
LETTE~E AL NUOVO CIMF.NTO VOL. 40, N. 8 23 Giugno 1984 

Quantization d la Nernst for the Plane Rotator. 

C .  C~ERCIGNANI 

I s t i tu to  di  Matemat ica ,  Politec~ico di Mi lano  - P iazza  L .  da Vinc i  32, Milano,  I t a l i a  

L. GALGA~I 

Dipar t imento  di  2gatematiea dell' Uq~iversith di  Mi la~o  - V i a  Sa ld in i  50, Milano,  I t a l i a  

E. MONTALDI and M. SIRTO~I 

Dipar t imen to  di F i s ica  del l 'Univers i t~  di Mi lano  - V i a  Celoria 16, Milano,  I ta l ia  

(ricevuto il 7 Febbraio 1984) 

PACS. 03 .65 . -  Quantum theory; quantum mechanics. 

S u m m a r y .  - We extend to the ease of classical plane rotators the quantization 
procedure ~ la Nernst that  was recently applied to harmonic oscillators. At variance 
with that  case, we find now that  the thermodynamic energy as a function of temperature 
does not coincide with the one given by quantum mechanics, but  the qualitative trend 
is very similar and even quant i ta t ive differences are small. 

As in classical dynamics it  was realized in recent times that  one has typically 
coexistence of ordered and chaotic motions (1), so correspondingly in statistical mechanics 
it  was recently proposed (2,3) (see also ref. (4)) that  one could have a possible under- 
standing of Planck's law in a classical framework. This was obtained just by exploiting 
the old suggestion of Boltzmann (5) that, in any mechanical interpretation of thermo- 
dynamics, one should neglect those motions which, having characteristics of order 
or of stability, are to be considered as frozen, i.e. do not exchange energy within some 

(*) M. HENON: in  Cahotic behaviour o! Determinis t ic  Sys tems ,  e d i t e d  b y  G. I o o s  a n d  R .  G. H .  HELLE- 
MAN Les  t t o u e h e s ,  Course  36 ( A m s t e r d a m ,  1983).  
(~) L.  GALQA•I: Left .  N u o v o  Cimento,  31,  65 (1981);  N u o v o  Cimento B ,  62, 306 (1981).  
(8) L.  GALGAN~ a n d  G. BENETTIN: Left .  Nuovo  Cimento,  35, 93 (1982);  L.  GALG2LN*I: A n n .  Fond .  
L .  de Broglie,  8, 19 (1983).  
(a) C. CERGIGNANI, L.  GALGANI a n d  A.  SCOTTI: P h y s .  Lef t . ,  38,  403 (1972);  L.  GALGAN][ a n d  
A.  SCOTTI: P h y s .  Rev.  Let t . ,  28,  1173 (1972);  L.  GALGANI a n d  A.  SCOTTI: Riv .  N u o v o  Cimento,  2, 
189 (1972).  
(6) L.  t~OLTZMANN; Nature ,  51, 413 (1895);  see a lso  Vorlesungen i~ber Gastheorie (Leipzig ,  1896-1898) ;  
eng l i sh  t r a n s l a t i o n :  Lectures on Gas Theory  (Berke ley ,  1964),  p.  87 a n d  91. 
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typical observation time. in  fact, such deduction of Planek's law turned out to be 
exactly equivalent to a previous deduction given by N~R~'ST (6) in the year 1916. 

In the lat ter  work, combining the idea of Planek (7) on the existence of a zero- 
point energy with his own understanding of degenerate motions (where the third 
principle applies) as ordered motions, NZ~-~ST came to conceive that  for a system of 
weakly coupled oscillators of frequency v there should exist an energy threshold s(v) 
such that  any oscillator has ordered or chaotic motions according to whether its 
instantaneous energy is lower or greater lhan ~(r), respectively. Then, as usual, just 
on the basis of the general Wien 's  law for a black body, e(r) is shown to be equal to by, 
where h is a suitable action to be possibly identified with Planck's  constant. 

It  is then quite natural  to ask whether a similar quantization procedure also works 
for the plane rotator, which was indeed the first case considered in the history (s) of 
quantum mechanics after the linear oscillator. In such a case, many difficulties were 
encountered, just because of the nonlineari ty of the Hamiltonian, which has the form 
H(p,  O) = p2/2 (the moment of inertia having been put  equal to 1), the variables being 
the (cyclic) angular co-ordinate 0 and the corresponding conjugate momentum (or 
angular momentum) p; in the case of the linear oscillator one has instead, in terms of 
action-angle variables p, 0, the linear Hamiltonian H(p, O) = ~op, where ~o is a constant. 

In quantum-statist ical  mechanics, for the plane rotator, whose energy levels are 
given by E .  = ,n~h2/2 (]i being the reduced Planck's constant h/2z), one defines the 

part i t ion function Z(fl) = ~" exp [ fiE.] (fi = 1/kT being the usual inverse absolute 
n ~ 0  

temperature) and then the internal  energy U(13) turns out to be given by 

I) U(~) -- 
in Z 

co 

E.  exp [-- fiE,,] 
n = 0  

o~ 

~/) ~" exp [-- fiE.] 
n ~ O  

Coming now to the procedure h la Nernst, first of all one distributes the rotators 
m the phase space of a single rotatm- according to the generalized Maxwell-Boltzm~nn 
law; due to the symmetry with respect to rotations in the phase plane and to reflexions 
around the origin in the momentum variable, it is sufficient to consider then the 
probability density o as a fmaetion of the positive variable Io only, and defined by  

exp [-- fill(p)] 
(2) S(p) 

