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1 .  - l n t r o d u e t l o n .  

The successful extension of the Veneziano ampli tude (1) to mult ipart icle  processes (~) 
g ives - - to  our v iewpoin t - -no t  only a simple model subject to phenomenologieal analysis, 
bu t  a building stone for the  construction of a hadron theory.  W h a t  seems possible is 
to use un i t a r i t y - -wh ieh  the mult ipart icle Veneziano ampli tude l acks - - in  the same 
way in which i t  can be used to construct quantum eleetrodynamics from the photon 
and electron poles (propagators) considered as Born terms. 

In  this  w a y - - a n d  contrar i ly  to more simple ways of unitarizing the Veneziano 
model (a)--crossing and dual i ty  are exact ly preserved at  every step keeping therefore 
into the theory the accomplishment of the Veneziano model. 

We consider, therefore, the  real ampli tude of the  mult ipart icle  Vencziano model  (2) 
as the tree diagram of the theory.  The one-loop diagram will be buil t  in such a way 
tha t  if the loop is cut one finds back the corresponding tree diagram. The further steps 
would require to find the (N--1)-loop diagram in cut t ing one loop of the N-loop diagram. 
In  this note, we perform only the first step (4) with a simple technique which we believe 
can be easily extended to the other steps. 

The meaning of dual i ty  for diagrams with loops has been recently discussed by  
KIKKAWA, SAKITA and VIRASORO (6). In part icular ,  all Feynman diagrams with one 
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loop and a fixed number  of ex terna l  lines are expressed (*) by a single in tegra l  sym- 
Inetr ized for all noncyelie pe rmuta t ions  of ex te rna l  momenta .  Tha t  is the  s t ruc ture  
which will be obta ined in the un i t a r i ty  bui lding we are a t t emp t ing  since dual i ty  is 
preserved  at every  step. 

Before in tegra t ing  over  the loop variable,  the  un i t a r i ty  requ i rement  wi th  which 
we will build the loop of Fig. 1 is t h a t  i t  h~s a pole if the square m o m e n t u m  ~:~ of one 
vector  of the loop is such tha t  ~(k 2) = n (n = 0. 1 . . . .  ). The residue / ~  of t ha t  pole 
must  be given by 

Dnl.~ l 
(~) R. = N • G<n,]{P}) G/d~[{Q}) "7 

where Dn.,~j is the  residue of the  double pole fo the tree d iagram of Fig. 2 corresponding 
to the i and j degenerate  states for e(k"-)--n and G(nd{P}}, (;(~i]{Q}) are the  
corresponding coupling to the ex te rna l  m o m e n t a  P and (~ respect ively.  The definition 
of the  tree d iagram spect rum and its degeneracy have  been inves t iga ted  by F~:m~I 

I 

,m+, a+,\ 
Fig. I. F ig .  2. 

and VENEZIANO (7) SO that  i t  is possible to use their  results (s) to compute  R~ from 
eq. (1) and, therefore,  the expression for the loop dual diagram. We prefer,  however ,  
to use ,~ different basis to sum over  in te rmedia te  states which simplifies considerably 
the  computa t ion .  Indeed,  as noted recent ly  by FC'BIXL GORDOX and VENJ~zlxxO (9) 
one can reformulate  the multiparticle Veneziano ampl i tude  by using creat ion and 
annihi la t ion operators.  The method  described before, amounts  to use the occupat ion 
number  basis as the complete  set of s ta tes ;  we will see tha t  a coherent-s ta te  basis appears  
much more convenient .  

2. - The tree diagram in operator IormaUsm. 

FUBINI, GORDON and \ '~.:xzzk~xo have  ,~hown (9) t ha t  factor izat ion propert ies  of 
the dual tree d iagram of Fig. 3 can be convenient ly  discussed if one introduces an infinite 

(~) We discuss here  the  ease of scalar  neu t r a l  par t ic les  lying on t ra jec tor ies  wi th  nega t i ve  in te rcep t .  
(7) S. FUBIN1 a nd  G. VENEZIANO: NItOVO Cimento (in press).  
(~) We note  theft t.he use of t he  t r ee  d i a g r a m  s p e c t r u m  (and not  the  phys ica l  one which  will  be 

g iven  by the  loop calculat ions  themselves)  is inheren t  of the  usual  f ield-theoretic pe r tu rba t i on  approach  
arid of the  po r tu rba t i ve  u u i t a r i t y  we are  using.  A modif icat ion of tllis approach could pe rhaps  help in 
r e m o v i n g  the  d ivergence  we will  find in the  loop d i a g r a m .  

