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N-Dimensional Anisotropic Oscillator
in a Uniform Time-Dependent Electromagnetic Field.

A. Horz ("}{*)
Center for the Application of Mathematics, Lekigh University - Bethlehem, Pa.

{ricevuto il 9 Novembre 1970)

Recently the method of time-dependent invariants (1) has been used by MALKIN
and MAN'KO (*?) to study the evolution of coherent states () in explicit time-dependent
problems. This method is applied to the problem of an n-dimensional anisotropic oscil-
lator in a uniform time-dependent electromagnetic field. Exact solutions to the cor-
responding time-independent oscillator have been obtained recently (°).

The Hamiltonian is assumed to have the form

(1) H=13%pp+ 3lq, A)pl.+ tqEMt) g+ f)p+ gt q,

where A(t), K(t) are real time-dependent nXxn matrices and f(f), g(t) are real time-
dependent n vectors. The dependence on the electromagnetic-field quantities in (1)
is not given explicitly. p and g obey the commutation relation

(2) [q;, 5] = 0y .

Ag in (3) we assume that the time-dependent invariants b; (the range of j will be fixed
later) have the form

(3) b; = v,;(t)q + w,(t)p + (1) .
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1320 A. HOLZ
where v,(f), w;(t) are n vectors and 9;(t) is a scalar. b; will be subject to the condition

di, by .
{4) = ()7 H] =0
dt ct

For (4) to be satisfied identically for 4; of the form (3), the following set of equations
has to hold:

¢
() 0;() ;:f(ig(t)wj—f({)vj)d! s
0
(6) Iihn,(t) = —iZ; .

where I'(t) and = are 210X 2n matrices given hy

0 il I A
(7) 5:( ) r(f).( ) .
— il 0 A K(t)
and
—V; (1)
(8) il = ( )
tw ()

ix a 2n vector. 1 is the transpose of .1, T is a » < n unit matrix. We assume that, for
t-< 0, II is time independent and that

(9 f({) =g =10 for t<0.
The fundamental system of solutions of (6) can be found by means of the ansatz (°)

(10) 1, =§; exp [io; ¢] for t< 0,

where €; is a time-independent 2n vector determined by

(11 g, = w; ZE; .

This equation, however, is studied in (3) where it is obtained for the creation and anni-

hilation operators of the time-independent problem. The solutions of (11) will be put
into the form of two n »n matrices

(12) V)= (v,. vy, ... 1), Nt = (w,, Wy, ..., w,) .

(") B, A, CoppixgToN and N, LEVINSON: The Theory of Ordinary Differential Equations (New York,
Toronto, London, 1933), p. 75.
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The set of operators b; and their Hermitian conjugates b: (both satisfy (4)) can then
be written in the form

bl bl
(13) b=| : |=Vityg+iWityp, b'=[: J=TV*ng—iW*®)p,
b, b,

where V* is the complex conjugate of V. It is easy to show that if (11) has only real
eigenvalues which are different from zero all solutions can be normalized to satisfy
the relations

(14) VEW+ WV =511, VW—-WV=0.
A detailed derivation of (14) for positive definite Hamiltonians, which requires
(15) K—44

to be positive definite, is given in (°). In the case where (15) holds all positive w;’s
will be associated with b. From (14) it follows

(16) [b;, bil-=0d,, [b;, b]_=[b}, bl _=0.

Denoting the matrices (12) for ¢=0 by V,, W; we have as initial condition for the
time-dependent problem

(17) b(0)=V,q+iW,p, b (0)=Vig—iWip.

1f I'(t) 18 assumed to be continuous on the closed bounded t-interval (0,%,), then
aceording to (7) the solutions of (6) are uniquely determined by the initial values. The
solutions in general can only be given approximately. They satisfy, however, a number
of important relations. It follows from (4) that

d d
(18a) 5 e bl = A (viDw,(t) +wity () =0,
18b b A (my H) =0
(18b) 3500 Bl = hm (0l wi) + ws()0t) =

hold. Integration of (18a), {(18b) and use of the initial conditions (17) shows that the
relationships (14), (16) hold in the ¢-interval (0,t,) as well.

Let us consider next the evolution of the eoherent states. From (14), (16) it follows
that the coherent states ean be constructed as the eigenstates of the bys as follows:

(19) bjla> = oyl for j=1,...,n,

(*) E. A. CopnineToN and N, LEVINSON: The Theory of Ordinary Differential Equations (New York,
Toronto, London, 1955), p. 20.
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where «; is an arhitrary complex number. For t= 0 they assume the form
l n @ n O(m'i

(20 lae, i = exp f;z‘x,fz > H— oy gl
= i1 {ms} i= 1 ()

in terms of the number cigenstates |{m,}> of the initial Hamiltonian. In co-ordinate
represcntation we have

oy, ~
{21) ‘a, iy = (2ah?Me i det WiE exp - —z 2,12 | xexp —qg tai g,

2 i=1

where a is a 1 vector with components %,. The normalization of (21) follows by com-
parison of the Tavlor expansion of (21) with (20) and the normalization of the ground
state (3). By means of (14) it ean be shown (3) that 7 and 17 are nonsingular and
Re (W11 18 positive definite.

The eigenstates of by(#) for { =0 can be chosen to satisfy Schrédinger’'s equation
and the initial condition

(22) b, 00 = a0

One ohtains

(23) vi(.f-* (22h*)- ni (hflv %(\pli _)Z':xj\‘z:l*
- =1
X Tt ~
*q(l. 2) eXp [ q /i_h)_(_) q — o —8(1) W1 ]
where
!
(24) gt 2)-=exp [‘df (i—} T (W13 1Vih) - w4 yor—8) +
0
l 2
+ = ((a—8w) Tm)2) |-

For t 2t the Hamiltonian is time independent again. We assume
(25) f(t) — gty — 0 for t=1,.

The final colhierent states for t=—1, are given 153%

(26) 18, 1~ = (2ah2yni idet U‘}[*é’ oXp [

lvl—‘

" W’—IV
z ]*(Yp —q - -quiz 1B0g| .

where 7, and 175 ave determined from (11) for I'(t;). Note that W} is note qual to 117(1,).
By use of (23), 26) we obtain the generating function (1) for the transition ampli-
tudes between the encrey eigenstates of the initial and final Hamiltonian in the form

27y B, fact, exp [}jz ('zi2— B, ~)] = (det R)7F jdet WI7H [det T~ Hg(t,. )%

i=1
wexp [F(RFI RN - 2o —8(t) 1t BT @%
+ (o —8(t,)) T2t B T (a—801)) )] -
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where

(28) R=HW-t)V(t,) + W;71V}),

and the p.v. means principal value. By means of (14) it can be shown that the real
part of R is positive definite hence det (E) will be nonsingular.
An alternative representation of (27) is

(20) <ﬁ,f|a,t,>exp[%§":(]ozil2+Iﬂilz)] {2}(2};["112[‘“"" ; i Crdlm>
i=1 my} {ry} i=1 =1

Here |{r;}) are the number eigenstates of the final Hamiltonian and |{m.}) are
the states which have evolved out of the eigenstates of the Hamiltonian for ¢=0
via the interaction with the electromagnetic field. Comparing the Taylor series expansion
of (27) with (29) determines the transition amplitudes (%)

(30) frdlimg}> .
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