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Summary. It is shown that a Feynman amplitude has singularities on
the physical boundary if and only if the relevant Feynman diagram can be
interpreted as a picture of an energy- and momentum-conserving
process oceurring in space-time, with all internal particles real, on the
mass shell, and moving forward in time. As a by-product of the proof,
the Feynman parameter associated with an internal line is identified
(within a proportionality factor) with the time the particle exists between
collisions, divided by its mass.

1. — Introduction.

In this note we present a simple criterion for the existence of singularities
of a complex Feynman amplitude on the physical boundary. We define the
physical boundary as that portion of the domain of the complex amplitude
for which it is the Fourier transform of the vacuum expectation value of a
time-ordered product of field operators. On the physical boundary all external
momenta are real, but they need not be on the mass shell.

In Sect. 2 we show that the familiar Landau equations (*) (together with
some readily-derived subsidiary conditions) form mnecessary and sufficient
conditions for the existence of singularities on the physical boundary, and that
these conditions are equivalent to the condition that the relevant Feynman
diagram be interpretable as a picture of an energy- and momentum-conserv-

(*) Supported in part by the National Science Foundation.

(**) Alfred Sloan Research Fellow.

(1) L. LaxpAw: Nucl. Phys., 13, 187 (1959); J. BJorRKEN : unpublished; J. MaTHES:
Phys. Rev., 113, 381 (1959). ' V
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SINGULARITIES IN THE PHYSICAL REGION 439

ing process occurring in space-time, with all internal particles real, on the mass
shell, and moving forward in time.

This criterion is a generalization, applicable to an arbitrary Feynman
amplitude, of an interpretation which has been employed by several authors ()
to illuminate features of singularities in specific diagrams, particularly the
triangle graph as it relates to the Peierls mechanism (?).

2. — Argument,

The amplitudes corresponding to an arbitrary Feynman graph can be writ-
ten as

n I, mi) = f 9(g5) 8(Zots— 1) D7 1T, dersIT, A, ,

where

D=73o,2—m?).

N is the number of internal lines, %; is the independent four-momentum asso-
ciated with the j-th closed loop, the p; are the external momenta, »(g;) is a
polynomial whose structure depends upon the spins of the internal particles,
and «;, ¢;, and m,; are, respectively, the Feynman parameter, the propagating
moment_lim, and the mass associated with the ¢-th internal line.

If we let the integration run over real k; and real positive «;, then eq. (1)
evidently defines an analytie function for real external momenta and for internal
masses with negative imaginary parts. The value of this function when the ima-
ginary parts of the internal masses go to zero is the value of the amplitude on
the physical boundary. The amplitude is analytic on the boundary unless
either a singularity of the integrand appears at an end point of the contour
of integration of a coalescing pair of singularities pinch the contour; any other

(2) For example, J. B. BroNzaN: Phys. Rev., 134, B 687 (1964); R. E. Norrox:
Phys. Rev., 185, B 1381 (1964); C. Kacser: Phys. Leit., 12, 269 (1964); I. J. R.
ArrcuisoN: Phys. Rev., 133, B 1257 (1964).

(®) R. ¥. PrierLs: Phys. Rev. Lett., 6, 641 (1961); C. GOEBEL: Phys. Rev. Leii.,
13, 143 (1964); R. C. Hwa: Phys. Rev., 130, 1580 (1963). Because the internal particles
involved are necessarily unstable, the Peierls singularity itself is not on the physical
boundary. However, as we let the widths of the internal particles go to zero, the Peierls
singularity moves to a location at which all external momenta are real; it therefore
moves to the physical boundary, if it was on a sheet close to the physical boundary
at the beginning. Thus ou reriterion may be applied to determine if the Peierls singularity
directly causes a peaking in a mass distribution in the small width limit. It can
readily be verified that it doesn’s.
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singularities of the integrand may be avoided by shifting the contour at the
last moment.

The conditions that there be either a coalescing pair of singularities or an
end point singularity in each variable are the Landau () equations:

(2a) ?=m?,
or

{2b) o; =0
for each internal line, and

(3) z“iQi =0

for each closed loop. The conditions that these lie on the unshifted contour
of integration are

(4) %;=>0,
and
(3) 4, =dq .

