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S u m m a r y .  - -  It  is shown that a Feynman amplitude has singularities on 
the physical boundary if and only if the relevant Feynman diagram can be 
interpreted as a picture of an energy- and momentum-conserviIlg 
process occurring in space-time, with all internal particles real, on the 
mass shell, and moving forward in time. As a by-product of the proof, 
the Feynman parameter associated with an internal line is identified 
(within a proportionality factor) with the time the particle exists between 
collisions, divided by its mass. 

1 .  - I n t r o d u c t i o n .  

I n  this note we present a simple criterion for the existence of singularities 
of a complex F e y n m a n  ampli tude on the physical  boundary.  We define the 

physical boundary  as tha t  port ion of the domain of the complex ampli tude 
for which it is the Fourier  t ransform of the vacuum expectat ion value of a 

t ime-ordered product  of field operators. On the physical  boundary  all external 
momenta  are real, but  they  need not  be on the mass shell. 

I n  Sect. 2 we show tha t  the familiar Landau  equations (1) (together with 

some readily-derived subsidiary conditions) form necessary and sufficient 
conditions for the existence of singnlarities on the physical boundary,  and that  

these conditions arc equivalent to the condition tha t  the relevant  F e y n m a n  
diagram be interpretable as a picture of an energy- and momentnm-conserv-  
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Phys. Rev., 113, 381 (1959). 
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ing process occurring in space-time, with M1 internal particles reM, on the muss 
shell, an4  moving forwur4 in time. 

This cri terion is ~ generalization, applicable to an arbi t rary  Feynlnal~ 
~mplitude, of an interpretat ion which has been employe4 by several authors  (9-) 

to  i l luminate featares of singulurities in specific diagrams, part icular ly the 
tr iangle graph as it relates to the Peierls mechanism (~). 

2 .  - A r g u m e n t .  

O) 

where 

The amplitudes correspon4ing to an arbi t rary  F e y n m a n  graph can be writ- 
ten as 

I(p~, m~) = ;v(q~) 5 ( Z ~ - -  1)D-~II~ d~I I j  d4kj 

2 D = Z ,(q,-- m~). 
i 

N is the mtmber  of internal  lines, kj is the in4epen4ent four -momentum asso- 

ciate4 with the j - th  close4 loop, ~he pj are the external momenta,  v(q~) is a 
polynomial  whose structure depends upon the spins of the internal p~rticles, 
an4  ~s, q~, and  m~ are, respectively, the Feynmun  parameter,  the propagat ing 

momentum,  an4  the mass associate4 with the i- th internal line. 
I f  we let the  integrat ion run over real k~ and reM positive ~ ,  then eq. (1) 

evident ly  defines ~n anMytic funct ion for real external momenta  an4 for internM 
masses with negative imaginary  parts.  The vMue of this funct ion when the ima- 
g inary  par ts  of the internM musses go to zero is the vMue of the ampli tude on 
the physicM boundary .  The ampli tude is analyt ic  on the boundary  unless 

ei ther  u singulari ty of the integran4 appears ut an end point of the contour  
of integrat ion of g coMescing pMr of singularities pinch the contour;  any other 

(2) For example, J. B. BRONZ~N: Phys. Rev., 134, B 687 (1964); R. E. NORTOn': 
Phys. Rev., 135, B 1381 (1964); C. KAcs~n: Phys. Lett., 12, 269 (1964); I. J. 1~. 
AI~CglSON: Phys. l~ev., 133, B 1257 (1964). 

(3) :R. F. P~IERLS: Phys. Rev. Lett., 6, 641 (1961); C. C~OEBEL: Phys. Rev. Lett., 
13, 143 (1964); :R. C. HwA: Phys. Rev., 130, 1580 (1963). Because the internal particles 
involved are necessarily unstable, the Peierls singularity itself is not on the physicM 
boundary. However, as we let the widths of the internM particles go to zero, ~he Peierls 
singularity moves to a location at which all external momenta are real; it therefore 
moves to the physical boundary, if it was on a sheet close to the physicM boundary 
at the beginning. Thus ou rcriterion may be applied to determine if the Peierls singularity 
directly causes a peaking in a mass distribution in the small width limit. Ir can 
readily be verified that it doesn't. 
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singularit ies of the  in tegran4 m a y  be avoided by  shif t ing the  contour  at  t h e  
last  momen t .  

