
LETTERE AL NUOVO CIMENTO VOL. 43, ~.  6 16 Lug l io  1985 

Schriidinger's Equation as a Consequence of Zitterbewegung. 

G. CAVALL]~RI 

I s t i t u t o  d i  M a t e m a t i c a  dell '  U n i v e r s i t h  Cat to l ica  - B r e s c i a  

C . I . S . E .  - Segra te  ( M i l a n o ) ,  I t a l i a  

( r icevuto  il 3 Apr i l e  1985) 

PACS.  05.40. - F l u c t u a t i o n  p h e n o m e n a ,  r a n d o m  processes  a n d  B r o w n i a n  m o t i o n .  

S u m m a r y .  - T he  Sch rSd inge r  e q u a t i o n  is de r i ved  a s s u m i n g  t h a t  a n y  p a r t i c l e  is 
sub j ec t  to  a f l icker ing  m o t i o n  ( z i t t e rbewegung)  i n d e p e n d e n t  of e x t e r n a l  forces.  T h e  
m o t i o n  s h o u l d  be  as t h a t  of a r o c k e t  e m i t t i n g  r a n d o m  b u r s t s  of j e t s  w i t h  i so t rop ic  
d i s t r i b u t i o n  a n d  also s u b j e c t  to  t h e  e x t e r n a l ,  d e t e r m i n i s t i c  forces.  

I n  t h e  p a s t  t h e r e  h a v e  b e e n  two  a t t e m p t s  to  o b t a i n  t h e  S c h r 6 d i n g e r  e q u a t i o n  b y  a 
classical  s t o c h a s t i c  process  (1). 

The  f i rs t  a t t e m p t  is due  to  NnLSO~ (2) w h o  a s s u m e d  a B r o w n i a n  s t o c h a s t i c  p rocess  
for  a n y  pa r t i c l e .  Howeve r ,  t h i s  p rocess  h a s  a w h i t e  spec t r a l  d e n s i t y  and ,  t he re fo re ,  i t  
c a n n o t  b e  f r i e t ion less  b e c a u s e  of t h e  f l u c t u a t i o n - d i s s i p a t i o n  t h e o r e m  and ,  m a i n l y ,  
because  a n y  c h a r g e d  osc i l la tor  (l ike a n  e l ec t ron  m o v i n g  a r o u n d  a nuc leus)  w i t h  c h a r g e  e, 
mass  m, p r o p e r  f r e q u e n c y  ~00, b a r i c e n t r i e  v e l o c i t y  v is s u b j e c t  to  a f r i c t i on  force  F~ 
g i v e n  b y  t h e  E i n s t e i n - H o p f  f o r m u l a  (8) 

(i) F~ = - ~ 2 v e 2 ( m c 2 ) - i  [G(w0) --  �89 

W i t h  G((o0) = c o n s t a n t ,  eq. (1) g ives  a b r a k i n g  force.  C o n s e q u e n t l y ,  t h e  v e l o c i t y  of 
a c h a r g e d  osc i l la tor  shou ld  dec rease  e x p o n e n t i a l l y  w i t h  t i m e  a n d  we could  n o t  h a v e  
a m o t i o n  b y  ine r t i a .  I n  o rde r  to  o v e r c o m e  t h i s  d r a w b a c k  N~LSON h a d  to  a s s u m e  a n  
e q u a t i o n  of m o t i o n  d i f fe ren t  f rom N e w t o n ' s  a n d  i m p l y i n g  f o r w a r d  a n d  b a c k w a r d  
de r iva t i ve s .  T h i s  is n o t  c lass ical  phys i c s  a n d  Ne l son ' s  a t t e m p t  h a s  on ly  to  b e  con-  
s ide red  as a m a t h e m a t i c a l  c o n n e c t i o n  b e t w e e n  Sch rSd inge r  e q u a t i o n  a n d  o t h e r  ad  hoc 

p o s t u l a t e d  e q u a t i o n s  (8). 

