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On a Problem of M a x i m u m  i n  Dispersion Theory. 
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(ricevuto il 21 Luglio 1965) 

Summary. - -  We present a technique for finding maximal bounds on 
strengths of interaction when the general inequality of the type arising 
from dispersion relations is given. I t  is shown that  for quite a large class 
of functionals involved in such inequalities the solution exists and is 
unique. 

Introduction. 

I n  the  p rob lem of f inding bounds  on s t r eng th  of in t e rac t ion  one gets  con- 
di t ions of t he  t y p e  (1-3) 

co 

~[~] = | g ( x ,  I F(~')i) d~ =~- A < ~ ,  
1 

g(x, IF(x)[) ,  and  ~ ( x ) - - t h e  l a t t e r  has  phys ica l  in te rpre ta t ion . ,  e.g., as fo rm 

fac to r  (2) or sca t te r ing  amp l i t ude  for  t < 0  (3)--sa t is fy  the  fol lowing condi t ions  

(comp.  ref. (2)): 

a) /V(x) is an  ana ly t i c  func t ion  of x excep t  for  a cu t  f rom 1 to  cx3. Also 

~'*(x) = ~(x*)  ; 

b) /~(x) is b o u n d e d  a t  o3 b y  some power  of x½; 

c) /~(x) is nonze ro  on the  cu t  excep t  a t  a finite n u m b e r  of discrete  po in t s ;  

d) g(x, I~[) is pos i t ive ;  

e) ~[/~] exist. 

(*) 0n  leave ol absence from Insti tute for Nuclear Research, Warsaw. 
(1) B. V. G~SHKENBV.IN and B. L. JOFFE: 2urn. Eksp. Teor. ~iz., 44, 1211 (1963) 

[English translation: Soy. Phys. JETP, 17, 820 (1964)J. 
(2) S. D. D~ELL, A. FINN and A. H~ARN: Phys. l~ev., 136, B 1439 (1964). 
(a) A. M ~ T I ~ :  preprint (Institute of Theoretical Physics, Stanford). 
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Two types of problem occur: 

1) M is given and one wants to get the maximum of IF[ at  some point  
outside the cut  x----1-+ x----oo. Here  we shall restr ict  ourselves to the prob- 
lena of finding the max imum of 12'(x=c)], c < 1  and real; 

2) M is itself a funct ion of F(c) and one wants to find, b y  self-consistency, 
an absolute bound  of 2'(c). Here  we shall restr ict  ourselves to the case M=.E(c). 
We shall deal with these problems in the first and second Section of the paper  
respectively. 

The functions g(x, IF[) for which our  technique gives the unique soIution 
have to satisfy the following conditions: 

}) when llg] is t rea ted  as independent  variable, bo th  g(x, [/~[) and 
~g(x, [~1)/~ [ F I are continuous and positive functions of x and [_~ [ for  
x > l  and IFI>~0. Moreover, g(x, IF[)/IF] and ~g(x, IF[)/~tigt  are 
increasing with IF [ for x > 1 ; 

g) there exist functions F(x) such tha t  

and 

V x -  l ( x -  e)IFI ¢~(x, IFt )/~ [Fi = B >  o I ~  

Vx-l(x-e)]~l~g(x, I~I)/~IFI = D >  0 l ~ .  

We demand tha t  they  satisfy 

and 

( x - - 1 ) 8 <  IF (x ) ]<  ( x - - l )  ~ 

x~< IF(x) 1< x~ 

for x --~ 1 

f o r  x --~ {x}, 

where B, D, a, fi, a', fl' are a rb i t rary  constants;  c < 1 .  

1. - B y  the change of variables (comp., e.g., ref. (2}) 

Z = -- ( t - - i ) / ( t  ÷ i )  with  t t 0 Ix - -  1]½ = gT) ---- [1 - -  cJ (notice x ---- c, implies z = O) 

one maps the cut  x-plane onto the unit  disc ]zI~< I. Next ,  denoting F(z----e ~°) 
b y  ~(0) one gets a condition 

O) ¢ Fl :  fl/O, iFtOI I)dO = < 
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where I is expressed in a simple way  b y  g(x, IFI) and satisfies condition d). 
[1(0, IF[) will be involved now in equalities I/~](~/~/~])1(0, I~l)0_~o----B and 
[~l (~/~ I~l) / (0,  I~l)0_~. --  D in condition g)]. With  properties a)-e) the prob- 
lem of minimum for ~b [/~]--which is an essential step in finding bounds---has 
been solved for the following ~b[~]: 

(2) • [F] 

n being an arbi trary positive constant.  The solution for n----2--found by  
SzEG5 (4)--was generalized to the case of several functions :F~ b y  .'V[EI- 
MAN~ (5). A simpler proof with the additional cut  of iF(z) from z----fl (0 

fl < 1) to z----1, is given b y  DRELL et al. (-'). The last method  may  be easily 
applied to any n. One gets for the minimum of (2) 

