LETTERE AL NUOVO CIMENTO VOL. II, N. 9 21 Settembre 1969

On the Building of Dual Diagrams from Unitarity.
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1. — Introduetion.

The successful extension of the Veneziano amplitude (*) to multiparticle processes (2)
gives—to our viewpoint—not only a simple model subject to phenomenological analysis,
but a building stone for the construction of a hadron theory. What seems possible is
to use unitarity—which the multiparticle Veneziano amplitude lacks—in the same
way in which it can be used to construct quantum electrodynamics from the photon
and electron poles (propagators) considered as Born terms.

In this way—and contrarily to more simple ways of unitarizing the Veneziano
model (3)—crossing and duality are exactly preserved at every step keeping therefore
into the theory the accomplishment of the Veneziano model.

We consider, therefore, the real amplitude of the multiparticle Veneziano model (%)
ag the tree diagram of the theory. The one-loop diagram will be built in such a way
that if the loop is cut one finds back the corresponding tree diagram. The further steps
would require to find the (N —1)-loop diagram in cutting one loop of the N-loop diagram.
In this note, we perform only the first step (*) with a simple technigue which we believe
can be easily extended to the other steps.

The meaning of duality for diagrams with loops has been recently discussed by
Kikkawa, Sakira and Virasoro (]). In particular, all Feynman diagrams with one

(*) On leave from CERN, Geneva.

(**) Laboratoire associé au C.N.R.S, Postal address: Laboratoire de Physique Théorique et Hautes
Energies, Batiment 211, Faculté des Sciences, 91, Orsay.
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(*) K., Barpack: and H. RUEGG: Phys. Leit., 28 B, 342 (1968); M, VIRASORO: Phys. Rev. Lell.,
22, 37 (1969); CHAN HoNG Mo: Phys. Leit., 28 B, 425 (1969); CHAN HoNG Mo and Ts8ouU 8. TSUN: Phys.
Lett., 28 B, 485 (1969); C. GOEBEL and B, SARITA: Phys. Rev. Lell., 22, 257 (1969).
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loop and a fixed number of external lines are expressed (¥) by a single integral sym-
metrized for all nonevelic permutations of external momenta. That is the structure
which will be obtained in the unitarity building we are attempting since duality is
preserved at every step.

Before integrating over the loop variable, the unitarity requirement with which
we will build the loop of Fig. 1 is that it has a pole if the square momentum k2 of one
vector of the loop is such that «(k?)=n (n=0.1....). The residue R, of that pole
must be given by

D

(1) Ro=7> o

TGP G Q)

where D, is the residue of the double pole fo the tree diagram of Fig. 2 corresponding
to the i and j degenerate states for w(k?)=n and G(nJ{P}>. G{n){Q}> are the
corresponding coupling to the external momenta P and @ respectively. The definition
of the tree diagram spectrum and its degeneracy have been investigated by FUBINI

Fig. 1. Fig. 2.

and VENEz1axo (7) so that it is possible to use their results (}) to compute R, from
eq. (1) and, therefore, the expression for the loop dual diagram. We prefer, however,
to use a different basis to sum over intermediate states which simplifies considerably
the computation. Indeed, as noted recently by FUBINI. GORDON and VENEZIANO (%)
one can reformulate the multiparticle Veneziano amplitude by using creation and
annihilation operators. The method described before, amounts to use the occupation
number basis as the complete set of states; we will see that a coherent-state basis appears
much more convenient.

2. — The tree diagram in operator formalism.

Freixi, GorpoN and VENEzIANO have shown (%) that factorization properties of
the dual tree diagram of Fig. 3 can be conveniently discussed if one introduces an infinite

(*) We discuss here the case of scalar neutral particles lying on trajectories with negative intercept.

(?) S. FuBIN1 and (G. VENEZIANO: Nwovo Cimento (in press).

(*) We note that the use of the tree diagram speetrum (and not the physical one which will be
given by the loop caleulations themselves) is inherent of the usualfield-theoretic perturbation approach
and of the perturbative unitarity we are using, A modification of this approach could perhaps help in
removing the divergence we will find in the loop diagram.

(*) 8. FuBiNI, D. GorpoN and G, VENEzZIANO: to be published.
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set of harmonic oscillators characterized by two integers u and n, where px runs from 1

to 4 and » from 1 to infinity. The*corresponding
(n)

creation and annihilation operators ai;’’ and aj;’ obey
the following commutation relations: PP P2
(2) [a:;m: a:n')'l'] = 6];,1 O«
: . 4 P
The amplitude corresponding to the dual diagram :
of Fig. 1 can be written in this formalism as Fig. 3.
3) Fo(Pos D1 -+ Pr1) = <OV (D) P(oy—3) V(Py-1) Plety—s) ... Play) V(p1)|0>
with
4) a1 = %y} (Pr—y + Pr—gt+ -+ Do)’

and where [0) is the vacuum state, i.e.
a0y =0.

