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Summary. — The Schréodinger equation is derived assuming that any particle is
subject to a flickering motion (zitterbewegung) independent of external forces. The
motion should be as that of a rocket emitting random bursts of jets with isotropic
distribution and also subject to the external, deterministic forces.

In the past there have been two attempts to obtain the Schrodinger equation by a
classical stochastic process (1).

The first attempt is due to NELSON (2) who assumed a Brownian stochastic process
for any particle. However, this process has a white spectral density and, therefore, it
cannot be frictionless because of the fluctuation-dissipation theorem and, mainly,
because any charged oscillator (like an electron moving around a nucleus) with chargee,
mass m, proper frequency w,, baricentric velocity v is subject to a friction force F;
given by the Einstein-Hopf formula (3)

(1) F; = — $n*ver(me?) 71 [((wo) — Fwo(dG/dw),,] -

With G(w,) = constant, eq. (1) gives a braking force. Consequently, the velocity of
a charged oscillator should decrease exponentially with time and we could not have
a motion by inertia. In order to overcome this drawback NELSON had to assume an
equation of motion different from Newton’s and implying forward and backward
derivatives. This is not classical physics and Nelson’s attempt has only to be con-
sidered as a mathematical connection between Schrédinger equation and other ad hoc
postulated equations (3).

(*) I disregard all the attempts in which an imaginary time or other imaginary quantities are
introduced at the beginning.

(®)) E. NELSON: Phys. Rev., 150, 1079 (1966).

(®) See C. CAVALLERI: Phys. Rev. D, 23, 363 (1981), where also a criticism of stochastic mechanics
and in particular of the paper of ref. (*) is given. An extension of eq. (1) to a frec charge has
been obtained by A. RUEDA: Phys. Rev. A4, 23, 2020 (1981).
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The second attempt was fraught with a great hope because starting from a funda-
mental theory called stochastic electrodynamics (*) (SED). Its spectral density is
proportional to w* (where « is the angular frequency) and is the only one to be rela-
tivistically invariant and therefore allowing a motion by inertia. This can also be veri-
fied by eq. (1) because, for G(w) «c w? it is F;, = 0 (note that any other spectrum gives
F; £ 0). SED gives results in agreement with quantum mechanics (QM) and even with
quantum electrodynamics (QED) for all the linear systems (5). However, it fails in
the case of nonlinear systems (8).

The stochastic process proposed in this paper is given by the zitterbewegung (as
foreseen in Dirac’s theory and also in Pauli’s) together with the transverse energy (37)
of QED. A macroscopic model of it can be obtained by a rocket having a main jet per-
pendicular to the velocity v, so that, by this jet only, it would perform a circular orbit.
But the rocket has also many other nozzles with almost isotropic directions emitting
random bursts which produce a diffusive motion for the centre of the orbit which is
no longer a perfect circle. The absolute value |v,| of the velocity is taken to be con-
stant (and equal to the light speed for the electron (3-19)) and the diffusive motion of
the centre of the perturbed orbit is equivalent to the transverse energy of QED. The
random bursts also produce a fluctuation of the axis of the roughly circular orbit and
this completes the description of an electron endowed with spin. If we represent the
instantaneous spin value by a vector of constant magnitude (both speed and average
radius of the spin circular orbit are constant) and randomly fluctuating direction and
we keep the first tip of this vector fixed, the second tip (arrow) of the spin vector is
uniformly distributed on a sphere. If there is an external magnetic field B, an up- or
down-spin corresponds to a distribution of the arrow on a semi-sphere whose sym-
metry axis is parallel or antiparallel to B, respectively. This is just what required for
violating the Bell inequalities and explaining the Einstein-Podolski-Rosen paradox (1),

The random electromagnetic fields of SED are considered as real (and coinciding
with the zero-point field of QED taken in realistic sense), but their effect should only

() ¥or a review of the results of SED see M. SURDIN: Ann, Inst. Henri Poincaré, 15, 203 (1971)
See also T. H. BoYER: Phys. Rev. D, 11, 790, 809 (1975).

