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Dual Self-Energy Diagram in the Operatorial Formalism.

F. GURRIN

Physique Théorique - Nice (*)

(ricevuto I'8 Novembre 1969)

An operatorial formalism has been obtained which allows simple dual diagrams (1)
to be written as a factorized product of propagators and vertex functions (2). A three-
resonance vertex V has been written down by Scruro (3); this should permit the cal-
culation of general planar Feynman-like diagrams.

We want to show that one cannot forget about the origin of the vertex and that it
is not clear whether in this operatorial formalism, the knowledge of the vertex and of
the propagator is enough to calculate general planar diagrams.

Fig. 1.

We shall illustrate it with the following example: the diagram la) can be written
{V;|D|V >, where the operator D represents the propagator of a resonance. We shall
show that the diagram 1b) cannot be written (V,[DZD|V,>, where X is some operator.
We shall only be able to cast the one-loop dual diagram under the form <{V/|R|V,>.
We shall conelude that, in this operatorial formalism, one also needs the four-resonance
function (Fig. 1c)) before any general diagram can be calculated; it is not the operator
VDYV if one insists on the propagator of the external resonances to be D.

We shall calculate the self-energy diagram (Fig. 15)) using the operators ¥ and D and
compare it with the well-known one-loop dual amplitude.

(*) Equipe de Recherche Associée au C,N.R.S. Postal address: Laboratoire de Physique Théori-
que, Faculté des Sciences, Parc Valrose, Nice.
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1. — Caleulation of the self-energy diagram.

The operatorial formalism relates resonances to the eigensolutions of harmonic
oscillators. We use the notations and results of ref, (3®). The three-resonance vertex
as written by Sc1uTo uses pairs of operators (¢f. ¢) and (a', a)
whieh belong to different spaces. We choose (¢!, ¢) to refer

e
to particle 3, and (a'. a) to rvefer to particles 1 and 2. The o :
vertex reads (Fig. 2)
. ot t ot . S & R > Ly A
(1)  explPy-a’ —(a', ") Jexpl P ¢’ expl— Py-a—(a. ) _].
‘;// \
If one examines the way the vertex has been obtained P P
one sees that the propagators of resonances 1 and 2 have g, o
ig, 2.

the classical form D. but the propagator of particle 3 in-
volves some dependence on partiele 1. The problem is: can
one forget about this dependence? If not. the above vertex should be multiplied on
the right-hand side by (1 — 2)%¥P¥2 where » is the integration variable to be used
tor the propagator of particle 3. The twisting of line 1 leads to a more symmetrical
vertex (*) but does not modify the problem.

Oune can construct the bubble in different wayvs depending on the position of the dots:

i) The propagator of particle 3 is twisted (Fig. 3i)):

Gt o) = g‘ifda‘l daey(ary )11 — )0 g2 M(eT. ey oy, ys 2 WL — )

(2) Mt c; 25 28) :fd*‘K Tr {>xp[— P3~((1L —(at, eh ]
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cexp [ — Pyre]exp [— Pyra + (a. ') JoBatFil2)
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Fig. 3.

: : ; t
The trace has to be performed over a complete set of states of the space where @ and «
operate; r, — x; and ¢, = x, if one forgets about the origin of the vertex; otherwise
one has vy = x(1--2) and vy, = (1 —2").

(*) L. CANERCHI, A. RCHWIMMER and (G, VENEZIANO: preprint,
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ii) The propagator of particle 3 is not twisted (Fig. 3ii)). The last part of formula (2)
reads now

0,|(1 —2')2atil2 exp [P, -a' — (a', ¢),] exp [— P, c] exp [— Ps-a + (a, ¢') _]wPat?ilz}

iii) The propagator of particle 1 is twisted twice (Fig. 3 iii)). One uses the symme-
trical form of the vertex established by CaNEscHI, SCHWIMMER and VENEZIANO (%),
or the «left and right twisted » propagator of particle 1.