The conditions t h a t  there  be e i ther  a coalescing pa i r  of s ingular i t ies  or an  
end point  s ingulari ty in each var iable  are the  L a n d a u  (~) equat ions :  

= 

o r  

(2b) ~ = 0  

for each internal  line, and 

( 3 )  

for each closed loop. The conditions t h a t  these  lie on the  unsh i f te4  contour  
of in tegra t ion  are 

(4) ~ >~ 0,  

and  

(5) q~ = q* . 

Of course, coalescing" singularities 4o not  necessari ly  p inch the  contour  
(in the one-dimensional c~se, for example ,  two poles m a y  app roach  the  con tour  
f rom the same side). To show tha t  in our ease a p inch in fac t  occurs, we p e r f o r m  
the  k integrat ions in eq. (1). The ampl i tude  then  assumes the  fo rm (~) 

(6) 

1 

I(p~, m~) = l ira 2 f lI~ d~6(1  - -  Z~)[C(~)]  ~-~-~ [D(~, p) ~- is] ~-~ 
e_._>O + 

0 

where 2 is a constant ,  I is the  n u m b e r  of closed loops, C(~) is a homogeneous  
polynomial  in the  :r of degree t, and  D(a, p) is a homogeneous  po lynomia l  
in the  ~.~ of degree I~-1. I f  5~ is a point  of coalescence, and  if we define 
~, = ~ , - -5~,  then  in the immedia te  v ic in i ty  of 5~ 

(7) D = �89 ~-Dij~?r 
~J 

where D~j is the m a t r i x  composed of the  second der iva t ives  of D evalua ted  
at  5~. D~j is .~ real, symmet r i c  m a t r i x  and  hence can be 4iagonalized by  a real, 
or thogonal  co-ordinate t ransformat ion .  I n  t e rms  of these new co-ordinates, 

(4) R. J. EDEN: Phys. Rev., 119, 1763 (1960). 
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it is easy to see t ha t  the zeros of _l)(:r p) 4- is in eq. (6) mus t  approach  ~ f rom 
opposi te  sides of the  contour  as s ->  0. We should remark ,  of course, t h a t  
this  a rgumen t  would b reak  down if the  m a t r i x  D~j had  zero eigenvalnes o ther  
t han  the  one t ha t  belongs to ~]~oc 5,. Such addi t ional  zeros, if t hey  occur 
would be located a t  ve ry  except ional  points corresponding to cusps in the  L a n d a u  
curve in the physical  region (5) The s ingular i ty  would then  be on the  verge  

of leaving the  physical  boundary .  
Thus, except  for these possible exceptional  points,  eqs. (2)-(5) are necessary  

and sufficient conditions for the  appearance  of a s ingular i ty  on the  physical  
boundary .  We now show tha t  these equat ions a d m i t  a direct  physica l  in ter -  
pre ta t ion.  Precisely,  we demons t ra te  t h a t  they  are the  necessary and  suf- 
ficient conditions for the  consistency of the  following pic ture  of the  t r ans i t ion :  
each ve r t ex  in te rac t ion  occurs as an ins tan taneous  event  in space-t ime,  and  
the  in ternal  part icles  p ropaga te  on the  mass shell wi th  the  m o m e n t a  q,, for- 
ward  in t ime,  for just  the  correct  distances and  t imes  to ((tie t oge the r  )~ the  
entire g raph  and  allow it to be visual ized as an ordered sequence of successive 

interact ions.  I t  is clear tha t ,  once the  consistency of this  p ic ture  is verif ied 
for a choice of the  space- t ime intervals  be tween the  vert ices,  the  consis tency 
remains  if all of these in tervals  are sealed by  the  same factor .  I n  par t icu lar ,  
there  is no l imi t  to the  t ime  over  which the  ent i re  in te rac t ion  can extend.  As 
we shall see, this  arb i t rar iness  of scale corresponds to the  fac t  t h a t  the  ~ in 
eqs. (2)-(5) are de te rmined  only to wi th in  a common  mult ipl ier .  