Our metric implies p?= p?— p2 and the energy unit is the inverse of twice the tra-
jectory’s slope. The operators P (x) and V(p) are given by

1

(5) P (o) = f doz—a+a-1(1 — g)=°
Q
with
(6) H=3Y na;(”’a;,"’ and e=1—o,
n.H

1 1
M V(p) = exp [E %p,.-al‘"’] exp [—Z AL -aﬁ,"’] .

where p, = (p, ip,)- -

The explicit appearance of i=4/—1 in the coupling of o™ reflects the presence
of ghost states in the theory.

In this paper we shall make constant use of the coherent states. These are defined
a8 direct products of coherent states for each mode which, at its turn, is defined by

(8) [¢> = exp [2a1]|0) ,

where a' is the creation operator for the mode in question. We list some useful properties
of the coherent states defined by (8):

ey = exple'*-2],
ald = zla) ,

exp [¢'at)|s) = le+2>,
:c“*“[z) = |we) .

9
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As a simple illustration, we sketch how we can see that the expression (3) is indeed
identical with that of RUrce and Barpaxcr in the particular case »= 3.
The five-point amplitude, using (3), can he written as

~

(10)  F(Pys Prs s Pg) :J Arydory 2T O — ) (1~ a) T T Molpys Par D3)

. n

where the amplitude for the mode n is given by

(n) B gt B atm AL
]3“;; () P2y, Paly” ) | Piay
(1) M, = /0|exp [ - ah ] exp [ ] exp [ Lo exp T =2 | |0)
Vi F v Vi Vi

with

(n) mt )
(12) Y= na," a,” .

Tsing the relations (9) one gets immediately
l n n n n
M, = exp B~ (Z1Py Pyt e Py Pot T Pa PI)| -

Performing the product over m one rccovers the expression given by BarDaKCI and
RrEeaa (3).

To exhibit the factorization properties of the dual tree diagrams it is convenient
to rewrite formnla (3) in a slightly different manner. We introduce a new oscillator
mode a®, a®' in order to transform the product [(1—u,)(1 —®} (1 —x,—)]™° into a
vacuum expectation value. Let us define a vertex operator V® as

(13) T — fc(amﬁ)Q(mfc(a oy,

where Q@ is the projection operator onto the vacuum state and f(u) is given by the
geries expansion

V(e + 1)(c+ 1—1)

(14) folwy =1+ v,

>0 I

It is then a trivial matter to verify the identity

(15) (L= ) eor (1 — 2,)] 0 = (O] VO TO A b FO0y

where h® = o0,
Introducing the total vertex operator T'(p)= V{(p)T'® and the total Hamiltonian

H'— g@* “”4—2 na?*al in eq. (3) and perfonnmg the integration over #; one obtains
np
a new expression for the tree diagram amplitude:

1 1
(16) F(pg, - »pr) = <0|V'(p,) T Pra) o Vi(py) T—m V'(p)|0) .
-1
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The factorization properties of F can be read out from this formula. The (mass)? spectrum
and degeneracies of the intermediate states correspond to the level structure of the total
operator H' in agreement with the findings of FuBiNt and VENEZIANO.

3. — One-loop dual diagram.

We shall use the results of the previous Sections to compute the one-loop dual
diagram of Fig. 1. We denote internal momenta by &, ky, ..., kx—,. The energy-
momentum conservation at each vertex gives

(17) k0==k, k1=k+]’19 k2=k+P1+p29 ’k1=k+1’1++?w

Let us first express the dual amplitude as an integral over the internal momenta k:

(18) Fy(p1s Pay -vvs D) =fd4kM(k, kyy ooy Byoy) -

We require that M should have a pole each for a(k?)=j (=0, 1,...). Following the
presecription of Sect. 1 we write down M in the following way:

1
(19) M=§u—(];2—)—_—jRi(k,P1---Px),

where R;(k, p; ...py) is obtained from the residue of the double pole at a(k?) = j of the
tree diagram of Fig. 2. A compact form is readily obtained in the operator formalism
of Sect. 2:

s V'(p1) V'(px-)

(20) M="Tr [——l_—
a(k?) — H

T V’(py)] .

1
alky) —H' oa(ky—y) —
The trace has to be performed over a complete set of states of the Hilbert space obtained
by taking the direct product of the energy eigenstates of the oscillators a‘®, aif”.
To compute this trace, it is more convenient to use an expression where the integration
over the variables z, has not been performed explicitly. M can then be written as an
integral over a product of traces of operators acting on only one oscillator mode states:

(21) M= f dw, ... dag {Tr @ VO Y po).
f=¥

T Tr (2 Vo (py) ... ™ V(”"(p,,))} RS
n

i=l
where

1 1
V®(p) = exp [7"_" Pa a;‘n)f] exp [_ % Pu a;‘n)] .

The trace over the model (0) is readily performed using the oceupation number basis [I)
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by noting that

e(e + 1)(c+ =1
o

(22) 1"(0)][> —_ j a(0)+ [0> (OV (0) I’(O)‘0>

and obviously gives

(23) [(1—x,) .. (1 — 2y .