The trace is easily done if one calculates the matrix elements of M (c', ¢} between
« coherent states » and uses their algebraic properties (3-6). The result is, for case i),

3) M =|EoSP 2 Dexp [Act? + EP,-¢t + P,-¢'1B% exp [Ae? + FPy-c— Py-cl,
( 1 2 1 2

where
L
Ac'? =2Am,.c<m)'c(m, EP:;'ch =ZEmPa'c<'in> s
mn m
+ t
Be'e =TT exp [ Z B Cim -cm)] , B (v, v) = — Fo(v,, v,)
n m=n
with
vivl
A =___1m+n ¢ C_‘#,
mn ( ) g m T 1 ——’();1);
1 i i i i
E, = (— 1)’"2 1 _ oot [eimvi (1 —v3) + e_im®a(l —21)],
i 10,7,
an = (— l)mz TT’U, [1); CimCin T /U;c—imcm] ’
i 1= V17,
10! + vl — il avt vl
D =exp|p?y_21 2 “7 2z
p[ 32?3 1—oviv, +§i:l—v;v;

i
m (1 m (—1

Cim = - s Cim = - .
1 \m ? m

Cage ii) is very similar. The main change is that v, = z,(1 —2)(1 —2') and v, = =,
if one does not forget about the origin of the vertex. Also P,-¢ is now P;-e, A4,,
and F, stay the same and

1 R
€2 i 2
1 vivi[”lcim + V] .
— UV

Fovy, v) = —By(vy, 1), Bpy=—(—1yY

2

Cage iii) leads to a very complicated expression for the 4, B.... One has to replace
the propagator of particle 1 inside the loop |dw,af1-%(1—u,)°, by a propagator
which is twisted left and right: fdwlw;l‘“(l — y)7° QY(P;) w2 Q(P,), where Q(P,) is the

(%) D, AmMATI, C. BoUCHIAT and J. L. GERVAIS: Letf. Nuovo Cimento, 2, 399 (1969).
(*) J. R. KLAUDER and E. C. G. SUDARSHAN: Fundamentals of Quantum Optics (New York, 1968).
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twisting operator (*). This new propagator can be written

fdmlffl'“(l — 11)‘0"’3 exXp (T’l -(ﬁ}(j exp [z f,}-a(t»)a(j,] :) exp [Pl a
7.9
with
1
I1

o3 . - > . d
PI = Il z“m)fm*i-
in v

; I 1
foo=—1(—1) z"u”ziv’"l‘“ O
:

The dependence on the four-veetor P, iz rather complicated and this corplexity is
reflected on the dependence of Mt ey on the loop momentum.

2, — Comparison with the one-loop dual amplitude.

The single-loop dual amplitude (Fig. 4a)) 1s well known in its symmetrical form (3-7).
An appropriate change of variables makes explieit the presence of the diagram of Fig. 15)

in the dual amplitnde. The easiest comparison with formula (3) is done with a six-
point amplitude but the method is easily generalized to a n-point amplitude.

Fig, 4.

The change of variables (ry, x3) — (4, ¥s) gives (Fig. 4D))
Zyry=1—y, ' — 0(]/5) . xy=1—y 90 + O(;U;)

with (' = (1 —ar))(1 —r) (L —>>,). and similar expressions for »;, r,. The one-loop
dual amplitude is

6
. . - 407 — . 2 L, PP,
’(14 K [T [dra7xcsd=1(1 —ay=1-a] [ exp | — _L}L’-

J i=1 nel n(l —w")

(") K. Barparcr, M. HALPERNY and J. SHAPIRO: Berkeley preprint No. 69-1417,
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The method is the following: in the exponential, separate the P,-P; terms into terms
involving the contraction of the right-hand side momenta with the left-hand side mo-
menta, and terms involving the contraction of one-side momenta.

The last group gives

w(Py + P, +P3)2]
o a(l—w) |

n

(1 — 2" Pa(1 — 2y P4 Pa(1 — 27+ Ts exp [Z [

up to terms O(y3) and a similar term for (P,, P;, Pg).
The first group can be written

71 [Py + @y P, + aay Pl [Py + o Py + oo Pyl +
+ W:[Pa + wng + szgpl][P4 + wZPS + xgm:P:;]

and gives, up to terms O(yj), O(y?),

1
@) exp [— ?JT—T)] {112 (211 — my 0) + 2y(1 —nys 0)) +

+ Q- IIny, Clay — x3(1 — nye C)] + P Inyg Clwy(1 — nyy O) — w3] —
— 0y, ys O%wy + ) P1-Q'},
where
II =P+ P+ Py, P =P, 4 4, Ps, Q' = P, + 4, P, and w = 2,2,(1 — y; O(1 —y,0) .
Now one recognizes the five-point function (Fig. 5a))

(1— mz)p1~1>,—1—a (1— wa)P,'P,—l—a (1— xz%)r{p, w;a(—k;)—l w;a(—k§)—1 dwz dxa .