(i) I disregard all the attempts in which an imaginary time or other imaginary quantities are 
introduced at the beginning. 
(3) E.  1N'ELSON: Phys. Rev., 150, 1079 (1966). 
(8) See C. CAVALLERI: Phys. Rev. D, 23, 363 (1981), where also a criticism of stochastic mechanics 
and in particular of the paper of ref. (~) is given. An extension of eq. (1) to a free charge has 
been obtained by A. RUEDA: Phys. Rev. _4, 23, 2020 (1981). 
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The second a t tempt  was fraught with a great hope because starting from a funda- 
mental  theory called stochastic electrodynamics (4) (SED). Its spectral density is 
proportional to ~os (where ~o is the angular frequency) and is the only one to be rela- 
t ivistically invar iant  and therefore allowing a motion by inertia. This can also be veri- 
fied by eq. (1) because, for G(~o) oc ws it is Fi ~ 0 (note tha t  any other spectrum gives 
F~ r 0). SED gives results in agreement with quan tum mechanics (QM) and even with 
quan tum eleetrodynamics (QED) for all the linear systems (5). However, it  fails in 
the case of nonlinear systems (s). 

The stochastic process proposed in this paper is given by the zitterbewegung (as 
foreseen in Dirac's theory and also in Pauli 's) together with the transverse energy (3,7) 
of QED. A macroscopic model of it can be obtained by ~ rocket having a main jet per- 
pendicular to the velocity v~ so that ,  by this jet only, it would perform a circular orbit. 
But  the rocket has also many  other nozzles with almost isotropic directions emitting 
random bursts  which produce a diffusive motion for the centre of the orbit which is 
no longer a perfect circle. The absolute value [v~l of the velocity is taken to be con- 
s tant  (and equal to the light speed for the electron (s.~0)) and the diffusive motion of 
the centre of the perturbed orbit is equivalent  to the transverse energy of QED. The 
random bursts also produce a fluctuation of the axis of the roughly circular orbit and 
this completes the description of an electron endowed with spin. If we represent the 
instantaneous spin value by a vector of constant  magnitude (both speed and average 
radius of the spin circular orbit are constant) and randomly fluctuating direction and 
we keep the first tip of this vector fixed, the second tip (arrow) of the spin vector is 
uniformly distributed on a sphere. If there is an external magnetic field B, an up- or 
down-spin corresponds to a distribution of the arrow on a semi-sphere whose sym- 
metry ~xis is parallel or antiparallel to B, respectively. This is just  what  required for 
violating the Bell inequalities and explaining the Einstein-Podolski-Rosen paradox (~). 

The random electromagnetic fields of SED are considered as real (and coinciding 
with the zero-point field of QED taken in realistic sense), bu t  their effect should only 

