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When the Pomeranchukon trajectory was introduced to fit the forward peaks of
high-energy clastic scattering, it was initially assigned a slope ay(t) ~ 1 (GeV)~2 at small
momentum transfers t. Comparison of subsequent pp. pp, =p and Kp experiments with
single-Pomeranchukon exchange models, however, indicated that although the other well-
established trajectories seem to have a slope of this order, the Pomeranchukon trajectory
fit best when assigned a small or even zero slope « (1).

In the present paper we return to this question of the Pomeranchukon slope, taking
account of multiple-Pomeranchukon exchange corrections (i.e. multiple scattering), and
incorporating the current theoretical idea that the loading trajectories may be approxi-
mately linear over the whole observed range of {. Remarkably, the inclusion of mul-
tiple scattering resurrects the possibility that the Pomeranchukon has a « normatl » slope
(2p ~ 1 (GeV)~2). The model with this slope is consistent with the gross features of pp,
Py, 7p and Kp elastic-scattering data at prosent energies and makes the following
distinctive predictions concerning future higher-energy experiments:

1) dojdt will continue falling as energy increases at all but the smallest values
of 1, rather than reaching a platean as it would if ap = 0.

ii) The total cross-section will eventually rise. We estimato ofo' will rise from
40 mb at 30 GeV, to » 50 mb at infinite energy.

iii) The ratio Re 4(0)/Tm A(0) for the forward nonflip amplitude, which is gen-
erally negative at present cnergies, will cross over and become positive at
higher encrgies.

Before proceeding further, we should acknowledge that multiple-scattering treat-
ment of the elastic peak is an old idea. For example, AMATI et al. (?), ANSELM and
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DyarLov (3), and CoNTOGOURIS () have treated multiple exchange of the moving
Pomeranchukon trajectory, while a number of authors (%) have discussed multiple scat-
tering for a fixed spin exchange (i.e. a,(t)=1). In all these cases multiple scattering
takes over at large momentum trausfers and causes do/dt to fall off less rapidly there,
in agreement with the general features noted in nuclear physics by GLAUBER (). The
new technical feature of our model is that it is the first caleulation based on a Reggeized
single exchange which makes full use of the Glauber formalism for generating multiple-
exchange corrections (8).
The assumptions made in our model arc as follows:

1) We consider only the helicity nonflip amplitude A(s, £). This seems reasonable
because nonflip scattering is the dominant elagtic proecss at small ¢, and we shall find
that even large-t processes are dominated by successive exchanges which individunally
involve [t|<<0.5 (GeV)2,

ii) We assume a straight-line trajectory,
(1 w() =1+ to' .

The coupling is assumed such that the single Pomeranchukon exchange contribution to
4 is
p

s ap(i)
(2) Apoels, t) = c(e— exp [— in/Z]) .

S0

‘oncerning the omission of the signature zeros at «,= —1,—3,... in eq. (2), we
note that these could only affect momentwn transfers of [t|=2 (GeV)? in a siugle ex-
change, which (as noted above) are not important for multiple scattering.

iti) We represent 4 by Glauber’s formula (7)

2

{3) As, ty= ikx/EJ‘ (12 b (1 —exp [2¢5(b)]) exp [ib-q] ,

27
where b is the impact parameter, d the corresponding phase shift, g the threc-momentum

transfer (1= —q2), and k the centre-of-mass momentum. This formula is valid at high
cnergies and small angles.
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MULTIPLE-SCATTERING CORRECTIONS TO TOMERANCIIUKON ENCIIANGE 1157

iv) We identify single Pomeranchukon exchange with the « Born approximation »
to Glauber’s formmnla:
2

A2

(4) Agorels. —g?) = ik V/:sif 5571 (— 2i8(b)) exp [ib-q] .

What is involved in this. our most novel assumption. is the usual identification of the
phase in Glanber’s formula with single seattering. and the assumption that single seat-
tering is given by A ., or more generally by the sum over all Regge poles. It follows
that multiple seattering is represented by Regge cuts. and in this connection we note
that Mandelstam’s famous diagram (%) for the first eut (Fig. 1) does have preeisely the
form of a double seattering, with particle A for cxaniple separating into components
a and b which successively seatfer off components of particle B.

Given these assumptions. the conscquences of
the model are casy to compute. Recognizing that,
cq. (4) has the forin of a Fouricr transform, one
inverts the transform and finds

ot

(5) 2i8(h) = exp|—ib-q] .