The change of variables w,2; = 1 —ys, @, = 1 —¥,y3 (y3 = y,;0) makes explicit the pres-
ence of the diagram of Fig. 5b), and the y; dependence is separated out:

n

(n)
dygys i (1 — y 1Rz exp [—Zy;"kl'g ] Ay, ¢(ys, PPy Ps).
n

The expression we have obtained in this
Section is only valid up to terms of order
ys and yi. The comparison with expres-
sion (3) can only be made for the first two
lowest resonances. So we study the case
when only the mode n =1 is excited, i.e.
we sandwich M(c%, ¢) between the coherent
states (—2Q'] and |¢’#1y. The comparison
is straightforward and it is clear that in Fig. 5.
formula (3) v; = ,(1—2) and v, = z,(1 —2)
rather than v, = @, v, — 2,. So the (¢, 2') dependence of M(c', ¢) is established.
Starting from the one-loop dual amplitude, one obtains case ii) with a different
change of variables (x5, ) — (%, 25). One easily verifies that, to the lowest order in
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y; and zg, the replacement P! = — P 4 JI with P = Py + 2, P; in formula (4)
gives the corresponding formula for case ii). In the left-hand five-point function k,
is replaced by k;. This new expression agrees with formula (3) for case ii) if
vy = xy(1 —2)(1 —2') and v, = x,. Let us do one remark about the way this compar-
ison works: it would be interesting to know whether the operators Mm(c*, ¢) and
M (c', ) QUT) have the same matrix elements between the external states. (£ is the
twisting operator.)
One does not know to which graph corresponds case iii).

3. — Qualitative features of the first-order correction.

8'1. Need for a four-resonance funciion. — The result of Seet. 1 and 2 shows that
the vertex of the operatorial formalism is indeed unsymmetrical in its present form. Two
resonances possess the standard prop-
agator, the third one has a more
_ / complicated propagator. In this op-
j)——(/ %\—«M eratorial formalism it seems impos-
. — \<\ sible to separate the vertex out of
E the third propagator.
Fig. 6. In order to calculate n-loop planar
diagrams (n3> 2), for example the
diagram of Fig. 6, one needs a formula for the four-resonance function: it is not VDV
if one insist on the propagator of the external resonances to bhe the usual one.
If one studies the infinite sum of all loop diagrams, an interesting question is
whether this sum could be written formally in a compact way. or whether it would
satisfy an integral equation with a kernel similar to 3M(c', ¢).

{
!

3'2. Features of the first-order correction. — We study the implications of formula (3).
The resonances are eigenvectors of the operators ¢iy e, . The operator M(c', c) has
matrix elements between any two resonances, but the contribution from the off-diagonal
matrix elements to the mass renormalization will appear only to the next order in g2
Formula (3) allows us to calculate the renormalization of any trajectory to the lowest
order in g2

Let us examine the diagonal matrix elements of M(c'. ¢) ignoring the unpleasant
singularity for z, = z, = 1:

+ . Lo .
A term c<m)~cfm means the contraction of two indices of the final vertex (V;|; it does
not operate on traceless tensors.

The Ward identities, if they can be generalized, will relate a term P3-c(*m, to the
mode m — 1.

When one eigenvalue has been chosen for each cfn,-c(n), one has chosen the spin
(loosely speaking) of the exchanged particle between the initial and final vertices. The
diagonal matrix element may now be expanded in powers of z and z'. To choose a (com-
mon) power for z and z' is to specify the mass of the exchanged resonance.

In this model, the high-energy elastic scattering of two stable zero-spin particles
will look different from the inelastic-scattering processes. To lowest order in ¢* instead
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of exhibiting the splitting of the second trajectory, it will show up a mean second
trajectory; the reason is that the various excitation modes m cannot be separated out
when an external vertex has only two legs.

4, — The imaginary part of the first-order eorreetion to the leading trajectory.
Let us concentrate on the correction for the resonances which belong to the leading
trajectory. The properties of the leading trajectory are the following:

i) only the mode m =1 is excited;
ii) the vertices |V,> and (V| involve completely symmetric traceless tensors;
iii) the dependence on (1 —z) and (1 —¢') is dropped.

