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Summary. We present a technigue for finding maximal bounds on
strengths of interaction when the general inequality of the type arising
from dispersion relations is given. It is shown that for quite a large class
of functionals involved in such inequalities the solution exists and is
unique.

Introduection.

In the problem of finding bounds on strength of interaction one gets con-
ditions of the type (3)

OLF) [, Pt o e 4 < M
1
g(w, | F(x)|), and F(r)—the latter has physical interpretation., e.g., as form

factor (2) or scattering amplitude for ¢ <0 (3)—satisfy the following conditions
(eomp. ref. (2)):

@) F(x) is an analytic function of r except for a cut from 1 to co. Also
F*(x) = F(a*);
b) PF(x) is bounded at co by some power of ri;
¢) F(x) is nonzero on the cut except at a finite number of discrete points;
d) g(z, | F|) is positive;
e) @[ F] exist.
(*) On leave of absence from Institute for Nuclear Research, Warsaw.
(1) B. V. GesugeNBEIN and B. L. Jorre: Zurn. Eksp. Teor. Fiz., 44, 1211 (1963)
[English translation: Sov. Phys. JETP, 17, 820 (1964)].

(3) S. D. DrELL, A. FixN and A. HearN: Phys. Rev., 136, B 1439 (1964).
(3) A. MarTIN: preprint (Institute of Theoretical Physics, Stanford).



68 L. LUKASZUK

Two types of problem occur:

1) M is given and one wants to get the maximum of |F| at some point
oufside the cut =1 —>x =o00. Here we shall restrict ourselves to the prob-
lem of finding the maximum of |F(z =¢)|, ¢<<1 and real;

2) M is itself a function of F(c) and one wants to find, by self-consistency,
an absolute bound of F(c). Here we shall restrict ourselves to the case M =F(c).
We shall deal with these problems in the first and second Section of the paper
respectively.

The functions g(z, |F|) for which our technique gives the unique solution
have to satisfy the following conditions:

j) when |F| is treated as independent variable, both g(x, |F|) and
og(x, |.F|)/0|F| are continuous and positive functions of » and |F| for
z>1 and |[F|> 0. Moreover, g(x, |F|)/|F| and og(x, |F|)/0|F| are
increasing with |F'| for x> 1;

g) there exist funections F(x) such that

Va—1(x—e)|F|eg(x, | F|)je|F|=B> 0],
and

Va—1(x—c)|F|eg(z, |F|) /| F|=D>0| sa .
We demand that they satisfy

(@ —1)P<|Fx)|< (@ —1)* for x —1
and

¥ < |F(x)|<x™ for x — oo,
where B, D, «, 8, «’, ' are arbitrary constants; ¢<C1.
1. — By the change of variables (comp., e.g., ref. (%)

r2—1
1—e¢

3
Z = —(t—1t)/(t+1%) with t= tgg = [ ] (notice x = ¢, implies z = 0)

one maps the cut g-plane onto the unit disc {2]< 1. Next, denoting F(z=6")
by F(0) one gets a condition

) oLF) - 5 [1(6,170)) a0 = 4 <21,



ON A PROBLEM OF MAXIMUM IN DISPERSION THEORY 69

where f is expressed in a simple way by g(z,|F|) and satisfies condition d).
[7(6, | F|) will be involved now in equalities |F|(c/2F]|)f(0, |F|)s_,=B and
|#|(0/0|F)) {(6, | F|)o., = D in condition g)]. With properties a)-¢) the prob-
lem of minimum for @[F]—which is an essential step in finding bounds—has
been solved for the following ®[F]:

@ oF] — 5 [00)| F) a8,

n being an arbitrary positive constant. The solution for »n=2—found by
8zEGO (*)—was generalized to the case of several functions F; by MEI-
MANN (5). A simpler proof with the additional cut of F(z) from z=p§ (0<
<p<1) to z=1, is given by DRELL et al. (). The last method may be easily
applied to any n. One gets for the minimum of (2)

27 <
B8 -

m—lFol"eXp[—M dlsclnF() ]Mp[ Jlnp(g)dg], Py Fz=0)

However, in the case of the n-n scattering one is forced (°) to put a more com-
plicated form of f(0, |F|) in (1), namely f, ~+/|F]exp[«(6)4/]F|]. Then
Meimann’s technique does not seem to be convenient. This may be already
seen in the comparatively simple case of

®) o7 = - [0 Fl: + p0) P13 a0, P> 0

Using the notation of ref. (3) one could write

I[F) = O,[F] + &,[F].