(~) Fo r  a r e v i e w  of the  resu l t s  of S ED see M. SURDIN: A n n .  I n s t .  H e n r i  Poincard,  15, 203 (1971) 
See also T. I t .  BORER: P h y s .  Rev.  D ,  ][], 790, 809 (1975). 
(5) For  t he  m o s t  r e c e n t  a c h i e v e m e n t s  see T. H.  BOYER: P h y s .  Rev . ,  18, 1238 (1978); P.  CLAVEnIE 
a n d  S. DINER: I n t .  J .  Q u a n t u m  Chem. ,  2, Suppl .  1, 41 (1977). 
(~) P.  CI, AVERIE an d  S. DINER: I n t .  J .  Q u a n t u m  Chem. ,  12, Suppl .  1, 41 (1977); P.  CLAVE~IE: 
Proceedings  o] (( E i n s t e i n  Centennia l  S y m p o s i u m  on F u n d a m e n t a l  P h y s i c s  ,>, ed i t ed  b y  S. M. MOORE, 
J .  G. I~ODRIGIYEZ-VAI~GAS, 2~. RITEDA a n d  G. VIOLINI (Bogoth,  1979); in D y n a m i c a l  ~ys t ems  and  Micro-  
~)hysics, ed i t ed  b y  A. BLAQUIERE, F. FEB a n d  A. MARZOLLO, CIS1V[ Courses a n d  L e c t u r e s  No. 261 
(Spr inger -Ver lag ,  N e w  York ,  N. Y. ,  1980), p. 111; P.  CLAVERIE, L.  PESQUERA a n d  F. SOTO: P h y s .  
Zet t .  21, 80, 113 (1980); T.  "~V. MARSHALL a n d  P. CLAVERIE: J .  M a t h .  P h y s .  (N. Y.),  21, 1819 (1980). 
(7) I). I~IESTENES: ft. M a t h .  P h y s .  (N .  Y . ) ,  16, 568 (1975); .4m.  J .  P h y s . ,  47, 399 (1979), a n d  refer-  
ences  the re in .  The  works  of H e s t e n e s  are  v e r y  i m p o r t a n t  for showing  in the  pu re  e n v i r o n m e n t  of 
QM t h a t  the  g r o u n d - s t a t e  k ine t i c  e n e r g y  is c o m p l e t e l y  d e t e r m i n e d  b y  the  e l ec t ron  spin e v e n  iu  the  
Sch r6d inge r  equa t ion .  The  l a t t e r  r ep re sen t s  en  e l ec t ron  in an  e igens t a t e  of Spill which ,  in  our  model ,  
co r re sponds  to  all i sot ropic  d i s t r i bu t ion  of spin axes  (unpo la r i zed  spin).  
(s) G. CAVALLERI an d  G. SI'INELLI: ~Vuovo Cimento  B, 39, 93 (1977); G. C~VALI,ERI: N u o v o  Cimento B,  
$$, 392 (1980). 
(9) A.  RUEDA and  G. CAVALLERI: NUOVO Cimento  C, 6, 239 (1983). 
(10) A . O .  BARUT and  A. J .  BRACKEN: P h y s .  Rev.  D ,  23, 2454 (198]) ;  A. O. BARUT a n d  lX T. ZANGHI: 
P h y s .  Rev .  Le t t . ,  $2, 2009 (1984). A m o t i o n  w i t h  the  ve loc i t y  of l igh t  has  also been  i n t r o d u c e d  b y  
~ .  CUFAI~O PETRONI and  $. P.  VIGIER: I n t .  J .  Theor .  P h y s . ,  18, 807 (1979) a l t h o u g h  n o t  for  spin. 
These a u t h o r s  cons ider  a l a t t i ce  in the  Minkowski  space  a n d  t h e n  a s s u m e  t h a t  a n y  par t i c le  u n d e rg o es  
a r a n d o m  w a l k  a t  the  speed  of l igh t  b e t w e e n  the  po in ts  of the  la t t ice .  This  p ro ced u re  also impl ies  
j u m p s  t o w a r d s  n e g a t i v e  t ime s  for an t ipa r t i c l e s  or, converse ly ,  pa r t i c l e - an t i pa r t i c l e  t r ans i t ions .  
Moreove r ,  t h e y  do no t  cons ider  the  presence  of e x t e r n a l  forces whose  ac t ions  on such par t i c les  would  
be difficult  to  be t r e a t e d .  
(H) I .  PITOWSKu P h y s .  Rev.  Let t . ,  48, 1299 (1982); P h y s .  Rev.  D ,  27, 2316 (1983). 
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give  t h e  r a d i a t i v e  co r rec t ions  w h i c h  are  neg l ec t ed  in  t h i s  pape r .  I also neg lec t  t h e  
r a d i a t i o n  d a m p i n g  t e r m  whose  d i s s i p a t e d  power  s h o u l d  ba lance ,  on  t h e  average ,  t h a t  
a b s o r b e d  f rom t h e  r a n d o m  fields of SED.  I n  o t h e r  words  t h e  f l icker ing  m o t i o n  due  
to  t he  se l f - reac t ion  is he re  cons ide red  as m u c h  more  i n t e n s e  a n d  as a c o n s t a n t ,  t he re -  
fore i n d e p e n d e n t  of t h e  e x t e r n a l  forces,  also. 

