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Summary. — We extend to the case of classical plane rotators the quantization
procedure & la Nernst that was recently applied to harmonic oscillators. At variance
with that case, we find now that the thermodynamic energy as a function of temperature
does not coincide with the one given by quantum mechanics, but the qualitative trend
is very similar and even quantitative differences are small.

As in classical dynamies it was realized in recent times that one has typically
coexistence of ordered and chaotic motions (1), so correspondingly in statistical mechanics
it was recently proposed (2:3) (see also ref. (4)) that one could have a possible under-
standing of Planck’s law in a eclassical framework. This was obtained just by exploiting
the old suggestion of Boltzmann (5) that, in any mechanical interpretation of thermo-
dynamiecs, one should neglect those motions which, having characteristics of order
or of stability, are to be congidered as frozen, ¢.e. do not exchange energy within some
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typical observation time. In fact, such deduction of Planck’s law turned out to be
exactly equivalent to a previous deduction given by NErxsrt (°) in the year 1916.

In the latter work, combining the idea of Planck (7) on the existence of a zero-
point energy with his own understanding of degenerate motions (where the third
principle applies) as ordered motions, NERXST came to conceive that for a system of
weakly coupled oscillators of frequency » there should exist an energy threshold e(v)
guch that any oscillator has ordered or chaotic motions according to whether its
instantaneous energy is lower or greater than ¢(v), respectively. Then, as usual, just
on the basis of the general Wien’s law for a black body, e(») is shown to be equal to kv,
where ) is a suitable action to be possibly identified with Planck’s constant.

It is then quite natural to ask whether a similar quantization procedure also works
for the plane rotator, which was indeed the first case considered in the history (%) of
quantum mechanics after the linear oscillator. In such a case, many difficulties were
encountered, just because of the nonlinearity of the Hamiltonian, which has the form
H(p, 6) = p2/2 (the moment of inertia having been put equal to 1), the variables being
the (cyelie) angular co-ordinate § and the corresponding conjugate momentum (or
angular momentum) p; in the case of the linear oscillator one has instead, in terms of
action-angle variables p, 6, the linear Hamiltonian H(p, 6) = wp, where w is a constant.

In quantum-statistical mechanics, for the plane rotator, whose energy levels are
given by E, = n2#%/2 (£ being the reduced Planck’s counstant h/2z), one defines the

@

partition function Z(8) = Y exp[— BE,] (f = 1/kT being the usual inverse absolute

n=0

temperature) and then the internal energy U(j) turns out to be given by

) 111 Z B ngo En exp [_ ﬂEn]
v Y exp[— BE,]

n=0

(1) Up) = —

(‘oming now to the procedure & la Nernst, first of all one distributes the rotators
in the phase space of a single rotator according to the generalized Maxwell-Boltzmann
law; due to the symmetry with respect to rotations in the phase plane and to reflexions
around the origin in the momentum variable, it is sufficient to consider then the
probability density o as a function of the positive variable p only, and defined by

— BH
(2) op) = DR AR

{ exp [— pH(p)} dp
0
One has then the relations
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the second of which gives for any rotator the average mechanical energy U™(8) = 1/28.
The natural generalization of Nernst’s hypothesis on the existence of an energy
threshold ¢(v) for the linear oscillator is now the existence of a eritical action, or action
threshold, 4. Thus in analogy with ref. (33) we can define n,, ny, U, and U; by

A4 ©
Ty =fe(p) dp , Ny =fe(p) dp,
0 4
4 ) .
2 p2
U, =f% e(p)dp , U, =f§ olp)dp ,
0 A
with
1
(5) Mg+ my =1, N Ug + 1 U= —.

26
The thermodynamic energy Ut is then defined by

(6) U= U"—U,,
which is Nernst’s prescription, or equivalently by
(7) U= n(U,— Uy,

which is the prescription of ref. (), the equivalence just following by (5). It turns (?ut
that these relevant quantities can all be expressed through the standard error function

o

(8) erf(z) = ——2: exp [— 2] dt

vV

0

TasLE 1.
B U U 8
0.1 4.4627 4.9121 9.15-102
0.2 2.1000 2.3124 9.19-10-2
0.5 0.7795 0.8443 7.67-10-2
0.6 0.6363 0.6437 1.15-10-2
0.8 0.4540 0.4'768 1.09-10-1
0.9 0.4026 0.4083 1.40-10-2
1 0.3600 0.3550 1.41-102
1.1 0.3208 0.3113 3.05-102
1.2 0.2898 0.2761 4.96-10-2
1.4 0.2425 0.2205 9.98-102
1.6 0.2075 0.1790 1.59-10-1
1.8 0.1807 0.1472 2.28-10-1
2 0.1594 0.1231 2.95-10-1
3 0.0950 0.0561 6.93-101
4 0.0600 0.0283 1.12
5 f 0.0380 0.0150 1.53
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Fig. 1. — The gquantum internal energy U (e) and the infernal energy & lo Nernst U'B (a) ws. the
inverse tomperature f.
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In order to have a comparison of the function Ut(B) with the corresponding
quantum function U(f) defined by (1), one has obviously to put 4 = #. Evidently,
in the present case, at variance with the case of the linear oscillator, one has that the
two formulae are analytically different; however, the limits as f— 0 and f — oo are
clearly the same. Moreover, the actual values do not differ much. This is shown for
example by the values reported in table I, together with the values for relative dif-
ference d = [Uth — U|/U™, in correspondence to 16 values of § in the interval (0.1, 5).
As one sees, ¢ takes even values of the order of 1, but only for values of U so large
or so small that the curves for U®(g) and U(§) are essentially undistinguishible, as
shown in fig. 1.

Nothing will be said here of the completely open problem of justifying, on the basis
of classical dynamics, the existence of an action threshold characterizing frozen motions.
For a comparison with the results that are obtained when the plane rotator is quantized
according to the method of the so-called stochastic electrodynamics, see ref. (°).

(* T. H. BoYER: Phys. Rev. D, 1, 2257 (1970). We thank S. BerGia for bringing this paper to
our attention.