As far as the trace over the modes (n) is concerned the coherent-states basis |2
appears to be more convenient. They form a corplete basis (in fact an over-complete
one). The decomposition of the unit operator for one mode reads

1
(24) 1=- J.d(Re 2)d(Im 2) exp [—— ]:}’Z] [e> <2] .
= A
The trace to be performed over each mode (n) is of the form
{(25) T:—fetp [—[=[?] |0x Oy ... 012> A(Re zy d(Tm 2}

The operators O, are defined as

(26) 0, = (exp [gyat] exp [— g.al)ul ata
where
(27) Gx = P w=2a% and a=a}.

V'

From eq. (9) it follows that

(28) Okly> = exp [— qeywdiuny + ¢ -
This leads to
(29) 0,0, ... 01’3> = exp[— ﬂl”zt> s

where g, and z, are determined by

g =+ q with 2, = 2,
(30)

Br=qu s+ B with g,= 0.

Those recurrence equations are easily solved and give

1 -1
l = (H u1) + z%‘(“iﬂ ) G

il =1

1
] Bi==z z ' (H") + > 4 iUy Uperg oo ) -
>k

i=l

31
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Using (29) and (25) we obtain the following expression for T':
1
T=- fd(Re 2)d(Im 2) exp [— [¢|*] <z|ex> exp [— By2]-
.

The scalar product {(z|ey> = exp[2*2y] is easily computed with the help of (31)
leading to

(32) T= ! J'd(Re ¢)d(Im 2) exp [— (1 —w)[¢|*+ Bz + Oz* + D],
7T
where
N i
B=_2!lz (H“t) s
i1\l
N—-1 N
(53) 0=3 0 (1T u)+ .
=1 \i=TH1
N -1
D= —z 29:‘91(“&1 “e W)
1=l i=1
i=N
and w= ] u,.

im1
The Gaussian integral appearing in (32) is easily performed, leading to the final

result for T':

1
(34) T=——e [— D 4:4; u] ,

1l—w ig=1
where
Uy oon Uy it j=~N,
\35) Cy= 1 (g w)(Uspy ... ) if ijg<N—1,
(Uipy ooe ;) if i>4.

Let us now perform the product 7 of the traces of type T relative to all modes
(n# 0; u). We obtain

N
. [ 2 P plOy)r o 4w"~,21(0.,) D Py

ig=1 — - .
= xp[ (L —w) ]} H”{ ]

n=l (1l —w")
In eq. (36) p;- p; is now the usual scalar product of Lorentz vectors and O, is obtained

(36) T = ﬁ{[

New]

»
from formula (35) by replacing w; by «; and, again, w= ][ =.
t=1
Collecting the results we arrive to the following expression for the one-loop dual
amplitude:

(37  F®(p,, ..., py) = j A% d, ... daywye®D—1gzati-o-1.

N
P ”EIG?,P:"P:'
JI—=) H{ i ® p[————n(l_wﬂ) ]}

=1 n=1
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As in ref. () the integration over the loop variable k presents no difficulty if it is defined
with the Euclidean metric (i.e. after Wick rotation). The w; infegrations present
however an end-point divergence for all x; equal to one (i.e. w=1). Indeed, in the
vieinity of such a point C;;— 1 and therefore

f Coypi pi~> (Zzn) =0

4, f=1
due to momentum conservation. Therefore, from eq. (36) we sec that for w=1—¢

4 2
.7~oce\rp—-1

which implies an exponential divergence for £— 0.

Equation (34) shows that every mode » contributes to this exponential divergence
with a power divergence of order 4 (or order 4 + ¢ if we do not quantize the scalar
mode), the 4 representing the dimensions of space-time (possible values of x). The
origin of such a divergence can be traced back to the fact that the trace of the identity
operator is undefined even for the one-mode case. This reflects the fact that even
with one mode the density of states remains constant with the squared mass.

The vacuum fluctuations present already such a divergence. Indeed, the one-loop
contribution to it—given by a closed loop without external lines—is given by

o 4
— 2 -
(38) fd*‘kfdarm 11—y TTTT T
n=1 p=1
where (there is no summation over p)

(myt (n),

(39) T fd Rezd Im 2z exp [~ [si2] Celamen” o2y =

1 1
= fd Rezd Tmrexp[|— |p(1 —a")] = -

fo 4 1—an

Unfortunately the divergence of eq. (36) is not factorizable so that a naive renormaliza-
tion of the vacuum does not remove the infinity.

This divergence represents a substantial difficulty that must be somehow circum-
vented. A usual renormalization program seems rather unapplicable due to the nondual
structure of the contribution to be lumped into renormalization counter terms. Ad hoc
modification to the loop rules are indeed possible (1) but they break the nice Feynman-
like structure of closed-loop computation and some asymptotic properties of amplitudes.
To change the spectrumn of intermediate states (whose abundance gives the divergence)
it is possible to modify the tree diagram input (8). These modifications (') scem however
to increase the divergency iustead of reducing it.

* H K

We have derived much benefit from discussions of one of us (D.A.) with 8. FusinNt
and G. VENEZ1AXO,

(*") Ree the second ref. of (%),
(**) CraN HoNg Mo: private communication to the first anthor named (D.A.).



