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Summary 

This paper proposes estimation methods with auxiliary information when 
some observations are missing from the sample. These ratio, difference and 
regression methods are proposed for any sampling design and are compared 
with other complete case estimators. 
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1 I n t r o d u c t i o n  

The infeasibility of having all the observations in a sample is not an uncom- 
mon aspect of data collection in many instances of sample surveys. Missing 
data occur in survey research because an element in the target population is 
not included in the survey sampling frame (noncoverage), because a sample 
element has not participated in the survey (total nonresponse) or because a 
responding sample element fails to provide an acceptable response to one or 
more of the survey items (item nonresponse). This latter type of nonresponse 
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is a common occurrence and may arise for different reasons (a respondent re- 
fuses to answer an item, does not know the answer to the item, gives an 
answer that is inconsistent with answers to other items, the interviewer fails 
to ask the question or record the answer, etc.) Unfortunately, the problem 
of missing data arises frequently in practice. 

One obvious consequence of nonresponse is that the actual sample size is less 
than the planned one. This can produce biases in estimations if nonrespon- 
dents differ from respondents on the characteristic of interest, and also lead 
to greater sampling variance. 

There exist different methods to handle missing data during the stages of 
data collection and processing. The aim of these methods is to obtain a 
precise and complete data set. Nevertheless, it is still possible to find errors 
and losses of some entries even after the data has been collected and filtered. 

When some observations in the sample are missing (item nonresponse), a first 
option would be to carry out a complete case analysis. Methods based on 

completely recorded units create a rectangular data set by discarding all ob- 
servations with any missing variable. Thus, when parameters are estimated, 
only the observations for which all the variables of interest have a valid value 
are used. Little and Rubin (1987) pointed out the statistical shortcoming of 
all the methods that ignore incomplete observations. While these methods 
can provide satisfactory results when the percentage of incomplete cases is 
low, in general terms they lead to biased estimations, since they assume that 
the loss of data takes place in a completely random way. King et al. (1998) 
illustrate how methods of complete cases are prone to serious errors. To sum 
up, this practice can be said to introduce a bias into the estimate and an 
increase in sampling variance due to a reduction in sample size, see, e.g., 
Brick and Kalton (1969), Schafer (1997). 

Alternatively, an imputation method may be used to find substitutes for miss- 
ing observations, see, e.g., Little and Rubin (1987), S~rndal (1992) and Rubin 
(1987) for an interesting account. Certain commonly used imputation meth- 
ods take the imputed values as true observations, and the statistical analysis 
may be carried out using the standard procedures developed for data with- 
out any missing observations. Such a practice, it is well recognized, may 
tend to invalidate the inferences and may often have serious consequences. 
Some statistics specialists are reluctant to apply this method because it ma- 
nipulates the original information, although there are also reasons to justify 
its use. Other procedures such as the multiple imputation and the model- 
assisted approaches account for the fact that imputed values are not true 
observations, as they reflect the additional variance due to imputation error. 

As a third option, we could try to improve the precision of the estimators by 
including all the cases available for their calculation. 
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Indirect estimation methods are easily comprehensible techniques for the es- 
timation of total population in survey sampling when an auxiliary character- 
istic correlated with the study characteristic is available; see, e.g., Sukhatme, 
Sukhatme, Sukhatme and Asok (1984). These techniques provide gener- 
ally biased but more efficient estimators in comparison with the traditional 
unbiased estimator. These methods of estimation assume that the sample 
data contain no missing observations. This specification may not be ten- 
able in many practical applications, see, e.g., Rubin (1977). Some authors 
have defined indirect estimators when the sample is drawn according to the 
procedure of simple random sampling without replacement when some ob- 
servations are missing, see, e.g., Tracy and Osahan (1994) and Toutenburg 
and Srivastava (1998, 1999, 2000). However, there appears to be no inves- 
tigation reported in the literature when another sample design is used, and 
this is the main concern of the present paper. In this article, therefore, we 
consider the indirect estimation of total population on the basis of a random 
sample drawn according to any sample design. Using the methods of ratio, 
difference and regression estimation, we propose estimators for the popula- 
tion total of study characteristics besides the conventional estimators which 
amputate  incomplete observations. 