The  a s s u m e d  z i t t e r b c w e g u n g  (or sp in  m o t i on )  ha s  a l r e ady  g i v e n  good  r e su l t s  for  
b o t h  a g r a v i t a t i o n a l  t h e o r y  (s) a n d  t h e  or ig in  of t h e  cosmic  r ays  (9) a n d  can  be  t h o u g h t  
of as g iven  b y  a se l f - reac t ion  a l t h o u g h ,  a t  p r e sen t ,  i t  is n o t  e x p l a i n a b l e  in  classical  t e rms .  
Ye t  a n y  dif f icul ty  is d i sp laced  f r o m  t h e  a t o m i c  to  t h e  e l e m e n t a r y - p a r t i c l e  level .  Th i s  
is s a t i s f a c t o r y  becaus e  a t o m i c  phys i c s  is g o v e r n e d  b y  t h e  w e l l - k n o w n  e l e c t r o m a g n e t i c  
i n t e r a c t i o n ,  whi le  t h e  s t r u c t u r e  of t h e  e l e m e n t a r y  pa r t i c l e s  or t h e i r  i n t e r n a l  m o t i o n  
l ike t h a t  of sp in  a re  sti l l  u n k n o w n .  I n  a n y  case, once  a s s u m e d  t h e  sp in  m o t i o n  all  t h e  
p r o c e d u r e  l ead ing  to  t h e  SchrSd inge r  e q u a t i o n  is p u r e l y  classical  a n d  al lows us to  con- 
ceive a t o m s  i n t u i t i v e l y  b y  a rea l i s t i c  p i c t u r e  w h i c h  is f o r b i d d e n  b y  t h e  o r t h o d o x  in- 
t e r p r e t a t i o n  of QM. 

I n  t h i s  p a p e r  a n  u n p o l a r i z e d  sp in  is cons idered ,  i . e . ,  as said,  w i t h  t h e  a r rows  of t h e  
sp in  axis  i so t rop ica l ly  d i s t r i b u t e d  (~2). Moreover ,  in  t h e  p r e s e n t  mode l ,  t h e  e l ec t ron  h a s  
a se l f - reac t ion  so as to  b e h a v e  l ike a r o c k e t  w i t h  j e t s  a n d  h a s  no  f r ic t ion .  T h e r e  is, 
the re fore ,  a ve loc i t y  p o t e n t i a l  ~v for  t h e  ve loc i t y  <v>, of t h e  c e n t r e  of t h e  sp in  o rb i t ,  
i . e .  for  t h e  e l ec t ron  m e a n  ve loc i t y  <v>, w h e r e  t h e  a v e r a g e  is t a k e n  ove r  a t i m e  i n t e r v a l  
long  c o m p a r e d  to  t h e  spin  r e v o l u t i o n  p e r i o d  T a n d  s h o r t  c o m p a r e d  to  a n  a t o m i c  r evo lu -  
t i on  pe r iod  T~ ~ ~-e T_~ 1.88.104 T. W e  can,  t he re fo re ,  wr i t e  

(2) <v> = Vq~. 

The  p r o b l e m  m u s t  be  t r e a t e d  s t a t i s t i c a l l y  b y  t h e  p r o b a b i l i t y  d e n s i t y  ~(r, t) o b t a i n e d ,  
as usua l ,  b y  a n  e n s e m b l e  ave rage .  Also  all  t h e  p r o p e r t i e s  of a f lu id  c a n  be  de r i ved  b y  
t h e  k ine t i c  t h e o r y  w i t h  t h e  use  of ~ e v e n  if a s ingle pa r t i c l e  on ly  is cons idered ,  p r o v i d e d  
t h e  i n t e r a c t i o n s  w i t h  t h e  s t o c h a s t i c  e n v i r o m m e n t  a re  t a k e n  i n to  accoun t .  I n  a f lu id  
t h e  i n t e r a c t i o n s  a re  due  to  t h e  o t h e r  molecules ,  whi le  in  ou r  case of a s ingle e l ec t ron  
t h e y  are  due  to  t h e  fields a n d  to  t h e  effects  of t h e  r a n d o m  je t s  e m i t t e d  b y  our  rocke t -  
l ike  e lec t ron .  W h a t  is i m p o r t a n t  is to  o b t a i n  t h e  a v e r a g e  e n e r g y  E p e r  u n i t  mass ,  in-  
c lud ing  t h e  i n t e r n a l  e n e r g y  U. I n d e e d ,  as for  a gener ic  f lu id  w i t h  d e n s i t y  e, i t  h a s  b e e n  
p r o v e d  (13) t h a t  t h e  e q u a t i o n s  of m o t i o n  can  b e  de r i ved  b y  d e m a n d i n g  t h a t  t h e  ac t ion  

