IL NUOVO CIMENTO Vor. LVIA, N. 4 21 Agosto 1698

Connection between Phenomenological Fits for High-Energy Data (*).

H. FLeMING (**), A. GrovannInI and E. PREDAzZI

Istituto di Fisica dell’ Universita - Torino
Istituto Nazionale di Fisica Nucleare - Sezione di Torino

(ricevuto il 26 Giugno 1968)

Arguments have been given by Kriscir (1) in favour of a phenomenological formula
fitting high-energy clastie data over the whole angular interval. This formula is a super-
position of three Gaussians in gk, (k, 0 c.m. variables, § = velocity of the c.m. protons).
The various slopes in this formula are connected to the sizes of inner and inner do-
mains of interaction. Whereas the gross features in the behaviour of high-energy data
are well reproduced (we will ignore the fine-structure effects recently found in p-p (%)),
this formula has some shortcomings: A4) on the phenomenclogical side, the data for
the largest value of £ show a tendency to deviate from Kriseh’s formula exhibiting
a less pronounced fall-off; B) from the theoretical point of view it is not clear why there
should be only three domains of interaction whereas one would rather expeet an infinity
of them as we get closer to the center of the target proton or, equivalently, as the
energy of the incoming proton increases; ) the more serious theoretical drawback is
that Kriscl’s formula violates the general bound of Cerulus and Martin (3) valid under
very weak requirements of analyticity and boundedness.

This last complication was absent in the phenomenological formula previously
proposed by OREAR ().

In this paper we will show that if we assume that the three-Gaussian formula of
ref. (1) is replaced by an infinite serics of Gaussians (in which case we assumne an in-
finity of domains of interactions thus accounting for point B) above), such that the
first few terms reproduce Kriseh’s formula, automatically this accounts also for points
4) and C).

This leads us to a four-parameter integral formula that we propose as a phenom-
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enological tool to fit high-energy data (fine-structure effects (?) excluded). The dom-
inant contribution to this formula as ¥ — oo exhibits Orear’s behaviour (%) thus re-
storing nonviolation of the Martin-Cerulus bound (3). Amazingly enough, when the
actual numbers arc used, this asymptotic behaviour (eq. (10)) has a slope very close
to Orear’s one.

According to what said above we assume
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and a, b, ¢, v are four real parameters _2

to be adjusted (b being essentially
the slope of the diffraction peak).

Inta forthcoming paper (5) we
shall discuss how to sumn and how
to evaluate:the asymptotic behaviour
as z — oo of the general sexics in (1). 10
Here we limit ourselves to notice that
choosing (%)
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we got an excellent fit over the whole
angular interval to all high-energy
data as seen in Fig. 1 (where the ex-
perimental points are as in ref. (*)).

With the above value v =% we
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Fig. 1. — Plot of X = (dot/df)/(dat/dt)a, as
given by eq. (4) vs. z* for p-p elastic data 2
taken asg in ref. (1). X =p
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(®) 1, FLEMING, A. GIOVANNINI and 1. PrEDAZZI: to be published.

(%) 1t should be stressed that the valucs given in eq. (3) for the parameters are not obtained from a
best fit of the oxperimental points but from a simple trial procedure, and by asking that the first few
terms reproducc Krisch’s formula.
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Using now

«©

T /E .
(5) OXp|——| =2 l — | dy cos wy exp [— oy?] ,
4o '

0

the series in eq. (4) can be summed and we obtain
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Upon derivation with respect to a2, from eq. (6) we get a simple three-parameter
formula which could be used for numerical fits to high-cnergy data due to the very
rapid convergence of its integrand.

Owing to the parity of the integrand in eq. (6) we can also evaluate X by using
the Caunchy theorem which allows us to obtain an Orear-like series for X. The poles
of the integrand are located at the intercepts of the parametric curves
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and we then get
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It is clear from eqgs. (8), (9) that the form (8) is an ideal tool to evaluate X as
# — oo sinee the series converges very rapidly with increasing m, contrary to what
we had in eq. (1). We then get (with ¢ = 2)
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With the values (eq. (3)) b =10, @ =5, from eq. (10) we find that the leading
term as  — co is dominated by exp [-— gk, /0.173] to be compared with exp [— k, ]0.158]
in Orear’s fit. Therefore the two agree within 109%,. Moreover at 2= 12 the valuc
obtained from the only term in eq. (10) practically coineides with the one obtained
summing up the first eight terms in (1), whercas at 2% = 4 the value obtained from (10)
is off by 209, and is therefore alrcady a good approximation.
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Summarizing the results (valid in the particular case » = § in eq. (1)), egs. (1),

(6) and (8) are different expressions for the same quantity. Equation (1) is a Krisch-
like form and few terms provide a good approximation for small z thus establishing
a connection with diffraction, whereas eq. (8) is particularly useful for large x showing
that the Cerulus-Martin (3) bound is not violated and therefore restoring nonviolation
of anayticity and boundedness. Also, eq. (1) shows that the contributions eoming
from inner and inner domaing of interactions are essential to avoid violation of the
Cerulus-Martin bound. At the same time the agreement with experiments is cxeellent
{Fig. 1) and moreover the procedure may shed some light on the long debated question
of whether or not small and large angles are to be attributed to inherently different
mechanisins or (ag is implicit in the present approach) they can be reconciled with
one another (7).
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