24

1
o181 =5 [n6)

-7

(1) 7x1)
= > FF”,
n

Fi4

2[1;7] fpz 9) lF l4d9 _ z F(’)Fm

-7

(*) G. SzEGO: Orthogonal Polynomials (New York, 1959).

(5) N. N. MEmMaNN: Zurn. Eksp. Teor. Fiz., 44, 1228 (1963) [English translation:
Sov. Phys. JETP, 17, 830 (1964)].

(%) A. MaARTIN: to be published.
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FP, F are coefficients of expansion F(f) and (F)? in polynomials with weight
pi(0) and p,(0), respectively. {F?®} are now dependent on {F"} and the de-
pendence between them is by no means expressible in a simple way. The
existence of these relations makes the procedure of minimizing {F,} rather
unhandy. It is still possible to treat {F'} and {F’} as if they were mu-
tually independent but we do not use then some important information about
P[F] in our considerations. For the case of the functional (3) it may be for
example explicitly shown that in such an approach there exist no F,, (6) which
minimizes simultaneously both @&, and @, unless p,(f) is proportional to
(p1(6))% (7). It generally means that we get too low a value for @ _,. We
want to propose a technique which was found for the functional (3) by MARr-
TIN (7), and which is efficient for more general forms of f(8, |F}). (To illus-
trate the essential features of our method, we apply it in an Appendix expli-
citly to a simple particular case of the functional @).

Let us consider a functional of the type (1) with conditions a)—g) fulfilled.
We weaken condition a) allowing—as in ref. (2)—for an additional cut from
r=f to z=1 (0<<f<1).

Let us now assume that we are given some arbitrary positive A(6) and
look for F..(f) which minimizes a functional

1 4
(4a) P[F] =§J{f(e. F(6)|) — 46)|F[}d6 .
We get a condition
SY[F], ef (6, | 7))
4b —_— = AT —2=0
) 8| B[ |irj-r, 0 SIF| irper,,,

[There may exist only one F,_, (0) satistying (4b) for given A(f) because of con-
dition f]. Combining (4a, b) with (1) we have

1 ] 1 3
A= O[F]=Y¥[F +§f2 [F |0 > Y[ Fexes] +§J‘Z(6)1F(0) |de,
which gives

(5a) % f MO)|F(6)|d6 <A —¥[Feu] ,

where the equality sign is satisfied for |F(8)|= F,,. (). The minimum of the
left-hand side may be found by applying the theorem of the geometric and

(*) A. MARTIN: unpublished.
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arithmetic means (comp. refs. (>*)). One gets then

1
LR E Aoty B SRR LU L) PO

Jtt z

(5b) 1

l U5 A~ T[Fextr]
[r;<1 are moduli of zeros of F(z= pe®) inside the circle [z[<1]. The equa-
lity sign applies if |F(0)|=F..(0) and F, . (6)  A(0) = const. We still have free-
dom in chooging the function A(8). Let us take that 2, (0) which brings in-

equality (5b) closest to equality. It means that we look for the minimum of
the functional

(A—W[Forie]) 11 1o .
| Fulexp [1/2 [In 2]0] d6] exp [—1/2niﬁfl(disc]nF(z)/z) ]

—7

%] =

This is equivalent to minimizing against ln y[2]. We are led then to

1 _ l [_ SY-’[Fm,]] i _ _1_[_ SZ(Q IFI)
A Al M 34 Ihodyyy, M c IF l iPl=F, ..
* clfexh + 4 CFGX" -+ extr]
cA 21

The first two terms of the r.h.s. cancel in virtue of eq. (4b) and we get

6 —‘—L = 4 extr
( a/) )bextr (0) F * (9)
with

1 - 1 ¢
p= A 100, Fa) 0 + 5 [ )Pt

Because of (6a) we may change the above condition for u to
(69) 1=2 nf(e Foun(0)) d6
<1 — EE ’ extr( )

Making use of (4b) one may rewrite (6a, b) in the following way:

(7“) }:extr extr — L extr w = ‘u« = COIlSt ’

extr

1 ]
(7b) A= 2_7;"}(07 Fextr(e)) ae
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Equation (7a) fixes F,,,, for given u. Equation (7b) fixes y. Our inequality (5b)
becomes, after inserting A from (7a)

)| exp [———flnl"m,(ﬂ)de]exp [———J\M ] <1.