<3) d =fdtd+  + 

be  s t a t i o n a r y .  
I n  t h e  fo l lowing  we look for  E .  To t h i s  a im we fo rmal i ze  t h e  z i t t e r b e w e g u n g  as- 

s u m p t i o n  b y  r e q u i r i n g  t h a t  t h e  r o c k e t l i k e  e l ec t ron  p e r f o r m s  a s t o c h a s t i c  m o t i o n  w i t h  
m e a n  free p a t h  2 a n d  a speed  d i s t r i b u t i o n / ( v )  i n d e p e n d e n t  of e x t e r n a l  forces  and ,  t h e r e -  
fore,  c o n s t a n t  in  t ime .  (The s imp le s t  example ,  in  a c c o r d a n c e  w i t h  D i r a c  z i t t e rbewe-  
g u n g  (10), is t h a t ,  in  t h e  a b s e n c e  of e x t e r n a l  forces,  t h e  e l ec t ron  p e r f o r m s  a c i r cu la r  mo-  
t i o n  of d i a m e t e r  ~ a t  t h e  speed  of l i gh t  c.) 

(1~) For a polarized spin what is actually measured in a stochastic model is the mean square root 
of the component <L~>�89 of the spin angular momentum <L2>�89 along the B direction. Statistically 
<L~> = <L~> = <L~> = <L~)/3 and tha t  is why the absolute valuc of the spin is ~/~ times the 
observable component, thus explaining a Q1VI result. 
(Ia) ~. L. SELIGEI~ and G. B. ~VnITIIAN: Proc.  R .  Soc. London,  Scr. A ,  305, 1 (1968); E. A. SPIEGEL: 
t )hys i ca  (Utrecht) D, :l, 236 (1980). 
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I f  there  is a concen t ra t ion  g rad ien t  V e  a diffusion flow is present .  In  the  case of 
p lane  s y m m e t r y  w i t h  e(r,  t) on a p lane  ~ and  e ( r  - -  X, t - -  2/v) on ano the r  p lane  paral-  
lel to  a and  a m e a n  free p a t h  2 apa r t  f rom ~, t he  ne t  cur ren t  dens i ty  flow J perpen-  
dicular  to ~ is g iven  by  the  m e a n  va lue  J0 (due to dr i f t  or iner t ia)  plus the  difference 
be tween  the  diffusion flows be tween  the  two planes  and due to t he  different  

(4) J = J0 + [Q(r--  A, t - -  2 / v ) - -  e(r, t ) ] v ,  

t he  absolu te  va lue  v of the  ve loc i ty  being assumed cons tant .  A f i rs t -order  expans ion  gives 

(5) e ( r -  X, t -  A/v) ~_ e(r, t ) -  ) , . r e -  (2/v)~e.  

The  con t r ibu t ion  of t he  las t  t e r m  in t he  v e r y  shor t  t i m e  2/v is negl igible  and (5) in (4) gives 

(6) J = Jo --  vX. V ~ .  

In  the  genera l  case, ins tead  of consider ing the  ne t  effect due to the  two oppos i te  
f low densit ies coming  f rom the  two para l le l  planes,  we t ake  a sphere of radius  A and  
we consider  t he  con t r ibu t ions  due  to the  free fl ights coming  f rom the  sphere surface 

(7) 
f d~ c a 0  

Jx(r) = J o  + j  v J 2  s i n O e ( r -  X, t - -  2 / v ) v .  

0 o 

Still  by  (5), where  the  last  t e r m  is neg lec ted  and  assuming the  di rect ion of V~ as the  
s y m m e t r y  axis f rom which  the  n u t a t i o n  angles 0 of v = v (i sin 0 cos ~ + j  sin 0 sin y~ -- 
+ k cos 0) are measured ,  we get ,  since ~7~ is para l le l  to v, 

(8) L(r) = Jo --/dO ~ sin 0 v~ cos~ 0 V e = Jo --  ~ ~vV e .  
o 

As in t he  k ine t ic  t h e o r y  of gases we denote  by  D* the  coefficient of V~: 

(9) D* = ~ Av . 