(*) S. FUBINI, I). GORDON a nd  G. VENEZIANO: to be publ ished.  
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set of harmonic oscillators characterized by  two integers p and n, where # runs from 1 
to 4 and n from 1 to infinity. The corresponding 
creation and annihilation operators a~ mt and (") ^bey a t u 
the following commutat ion relations:  

(2) _(n) (n')']" 
~/~ , a ,  ] = ~/J., ($n.n' • 

The ampli tude corresponding to the  dual  diagram 
of Fig. 1 can be wri t ten in this formalism as Fig. 3. 

(3) ~ 0 ( P 0 ,  P l " ' "  ~9r+1) = <0[V(J0 r )  P ( ~ r - 1 )  V(pr-1) P ( ~ , - 2 )  . . .  P ( ~ x )  V ( P x ) 1 0 >  

with 

(4) Ogr-1 : ~0 - -  ~ (Pr--1-1- .Pr-2 - I -  " ' "  PO) 2 

and where 10> is the vacuum state,  i.e. 

@ ' 1 o >  = o .  

Our metric implies p2~_p2_p~ and the energy unit  is the inverse of twice the t ra-  
jectory 's  slope. The operators P (a) and Y(p) are given by  

(5) 

1 

P (~) =fdxx-a+l-z(1 -- x)-O 
0 

with 

- -  ~ ~(n) _(n) (6)  / t  = 2., n% ~ and 

[.,-. 1 . *~.,1 
(7) V(10)---- exp [n2. ~ ~-~ P ,  "/~ ] exp 

where p~ = (p, ipo). 

c =  1 - - ~ o ,  

,.,1 ] ,  

~n) reflects the presence The explicit  appearance of i = %/--1 in the coupling of a o 
of ghost states in the theory.  

In  this paper  we shall make constant  use of the coherent states. These are defined 
as direct products  of coherent states for each mode which, a t  i ts  turn,  is defined by  

(8) Iz> = exp [za~]]o>, 

where a ~ is the creation operator  for the mode in question. We list some useful propert ies 
of the coherent states defined by  (8): 

(9)  

<z'fz> = e x p  [z'* . z ] ,  

e x p  [z'atJlz> = [z + z ' > ,  
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As a s imple  i l lus t ra t ion ,  we ske tch  how we can see t h a t  t he  express ion  (3) is i ndeed  
iden t i ca l  w i t h  t h a t  of RI:EGG and  BAI~DAKCI in the  p a r t i c u l a r  case r =  3. 

The  f ive-po in t  amp l i t ude ,  us ing  (3), can be w r i t t e n  as 

j -~'-~ -~ ' -~[ ( t  - -xO(1 - xD1 -~ I I  :ll.(p~, p~. PD (10) -F(Po, Pl . . . . .  P4) = d ' r l d ' r a x a  xa" 
• n 

where  the  a m p l i t u d e  for  the  mode  ~ is g iven  b y  

(11) / ~ , a.("' exp  - x~ (', JP*~e / [o> ~1[.. = <o[ exp [ C ~  "~P l V~  J ;d~ exp 
- L ~ / g J  

w i t h  

(12) h'"' = ,.,~:'~+o (. '' . 

Using  tile re la t ions  (9) one gets  i m m e d i a t e l y  

M , , =  e x p  - -  ( x ~ p ~ ' p ,  ÷ x~pa 'p . ,  + x l x 2 p a ' p l )  • 

P e r f o r m i n g  the  p r o d u c t  ove r  n one recovers  the  express ion  g iven  b y  BARDAKCI and  
]~UEGG (2). 