—n

(T¢) ;1

For any g the r.h.s. integral in (7b) exists, because |F!(3f/0|F|)>f (from the
fact that (1/|F|)f is an increasing function of |F|); also the integral
flnFm,(B)dO in (7¢') exists [comp. condition (g)].

Next, it is evident that for |F|=F,, the equality sign in (7¢’) holds. Be-
eause, on the other hand, F (0, A) satisfies eq. (1) [comp. {7b)] and may be
expressed—in virtue of condition g)—as the modulus of an analytic function
satisfying conditions a)—e¢), it is impossible to make the r.h.s. of (7¢') smaller
than unity.

On the other hand (*) one has (1/r, ...7,)>1. Further, if for g<y<1
Im Fz = (y+ig) > 0 we may write instead of (7¢’)

(7e) | F, | exp [— %zfln FolO) dB] <1/8.

-

Now let us come to the problems of uniqueness and existence of 7, (6).
As regards the first, it is easy to prove the following statement:

if for a given A there exist F, () and y, satisfying (7a,b) then they
are unambiguously determined by these equations.

When p is increased, F, () gets larger for any 6 because of eq. (7a) and con-
dition f). It means that F, (0) is uniquely determined by u. Next, increased
F,_ (6) makes the value of A larger [comp. (7b) and f)] which means that there
is only one u, F.,(f) for given A, which proves our statement.

Equation (7a) has always a solution; the danger at points 6 =0, = (=1, c0)
is avoided because of condition g).

Next, we want to point out the following inequality resulting from eq. (1)
and condition f):

T

4 zélj—sz(o, |F) d0>%tff(0, 0)

Tt results from (7¢) that the above condition is equivalent to

1 Ed
szf(eyFextr)d6<A for ‘u:O (Fextr:() for 'u:o).

(8) See, e.g., E. C. TixcuMarsH: The Theory of Functions, 2nd ed. (London, 1939),
p. 125.
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Now

n

I= 71 f 16, Foei) 40
4

P

-7

is an increasing function of y. Making u sufficiently large it is always possible
to reach the value A for I.

We have proved then that there always exists one and only one solution
of our equation for F,  (f). What we do know about A is A<M, M being
@ given constant. However, because F, (6) increase with A [it results from
eqs. (7a, b) and condition f)], the maximal value of F, is obtained when one
puts the maximal value of A in (7¢), i.e., A = M. This means that we have
only to solve (7a, b, ¢) for A = M and the obtained F, will be a maximal one
satisfying eq. (1).

2. — In cases of physical interest one is not given the value of M but usually
an inequality of the type A<M = F,. This leads to the same equations as
(7a, b, ¢) with A replaced by F,:

af(ey Fextr) —

(80/) -Fextr(a) - eFeS" /J(FO) = const ,
1 n

(8b) 5 f (6, Foxii(0)) 0 = F, ,
=TT

-~

= f I B (6) d@] <
4

~3T

1
(8¢) F, exp [ 5 E
The condition for ¥, is contained now implicitly in egs. (84, b, ¢) and it is dif-
ficult to see what values of F, will be forbidden.