] [1j  ] tp~, = l F o l , , e x p [  n ( d i s c l n F ( z )  d z exp : ~  lnp(O)dO 
L-~'iJ z 

f l  - - . ~  

Fo ~ F(z --- 0) 

However,  in the case of the =-,-: scattering one is forced (~) to pu t  a more com- 
plicated form of ](0, IFI) in (1), namely l ~ _ ~ / l ~ l e x p [ a ( 0 ) ~ v / I F / ] .  Then 
Meimann's technique does not  seem to be convenient. This may  be already 
seen in the comparat ively simple case of 

if (3) ~b[F] = 2-~ {p~(O)IF t S + p~(O)IF i'} dO, Pl, P2 > 0 
- -  y$ 

Using the notat ion of ref. (3) one could write 

1 f )1 I ~ F(1~1~ ~bl[F] ~ p~(O F(0) 240---- 
n 

= _  p~(o) = Z - . - .  , 
n 

- - T g  

(a) G. SzEG6: Orthogonal Polynomials (New York, 1959). 
(5) N. N. M~I~AN~: 2urn. l~ksp. Teor. ~Fiz., 44, 1228 (1963) [Engliah translation: 

Soy. Phys. JETP,  17, 830 (1964)]. 
(e) A. MARTIN: to be published. 
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/~*), 2"~ are coefficients of expansion 2'(0) and (F) 2 in polynomials with weight 
pdO) and p:(O), respectively. {2'~'} are now dependent on {2"(.~)} and the de- 
pendence between them is by  no means expressible in a simple way. The 
existence of these relations makes the procedure of minimizing {/~.} rather  
unhandy.  I t  is still possible to t reat  {2"~*~} and {2"~'} as if they  were mu- 
tual ly  independent but  we do not  use then some important  information ~bout 
• [~'] in our considerations. For  the case of the functional (3) i t  may  be for 
example explicitly shown tha t  in such an approach there exist no F..t~(O ) which 
minimizes simultaneously both ~b~ and ~b2 unless p~(O) is proportional to 
(pdO))2 (7). I t  generally means tha t  we get too low a value for ~b~.. We 
want  to propose a technique which was found for the functional (3) by MAR- 
• IS (7), and which is efficient for more general forms of ](0, 12"t). (To illus- 
t ra te  the essential features of our method, we appIy i t  in an Appendix expli- 
citly to a simple paxticular case of the functional ~b). 

Le t  us consider a functional of the type (1) with conditions a)-g) fulfilled. 
We weaken condition a) allowing--as in ref. (-°)--for an additional cut from 
z = ~  to z : l  ( 0 < f l < l ) .  

Le t  us now assume tha t  we are given some arbi trary positive ~(0) and 
look for 2"~t~(0) which minimizes a functional 

v[2"]:  f{1(0.12"(0)b) - dO. (4a) 

We get a condition 

~T[2"] ~f (0, 12"1) 
I - = o .  (4b) ~ J"~ J ]lF$=.Fextr(O)-- ~]~ l  IFJ=gex.tx 

[There may  exist only one F~¢~(O) satisfying (4b) for given A(0) because of con- 
dition ]]. Combining (4a, b) with (1) we have 

A q~[2"] T [~ ]  + 1 f 2  [2"[d0 > T[2"e,tr] 1 '~ ~- o~ + o~ f )'(O) l-~'(O) [ d O .  

which gives 

(5a) 

R 

where the equali ty sign is satisfied for IF(0)[:- 2".~tr(0). The minimum of the 
left-hand side may  be found by applying the theorem of the geometric and 

(~) A. MARTIN: unpublished. 
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ar i thmetic  means (eomp. refs. (2.~)). One gets then 

1 I disc In _~(z) I~ol e ~  In 2(0)d0 .exp - - ~ j  d z < y ,  
(5b) r l  ... r~ z 

[ r ~ < l  are modttli of zeros of F ( z = ~ e  ~°) inside the circle [ z [ < l  ]. The  equa- 
l i ty sign applies if IF(0)I= ~o,<,(0) and/~¢,t,(0). 4(0) = const. We stiU have free- 
dom in choosing the  funct ion 4(0). L e t  us take  t h a t  4,zt,(0) which brings in- 
equal i ty  (5b) closest to equali ty.  I t  means tha t  we look for the minimum of 

the functional  

)~[;t] = (A - -  ~/'[~extr]) r~. . .  r~ - - .  
1 

IN. l exp [1/2~_t~ 41Ol do] e~p [-- 1 i2,a~" (di~ in F(~)lz) ,~] 