This article is structured as follows: in section 2 we present estimators for the 
total population which are better, in the sense of precision, than traditional 
estimators. Section 3 considers estimator properties through a simulation 
study in the case of simple random sampling without replacement. 

Lastly, in the Appendix, the problem is developed for the case of simple 
random sampling without replacement and for the case of stratified sampling. 

2 Proposed estimators 

Consider a population of N units from which a random sample, s, of fixed 
size, n, is drawn according to a sample design d = (Sd, Pd), with first order 
inclusion probabilities ~ri. For this sample the values of two variables, (yi, xi), 
i = 1 , . . . ,  n, are observed for the estimation of the total population, Y. 

It is assumed that a set of (n - p - q) complete observations on selected 
units in the sample are available. In addition to these, observations on the 
x characteristic on p units in the sample are available but the corresponding 
observations on the y characteristic are missing. Similarly, we have a set 
of q observations on the y characteristic in the sample but the associated 
values on the x characteristic are missing. Further, p and q are assumed to 
be integer numbers verifying 0 < p, q < n/2. 

This population has the following structure: 



554 

Yl . . .  Y n - p - q  Missing 
Xl  . �9 �9 X n - - p -  q Xn--p- -q+ 1 

. . .  Missing Yn-q+l  
�9 . .  Xn-q  Missing 

�9 . .  Yn  ] 
. . .  Missing 

For the sake of simplicity, we separate the unit of the sample s into three 
disjoint sets: 

81 = { i  E 8 /X i ,  Yi are available} 
s2 = { i  E s / x i  are available, but yi is not} 
sa = {i  e s / y i  are available, but  xi  is not} 

If we write: 

rri HT = E - - ' r r i  x l T  = --'Tri and 2~/T = E rr--7 
iEsl  iEsa iEsl  iEs2 

The following indirect estimators for the population total based on complete 
cases can be formulated: 

q?l 7F i t JHT _ i 1 

7~i i C s l  

- -  * X ( 1 )  

~ : ~ + ( x  - ~ , ~ )  (2) 

yRe91  : YlHT q- b ( X  -- x l T )  ) (3) 

where b can be fixed and known or unknown. In this latter case, if the error 
is minimized we obtain that:  

b - Coy(x, y) 
Var(x) 

which is what must be estimated. 

All these estimators discard the information available on incomplete cases. 
This practice can introduce biases and errors into the estimation. For this 
reason, we propose the following classes of estimators, which incorporate all 
the available observations: 

~;~ = ~ryA~ + (1 - ~ r ) ~ i ,  x 
(4) 
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~2 = adYIHT + (I -- ad)~3HT + (X - (I~d~IHT + (I --/~d)X~zT)) (5) 

Y~2 = a~gY~T + (1 -- a~9)~T + b IX - (fl~gX,~T + (1 -- #~eg)~T)] (6) 

In the case of the regression estimator, if b is unknown, we can proceed as in 
the case of no nonresponse. Thus, we present two possible estimators for b: 

A 

&~ _ Cov~e~,~ (x,y) (7) 
Varies, (X) 

h 

&~ = ~C~ (x, y) (8) 
Yahoo, U ~ (x) 

where Covi~sl(x,y), Varies1 and Var~c~ U~2 represent the variances and 

covariances based on the corresponding subsamples. Using these estimations 
of b, we can define the classes of regression estimators ~)~e921 and ~)~e922 by 
replacing the value of b with that of its respective estimation. 

Note that the estimators with subindex 1 are the traditional ratio, difference 
and regression estimators, which are based on complete observations and 
ignore the incomplete pairs of observations. We propose the estimators with 
subindex 2, which incorporate all the available observations. 

The following step is to look for the estimators with the best behaviour 
among the proposed classes of estimators. This choice is made seeking to 
minimize the estimator error. The expressions of the mean squared errors of 
the estimators are easily Obtained, and by minimizing these errors, we obtain 
the estimator expressions with minimum errors. 