Of ecourse, coalescing singularities do not necessarily pinch the contour
{(in the one-dimensional case, for example, two poles may approach the contour
from the same gide). To show that in our case a pinch in fact occurs, we perform
the k infegrations in eq. {1). The amplitude then assumes the form (%)

1
(6) I(psy ms) = lim Z]Ui dot; 0(1 — X)) [O(e) "~ #= [ DAxy p) + de]7
2

where A is a constant, 7 is the number of closed loops, C(x) is a homogeneous
polynomial in the ¢, of degree I, and D(ex, p) is 2 homogeneous polynomial
in the o, of degree I4+1. If &; is a point of coalescence, and if we define
7; = o; —&,;, then in the immediate vieinity of &,

(7) D= % Z—Dz‘j’l?ﬂ?a' 9

(4

where D;; is the matrix composed of the second derivatives of D evaluated
at &;. D18 a real, symmetric matrix and hence can be diagonalized by a real,
orthogonal co-ordinate transformation. In terms of these new co-ordinates,

(*) R. J. EpEN: Phys. Rev., 119, 1763 (1960).
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it is easy to see that the zeros of D(x, p)+ i¢in eq. (6) must approach &, from
opposite sides of the contour as ¢—>0. We should remark, of course, that
this argument would break down if the matrix D,; had zero eigenvalues other
than the one that belongs to #n,oc&;. Such additional zeros, if they oceur
would, be located at very exceptional points corresponding to cusps in the Landau
curve in the physical region (3) The singularity would then be on the verge
of leaving the physical boundary.

Thus, except, for these possible exceptional points, eqs. (2)—(5) are necessary
and sufficient conditions for the appearance of a singularity on the physical
boundary. We now show that these equations admit a direct physical inter-
pretation. Precisely, we demonstrate that they are the necessary and suf-
ficient conditions for the consistency of the following picture of the transition:
each vertex interaction oceurs as an instantaneous event in space-time, and
the internal particles propagate on the mass shell with the momenta g¢,, for-
ward in time, for just the correct distances and times to «tie together» the
entire graph and allow it to be visualized as an ordered sequence of successive
interactions. It is clear that, once the consistency of this picture is verified
for a choice of the space-time intervals between the vertices, the consistency
remaings if all of these intervals are scaled by the same factor. In particular,
there is no limit to the time over which the entire interaction can extend. As
we shall see, this arbitrariness of scale corresponds to the fact that the «; in
eqs. (2)-(5) are determined only to within a common multiplier.

To show that egs. (2)—(p) imply the consistency of the above picture, let
us define (to within a scale factor) a space-time separation A; between the
two vertices connected by the propagating momentum g¢,,

{3) Ayocog; .

If alternative (2b) holds, this definition tells us that the two points are in fact
one; in this case, we will shrink the line connecting them to a point, and apply
all our subsequent arguments to the diagram thus short-circuited (°).
We observe:

1) As a consequence of eqs. (4) and (53), the space-time separation between
any two points is real.

2) As consequence of eqs. (2a) and (5), the momentum of every internal
particle is real and on the mass shell.

3) The separation given by eq. (8) is consistent with the motion of a
classical particle with the momentum g¢,, if we interpret (to within a constant

¢) R. J. Epex, P. V. Lanpsuaorr, J. C. POLKINGHORNE and J. C. TAYLOR: Journ.
Math. Phys., 2, 656 (1961).
(8) A familiar stratagem: but in this instance graced with a physical interpretation.
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of proportionality) «, as the proper time the particle exists between collisions
divided by the particle mass. Equation (4) tells us that the particle is moving
forward in time.

4) Since any two points inside a diagram may be connected by a chain
of internal lines, we may extend in an obvious way the definition of the sepa-
ration given by eq. (8) to any two points. This extension is consistent if

9) SA4,=0

around, each closed loop. This is eq. (3).
Since all of our arguments are clearly reversible, eaqs. (2)-(5) are both
necessary and sufficient conditions for

1) the occurrence of a singularity on the physical boundary;

2) the consistency of interpreting the reaction as actually proceeding as
a sequence of successive interactions in the way in which we have described.

The identity of these two notions is thus proved.
skosk ok
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RIASSUNTO ()

81 mostra che un’ampiezza di Feynman ha singolaritd al contorno fisico, se, e solo se,
il relativo diagramma di Feynman pud essere interpretato come la descrizione di un pro-
cesso di congervazione nello spazio-tempo dell’energia e dell’impulso, con tutte le par-
ticelle interne reali sullo strato della massa, e dotate di moto in avanti nel tempo.
Come risultato accessorio di questa dimostrazione, il parametro di Feynman associato
ad una linea interna si identifica (a meno di un fattore di proporzionalita) con il tempo
in cui la particella esiste fra le collisioni, diviso per la massa della particella.

(*) Traduzione a cura della Redazione.
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