27

7A ° B
Fig. 1. - Diagram which, according to
Srad (°), gives o Regge cut.
straight lines represent particles, wavy

which, for A, as given in eq. (2), is

&
. S ,
(6) 2i6(h) = —— oxp [ b¥4o’ 1] lines represent the Pomeranchukon tra-
H jectory,
with &= —¢v/s/2ka’s, and g = In(s/s)) —iz/2. The strength parameter & is positive

(from eq. (2) and the optical theorem. one seces that e is negative) and constant

(+/5/k — const at high energies). Inserting (6) into (3). expanding €% ® in a power series,
and performing the resulting simple integrations over Gaussians, we find

@

. - 1 to' i
() A= 2k /s’ & - (=&t (‘Xp[ ] .

moynn! n

Equation (7) expresses the amplitude in terms of three parameters (sy, of, and the
strength parameter &). We have cvaluated the sum by computer, keeping s, at the
conventional value 1 (GeV)2, and varying & and « to fit Iin A(f= 0) = (b +/s/4m) o
and the general trend of the t-dependence of de,,/di. The best fit is obtained with
§=1T"7 and o' = 0.82(GeV)72; it is compared with pp data (119) in Fig. 2a). Only data at
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0. . < 45° have been included in Fig. 2a) 10
since the Glauber formalism does not ap-
ply to large angles. In general, the best fit
presented in Fig. 2a) has about the right
exponential fall-off at large ¢, « shrinks»
suitably as s increases, and has a « break»
correctly placed near t = — 1.2 (GeV)2. Of
course sceondary trajectories should also
be added in the usual way; they are
needed to reduce the bulge near ¢=
= —1.2 GeV/e?, and to make Re A(0)/
/Im A(0) and the energy dependence of
6" come out right as discussed below.
In the present paper, however, we limit
ourselves to the simple Pomeranchukon
model, which does represent the gross fea-
tures of the data in terms of only thrce
parameters, including normal o' and s;.

Since the results of numerical calcula-
tions are by themselves rather untrans-
parent, it may prove helpful to discuss
briefly some analytical features of the
model. The n-th term in eq. (7), which 10
is identified physically with n-th-order
scattering (n Pomeranchukon exchanges)
since it arises from (2i8)", can be written

dofdt [em/Gevie)]

14+ta'in ?
8 A, = const(s_ exp [—in/2]) ‘ it)[Gevic)’]
So

n
-1
w
TFig. 2a. - Proton-proton scattering, calculated using
. . formula (8). Experimental data from refs, ("1%):
For n>2 this expression represents a . 12,1 GeVje, 4 12.4 GeV/je, m 184 GeV/e, &'=

«Regge cut» wich extends up to a,,.(t) = = 0.82 (GeV/e)y?, £=17, 8, =1 (GeV)™
=1+ tz'/n and has a discontinuity of

the form (x — omay)”2; We can see this by writing the contour integral around the
cut as

s o
(9) {da(a —_‘ (xmzu()"——2 (-_ €Xp [_ 1.7'[/2]) =
J So
r m—2)! (s Loz | | ¥max
= dzx(rx—— ‘xmax)"—z exp [a:u] = - —eXp [— 1 N
Iun—l $ 2

Thus the mechanism by whieh multiple scattering takes over at large ¢ or large s is
the one expeeted (*15) in Regge theory, that cuts extending up to g, =1+ ta'[n
progressively dominate the pole at o= 14t«’. While it has been possible to ignore

(%) D. AMATI, S. FUBINT and A. STANGHELLINI: Nuovo Cimento, 26, 896 (1962).
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cut terms at small £ as a first approximation (though even at ¢= 0, they give corree-
tions of order %), this approximation becomes completely untenable at large ¢ for tra-
jectories, such as the lincar one we have assumed, which fall well below the branch
points of the first few cuts. Numerically, we see from eq. (7) that for typical values
such as In (s/s)) = 4 (K, ~ 30 GeV), £=: 7, and o' === 0.82 (GeVie)-2, the transition from
single to double exchange dominance oceurs at ¢t ~ — 0.6 GeV/e?, from double to triple
at t & — 1.8 GeV/c2, and so forth. This is the basis for our statement that each individual
seattering involves a relatively small momentum transfer (roughly +/—t~ § GeV/e
for typical cases).
At large ¢, the dominant exchange has an n of order

(10) _— ] — o' In(s/s,)

In rige/é]