Thus we have: 
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O~ropt 

O~d~p t 

]~dopt 

O~regopt 

]~re9opt 

where: 

mr = 

S r  ---- 

G = 

D~ 

Er 

Ad 

Bd = 

C d  ---- 

Dd -= 

Ed 

Are9 -~ 

Bre9 -~ 

C~e9 z 

-Cr  + (ErBr - -C~ B2) /(Dr - B2 /Ar) 

- G +  G 
A-"-~ B~ 

D~ - B~/A~ 

CdDd -- AdBd B 

C~ 
CdDd -- AdBd 

E~C~ - B~ 

. -Creg  Bre9 BregCre9 - AregEreg 

A~e~ A~e9 A~aD~a - B~re9 

BregCreg - AregEre~ 

A~9D~9 - B~9 

2R 2 Var(@~) + 2R 2 Var(~}.~) - 4R 2 Cov(~_,~, ~ 1 )  

2 A 1  ^ 2  ^ ^ R Cov(y.~, x.T) - 2R Cov(y~, x~r) 

-2R 2 V ~ r ( ~ )  + 2R ~ C o v ( ~ ,  ~ ) -  
2R Cov(~i,~, ~,~) + 2R Cov(~i,~, ~ )  

- 2  Var(~'~T ) + 2 Cov(~T,  Y'}JT)-- 
2R C o v ( ~ ,  ~ 1 )  + 2R Cov(~%, ~ )  

V ~ r ( ~ )  - C o v ( ~ ,  ~G+) + C o v ( ~ ,  ~ )  - C o v ( ~ ,  @~) 

- Co~(~,~, ~ 1 )  + Cov(~5~, ~,~)+ 
Cov(+~,+, + 1 )  _ Coy(G+, +i,+) 

V+r(+l+) + V+rC#G) - 2 Cov(#i,+, ~'~,+) 

Var (~T)  _ ~1 ~2 Cov( ~T, z~v) + Cov(~T,  ~ r )  - Cov(yHr, ^~ x.~.)^2 

Var (~T)  + Var (~T  ) -- 2 Cov(~}+ T, ~ T )  

2 Var(~lT) + 2 Var(~T ) - 4 Cov(~T  , ~3T) 

HT J 

-2  V ~ r ( ~ )  + 2 Co~(9~, 9~r)+ 
~ [- C o v ( ~ ,  ~,~) + C o v ( ~ ,  ~ ) ]  



557 

Dr~g = b e [2Var(2~T ) + 2Var(2~T ) -  4Cov(2~T,})~T) ] 

= - 2 b  + 2b: 

The expressions of these variances and covariances for the case of simple 
random sampling without replacement and for the case of stratified sampling 
can be seen in the Appendix. 

Unfortunately these optimum values depend on theoretical variances and 
covariances among the Horvitz-Thompson estimators, which are generally 
unknown, so the optimal estimator cannot be used. However, they can be 
estimated when the sample is drawn. Furthermore, these values would be 
estimated by replication methods, see, e.g., Wolter (1985). 

In the absence of good a priori knowledge of these characteristics, we replace 
the optimal a and ~-values by sample based estimates in 4, 5 and 6 thus 
obtaining the following estimators, which can be evaluated from the sample 
obtained: 

~]r2 z ~ry3[T + (1 -- ~)Y~vT , X (9) 

H T  ~ b ' r  H T  

Yd2 = ~dylyT + (1 -- ~d)~3HT + ( X  - (fid~lHT + (1 -- fid)~2HT)) (10) 

~)Re~2 = ~reg~)~-rT+(1--~reg)~3HT+b IX  -(flre~2lHT + (1 -- flreg)221T)] (11) 

Y R e 9 2 1  ~ r e g Y H T  -~  - -  - -  - -  

(12) 

(13) 

These estimators do not coincide with the theoretical estimators in expres- 
sions 4, 5 and 6 and involve the estimated parameters. Randles (1982) derived 
the limit distribution for such statistics. Following his notation, we denote 
the estimator Yd2 a s  Tn('~ ) with "~ = ( ~ d ,  f i g ) ,  We replace ~ in Tn(') with 
a variable q. Now we calculate the limit of the expectation of the statistic 
Tn(,~) when the current value of the parameter is .k = (ad, rid) 

~(~k) = lira E), (Tn(r = Y 
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where E~ denotes the expectation with respect to the design. 

