvalue is nondegenerate. There exists a unique eigen-
vector k° (determined up to a factor) corresponding to . Now for any vector 22,
by eq. (12} the vector y*= K¢ a®is an eigenvector corresponding to 2. Hence
yooc k?, and an identical argument to that above shows that K  oc k k,, and
R, =0.

Hence if a vacuum metric can be embedded in five dimensions it must
be flat (Minkowski space).

It iy also clear now that the theorem breaks down if the metric is not
normal hyperbolic, for then we may find two distinet orthogonal null vectors
ke, m®, and the tensor K, =k k +m m, gives B, =0 and R, 0.

We can use similar arguments to find canonical forms for K, if a solu-
tion of the field equations with cosmological constant

(13) R, = Ag,,
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is to be embedded in five dimensions. The matrix K must now satisty
(14) K:— (Tr KE)K = —edI .
The eigenvalues of K then satisfy
A—ATrK-+ed=0,
And since Tr K = Zli, we get

LI A=ed.

iFi

Hence none of the A; vanish and subtracting the various equations gives three
equations

(A — 12’)(13 + ) =0,
(11— }-3)(22 + }*4) =0,
(V}u— 14)(22 + }-3) =0.

It is easily seen that if A,-%4 A, then A, =1, or 4,. Hence some pair of A’s
must be equal and we end up with two possibilities:

a) All A’s are equal, A=1, =24, =14, =4, e¢1=322

b) 11:}:2:2-:——};3:—}‘4’ 8/1:—),2,

In case a) it can be proved that K= AI. This is most easily seen from
the Cayley-Hamilton equation for K, which takes the form

Kt— 4 K3+ 6A2K2— 43K + A = 0.
Substitute eq. (14) with Tr K = 44, ¢4 = 31% and then we have
MK —ABK AL =0,
A final comparison with (14) gives the result K = Al
In case b) we have TrK =0 and the Cayley-Hamilton equation gives

nothing new. Equation (14) becomes KZ2==12I. Let 2* be an arbitrary vec-
tor, then

Ke (£ Az* + K ) = & A4 A+ K°, @),



EMBEDDING PROPERTIES OF GENERAL RELATIVISTIC MANIFOLDS 1069

80 y*= - Ar"+ K° a® is an eigenvector corresponding to the eigenvalue -+ A.
Now if 2 is a unit timelike vector, x,2*=—1, then yay“=~222i2ﬂfabmﬂm”
Clearly one of the two eigenvectors y* must be timelike. Let #¢ be the unit
timelike vector in this direction, and suppose it corresponds to the eigenvalue
— A (the choice 42 would of course be quite similar). We can now set up a
local Minkowski frame with «® as time axis. K, has the form

0

0

K, 0
00 0424

and by a rotation in the Euclidean three-space orthogonal to 4%, we can diago-
nalize K', giving for K, the final form

— A
+2
42
+2

Thus we have two possible canonical forms for K

a) K,=29,, ed=33%,
b) K, = Ay, -+ 2Auu, —2Ass

a"b )

ed =— 22,

where u,, s, are orthogonal unit vectors, timelike and spacelike respectively,
— U U= 88" =1, w8 =0,

A similar analysis may be carried out for the case of a perfect fluid solution
of the field equations, which can be written in the form

(15) R,=—({@+wuu,+p—pu—24)yg,,

where p is the pressure, g the density of the fluid. This yields an equation
for K:
(16) (K*—(Tr K)K)*, = — Xuw, + Yo7, ,
where
X=ept+p), Y=3ie(p—p—24).
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We first show that »* is an eigenvector of K«,. Suppose K¢ u®=o*. Then

He ob = Ko K° wb = (Tr Ko+ (X 4 Y)ue
by (16). Applying K, again to this equation gives

Ke Koot = (Tr K)K* v+ (X + Y)oe,

while from (16) we have

K« K¢ v == (Tr K)K°* v* — X (u,v*")u*+ Yoo .
Comparison of these two equations shows that

Xot = — X(u,v*)u®.

Thus z¢oc w* and «* is an eigenvector of K*, (assuming X £ 0 — X = 0 reduec-
es to the previous example of vacuum with cosmological constant). Let 4,
be the eigenvalue corresponding to the eigenvector u*. We then have equa-
tions for the ecigenvalues of K=,

—14(11‘1‘12"{‘}»3) =X+ Y,
— A2 A=Y (4, 1=1, 2, 3).
T
Solving these equations in the same way as for the vacuum case we finally
get the following two ecanonical forms for K,,:

((I) K(zb = Agub + ()' - Iy)’u’a/ub s
X—=20A—»), Y=—2A2119),

(b) Kab = Agn,b"{" 2}-’“1;7//1, “J(‘ (Zf — ’V) 8.8 4 S(,Sb =1 y S Ut == 0 '
X=2iAty), Y=—2m.

For p=p =0, we have X = 0 and these reduce to the vacuum forms derived
above.