(®) For the most recent achievements see T. H. BoYER: Phys. Rev., 18, 1238 (1978); P. CLAVERIE
and 8. DINER: Int. J. Quantum Chem., 2, Suppl. 1, 41 (1977).

(®) P. CLAVERIE and 8. DINER: Ini. J. Quantum Chem., 12, Suppl. 1, 41 (1977); P. CLAVERIE:
Proceedings of « Einstein Centennial Symposium on Fundamental Physics », edited by S. M. MOORE,
J. G. RODRIGUEZ-VARGAS, A. RUEDA and G. VIOLINI (Bogota, 1979); in Dynamical Systems and Micro-
physics, edited by A. BLAQUIERE, F. FER and A. MARZOLLO, CISM Courses and Lectures No. 261
(Springer-Verlag, New York, N. Y., 1980), p. 111; P. CLAVERIE, L. PESQUERA and F. SoTo: Phys.
Lelt. 4, 80, 113 (1980); T. W. MARSHALL and P. CLAVERIE: J. Math. Phys. (N. ¥.), 21, 1819 (1980).
(") D. HESTENES: J. Math. Phys. (N. Y.), 16, 568 (1975); 4m. J. Phys., 47, 399 (1979), and refer-
ences therein., The works of Hestenes are very important for showing in the pure cnvironment of
QM that the ground-state kinetic energy is completely determined by the electron spin even in the
Schrodinger equation. The latter represents en electron in an eigenstate of spin which, in our model,
corresponds to an isotropic distribution of spin axes (unpolarized spin).

(]) G.CAVALLERI and G. SPINELLI: Nuovo Cimento B, 39, 93 (1977); G. CAVALLERI: Nuovo Cimento B,
55, 392 (1980).

(®) A. RuEpA and G. CAVALLERI: Nuovo Cimento C, 6, 239 (1983).

(*°) A, O. BARUT and A.J. BRACKEN: Phys. Rev. D, 23, 2454 (1981); A. O, BARUT and N. ZANGHI:
Phys. Rev. Letf., 52, 2009 (1984). A motion with the velocity of light has also been introduced by
N. Curaro PETRONT and J. P. Vieier: Int. J. Theor. Phys., 18, 807 (1979) although not for spin.
These authors consider a lattice in the Minkowski space and then assume that any particle undergoes
a random walk at the speed of light between the points of the lattice. This procedure also implies
jumps towards negative times for antiparticles or, conversely, particle-antiparticle transitions.
Moreover, they do not consider the presence of external forces whose actions on such particles would
be difficult to be treated.

() I. PITOWSKY: Phys., Rev. Left., 48, 1299 (1982); Phys. Rev. D, 27, 2316 (1983).
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give the radiative corrections which are neglected in this paper. I also neglect the
radiation damping term whose dissipated power should balance, on the average, that
absorbed from the random fields of SED. In other words the flickering motion due
to the self-reaction is here considered as much more intense and as a constant, there-
fore independent of the external forces, also.

The assumed zitterbewegung (or spin motion) has already given good results for
both a gravitational theory (8) and the origin of the cosmic rays (°) and can be thought
of as given by a self-reaction although, at present, it is not explainable in classical terms.
Yet any difficulty is displaced from the atomic to the elementary-particle level. This
is satisfactory because atomic physics is governed by the well-known electromagnetic
interaction, while the structure of the elementary particles or their internal motion
like that of spin are still unknown. In any case, once assumed the spin motion all the
procedure leading to the Schridinger equation is purely classical and allows us to con-
ceive atoms intuitively by a realistic picture which is forbidden by the orthodox in-
terpretation of QM.

In this paper an unpolarized spin is considered, i.e., as said, with the arrows of the
spin axis isotropically distributed (*2). Moreover, in the present model, the electron has
a self-reaction so as to behave like a rocket with jets and has no friction. There is,
therefore, a velocity potential ¢ for the velocity <(v)>, of the centre of the spin orbit,
4.¢. for the electron mean velocity <v>, where the average is taken over a time interval
long compared to the spin revolution period 7 and short compared to an atomic revolu-
tion period 7, ~ « 27T~ 1.88-10*T. We can, therefore, write

(2) <w> =Vp.