Since p(-) has partial derivates on ~ = A equal to zero, it now follows from 

Randless (1982) that Tn(X) and Tn(A) have the same limit distribution, i.e., 
~d2 has the same limit distribution as ~d2 with adop~ and /~dop~ and it is 
reasonable to assume that  the sampling errors will be close to the theoretical 
ones for large samples. 

Finally, note that the usual estimators are included in the proposed classes of 
estimators, and so the estimators obtained by minimizing the errors in these 
classes will be better, in the sense of mean square error, than the traditional 
ones. 

3 Simulation study 

This section examines estimator properties by means of a simulation study. 

The populations considered can be divided into two groups: natural popula- 
tions and simulated populations. 

The FAM1500 population consists of 1500 families in Andalusia (Spain) taken 
from Ferns and Mayor (1994). The variable of interest, y, denotes family 
income and the auxiliary x denotes expenditure on food and drink. 

The second class includes three simulated populations used by Meeden (1995). 
For the simulation, a superpopulation model is considered in which it is as- 
sumed that for each i, Yi = bxi +uie i ,  in which e~ are independent identically 
distributed random variables with zero expectations. 

In the first population, SIM1, the xi's form a random sample from a gamma 
distribution with a shape parameter of twenty and a scale parameter of one. 

In the second population, SIM2, the auxiliary variable is a random sample 
from a log-normal population with mean and standard deviation 4.9 and 
0.586 respectively. 

In SIM3 the auxiliary variable is fifty plus a random sample from the standard 
exponential distribution. 

All the simulated populations contain 500 units. 

The following algorithm is used for the populations with several sample sizes. 
Specifically, sample sizes of 25, 50, 75 and 100 were taken for the simulated 
populations and 50, 100, 150 and 200 for the FAM1500 population, due to 
the larger size of the latter. 

Algorithm 
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�9 STEP 1: Take a sample of size n according to the procedure of simple 
random sampling without replacement. 

�9 STEP 2: Set the missingness rates, p and q. 

�9 STEP 3: Eliminate the sample p elements on the auxiliary characteristic 
and q elements on the study characteristic, in a random way. 

�9 STEP 4: Define the subsamples sl, s2 and s3. 

�9 STEP 5: Calculate: ?)rl, ~)r2, YRegl, YReg2, YRegll, ~)Reg21, YReg12, YRey22, 

9dl, ~)~2 

�9 S T E P  6: Use the values obtained in 1000 items for the calculation of the 
mean squared errors of the estimators. 

�9 S T E P  7: Normalize these mean squared errors, dividing them by the 
mean squared error of the simple estimator and latter on take the log 
ratios of these mean squared errors. 

Results of the application of this algorithm for some values of p and q can be 
seen in figures 1, 2 and 3. 

In each figure are being plotted the log ratios of standard errors of considered 
estimators. The dashed curves correspond to the proposed estimator and the 
dotted curves refer to the estimator based on complete observations. The 
central horizontal lines correspond to the simple estimators. 

It is interesting to note that the missingness rates were taken such that integer 
values were generated for all sampling sizes. 

In the FAM1500 population, all the estimates based on the cases available 
present a smaller error than the respective estimators based on the complete 
data. The results obtained from the latter, in general, are no better than 
those based on the simple estimator, which does not make use of auxiliary 
data, while those proposed in this paper all present a smaller error than when 
the simple error is used as the basis for comparison. 

A similar pattern was observed in the artificial populations SIM2 and SIM3. 
The estimators based on the available cases always improved considerably on 
the results provided by those based on the complete data, and were nearly 
always better than those based on the simple estimator. 

A noteworthy feature is that in the SIM1 population the results obtained 
with the difference estimator, based on the complete cases, were very bad 
(the error was more than twice that obtained with the baseline estimator). 
Nevertheless, the error of the proposed estimator ~)d2 was only a fifth of that 
provided by the ~)dl estimator and less than half that of the direct estimator 
~), for any of the sample sizes considered. In this population, the ratio and 
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Figure 1: Log ratios of standar errors comparing the cases available estima- 
tors and the complete data estimators against the simple estimator, p=0.32n 
q--0.4n. The dotted curve corresponds to the complete data estimator and 
the dashed curve refers to the cases available estimator. 
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Figure 2: Log ratios of standar errors comparing the cases available estima- 
tors and the complete data estimators against the simple estimator, p=0.32n, 
q=0.48n. The dotted curve corresponds to the complete data estimator and 
the dashed curve refers to the cases available estimator. 
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Figure 3: Log ratios of standar errors comparing the cases available estima- 
tors and the complete data estimators against the simple estimator, p=0.4n, 
q=0.48n. The dotted curve corresponds to the complete data estimator and 
the dashed curve refers to the cases available estimator. 
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regression estimators based both on the complete data and on available cases 
considerably improved on the precision of the direct estimator, while between 
the two estimators there was a less evident reduction in the error than among 
the other populations. 