One has then the relations 

f exp [-- fiH(p)] dp 
0 

co co 

f , (:3) o(p) dp -- ~,  O(P) dp = ~ ,  

0 0 

(6) ~ .  NERNST: Verh. Dlsch. P h y s .  Ges., 18, 83 (1916), especial ly p. 87 an d  91. 
(7) M. PLANCK: A n n .  d. P h y s . ,  37, 642 (1912); lVaermeslrahlwng, 2nd edi t ion (1913), onglish t rans-  
la t ion:  The  Theory  o] Heat  Radiat ion ,  P a r t  4, Chapt ,  3. 
(s) F. IIUND: Geschichte der Quantentheorie (Zurich,  1975); i ta l ian  t r ans l a t ion :  Storia  della teoria dei 
quanl i  (Torino,  1980). 
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t he  second of w h i c h  gives  for  a n y  r o t a t o r  t h e  ave r age  m e c h a n i c a l  ene rgy  um(f i )  = 1/2f l .  
T h e  n a t u r a l  gene ra l i z a t i on  of N e r n s t ' s  h y p o t h e s i s  on t h e  ex i s t ence  of a n  e n e r g y  
t h r e s h o l d  s(v) for  t h e  l i n e a r  osc i l la tor  is now  t he  ex i s t ence  of a c r i t i ca l  ac t ion ,  or  ac t ion  
th resho ld ,  A.  T h u s  in  ana l ogy  w i t h  ref.  (2.a) we can  define n 0, n 1, U0 a n d  U1 b y  

(4) 

A oo 

0 A 

A 03 

Uo=f  (p, dp,  (p)dp, 
0 A 

w i t h  

1 
(5) n 0 +  n 1 =  1 ,  n o/[70+ n l / 7 1 =  - - .  2~ 

The  t h e r m o d y n a m i c  e n e r g y  U th is t h e n  defined b y  

(6) U t~ = U m -  U 0 ,  

which  is N e r n s t ' s  p resc r ip t ion ,  or e q u i v a l e n t l y  b y  

(7) U t h =  #i(Ui-- Uo),  

w h i c h  is t h e  p r e sc r i p t i on  of rcf.  (a), t h e  equ iva l ence  jus t  fo l lowing b y  (5). I t  t u r n s  ou t  
t h a t  these  r e l e v a n t  q u a n t i t i e s  can  al l  be  expressed  t h r o u g h  t he  s t a n d a r d  e r ro r  f u n c t i o n  

(8) erf(x)=~-~---~fexp[--tqdt 
o 

TABLE I. 

fi U U th 

0.1 4.4627 4.9121 9.15" 10 -2 
0.2 2.1000 2.3124 9 .19 .10  -2 
0.5 0.7795 0.8443 7 .67 .10 -2 
0.6 0.6363 0.6437 1 .15.10 -2 
0.8 0.4540 0.4768 1 .09 .10 -1 
0.9 0.4026 0.4083 1.40- 10 _2 
1 0.3600 0.3550 i . 4 1 . 1 0  -2 
1.1 0.3208 0.3113 3 .05 .10  -2 
1.2 0.2898 0.2761 4 .96 .10  -2 
1.4 0.2425 0.2205 9 .98 .10  -2 
1.6 0.2075 0.1790 1 .59 .10 -1 
1.8 0.1807 0.1472 2 .28 .10  -1 
2 0.1594 0.1231 2 .95 .10  -1 
3 0.0950 0.0561 6.93- 10 -1 
4 0.0600 0.0283 1.12 
5 0.0380 0.0150 1.53 
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by 

(9) 
1 

2fi 

n0 ~ e r f (A y ~ ,  

A exp [-- fiA2/2] 

so that one finds 

(]o) 

1 A exp [-- fiA2/2] 
U I _ _  1- 

2fl ~ / 2 ~  1 --  erf(A ~/~r]~), 

V t h  - -  
A exp [--flA2/2] 

<2~ erf(A < / ~ )  

7 
v 

A 

v 

1 
0 I 2 3 ~- fl 5 

Fig.  1. - T he  q u a n t u m  in t e rna l  e n e r g y  U (o) a n d  the  i n t e rna l  e n e r g y  h l a  Nerns t  U th (A) v s .  the  
inverse  t e m p e r a t u r e  ft. 
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In  order  to have  a comparison of the  func t ion  Uth(fl) wi th  the  corresponding 
q u a n t u m  func t ion  U(fi) defined by  (1), one has obvious ly  to pu t  A = ~. Ev iden t ly ,  
in the  present  case, at  va r i ance  w i t h  t he  case of the  l inear  oscillator, one has tha t  the  
two formulae  are  ana ly t i ca l ly  different ;  however ,  the  l imi t s  as /3 --~ 0 and /3 -~  c~ are  
c lear ly  the  same. Moreover ,  the  ac tua l  va lues  do no t  differ much.  This  is shown for 
example  by  the  values repor ted  in tab le  I, toge ther  w i t h  the  values  for re la t ive  dif- 
ference 6 : [U * h -  UI/U *h, in correspondence to 16 values  of fl in the  in t e rva l  (0.1, 5). 
As one sees, 6 takes  even  values  of the  order of 1, bu t  only  for values of U so large 
or so small  t ha t  t he  curves for Uth(fl) and U(/3) are  essent ia l ly  undist inguishible ,  as 
shown in fig. 1. 

No th ing  will  be said here of the  comple te ly  open problem of jus t i fying,  on the  basis 
of classical dynamics ,  the  exis tence of an act ion threshold character iz ing frozen motions.  
Fo r  a comparison wi th  the  results  t h a t  are  ob ta ined  when the  p lane  ro ta to r  is quant ized  
according to the  me thod  of the  so-called s tochast ic  e lectrodynamics ,  see ref. (9). 

(~) T. ~.  BOYER: Phys. Rev. D, 1, 2257 (1970). We thank S. I:~ERGIA for bringing this paper to 
our attention. 