We shall prove now that egs. (84, b, ¢) give a maximum for F,. In the first
we want to show that the Lh.s. of inequality (8¢) increases when F,  (6) in-
creases. To this end we have to show that the functional derivative of the
Lh.s. with respect to F_, () is positive:

extr

n

1 3F, 5 1 [ )]
1 _ X (mr_oas)|>o.
o [ 2nf mF""da] [SFm,w) +F SFE,.,(B)( 2nf I P00} | >

This, after usign (8b) and dropping the «exp» term, is equivalent to

af(@, Fextr) . 1
avFextr




74 L. LUKASZUK

With the help of (8a) it gives

F {:u 0)_ 0}>0

extr

Now, u(F,)—F,=—V|F, . ][comp. (4a), (8b)] and is larger than zero because
(1/|F]) ¢f/d| F| increases with |F| [condition f)]. This proves that the Lh.s. of
(8¢) is increasing with F, (6). But F,_ (0) itself increases (for any 6) when 7,
is made larger [as seen from Eqs. (8a, b)]. So we proved that really the Lh.s.
of (8¢) is growing with F,, which simnltaneously gives our statement. We also
want to make this remark that the obtained maximum will be larger than

zero if

In the case of finite limit, unless

(6, | F1) |
fln ¢|F| ‘lr|»od0]<1’

o2

.-./

—T

We obtain F,=0 or no F, satisfying (8a, b, ¢).
In cases of physieal interest, where f(6, | F|) ~|F|* for small |F|, the above-
mentioned condition is of course fulfilled and always F,> 0.

* % %k

I am indebted to Prof. A. MArTIN for stimulating discussions and for read-
ing the manuseript. I would also like to take this opportunity to thank Prof. L.
VAx Hove for the hospitality extended to me at CERN.

APPENDIX

As an illustration let us consider a functional of the form:

1 n
(A1) P = f (0| F| + pal6) | P |6 = 4
Assume that F(z) has no cut apart from the integration region. What we

want to obtain is a maximum for F(z=0)=F,:
The first step is the replacement of @[F] by a linear functional in F by
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means of minimizing the functional

R

(A.2) P[] = ;;;fdﬂ{p,(ﬂ)\ﬁ'{ 4 pu8) | F2— 20| F|} d6 .

-7

The extremum condition

Y[ FY _
S[F] hplrastr

leads to

(A.3) Foulf) = @;_T pa(6)

Now, from ¥[F]>Y[F..] we have

A=D[F]> %fﬁ(())\ﬁ’[de + W[ Feed)

-

which, after using (A.3), leads to

(A—p)?
p,

17 1 f
%J‘A(G)\Fld6<;1 +§5fd6 48 p

Applying to the L.h.s. the theorem of the geometric and arithmetic means we
come to

n

(A.4) F, exp [zlq J- In z<6)d9] <u-

—1

Now we choose a Ae.(0) Which makes the two sides of the inequalit.y'as close
to each other as possible This means, one has to find the minimum of
a functional

23] = £
F,exp[(1 /27:).[ In 2d6]

or, which is equivalent, the minimum of
1 b4
Iny[il=1nu -—lnFo—% In 446

—n

with respect to A(8).
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The condition

3 1n 4[4]

__1_ (A—p1) . 1
3 A(9)

= =0
® 2p, A

(A.5)

A=2

extr 1=1“"

together with the definition of u [comp. (A.4)]:

4 2
(A.6) =4+ %fde (_}1_*".4__&)_ a0

2

give us a transcendental equation for u which, when solved, allows to find
Aext:(0) from (A.5) and maximal F, from (A.4).

In order to obtain our eqs. (7a, b, ¢) for Fu,, it is enough to express A(6)
by F.(0) in egs. (A.4), (A.5), (A.6). One has from (A.53) and (A.3)

(;&-7) Const = Iu = (pl(a) + 2p2(0)Fextr) 'FBXU 9

from (A.6) and (A.7)

4

1

(A'7,) -A- = % (]Flezxtrp2(0) + ]F lextrpl(e)) de

Z

and from (A.4) using (A.3) and (A.7)

Eed

(A7) Fy exp [— %7; f In P, de] <l.

—n

Equarions (A.7), (A.7") and (A.7") are just those which one could obtain directly
from (7a, b, ¢} applied to functional (A.1) (f=1).

RIASSUNTO ()

8i presenta una tecnica per trovare i limiti massimi delle forze di interazione
quando & data una ineguaglianza generale del tipo che deriva dalle relazioni di disper-
sione. 8i dimostra che per una classe abbastanza ampia di funzionali comparenti in
tali ineguaglianze la soluzione esiste ed & unica.

*} Traduzione a cura della Redazione.