This is equivalent  to minimizing against In Z[4]. ~ ' e  are led then to 

1 1 

~-~ext r . C e x t r  

~ + ~  ~). + F ~ t  
~=~'extr 

The first two terms of the r.h.s, cancel in vir tue of eq. (4b) and we get 

- F . , t , ( 0 )  (6a) ),e.t,(0) 

with 
1 25 25 

- -25  - -25  

Because of (6a) we may  change the above condition for y to 

(6b) 

25 

A - 

Making use of (4b) one m a y  rewrite (6a, b) in the  following way:  

Fe,. al(O, ~.,,) 
(Ta) ~e'tr/~"t" = ~F~,t, -- Y = cons t ,  

25 

- -25 
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Equat ion  (7a) fixes :F~xt, for given/~. Equat ion  (7b) fixes/t .  Our inequali ty (5b) 
becomes, after inserting 2 from (Ta) 

7~ 1 

- -  - -  dO exp - -  1 disc In F(z) 
r l . . . r  [Fo]exp [ lnFe~t,(0) dz < 1 .  

L ~,~ j 2~i z 

For  any # the r.h.s, integral in (7b) exists, because IF I(~//~ [ /~[)> ] (from the 
fact  t ha t  (1/]/~])/ is an increasing function of ]F]);  also the integral 
fln/~xt:(0)d0 in (7c') exists [comp. condition (g)]. 

Next ,  it is evident tha t  for IF[--£~ex~r the equali ty sign in (7c') holds. Be- 
cause, on the other hand, ~xt~(O, A) satisfies eq. (1) [comp. (7b)] and may  be 
expressed---in virtue of condition g)--as  the modnius of an analytic function 
satisfying conditions a)-e), it  is impossible to make the r.h.s, of (7c') smaller 
than unity.  

On the  other hand (8) one has (1/r 1...r.)~>1. Further ,  if for / 3 < y < 1  
Im/~z = (y+ie)> 0 we may  write instead of (7c') 

Now let us come to the problems of uniqueness and existence of F,~t~(0). 
As regards the first, it is easy to prove the following s ta tement :  

if for a given A there exist ~,xt,(0) and ~ satisfying (7a, b) then they 
are unambiguously determined by  these equations. 

When/~ is increased, .F~t~(0) gets larger for any 0 because of eq. (7a) and con- 
dition ]). I t  means tha t  F~tr(0 ) is uniquely determined by  ~. Next ,  increased 
.F~t~(0 ) makes the value of A larger [comp. (7b) and ])] which means tha t  there 
is only one /~, ~ t~(0)  for given A, which proves our statement.  

Equat ion  (7a) has Mways a solution; the danger at  points 0=0~ ~ ( x = l ,  co) 
is avoided because of condition g). 

Next ,  we want  to point out  the following inequali ty resulting from eq. (1) 
and condition ]): 

I t  results from (7a) tha t  the above condition is equivalent  to 

(s) See, e.g., E. C. TITCHMARSH: The Theory o/Functions, 2nd ed. (London, 1939), 
p. 125. 
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:Now 

dO 

is an increasing funct ion of ft. Making ft sufficiently large i t  is always possible 
to reach the  value A for I .  

We have  p roved  then  t ha t  there always exists one and only one solution 
of our equat ion for / ~ ( 0 ) .  W h a t  we do know about  A is A<~M, M being 

a given constant .  However ,  because F~t~(O) increase with A [it  results f rom 
eqs. (7a, b) and  condition ])], the  max ima l  value of £Wo is obta ined when one 
puts  the  max imal  value of A in (7c), i.e., A-- - -M.  This means  t h a t  we have  
only to  solve (Ta, b, c) for A ---- M and the  obta ined ~o will be a max ima l  one 
satisfying eq. (1). 

2 .  - I n  eases of physical  interest  one is not  given the  value of M bu t  usual ly 
an inequal i ty  of the  t ype  A <  M = 2,o. This leads to the  same equat ions as 
(7a, b, c) with A replaced b y  /Po: 

(8a) Fe,:tr(O)" 01(0, 2,¢,:tJ ~Fe.t, - -  ft(Fo) = c o n s t ,  

[ a r ] 1 (8c) 2,0 exp - -  .,_ _In Fe~tr(0) d0 ~< 
"~rd fl" 

The condit ion for 2,0 is contained now implici t ly in eqs. (8a, b, c) and i t  is dif- 

ficult to see wha t  values of 2,0 will be forbidden.  
We shall p rove  now tha t  eqs. (8a, b, c) give a m a x i m u m  ]or 2'0. i n  the  first 

we wan t  to show t h a t  the  1.h.s. of inequal i ty  (8c) increases when 2,~t,(0) in- 
creases. To this end we have  to  show t h a t  the  funct ional  der ivat ive  of the  
1.h.s. with respect  to / t ~ ( 0 )  is posi t ive:  

1 : 1 
- -  I n  ~ / ~ o  • o o[ ( 

[ s F ~ 0 )  ' sFo.tr(0) 
--Tg --~ 

This, af ter  usign (8b) and  dropping the  (~ exp ~ term,  is equivalent  to 

~/(0, Fo~tr) 1 
~2,e~tr iV0" ~ > 0 .  
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With the help of (8a) it  gives 

1 
:F..~r {~,(Fo) - -  F , }  > 0 .  