To exh ib i t  t he  f ae to r i za t ion  p rope r t i e s  of the  dua l  t ree  d i ag rams  i t  is c o n v e n i e n t  
to r ewr i t e  f o rmu la  (3) in a s l ight ly  d i f fe rent  m a n n e r .  W e  in t roduce  g new osci l la tor  
mode  a(°),a (°)+ in  o rder  to t r ans fo r ln  the  p r o d u c t  [ ( 1 - - x , ) ( 1 - - x 2 ) ( 1 - - x , - , ) ]  -¢ in to  g 
v a c u u m  e x p e c t a t i o n  value.  Le t  us define a v e r t e x  ope ra to r  V (°) as 

(13) l'(O) =/c(a(O)+)(~)(o)/c(a o)), 

where  Q(O) is the  p ro jec t ion  o p e r a t o r  on to  t he  v a c u u m  s t a t e  a n d  /¢(u) is g iven  by  t h e  
series expans ion  

(14) 10(,,) = 1 + ~ & ( ~  + 1)(~ + ~ -  1) ~ .  
~>o 1! 

I t  is t h e n  a t r i v i a l  m a t t e r  to ve r i fy  the  i d e n t i t y  

(15) <0 V(°)~ a(') V(°)x~ (°) [(1-~1)...(l-x~_~)j-~= 1 --~ . . . .  *~'-'~v(°'I°>, 

W ] l e r e  h ¢°) ~ a~° )~a  (°). 

h l t r o d u e i n g  t he  t o t a l  v e r t e x  ope ra to r  V ' ( p ) =  V ( p ) V  (°) and  the  t o t a l  H a m i l t o n i a n  
I t '  a<°)~a~°) + 2 - ~o¢ oo ,a t ,  at, ill eq. (3) and  pe r fo rn l ing  tile i n t e g r a t i o n  over  xl  one  ob t a in s  

a new express ion  for  the  t ree  d i a g r a m  a m p l i t u d e :  

1 1 
(1~) F(po . . . . .  P') = (° lV'(Pr)  n ' - ~ r _ ~ l  r ' (p , -1 )  ... V'(p2) H'--~-------~ V'(Pl)I°> " 
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The factorization properties of/~ can be read out from this formula. The (mass) ~ spectrum 
and degeneracies of the intermediate states correspond to the level structure of the total 
operator H '  in agreement with the findings of FUBINI and V]~NEZIA~O. 

8. - One-loop dual diagram. 

We shall use the results of the previous Sections to compute the one-loop dual 
diagram of Fig. 1. We denote internal  momenta by k 0, k 1 . . . . .  k~_ 1. The energy- 
momentum conservation at each vertex gives 

(17) ko= k , k l =  k + p,  , k2= k + pi + p2 . . . .  , k i=  k + p,  + ... + pi . 

Let us first express the dual amplitude as an integral over the internal  momenta k: 

(18) Fi (p .  p,  . . . . .  p~) = f d.k ink ,  k~ . . . . .  k~_~) . 

We require tha t  M should have a pole each for ~(k ~) = j (j = 0, 1 . . . .  ). Following the 
prescription of Sect. I we write down M in the following way: 

1 
(19) M = -~ ~( k~ ) - ~ "  R,(k, Ps ... P l ) ,  

where R~(k, Pz ...P~) is obtained from the residue of the double pole at a(k ~) = j of the 
tree diagram of Fig. 2. A compact form is readily obtained in the operator formalism 
of Sect. 2: 

(20) 1 
M = T r  a(k2) - H '  V'(p,) , 1 V'(p~)] ... v (p~-l) ~ ( ~ k ~ - m  

The trace has to be performed over a complete set of states of the Hilbert space obtained 
by taking the direct product of the energy eigenstates of the oscillators a (°~, a~ n~. 
To compute this trace, i t  is more convenient to use an expression where the integration 
over the variables x~ has not been performed explicitly, M can then be written as an 
integral over a product of traces of operators acting on only one oscillator mode states: 

(21) 

where 

M = f d x z . . .  dxM{Tr(x~'"V¢O'...x~(')V{O)). 

)} "1' 
• I I  Tr (~'" '  V'~'(V,) ... ~ " '  V'~'(p~) I I  ~,'~:-", 

v'.'(p) = exp [ ~  p a'""] [ I _ a,., 1 
LV~ ~ " J exp t - - ~ p , ,  . ] .  