When 7 is large, one can approximate the sumi over » in (7) by an integral over n. The
integrand is strongly peaked at n =7, and the dominant features of the integral can
be estimated from the behaviour at this point (1%17). We find to a rough approxima-
tion that the magnitude of A is given by

(11) [Alec —exp | —2 | to' In—In |$/5p|
So 8

Thus the multiple-scattering corrcetions convert the Gaussian momentum transfer
dependence A0, oc exp[--a(4/—1)%], characteristic of small ¢, into the exponential
dependence A oc exp[—b /- t] characteristic of large-t data (26). Or, to put it anoth-
er way, they convert an input which falls off faster than the Cerulus-Martin bound (18)
into an output lying just within the bound. Concerning the s-dependence, by rewriting
eq. (11) in the form

1

g\ 12U u™ 8/ s In] €17 ] 1

So

(12)

s

we see that at large ¢ one can speak of an ¢effective o»
(13) dore = 1 — 2[to’ In=1(s/sy) In |Eficn|

which, for example, reaches o~ —1.6 at t=- 8 (GeV)® for 30 GeV pp scattering
with the parameters cited above.

Although our model is qualitatively successful in representing the pp data, it does
not follow that o), is necessarily large, since good {its exist in which oc; small or zero and
secondary trajectorics are responsible for the observed shrinking (1%). However, models

(*%) G. CoccoNIi: Inferpretation of the transverse-momentum distribution of purticles in high-energy
hadron collisions, CIERN Intcrnal Report NI’ 68-17 (1968) (to be published in Nuovo Cimento),

(") 8. FrRaUTscHI, O. Korokn-HANSEN and B. MarcoLis: to be published.

(*) F. CERULUS and A. MaRTIN: Phys. Lett., 8, 80 (1964); T. KiNosurra: Phys, Kev. Lett., 12,
256 (1964); A. MARTIN: Nuovo Cimento, 37, 671 (1965).

(**) W, Rarira, R. J. RipDELL, C. B. CHI1U and R. J. N, PHILLIPS: Phys. Rev., 165, 1615 (1968).
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with o) &~ 1 (GeV/e)2 and «, = 0 do differ distinctively in the energy range available
to the next generation of accelerators and colliding beams.

i) In models with a fixed spin-one exchange, an asymptotic plateau is eventually
reached above which the fixed spin exchange dominates and do/dt is essentially energy-
independent., Cuiv and FINKELSTEIN (%), and (with different assumptions) ABARBANEL,
DreLL and GILMAN (29), have estimated the rate at which this condition is approached,
and find that asymptots should be reached at laboratory energies of the order of
(100 =200) GeV. If o &~ 1 (GeV/e)~2 on the other hand, do/dt keeps falling, as indicated
by the predictions in Fig. 2a), for 70 GeV (Serpukhov energy) and 1600 GeV (CERN col-
liding-beam cquivalent laboratory energy).

il) For o' = 0, o** approaches a constant asymptotically, whereas in our model
it can be deduced by combining the optical theorem o*®t = (47/k+/%)Im A(0) with

eq. (7):

© 1 B}
(14) 0%t = 8ma’ £ - — Re(— &)

na1 M.

To get an idea of what happens, consider the first two terms:

£ln(s/s,)
tot __ - . L
(15) g** = const [l 4ln(5s,) + 7241 + 0(52)] .

We see that o't rises logarithmically as s inereases. At present energies this rise is
masked by secondary trajectories, but since their contribution decreases like s} the
logarithmic rise should eventually take over. The physical mechanism operating here
is well known (21): the second-order term contributes a Glauber shadow, and in the
Regge-cut theory the shadowing decrcases like Ins. The amount ¢** rises will depend
on the secondary trajectories, which we have omitted, but to obtain a first approxi-
mation we insert the parameters for our best pp fit into eq. (14) and obtain a rise from
o' = 40 mb at 30 GeV to ~ 55 mb in the asymptotic limit. A crude cstimate of the
probable effect of secondary trajectories reduces this asymptotic value to ~ 50 mb.

iii) The higher-order terms in eq. (7) also contribute a real part to 4(0) as a resulf
of the phase variation introduced by nonzero o'. For example, through second order
onoe has

ak /s £2 _
(16) Red(©) = V%5 4 o@y.
4 1In?(s/s,) + n*

This real part is falling (relative to Im A(0)) like In2(s/s,) and has ReA(0)/Im A(0)
positive (°) and of order 0.1 at 30 GeV. In order to fit the present data, which show
Re A(0)/Im A(0) negative, one must again call upon secondary trajectories. These
secondary contributions, however, fall off like s~%, so at higher energies Re 4(0)/Im A(0)
is expected to change sign.