Now, /~(Fo) - -  Fo = - -  T[/~m~ ] [eomp. (4a), (8b)] and is larger t han  zero because 
(1/IF]) ~[/8 [/~[ increases with [/~I [condit ion/)] .  This proves tha t  the 1.h.s. of 
(8c) is increasing with F¢,t,(O ). But  F~t,(O ) itself increases (for any 0) when/~o 
is made larger [as seen from Eqs. (Sa, b)]. So we proved tha t  really the 1.h.s. 
of (8c) is growing with Fo, which simultaneously gives our s ta tement .  We also 
want  to make this r e m a r k  tha t  the obtained max imum will be larger than  
zero if 

lira P-l(O, [Fi) _ O. 

In  the case of finite limit, unless 

[ 1 f, ~1(o, I.FI) ] 
~-exp [ . ~ j l n  ~ F i  P'I -*odO < 1 ,  

We obtain F o =  0 or no Fo satisfying (8a, b, c). 
In  cases of physical interest,  where / (0 ,  I Fl ) ~ r F I s for small IF [, the  above- 

ment ioned condition is of course fulfilled and always Fo > 0. 

I am indebted to Prof.  A. MARTI.X for st imulating discussions and for read- 
ing the manuscript .  I would also like to take this oppor tuni ty  to t hank  Prof.  L. 
VAN HOVE for the hospi ta l i ty  extended to me at  CEtCN. 

A P P E N D I X  

As an i l lustrat ion let us consider a functional  of the form: 

(A.1) ¢[F] = ~ f{~,(0)!FI + p~(o)LFI ~} dO = A.  

Assume tha t  F(z) has no cut  apar t  f rom the integrat ion region. Wha t  we 
want to  obtain is a maximum for F ( z =  0 ) =  iF o. 

The first step is the  replacement  of ~ [ F ]  by  a linear functional  in F by  
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means of minimizing the functional 

--7$ 

The extremum condition 

~T[F]:  = 0 

leads to 

(A.3) F,,tr(O) : 

~ow, from ~[F]~>T[F~tr]  we have 

2(0) --pdO) 
2p~(0) 

which, af ter  using (A.3), leads to 

2~--l f 2(O) tFldO~A +~-~fdO_ (2--~1)2 dO d i : / / ~ [ P 2  

Applying to the 1.h.s. the theorem of the geometric and ari thmetic means we 
come to 

(A.4) Fo xp[:  2 .  

~ow we choose a 2e~tr(0) which makes the two sides of the inequali ty as close 
to each other as possible This means, one has to find the minimum of 
a functional 

x [ z ] =  

Fo exp [(1/2:~) ~n 2 d0] -. 

or, which is equivalent, the minimum of 

1 f 
In X [ 2 ]  : In tt - -  I n  F o  - -  ~ J l n  2 dO 

wi th  respect to 2~0). 
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The condition 
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( A . 5 )  _ 1 1= = o 

~(0) a=ae~tr # 2p2 2. a~extr 

together  wi th  the definition of # [eomp. (A.4)]: 

give us a t ranscendental  equat ion for ,u which, when solved, allows to find 
;tmr(0) f rom (A.5) and maximal  Fo from (A.4). 

In  order to obtain our eqs. (7a, b, e) for Fe~tr, i t  i.; enough to express  ,~(0) 
by  ~'~td0) in eqs. (A.I), (A.5), (A.6). One has from (A.5) and (A.3) 

(A.7) eonst ~-- # = (px(O) -~- 2p2(0)Fe~tr) "festa , 

from (A.6) and (A.7) 

1 f 2 ~ ]F[m~pa(O))dO (J~.7') A = ~  (]~'~]extrP2 0) ~- 

and from (A.4) using (A.3) and (A.7) 

,A.7") F°exp[--17"(lnFm'dO] 2=j  

Equat ions (A.7), (A.7') and (A.7") are just  those which one could obtain direct ly 
f rom (7a, b, e} applied to  functional  (A.1) (/3 = 1). 

R I A S S U N T O  (') 

Si presenta una tecnica per trovare i limiti massimi delle forze di interazione 
quando ~ data una ineguaglianza generale del tipo ehe deriva dalle relazioni di disper- 
sione. Si dimostra ehe per una classe abbastanza ampia di funzionali comparenti in 
tali ineguaglianze la soluzione esiste ed ~ unica. 

(*) T r a d u z i o n e  a cura  della Redaz ione .  