So far we have only used the properties of H,, at a single point of the
manifold. To get further information we must use the differential identities (10).
These will allow us to prove some valuable theorems. Let us apply (10) to
the form (b) obtained above for K,,. We set up an orthonornal tetrad con-
sisting of we, s¢ obtained from the canonical form of K,, and completing it
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with two further unit orthogonal spacelike vectors e and fe. Now we can
write the second covariant derivatives of the tetrad vectors in the form

(17a) Uayp = Sedy -+ €aBy + fuCy
(17D) Sap = Uedy 4 0Dy + fo By s
(17¢) oy = e By — 8.0y -+ foFy
(17d) oo = %0y — 8,1, — e, .

Substituting these into (10) and contracting with the different tetrad vectors
gives, after a somewhat tedious caleculation, the following equations:

(18a) Ay = (Ags%u,— v uds,+ Pe,+ Qf) /(1 + v),
(18D) B, = (Ps,— Aq.ute;)/22 ,

(18¢) Oy = (@8, — A utfy)[22,

(18d) Dy = (Puy,+ v g6, -+ Ag8%e,) /(v — 1),

(18¢) By = (Quy+ 9.0 fisy -+ Aasif) (v — 2) -

There is no equation for ¢, and we have assumed that 4, v— 2, »-+4 all do
not vanish. P and @ are arbitrary scalar functions.
We shall also make use of the Ricel identities

_1
Uprea) = 3 B%caa «

Substituting from (9) and contracting with ¢, f* gives two equations

(194) B+ A Dy G Oy = 2 6y,
(190) Crpas + A By + G By = €22 fu,, .

We could obtain equations for the curls of all vectors 4, .., G but these are
the only ones we shall need.

THEOREM 2: The only vacuum solutions of the Einstein field equations with
cosmological constanl which can be embedded in five dimensions are spaces of
constant curvature.

Proof: Putting p=pu=0 in eq. (b) gives v+A=0, e =—2% Hence
eqs. (18) are not valid as they stand. We get instead
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When substituted in (19«) or (19b) these give =0, and hence K,,= 0. Thus
case b) iy eliminated and we are left with case a),

Koy = Afay » e = 342,
In this case (9) gives for the Riemann tengor
Rabcd = 2el? ga[(;g'ill} *

Thus the space is a space of constant curvature. It is one of the two deSitter
spaces (the usual deSitter universe has positive constant curvature and we
must take ¢ =1, but there is another one with negative curvature having
the unphysical property of possessing closed timelike lines ().

THronEM 3: The only solutions of the field equations with incoherent matter
(p = 0) which can be embedded in five dimensions are the Friedmann cosmological

models.

Proof: Suppose K, has the form (») with » —15£0. Then eqs. (18) are
valid and we can substitute them into (19a) and (195). Contracting (19«) with
feu® results in

Hence either P or  vanishes. Assume P =0 (the argument is identical
for @ =0). Contracting (19¢) with ecu?, and (19b) with feuw?, results in two
equations,

aff 20wt — (A ut[24)2 — (A,8")3/(»? — A%) — ed* = 0,
(Apu2/2) s — (A,uP[22)% — (A ,8°)2/(v2 — A%) — &A%+ 2Q%/(v* — A%) = 0.

Comparing these two equations we sce that ¢ =0.

Now X-+-2Y=2¢p—A)=2% Hence if p=0, A2?=-—2¢4-= constant.
This means that A,= 0 and from the first of the above equations we get
that A=0. But then

K., == vs,s,

(1) J. 1.. SyNGE: Relativity, the General Theory (Amsterdam, 1960).
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and the Riemann tensor vanishes. Thus we see that K,, must be of the
form (a), or (b) with v—4=20. In either of these cases K,, takes the form

Kab - Zgab‘*" ﬂuaub .
Equation (10) for a K,, of this form implies that u,, has the form

Uoyp = 0(ewes 4 fofs + Sa8s) + Quty -

Hence the streamlines of the fluid have no shear and rotation. But this is just
the characterization of the Friedmann cosmological models (12), hence our
theorem is proved. The converse, that the Friedmann solutions can be em-
bedded in five dimension is settled at once since ROSEN (%) has given the ex-
plicit embeddings.

THEOREM 4: No perfect fluid solution with rotating matter can be embedded
in five dimensions.

Proof. We have shown in the preceding theorem even without the as-
sumption p =0, that p =@ =0. Substituting into (17a) from (18) now gives
that

Uiy = 0.

Hence the fluid trajectories are normal (orthogonal to hypersurfaces), which
is the relativistic statement of no rotation ().

4. — Embedding in higher dimensions.

In the previous Section we showed that except for the Friedmann uni-
verses, essentially all physically meaningful solutions have a lower bound of
2 on their embedding class (embedding class being defined as the minimum
number of extra dimensions needed to embed the manifold). It appears im-
possible to derive any general theorems of this kind for higher-dimensional
embeddings. The integrability conditions (5-7), reduce for a six-dimensional
embedding to

Ropea =2(e, K, Ko+ e,H, H,,),
K o =—8&H,P,,

H, =K, Py,

Py + Kyl =0

(12) 0. HeckmanN and E. ScHUCKING: article in Gravitation, and Introduction to
Current Research, edited by L. WirTeEn (New York, 1962).