The trace over the model C0) is readily performed using the occupation number  basis ll> 
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b y  n o t i n g  t h a t  

(22) V(O)]l> ---- /~(a(O)¢)[O> (O]/¢(a(O))tLl~ = V(o)]o> VC(C + 
1 ) ( c +  I I) 

and  obv ious ly  gives  

( 2 3 )  [(1 - -  x~) . . .  (1 - -  x ~ ) ]  - *  . 

As far  as t he  t r ace  over  t he  modes  (n) is conce rned  the  cohe ren t - s t a t e s  bas is  lz> 
appear s  to be more  conven ien t .  T h e y  form a comple te  basis  (in fac t  an  ove r - comple t e  
one). The  decompos i t ion  of the  un i t  ope ra to r  for one mode  reads  

(24) 1 = - d (Re  z ) d ( I m  z) exp  [ - -  !z~,'~]lz> <z I . 

The  t race  to be p e r f o r m e d  over  each mode  (n) is of the  form 

(25) T = - e x p  [ - -  [z[ 2] < 2 1 0 N O k . . .  O1!: } d ( l ~ e  z) d ( [ [ n  z ) ,  

The  opera to r s  Ok are  defined as 

Ok = (exp [qka ~] exp [ - -qka ] )u~  ~" , (26) 

where  

( 2 7 )  qk = P ~ - ,  

F r o m  eq. (9) i t  follows t h a t  

(2s) 

This  leads to 

(29) 

n (n) 
~l k ~ X k a n d  a ------- at, . 

Ok!y> = exp  [ - -  qkyuk]luky + q~> . 

O, 0~-1 ... 011z> = exp  [--fl ,Jlzt> , 

where  fib and  zl are d e t e r m i n e d  by  

(30) 
zz = u z z t - l +  qz 

Those  recur rence  equa t ions  are easi ly solved and  give 

(al) 
z~ = z u2 + q,(ui~l . . ,  uO + q~ , 

\ i - 1  / ~=1 

/ fll = z qk u i + ~ qkqj(uk+lUk+~ ... Uj) . 
k--I i ~ l  j>k  

w i t h  z o = z , 

w i th  flo = O. 
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Using (29) and (25) we obtain the following expression for T: 

T = - d(Rc z) d(Im z) exp [--  [z[ 2] (z]z~) exp [-- fl.vz]. 

The scalar product (z]zH)=exp[z*zz~ ] is easily computed with the help of (31) 
leading to 

(32) T = 1, f d ( R e  z)d(Im z) exp [--  (1 - -  w)Iz] ~ + Bz + Cz* + D], 

where 

(33)  

i.£V 

a n d  w = 1 - I  u i"  

B = --__ q~ ut , 
l -1  

C = ~ q ~  u~ + q ~ ,  
Z-1 \ t - l + 1  / 

.~ I--1 

D = - - ~  Z q,q~(u,+l ... ul) 
)ml Iml 

(34)  

where 

The Gauss,an integral appearing in (32) is easily performed, leading to the final 
result for T: 

1 [ - - 1  2; ] 
cxp / ~  ~ q,q~C~j , 

T - -  1 - - w  L -- ~.~-t j 

~35) C~j : 

u x . . .u  i if ~ = N ,  

(u 1 ... ~bi)(~bj,rl ... U1¢ ) if i ~ < ~ N - -  1 , 

(U~+ 1 ... Ui) if i >  j .  

Let us now perform the product ~ of the traces of type T relative to all modes 
( n ¢  0; p). We obtain 

M 

(36) J - = H  ~ exp = H e x p [  ~ - ~  J 
L ~(1-~- )  J,I 

In eq. (36) p,- p~ is now the usual scalar product of Lorentz vectors and C~ is obtained 

from formula (35) by replacing u~ by xi and, again, w = lZIxi. 