(2) II. ABARBANGL, . DRELL and F. GiLyMaN: Phys. Rev. Lett., 20, 280 (1968).
(1) B, M. UpcaoNkar and M. GELL-MANN: Phys. Rev. Lett., 8, 346 (1962).
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We have also worked out the consequences of our model for pp (13) and zp (22-23)
scattering (Fig. 2b)). Here o' should be kept the same. We have again used the same s,
for simplicity, while varying & to fit the magnitude of o** in each case (for pp this
represents a change in the model, the large
&, now referring to the combined coupling
of all trajectories—taken to have common s,
and o'—-at the energy considered in Fig. 2b)).
The model produces the correlation hetween
large o'** and narrow peak width expected
on elementary grounds (60~%/pR~%#[p / o/7).
The mechanism is that larger &%t implies
greater coupling strength &, and this in-
creases the double-scattering correction,
which is acting to reduce the peak width.
More precisely, if we write A = a(1--b]t|+
+0(t%) at small ¢, the first two terms in
cq. (7) give

A7) b= pa'[1 + &8+ O],

L L - L ) L 4

o 1 2 3 4 5 5
It [(Gevic)']

which increases with & In a similar 10
way (52%), when secondary trajectorics are
introduced which make b differ from
tot pr, 1 . 5 —
o5y ole., Regge-cut corrections can give Fig. 20. — np and pp clastic scattering, cal-
the « cross-over phenomenon » between the culated wusing formula (3). Experimental data
de/dt of pp and Pp, n'p and np, and Krp  from ref. (55); ——— pp, §=10, pp =
_ . .. . = 16 GeVie, «'=: 0,82 (GeVie)-?, s =1 (GeV)?,;
and K p without hypothesizing zeros in . £t 12.5 GeVies o mop
. T . - 55 F Py -0 el LrieVjes ,
the couplings of the sceondary trajectories.  jg Govie: o mip, 12 GeVie: m pp, 15.91 GeVie,

Secondary trajectorics are needed to fit the

observed decrease of o't the negative sign

of Re A(0)/Im A(0), and the striking np dip at ¢ ~—3 GeV/e?2 which has been scen
up through pi, = 8 GeV/je at least (8). In connection with this dip, we recall that
in addition to breaks or dips associated with transitions from n-exchange dominance
to (n+1)-exchange dominance (57). other dips associated with definite integer or half-
integer o are possible (¥26). The first kind persists at high energies (though shifting
position slowly if «, varies with ¢) and is not neeessarily associated with any particular
value of o; the second kind can shine forth only at relatively low ¢ (or ) where single
exchange is important, and will disappear as the cnergy rises (disappearing rapidly if
another pole lies higher, slowly if only cuts lie higher). It remains to be seen if the
t=—3 (GeV)? dip can be explained in this way (*%).

We conclude with several cominents and points for further study.

(**) K. J. FoLEY, 8. J. LINDENBAUM, W, A, LovE, 8, 0zax1, J, J, RusskLL and L. C. L. YUaN:
Phys., Rev, Lelt,, 11, 425 (1963).

(?*) J. OREAR, IR, RUBINSTEIN, D. B. Scary, D. B, Winre, A. D, Krisca, W. R, FRISKEN, A, L.
READ and H. RUDERMAN: Phys. Pev., 152, 1162 (1966).

(*) V. BARGER and L. Durany I11: Phys. Fev. Leff., 19, 1295 (1967).

(**) G. HOHLER, J, BAACKE, H. ScHEAILE and P, SONDERKGGER: Phys. Lett., 20, 79 (1966); I, ARr-
RAB and C, CH1U: Phys. RRev., 147, 1045 (1966); S. FRAUTSCHL: Phys. Rev. Lett., 17, 122 (1966),