The problem must be treated statistically by the probability density o(r, ¢) obtained,
as usual, by an ensemble average. Also all the properties of a fluid can be derived by
the kinetic theory with the use of g even if a single particle only is considered, provided
the interactions with the stochastic enviromment are taken into account. In a fluid
the interactions are due to the other molecules, while in our case of a single electron
they are due to the fields and to the effects of the random jets emitted by our rocket-
like electron. What is important is to obtain the average energy E per unit mass, in-
cluding the internal energy U. Indeed, as for a generic fluid with density o, it has been
proved (13) that the equations of motion can be derived by demanding that the action

(3) o =fdtd3¢L :fdtd3r(6t¢ LB,

be stationary.

In the following we look for E. To this aim we formalize the zitterbewegung as-
sumption by requiring that the rocketlike electron performs a stochastic motion with
mean free path 1 and a speed distribution f(v) independent of external forces and, there-
fore, constant in time. (The simplest example, in accordance with Dirac zitterbewe-
gung (1%, is that, in the absence of external forces, the electron performs a circular mo-
tion of diameter A at the speed of light e.)

(1*) For a polarized spin what is actually measured in a stochastic model is the mean square root
of the component <L§>’} of the spin angular momentum <L®)¥ along the B direction, Statistically
(L3> = <L}y = (L3> = <L'>/3 and that is why the absolute valuc of the spin is +/3 times the
observable component, thus explaining a QM result.

(**) R. L. SELIGER and G. B. WHITHAN: Proc. R. Soc. London, Ser. 4, 305, 1 (1968); E. A. SPIEGEL:
Physica (Utrecht) D, 1, 236 (1980).
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If there is a concentration gradient Vg a diffusion flow is present. In the case of
plane symmetry with o(r, f) on a plane « and ¢(r — A, t — A/v) on another plane paral-
lel to « and a mean free path A apart from «, the net current density flow J perpen-
dicular to « is given by the mean value J, (due to drift or inertia) plus the difference
between the diffusion flows between the two planes and due to the different o

(4) J =dJo + [e(r— A t— Afv) — o(r, D)]v,

the absolute value v of the velocity being assumed constant. A first-order expansion gives
(5) olr — A t— Afv) ~ o(r,t) — A-Vo— (Aw) d,0.

The contribution of the last term in the very short time /v is negligible and (5) in (4) gives
(6) J =Jd,— oA Vp.

In the general case, instead of considering the net effect due to the two opposite
flow densities coming from the two parallel planes, we take a sphere of radius 1 and
we consider the contributions due to the free flights coming from the sphere surface

2r

dy [ do
(7) Jir) =J, +f %f? sin fp(r — A, t — Afv)v.
0

0

Still by (5), where the last term is neglected and assuming the direction of Vp as the
symmetry axis from which the nutation angles 8 of v= v (isin 0 cos v 4 jsin 0 sin v +
+ k cos 8) are measured, we get, since Vp is parallel to v,

(8) Jury=J, —fd@% sin fvicostOVp =J,— +wVp,
0

Ag in the kinetic theory of gases we denote by D* the coefficient of Vp:
(9) D* =1,

In a Brownian motion D* = D, where D = (Ay®/2At¢ is the transversal-diffusion
coefficient, At being a convenient time interval (). In our non-Markovian stochastic
process with infinite memory (J, in eq. (8) depends on all the preceding history) {Ay2> «
oc (A)? and the diffusion coefficient would depend on At. We call D* inertial spreading
coefficient which turns out to be constant because v = const. With a velocity distri-
bution function depending on external forces D* would be no longer a constant. Con-
sequently, the assumption of the zitterbewegung plays a fondamental role.

Let us now consider a second equal volume dV, adjacent to that considered dV,
above and along the Vp dircction. In a Brownian motion the J relevant to this second
elementary volume would differ from the value (8) by infinitesimal terms. On the con-

(%) M. LAX: Rev. Mod. Phys., 38, 359, 541 (1966).
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trary, in our motion with inertia the diffusion effect in the first volume is remembered
in the second and we have

(10) J, =J;— D*Vo = (J,— D*Vp)— D*Vp = J,— 2D*Vp.