The consequences are: on both sides of M{c', ¢), there appear the propagator of the
resonances of the leading trajectories:

+ 2
fdz zc(l)'c(,)—l—a—}',lz .

The product of operators in M(c!, ¢) reduces to

+
1 61} " O(1)
(— + Bu)
logx, @,

after the K integration has been performed. Each eigenvalue A of the operator cfn-cu,
is a resonance whose spin is A and mass — Pj = 2(A—a). The first-order correction
to the leading trajectory is then

g*F(s) = g”fdwl daty(2, 25) 191 -— 2,)%(1 — z,)~°[log z, z,]2-

exp | — 2bs z 1o} —|— w, mlwz n z x5y b log@, logx,|
—xxy n 1—alzy log z,x,

1 a7 4 af |orte
. [_ + 302 ’,‘] .
logw,x, 4 1—ay2,

The lagt sum over n can be rearranged, and one recognizes in its first terms the expres-
sion obtained by Kikkawa, SAkirA, VIrasoro (8). This correction is infinite, due to
the singularity at x, =z, = 1. The hope is that the infinity is purely real: a dispersion
relation could be written down if the asymptotic behaviour of the imaginary part of
F(s) would allow it.

The imaginary part of F(s) can be defined in the usual way by turning around the
poles corresponding to the internal lines of the loop (Fig. 3). To exhibit these poles,

(®) K. KIRRAWA, B. SAkITA and M. VIRASORO: Madison preprint No, COO-224.
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it is convenient to retain the momentum integration. We notice that

I 1,7 . exp | — bs log 08Ty 108 Ty log z, dky | k2 dk x¢x+n)*lza.<x~n)’lz 2kt
[ log z, 2,102 logxyr, ) Ifq + f)

Lere two-dimensional vectors are used K(ky, k). IT(+/2bs. 0). In terms of four-vectors,
this means that we are in the rest system of the incoming resonance and that we have
performed the angular integration for the internal momentum. If one defines the fol-
lowing expansion:
al
2

.7‘11' *J‘; z i g i g P
. z n- ot B Z z (112, — T321) Oy4(s, P) .

i>P <

11.
Ly

111+z2 2:161902X E

ﬂ
Haxy, @55 8. Py = [(1 — 2 (1 —x,)]"Cexp [~~ 2bs - :
1—.7‘11*2 n Z,

the integration over x,, x, is easily done and the poles of F(s) are explicit:

+ o ©
a e [a(s) a[k2)ro-P
= jdky | k2dk e .
/ J pgo(P)F(%)F(x(S)~P+-3)
w4
e (8. P)

2K TR T i—al(K— 1P = j—a]

The integers i and j indicate the mass of the intermediate resonances of the loop, and
«(s) — P the orbital angular momentum of the intermediate svstem.

The imaginary part is obtained with the usunal prescription of replacing propagators
by é-functions:

1 - P i .
k2= —[bs — (Vi bM® + V] + 63022 [bs — (Vi + bM> — V] + bM2)?].
8

For fixed s. there is a finite number of intermediate states. the sum over (i, j) stops at
bs — (AT +bME + ]+ bM2)2 =0

Imax(s) Jmax i (k2 )ac(s)-P-rk I'(a(s) + 1)
Im F(s) = B ST — ¢,(s, P).
W= 2 22 NS R et P e ) ) =P 1 ) D)

We are interested in the asymptotic behaviour of Im F(s). If one studies the variation
of Im F(s) when s increases from s to s-ds, one sces that the opening of new chan-

nels gives no contribution to the lowest order in ds, due to the factor [k2]x®—P+3,
For s large. one can forget about the terms bM2:

bslz  (i—i)?2bstbslz 4 206 +j)  (i—j)? bs \% e|ts T
I F(s) = L— - I )
() 2 z , Igo{( bs T b2 g? )(bS—P) 4

(i—3)=0 i+ =i—j
bs\? 1
(%) Frewe o
e/ P!
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What is needed is the behaviour of C,(s, P) for s large. One has

z C’,.j:v{x; = H(x,, x,; sP) .
i

H is a decreasing function of s when P is fixed, so the terms C;; may be either positive
or negative. H has a singularity for z, = &, = 1 and it would be possible to know,
for fixed s, the behaviour of C,; for large ¢ and j. But the asymptotic behaviour in s
for i and § smaller than s, is a more difficult problem. All that we can say is that it is
not obvious that Im F(s) increases faster than a polynomial.

* % &K
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