63 — Il Nuovo Cimenlo A.
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Given any specific form for the Riemann tensor .., there is in general a
family of tensor pairs K,,, H, which will satisfy the first of these equations,
and this family cannot be characterized in any straightforward canonical
fashion as we managed to do in the previous Section. Hence the remaining
differential identities are quite inapplicable. In faet there appears to be nothing
significant that an embedding class greater than 1 says about the manifold.

There are however a few remarks one can make with regard to fixing an
upper bound to the embedding class in the case when certain symmetries are
present.

An R, possessing a group of symmetries with normal trajectories (hypersurface
orthogonal Killing vector field), can be embedded in eight dimensions.

Proof: If the trajectories are spacelike or timelike with #* a co-ordinate
labelling normal hypersurfaces, we can write the metric in the form

ds* = g, do" d2” + e @*(da?)?,

where p, v=1, 2, 3, ¢ =g@(z"), ¢,,=9,[(z"), and ¢= +1 depending on whether
the trajectories are spacelike or timelike. Put

% = @ cos at, v = ¢@sinz*.
Then
e(du? + dv?) = e(de? + @(dat)?) ,

and our problem has been reduced to finding an embedding of the three-
dimensional metric form g,dz*de”—dg?* which can always be done in at
most six dimensions.

Tf the trajectories are null lines, we can write the metric in the form (2)

ds® =g, dz"de” + 2 dz*da*,
9 = 92", Put w=1/V2(@3+x%), v=1/4/2(x*—x*) and we have
du?— do®* = 2 detdat .

Hence we can again find an eight-dimensional embedding of the manifold.

If the trajectories in the above theorem are spacelike or timelike and are
geodesic we can further reduce the embedding class by one, since the mefrie

(%) Cf. I. RominsoN and A. TravrTMan: Phys. Rev. Lett., 4, 431 (1960).
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can be written in the form
J— d e "
ds* = g, da* da” + (da*)® .

This can clearly be embedded in seven dimensions. The statement is of no
use for vacuum metrics, since any vacuum metric with such a group of sym-
metries must be a p.p. wave (1%), and the group trajectories are null lines. How-
ever the Gddel universe

ds? = a? [(dﬂ&l)2 -+ 1 exp [22]? (dw?)? + (d2®)? — (do* + exp [#1] dmz)z]

does possess such a group (trajectories along the a? lines), hence it can be
embedded in seven dimensions. We know furthermore from Theorem 3 or 4
of the previous Section that the Godel universe cannot be embedded in five
dimensions, but whether its embedding class is 2 or 3 remains undecided.

Since most known solutions of the field equations possess a group of mo-
tions with normal trajectories, we can accordingly put an upper bound of 4
on the embedding class. When further groups are available the embedding
class can frequently be reduced still further. For the Schwarzschild solution
(or any spherically symmetric static metric) the embedding class can be re-
duced to 2. For the Weyl cylindrically symmetric static solutions it can be
reduced to 3, and in special cases to 2.

A final theorem, a generalization of a theorem of Schouten (7), relates em-
bedding class to the conformal structure of the manifold.

If R, has embedding class p, and 8, is conformally related to R,, then S, has
embedding class at most p+-2, and can be embedded in the null cone of an E, .

Proof: Let R, have metric tensor g¢,,. Then 8, has metric tensor ¢2g.,,
for some scalar function ¢. Since E, has embedding class p, there exist p44

functions y*= y*(z*) (x=1, ..., p+4) satisfying
2 Y 0l > = Gur -
L

Put now
2 = pyHa?),

70 = (T ey —1),

2 = g(X e, "+ 1) -

() W. Kuxpr and J. EHLERS: article in Gravitation, and Introduction to Current
Research, edited by 1. Wirteny (New York, 1962).
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Then Zeﬂz",az”,ﬁz”“‘_a RUHE 2?6 2PE = @%¢,,. Thus S; is of embedding

class at most p-+2. Furthermore, we have

X e @)+ @ — (@) =0,

FL

80 that 8, has been embedded in the null cone of E e

RIASSUNTO ()

8i discutono le condizioni di integrabilitd per adagiare una molteplicitd riemanniana
su uno spazio pseudoeuclideo. Si usano queste condizioni per dimostrare che essenzial-
mente le sole soluzioni fisicamente significative delle equazioni di campo di Einstein
che possono essere adagiate su cinque dimensioni sono gli universi di Friedmann. Si
discute la relazione fra le proprield di simmetria e le proprietd di inserzione di una mol-
teplicitd, ponendo in alcuni casi limiti superiori alla classe inserente.

(*) Traduzione a cura della Redazione.