In other words, the pure effect of the diffusion due to the concentration gradient is
the same as for AV, but the average value J, in its surroundings is different from that J,
of dV,. The reason is the absence of friction which implies a motion by inertia with
a consequent memory in a cell dV, of what occurred in the nearby cell dV;.

Consequently, if we consider an elementary volume including the two considered
volumes we have an average diffusion inside it. Let {wv)> be the centre-of-mass velocity
of the probability relevant to this elementary volume. We recall that (v) is obtained
by an ensemble average and is not the actual velocity » of the particle. If (w,) =
= J,— D*Vp is the ensemble average velocity of the first volume dV, and {v,> =
= J, — 2D*Vp the ensamble average velocity of dV, and, if dV, =dV,, it is

(11) o{v> = ho((vy> + (v)) =J,— 1.5D*Vp.

The diffusion velocity relevant to this centre-of-mass system is, therefore, 0.5 D*Vp
for the first volume AV, and — 0.5D*Vp for the second volume dV,. The constant
0.5 D* depends on our choice of a single mean free path for the lengths of both dV;
and dV,. This should be proved by solving the relevant Boltzmann equation with
an expansion of ¢(r, v) in Legendre polynomials fruncated after three terms, at least.
The usual P, approximation (two terms) confirms the choice of a single A for the dif-
fusion current given by (8). In any case, we can write for the ensemble relative velocity
{(v,> = {vy) — <v) of the centre of mass of dV,; with respect to the centre-of-mass
velocity (v) of dV,; 4 dV,

(12) {w,> = OVgle,

where C is an unknown constant (like 2 and D*). The same expression with reversed
sign holds for (w_,> = <v,> — <{v).

Consequently, the kinetic energy of the volume dV = dV,; + dV,, which is equal
to the translational kinetic energy (as if all the masses have the centre-of-mass velocity)
plus the kinetic energy relative to the centre of mass (Konig’s theorem), can be written as

2 G 2
(13) Zbd37'<v>2+ﬁedﬁ gV@ +7£ed3f‘z — =-Ve) ,
2 4 0 4 0

where only averaged guantitics are considered because they are the only ones which
are observed, as in the motion of a generic fluid for which eq. (3) applies.

Again note that the second and third terms of eq. (13) would disappear in a Brow-
nian motion since the local average velocity (»> already includes the diffusion velocity
which differs by a negligible amount for two adjacent elementary volumes whose
centres are separated by some mean free paths A.

If the external, macroscopic force F(r) per unit mass is conservative and can, there-
fore, be written as mped3»F = — mgd3 VV the total energy of the considered volume
is given by

1 1{C 2
(14) me d3r [—2— o2y + 5(- V@) + V] = mod3r¥ ,
e
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which is equal to that of a fluid with internal energy per unit mass U = 2-1(CVp/g)?
given by the kinetic energy relative to the centre of mass.

Having obtained the total, average energy £ per unit mass, we vary (3) with the ¥
given by (14).

If we use (2) and set the functional derivative of . with respect to ¢ equal to zero,
t.6. OL/op — 0,[0L/0(d,9)] = 0 with 94 = 9/0xs and « = 0, 1, 2, 3, which in our case
reduces to 2,[0L/0(0,9)] + 9,[0L/3(8,9)] = 0 with s =1, 2, 3 we obtain

(15) 20+ V- (V) =0.

This is the continuity equation expressing the conservation of the particles number
and which could, therefore, be obtained also directly.
Setting the functional derivative of & with respect to ¢ equal to zero gives

1 1 (Vo\2 V2
(16) 9t¢+~(V¢)2+V+02[—(—9) __Q] -0
2 2\ ¢ 0

By the transformation ¢ = ot exp [ip/20] it is easy to show that eqs. (15) and (16)
are equivalent to the complex equation

(17) — 0?Viy - »V /2 =108y,

which is equal to the Schrodinger equation provided ¢ = #/2m. The value of the con-
stant has to be assumed, as ScHRODINGER did, to get agreement with experiments.