Collecting the results we arrive to the following expression for the one-loop dual 
amplitude: 

F(1H)(pl . . . . .  p~) = Id4kdxl ... (37) 
J 

2¢ 

II/ [ Z o,",p,'p,ll ' - ~  ~ 1 , . j - 1  | ~  
• 1 - [  (1 - -  xi)-~ __ w . ) ~  c x p  
,-1 --11( 1 n(1 - -  w") J /  
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As in ref. (5) t he  i n t e g r a t i o n  over  t he  loop va r i ab l e  k p re sen t s  no  diff iculty if i t  is def ined 
w i t h  t he  Euc l i dean  met r ic  (i.e. af te r  W i c k  ro ta t ion) .  The  x~ i n t e g r a t i o n s  p r e s e n t  
howeve r  an  end -po in t  d ive rgence  for all x, equa l  to one (i.e. w = 1). Indeed ,  in  t he  
v ic in i ty  of such a po in t  C,~-~ 1 and  the re fo re  

C~"Hh" l)J ~ P~ 0 
i , J -1  

due  to m o m e n t u m  conse rva t ion .  Therefore ,  f rom eq. (36) we see t h a t  for  w = 1 -  e 

4 .q2 
:~'oc exp , .  ~- , 

which  implies  an  exponen t i a l  d ive rgence  for e -~0 .  
E q u a t i o n  (34) shows t h a t  eve ry  mode  ~. c o n t r i b u t e s  to th i s  e x p o n e n t i M  d ive rgence  

w i t h  a power  d ive rgence  of o rder  4 (or o rder  4 +  e if we do no t  quan t i ze  the  sca lar  
mode),  t he  4 r ep r e s en t i ng  the  d imens ions  of space- t ime  (possible va lues  of td. The  
or ig in  of such a d ivergence  can  be t r aced  back  to the  fac t  t h a t  the  t r ace  of t he  i d e n t i t y  
ope ra to r  is unde f ined  even  for the  one-mode  ease. Th i s  reflects t i le fac t  t h a t  even  
w i t h  one mode  t he  dens i ty  of s t a t e s  r e m a i n s  c o n s t a n t  w i t h  the  s q u a r e d  mass.  

The  v a c u u m  f luc tua t ions  p re sen t  a l ready  such a d ivergence .  Indeed ,  t he  one- loop 
c o n t r i b u t i o n  to i t - - g i v e n  by  a closed loop w i t h o u t  ex t e rna l  l i n e s - - i s  g iven  by  

° '  

(38) d~ d x x  -~(~ )-~(1 - -  x) -° 1-[ H T(-) --(,u) ' 

where  ( there  is no s u m m a t i o n  over  p) 

(39) ~('~) f d  ' (")~ ('~)' 

.~ 1 - -  x n 

U n f o r t u n a t e l y  t he  d ivergence  of eq. (36) is no t  fac tor izab le  so t h a t  a na ive  r cnorma l i za -  
t ion  of the  v a c u u m  does no t  r e m o v e  the  inf in i ty .  

This  d ivergence  rep resen t s  a s u b s t a n t i a l  difficulty t h a t  mus t  be somehow c i rcum-  
ven ted .  A usual  r enor lna l i za t ion  p r o g r a m  seems r a t h e r  unapp l i eab le  due to t he  n o n d u a l  
s t r u c t u r e  of the  c o n t r i b u t i o n  to be l u m p e d  in to  r eno rma l i za t i on  coun t e r  t e rms .  A d  hoc 
modif ica t ion  to t he  loop ruIes are indeed  possible (~) b u t  t h e y  b reak  t he  nice F e y n m a n -  
l ike s t ruc tu r e  of closed-loop c o m p u t a t i o n  and  some a s y m p t o t i c  p rope r t i e s  of ampl i tudes .  
To change  the  s p e c t r u m  of i n t e r m e d i a t e  s ta tes  (whose a b u n d a n c e  gives t h e  d ivergence)  
i t  is possible  to modi fy  the  t ree  d ido ram i n p u t  (s). These  modif ica t ions  (11) seem h o w e v e r  
to increase  the  d iwwgency ins t ead  of r educ ing  it.  

W e  h a v e  der ived  m u c h  benef i t  f rom discussions of one of us (D.A.) w i th  S. ~UBINI 
a n d  G .  VENEZIANO, 

(lo) See the second ref. of (~). 
(n) CgAsr t[ON(~ 5Io: private communication to the first author named (D.A.). 