(*) V. BARGER and IRR. J. N. PHILLIrS: Phys. Itev, Lettf., 20, 564 (1968).
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i) In the Glauber tratment of elastic scattering, taking A(f) pure imaginary
produces decp dips at the transitions from single-scattering to double-scattering dom-
inance, ete., due to interference between the two terms. The dips may be filled in by
adding a phase (i.e. by giving A a real part which does not vanish at the same points
as Im 4), or by adding helicity-flip amplitudes. In our model the signature factor auto-
matically introduces a ¢-dependent phase, and this is the mechanism which converts
the dips into mere breaks. But when double scattering takes over at sufficiently small ¢,
as happens at very high energy or when & is especially large, the phase has less chance
to develop between ¢ = 0 and £y, and the dip is less completely filled in. Thus dips
can be seen in the 1600 GeV pp curve (Fig. 2a)), and in the Ppp curve (Fig. 2b)).

ii) Historically, the original assignment of a large slope to «, failed when it was
discovered that although the pp peak «shrank », the =p peak was essentially cnergy-
independent and the pp peak actually expanded. Secondary trajectories could account
for these differences, but only if «, was small (1*). In our multiple-scattering mode,
the shrinking is numerically about the same at small ¢ as in a single-pole model with
the same (large) cx;,, so we must explain why we believe the secondary trajectories will
have a greater ecapacity to counteract the shrinking this time. One reason is that the
simple inverse connection between ot and peak width, mentioned before eq. (17),
together with the appreciable rise of ¢** from 10 to 30 GeV in our model, would already
lead one to expeet shrinking, When the secondary trajectories are added to make a
flat o', and falling ¥ and oy, this physical source of shrinking will be removed, or
even reversed to expansion in the case of pp and np, and crude estimates indicate that
the physically observed behaviour will not be so difficult to obtain. Another way to
put it is that the secondary trajectories must be more strongly coupled in our model
since they must make up the difference between falling pp and wp total cross-sections
and rising multiple Pomeranchukon-exchange contributions.

iii) Empirically some reactions, such as =N charge exchange, can be described
fairly well over the range 0< |t/ <1 (GeV)?> with a single-pole exchange. In these
cases multiple exchange again produces cuts extending to the right of the poles by the
usual amount, so we have to explain why multiple exchange is more important for the
clastic peak than for thesc cases. Fortunately scveral groups (¥-2°) have studied the
example of the p-exchange contribution to the helicity-flip =—p — =°n amplitude, and
all agree that the double-scattering correction associated with (¢+Pomeranchukon) ex-
change is indeed quite small near ¢t = 0. The reason (22%) is the change of sign in
the p coupling at ¢t = — 0.6 (GeV)?, which produces cancellations in the double-scat-
tering correction. Cmru and FINgELSTEIN () have found a similar situation in back-
ward 7*p — prt due to the zero in nucleon-trajectory exchange at w= —0.2 (GeV)?
Thus it appears that the relative success of simple pole models at small momentumn
transfer in ceitain cases can be understood.

iv) Reeently there has heen considerable discussion about conspiracies at {= 0,
and about factorization of Regge-pole couplings at ¢= 0, at the « cross-over point »,
at points where « = 0, ete. In general, Regge euts do not factor and do not have a
definite conspiring or evasive behaviour (i.e. a definite Toller quantum number M).
Thus inclusion of Regge cuts reopens all these subjects; for example absorption models

(*y P. G. O. FREUND and . J, O’DoNovAN: Phys. Rev. Lett., 20, 1329 (1968).
(2%) ¢. CHIU and J. FINKELSTEIN: private communication.
(2*) ¢, COHEN-TANNOUDJI: private communication on the work of the Saclay group.
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of np charge-exchange which include second-order scattering easily turn the forward
dip associated with evasive = exchange into a narrow forward peak (3°). The interesting
question then arises: do all Regge poles have the lowest possible Toller quantum numbers
M =0 (bosons) and M =} (fermions), with the higher M contributions needed to
fit experiment coming exclusively from cuts, or does 3 merely take on low values for
the top few trajectories, as is the case with various other quantuin numbers. To study
this phenomenologically one can assume definite quantum numbers for the poles, cal-
culate the multiple-scattering corrections (which will automatically include some con-
spiring terms corresponding to M > 1), and see if the amount of conspiracy thus in-
troduced is sufficient to explain the data consistently.

v) If oy~ 0.8 (GeV)-2, one expects a 2+ particle with mass ~ 1100 MeV. There
are several possible candidates, such as the f2(1250 MeV) and the recently discovered
1085 MeV resonance (3'), whose possible connection to the Pomeranchukon has been dis-
cussed by JounsoN (*2). Note that although the usual analysis (33) gives strong reasons
for associating the £ with P’ rather than the Pomeranchukon, the whole question of
the P’ trajectory is reopened when cuts are present.
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