The central point of this derivation is the diffusion current with respect to the local
centre of mass. This has never been understood by the authors who tried to derive the
Schrodinger equation by a stochastic model. Indeed all speak of a diffusion current
— DV with respect to the laboratory, which is meaningless in our motion by inertia,
where a velocity with respect to the laboratory depends on all the preceding history
of the particle. Moreover, once introduced the mean local velocity there is no longer
a place for another local velocity with respect to the laboratory. Finally, it is the dif-
fusion around the local centre of mass with a velocity proportional to what is known as
diffusion velocity which justifies, via Konig’s theorem, the local statistical independence
of (v> with respect to - OVp. This was assumed without reason by Santos (13) who
already wrote the variational principle (3). Moreover, SaNTOS considered a Brownian
stochastic process which cannot avoid friction.

In principle, although no author used it, the diffusion around the local centre of
mass conld be used in stochastic electrodynamics (SED) whose process allows a motion
by inertia. However, the inertial spreading coefficient given by (9) and therefore the ¢
appearing in (12)-(14) are constant in SED only for linear forces and that is why SED
gives good results for linear problems but fails for nonlinear ones. To show this, let us
consider a local accelerated observer § fixed to the local centre of mass €, of an elemen-
tary probability cloud ¢ 8§V and apply the virial theorem to the particles of the ensemble
around C,, and inside 8V. In O, there is perfect balance between ma and the external

(1%) E. SANTOS: Nuovo Oimento B, 59, 65 (1969). Also P. D. RASKIN: Found. Phys., 8, 31 (1978)
had similar ideas. He, too, uses a Brownian motion and, in spite of the presence of friction, he considers
a conserved internal kinetic energy which he subtracts from (instead of adding to) the other energies.
Moreover, he uses different variations andh is resultant eq. (24¢) misses the term (C /g/o)?, so that
his eqs. (24a) and (24b) are not equivalent to the Schrddinger equation.
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force F(Cy). In a point 8§r apart from O, the force is F= F(C,,) + 8r- VF. What is ef-
fective in 8 is F— ma = 3r- VF, which for a linear F= — Ar is still linear, so that its
local energy is <4 &r%/2> to be equated to the local kinetic energy which, for fixed
(872>, turns out to be independent of the distance from the attractive centre. For
nonlinear systems K = {8r%(0F/or)/2>, where 0F/0r depends on r. For a Coulomb
force aF/dr «c r—2 and K would strongly depend on 7, hence on ¢. That is why the results
of SED without zitterbewegung are different from those of QM for nonlinear systems.

The assumption of the zitterbewegung as a stochastic motion without friction and
with a time-independent velocity distribution has led to the Schrodinger equation (17).
However, for getting full agreement with nonrelativistic guantum mechanics we must
add the theory of measurement. To this regard, it is not usually emphasized that there
are two kinds of observations, one perturbing and the other nonperturbing the system
under examination. For instance the observations of spontaneous decays (either of
excited atoms or of radioactive nuclei) are nonperturbing. Indeed in this case the ob-
server simply counts the emitted particles whose emission rate is independent of the
distance between the source and the detectors. On the contrary in the stimulated
decay the observer sends some particles into the system and we do not have in nature
something less perturbing than a photon or an electron to observe another electron.
The above point of view, typical of SED and in general of all classical physics, coin-
cides with the probabilistic interpretation (1¢) of QM which avoides the paradoxes like
Schrodinger’s cat. In this case it is not the observation which makes the state super-
position of alive and dead cats precipitate on a given pure state. We simply have a
probability of having the cat either alive or dead even before the measurement. The
latter simply ascertains what there is already.

The other requirements to get agreement with QM are automatically satisfied, since
we have constructed » so that yy* = ¢ and ¢ is our starting quantity. Being ¢ a prob-
ability density it is obviously normalized, i.e. fd37ww* =1, Since u is not observ-
able, the other postulates of von Neumann are unnecessary.

(1) R.G. NEwTON: Am. J. Phys., 42, 1029 (1980).