In  a Brown ian  mot ion  D* = D,  where  D = ( A y e ) / 2 A t  is the  t ransversa l -d i f fus ion 
coefficient, At be ing  a conven ien t  t i m e  in t e rva l  (14). In  our  non-Markov ian  s tochast ic  
process wi th  infini te  m e m o r y  (Jo in eq. (8) depends  on all the  p reced ing  his tory)  (Ay 2) oc 
oc (At) 2 and the  diffusion coefficient wou ld  depend  on At. W e  call  D* iner t ia l  spreading  
coefficient which tu rns  ou t  to be cons tan t  because  v = const.  W i t h  a ve loc i ty  distri-  
bu t ion  func t ion  depending  on ex te rna l  forces D* would  be no longer  a constant .  Con- 
sequent ly ,  t he  a s sumpt ion  of t he  z i t t e rbewegung  plays  a f o n d a m e n t a l  role. 

L e t  us now consider  a second equa l  v o l u m e  dV2 ad jacen t  to t h a t  considered dV1 
above  and a long the  Ve  di rect ion.  I n  a Brownian  mot ion  the  J r e l evan t  to this second 
e l emen ta ry  v o l u m e  would  differ f rom the  va lue  (8) by  inf ini tes imal  terms.  On the  con- 

(14) 1~. LAX~ Rev.  3 iod .  P h y s . ,  38,  359,  541 (1966).  
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trary, in our motion with inertia the diffusion effect in the first volume is remembered 
in the second and we have 

(10) = ~ - -  D*Ve = ( ~ - -  D * V e ) - -  D*Ve = ~ - - 2 D * V e .  

In other words, the pure effect of the diffusion due to the concentration gradient  is 
the same as for dV 1 , but  the average value J0 in its surroundings is different from that  J0 
of dV1. The reason is the absence of friction which implies a motion by inertia with 
a consequent memory in a cell dV~ of what  occurred in the nearby cell dV~. 

Consequently, if we consider an elementary volume including the two considered 
volumes we have an average diffusion inside it. Let  <v> be the centre-of-mass velocity 
of the probabili ty relevant  to this e lementary volume. We recall that  <v> is obtained 
by an ensemble average and is not the actual velocity v of the particle. If  <v~> = 
= J o - D * V e  is the ensemble average velocity of the first volume dV 1 and <v~> = 
= J o -  2 D * V e  the ensamble average velocity of dVz and, if dV~ ~--dV~, it  is 

(11) ~<v> = �89 + <v2> ) = J o - 1 . 5 D * V e .  

The diffusion velocity relevant  to this centre-of-mass system is, therefore, 0 .5D*Ve 
for the first volume dV1 and - - 0 . 5 D * V  e for the second volume dV2. The constant 
0.5D* depends on our choice of a single mean free path  for the lengths of both dV~ 
and dV 2. This should be proved by solving the relevant  Bol tzmann equation with 
an expansion of e(r, v) in Legendre polynomials t runcated after three terms, at  least. 
The usual P1 approximation (two terms) confirms the choice of a single ~ for the dif- 
fusion current given by (8). In any case, we can write for the ensemble relative velocity 
<Vrl> = (V  1 > -  <V> of the centre of mass of dV 1 with respect to the centre-of-mass 
velocity <v> of d V  1 -~ dV~ 

(12) <Vrl> = c V e / e ,  

where C is an unknown constant (like 2 and D*). The same expression with reversed 
sign holds for <vro.> = <v2> -- <v>. 

Consequently, the kinetic energy of the volume dV = dV1 -? dV2, which is equal 
to the translational kinetic energy (as if all the  masses have the centre-of-mass velocity) 
plus the kinetic energy relative to the centre of mass (KSnig's theorem), can be wri t ten as 

) 3 C 2 
(13) -2md3r<v> ~ d - - ~ e d r l  Ve ~ - ~ V e  , 

where only averaged quantit ies are considered because they are the only ones which 
are observed, as in the motion of a generic fluid for which eq. (3) applies. 