The behaviour pattern of the estimators ~Re~21 and ~Reg22, in relation to 
each other, is unclear. Depending on the population and on the sample 
size considered, one has a smaller error than the other. Evidently, the best 
behaviour is presented by the regression estimator based on the true value of 
b. 

It has also been observed that, as expected, when the total missingness 

rate p + q increased, the gain in the precision of the proposed estimators 
n 

is greater. 

" The simulations were repeated, interchanging the values of p and q and the 
results obtained were very similar. 

To sum up, these simulations show how the use of all the available data by the 
proposed estimators leads to a considerable error reduction in the estimation 
of totals, with respect to the respective estimators usually applied. This error 
reduction can be very great in certain cases, such as estimation by differences, 
which often functions unsatisfactorily. Moreover, it should be noted that 
there is a direct relation between error reduction and the missingness rate. 
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A A p p e n d i x :  Values  of  the  variances  and co- 
variances  of  the  H o r v i t z - T h o m p s o n  es t ima-  
tors in the  case of  s imple  r a n d o m  s a m p l i n g  
and stratif ied s a m p l i n g  

If the sample design considered is simple random sampling, then ~ri = n / N  
and 7cij = n(n - 1) /N(N - 1), Vi, j ,  and the variances and covarianees of the 
est imators are given by: 

Var(~tHT)-----N 2 S2Y ( i  n - - p - - q )  
n - p - q  N 

Var(~3HT> = N 2S-~ ( 1 -  N )  q 

p 

covi~+,+l+l=~2[ , 1]~.+ 
~ - p - q  N ' 

+o++,+,++,++={ ++(~_1)++ + ~_>+ 
N2(~-1)s++ if p<q 

N 1 

~(~_1)+ 
if n - p 

2 

n - p  
if 

2 

- - > _ q  

- - < q  

{ ~ ( n  1 ~-)~+ 
+ - p - q  

Cov(~%, ~+,v) = 
1 s 

if n - q  
2 

if n - q 
2 

- - _ > p  

< P  
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1 
N2 ( n - p - q  

Cov(~%, ~ )  = 

S~y if n - p 
2 

if n - p 
2 

- - _ > q  

- - < q  

N 1 

Cov (~%, ~5~) = 

if n - q - - > p  
2 

if n -  q - - ~ - -  < p 

where Sy, S.~ and S.~y are the  popula t ion  variances and covariances of the 
variables. 

If a random stratified sample  design is used, then 7r~ = ~ if the unit  i is 
Nh 

found within the s t ra tum h of size Nh from which we obta ined  the sample 
nh-1 if the  units i,j are in the same s t r a t um h and size nh and 7rij = Nh Nh--1 

7"(iJ : n---h-nh~Nh N h, if the units i,j are in different s t ra tum,  h # h ~. In this case, 

the values of the variances and covariances are given by: 

E Whnh_Ph_qh Nh 
l < h < L  

W r ( ~ )  = 

V a r ( ~ ) =  ~ W ~s~ (1-qh)N~ 
l<h<L h q-y 

l < h < L  

Cov(~,~,@~) = N 2 Z W~Cov(~,~) 
l < h < L  

Cov(~ ,  ~,~) = N 2 Z W~ Cov(~ 1, ~) 
l < h < L  

OV ^ ]  ^ 2  N 2  

l < h < L  

Cov(~ ,~ ,~) :N~ Z ~ -~-~ W~ Cov(xh, yh) 
l < h < L  
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Cov@b~, ~ )  = N ~ Z W: Cov(~i,~i) 
l < h < L  

where ~ and X/h are the sample means of the variables y and x in the stratum 
h based on sample sl. 