Again note tha t  the second and third terms of eq. (13) would disappear in a Brow- 
nian motion since the local average velocity <v> already includes the diffusion velocity 
which differs by a negligible amount  for two adjacent  elementary volumes whose 
centres are separated by some mean free paths 2. 

If the external,  macroscopic force F(r) per uni t  mass is conservative and can, there- 
fore, be writ ten as m e  d 3 r F  = -  m e darVV the total  energy of the considered volume 
is given by 

] (14) med3r <v ~> + ~  Ve + V  = m  ed~rE,  
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which is equal to tha t  of a fluid with internal  energy per unit mass U = 2-1(CVe/e) 2 
given by the kinetic energy relative to the centre of mass. 

Having obtained the total,  average energy E per unit  mass, we vary (3) with the E 
given by (14). 

If we use (2) and set the functional der ivat ive of ~r with respect to ~ equal to zero, 
i.e. ~ L / 8 9 - - ~ a [ S L / 8 ( S a ~ ) ]  = 0 with ~ = 8/Sx~ and a = 0, 1, 2, 3, which in our case 
reduces to ~t[SL/5(~tg)] + ~[SL/0(~,~)] = 0 with s = 1, 2, 3 we obtain 

(15) e~e + V . ( e V ~ )  = 0 .  

This is the cont inui ty equation expressing the conservation of the particles number 
and which could, therefore, be obtained also directly. 

Sett ing the functional derivat ive of ~r with respect to e equal to zero gives 

(16) ~t~ + ~ ( V ~ )  2 + V + C~ - = 0 .  
L 2 \  e l  

By the t ransformation ~ = el exp [iq~/2C] it is easy to show that  eqs. (15) and (16) 
are equivalent  to the complex equation 

(17) - -  C2V2 V + ~fV/2 = iC~ty~ , 

which is equal to the Schr5dinger equation provided C = h/2m.  The value of the con- 
stant  has to be assumed, as SCHI~6DI~G~R did, to get agreement with experiments. 

The central  point  of this derivation is the diffusion current with respect to the local 
centre of mass. This has never been understood by the authors who tried to derive the 
SchrSdinger equation by a stochastic model. Indeed all speak of a diffusion current 
- -  D V  e with respect to the laboratory, which is meaningless in our motion by inertia, 
where a veloci ty with respect to the laboratory depends on all the preceding history 
of the particle. Moreover, once introduced the mean local velocity there is no longer 
a place for another local velocity with respect to the laboratory. Finally, i t  is the dif- 
fusion around the local centre of mass with a veloci ty proportional to what  is known as 
diffusion velocity which justifies, via  K6uig's theorem, the local statistical independence 
of <v) with respect to • CVe. This was assumed without  reason by SANTOS (15) who 
already wrote the variat ional  principle (3). Moreover, SAwTos considered a Brownian 
stochastic process which cannot avoid friction. 

In principle, al though no author used it, the diffusion around the local centre of 
mass could be used in stochastic electrodynamies (SED) whose process allows a motion 
by inertia. However, the inertial spreading coefficient given by (9) and therefore the C 
appearing in (12)-(14) are constant in SED only for linear forces and that  is why SED 
gives good results for linear problems but  fails for nonlinear ones. To show this, let us 
consider a local accelerated observer S fixed to the local centre of mass C~ of an elemen- 
tary  probabil i ty cloud e 8V and apply the virial theorem to the particles of the ensemble 
around C~ and inside 8V. In CM there is perfect balance between m a  and the external 

(15) E.  SANTOS: Nuovo Cimento B, 59, 65 (1969). Also P .  D.  I~ASKIN: Found. Phys., 8, 31 (1978) 
h a d  s i m i l a r  ideas .  H e ,  too,  u ses  a B r o w n i a n  m o t i o n  and ,  in  sp i t e  of t h e  p resence  of f r i c t ion ,  he cons iders  
a c o n s e r v e d  i n t e r n a l  k i n e t i c  e n e r g y  wlfich he s u b t r a c t s  f r o m  ( in s t ead  of a d d i n g  to) t he  o the r  energ ies .  
M o r e o v e r ,  he  uses  d i f f e r e n t  v a r i a t i o n s  a n d h  is r e s u l t a n t  eq.  (24a) mi s se s  t h e  t e r m  (C AQ/~) ~, so t h a t  
h is  eqs .  (24a) a n d  (24b) a re  not e q u i v a l e n t  to  t he  S e h r b d i n g e r  e q u a t i o n .  
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force F(CM). In  a po in t  ~r  apa r t  f rom C M the  force is F =  F(CM) ~- ~r" VF. W h a t  is ef- 
fec t ive  in S is F - -  m a  = 3r. V F ,  which  for a l inear  F =  A r  is stil l  l inear,  so t h a t  i ts  
local energy  is ( A  ~r2/2} to be e q u a t e d  to t he  local k inet ic  energy  which ,  for f ixed 
(~r2}, tu rns  ou t  to be i ndependen t  of t he  d is tance  f rom the  a t t r a c t i v e  centre .  F o r  
nonl inear  sys tems K = (~r2(~F/~r)/2),  where  ~_F/~r depends  on r.  F o r  a Coulomb 
force ~_F/Sr oc r-3 and  K would  s t rongly  depend  on r, hence  on t. T h a t  is w h y  the  resul ts  
of SED w i t h o u t  z i t t e rbewegung  are  different  f rom those  of QM for non l inear  systems.  

The assumpt ion  of the  z i t t e rbewegung  as a s tochast ic  mo t ion  w i t h o u t  f r ic t ion and  
wi th  a t ime - independen t  ve loc i ty  d i s t r ibu t ion  has led to t he  SchrSdinger  equa t ion  (17). 
However ,  for ge t t i ng  full  ag reemen t  w i th  nonre la t iv i s t i c  q u a n t u m  mechan ics  we m u s t  
add the  t h e o r y  of measurement .  To this  regard,  i t  is no t  usual ly  emphas ized  t h a t  there  
are two kinds  of observat ions ,  one pe r t u rb ing  and  the  o ther  nonpc r tu rb ing  the  sys tem 
under  examina t ion .  Fo r  ins tance  the  observa t ions  of spon taneous  decays  (ei ther  of 
exc i ted  a toms  or  of r ad ioac t ive  nuclei) are  nonper tu rb ing .  Indeed  in this  case the  ob- 
server  s imply  counts  the  e m i t t e d  par t ic les  whose  emission ra te  is i n d e p e n d e n t  of t he  
d is tance  be tween  the  source and  the  detectors .  On the  con t r a ry  in the  s t imu la t ed  
decay  the  observer  sends some par t ic les  in to  t he  sys tem and  we do n o t  h a v e  in n a t u r e  
someth ing  less pe r tu rb ing  t h a n  a p h o t o n  or  an  e lec t ron to observe  ano the r  e lectron.  
The  above  po in t  of view, typ ica l  of S E D  and in genera l  of all classical physics,  coin- 
cides wi th  t he  probabi l i s t ie  i n t e rp re t a t i on  (1,) of QM which  avoides  t he  pa radoxes  l ike 
SehrSdinger ' s  cat .  I n  this  case i t  is n o t  t he  obse rva t ion  which  makes  t he  s ta te  super-  
posi t ion of a l ive  and dead  cats p rec ip i t a t e  on a g iven  pu re  s ta te .  W e  s imply  h a v e  a 
p robab i l i t y  of hav ing  the  cat  e i ther  a l ive  or dead  even  before  t he  measu remen t .  The  
l a t t e r  s imply  ascer ta ins  w h a t  there  is a l ready.  

The  o ther  r equ i r emen t s  to ge t  a g r e e m e n t  w i t h  QM are a u t o m a t i c a l l y  satisfied, since 
we have  cons t ruc ted  12 so tha t  y ~ * =  ~ and  ~ is our  s t a r t ing  quan t i ty .  Being  ~ a prob-  
abi l i ty  dens i ty  i t  is obvious ly  normal ized ,  i.e. fdarw~ * = 1. Since y, is no t  observ-  
able, t he  o ther  pos tu la tes  of yon  N e u m a n n  are  unnecessary .  

(16) t~. G. NEWTON: A m .  J .  P h y s . ,  42,  1029 (1980).  