To show t h a t  eqs. (2)-(5) imply  the  consis tency of the  above  picture,  let  
us define (to wi th in  a scale factor)  a space- t ime separa t ion  A~ be tween  the  

two  vert ices  connected b y  the  p ropaga t ing  m o m e n t u m  q~, 

(8) A~oc c~q~. 

I f  a l te rna t ive  (Pb) holds, this  definit ion tells us t h a t  the  two points  are in fac t  
one;  in this case, we will shr ink the  line connect ing t h e m  to  a point ,  and  app ly  
all our subsequent  a rguments  to the  d iagram thus  short-circui ted r 

We observe : 
1) As a consequence of eqs. (4) and  (5), the  space- t ime separa t ion  be tween  

any  two points  is real .  
2) _Ks consequence of eqs. (2a) and  (5), the  m o m e n t u m  of every  in terna l  

par t ic le  is real  and  on the  mass  shell. 
3) The separa t ion given b y  eq. (8) is consistent  wi th  the  mot ion  of a 

classical part icle  wi~h the m o m e n t u m  q~, if we in terpre t  (to wi th in  a cons tan t  

(5) 1~. J. EDEN, P. V. LANDSHOFF, J. C. POLKINGHOENE and J. C. TAYnoR: Jeurn. 
~lIath. Phys., 2, 656 (1961). 

(6) A familiar stratagem: but in this instance graced with a physical interpretation. 
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of p r o p o r t i o n a l i t y )  ~ as t h e  p r o p e r  t i m e  t h e  p~ r t i e l e  ex i s t s  b e t w e e n  co l l i s ions  

~l iv ided b y  t h e  p a r t i c l e  mass .  E q u a t i o n  (~) t e l l s  us t h a t  t h e  p a r t i c l e  is m o v i n g  

f o r w a r d  i n  t i m e .  

4) S ince  a n y  t w o  p o i n t s  ins ide  a d i a g r a m  m a y  be  c o n n e c t e d  b y  a c h a i n  

of  i n t e r n a l  l ines ,  we m a y  e x t e n d  in  a n  o b v i o u s  w a y  t h e  r  of ~he sepa-  

r a t i o n  g i v e n  b y  eq. (8) t o  a n y  t w o  po in t s .  Th i s  e x t e n s i o n  is c o n s i s t e n t  i f  

(9) 5 - -  o 

a r o u n d  each  closect loop .  Th is  is eq.  (3). 

S ince  a l l  of our  a r g u m e n t s  a re  c l e a r l y  r e v e r s i b l e ,  cos.  (2)-(5)  a r e  b o t h  

n e c e s s a r y  ancl suff ic ient  cond i t i ons  fo r  

1) t h e  occur rence  of a s i n g u l a r i t y  on t h e  p h y s i c a l  b o u n d a r y ;  

2) t h e  cons i s t ency  of i n t e r p r e t i n g  t h e  r e a c t i o n  as  a c t u a l l y  p r o c e e d i n g  as 

a sequence  of success ive  i n t e r a c t i o n s  in  t h e  w a y  in  w h i c h  we h a v e  d e s c r i b e d .  

The  i d e n t i t y  of t h e s e  t w o  n o t i o n s  is  t h u s  p r o v e d .  

One of us (S.C.) w o u l d  l i ke  to  t h a n k  t h e  P h y s i c s  D e p a r t m e n t  of U .C .L .A .  

for  i t s  h o s p i t a l i t y  a n d  ~ r s .  D.  SAxo~  ~ fo r  a n  e x c e l l e n t  d inne r .  

R I A S S U N T O  (*) 

Si mostra che tm'ampiezza di F e y a m a n  ha singolaritk al coatomo fisico, se, e solo se, 
il relativo diagramma di Feynmaa  pub essere ia te rpre ta to  come la deserizioae di ua  pro- 
cesso di eonservazione hello spazio-tempo dell 'energia e dell ' impulso,  con tu t t e  le par-  
ticelle interne reali sullo s~rato della massa, e dotate  di moto ia  avan t i  ael  tempo. 
Come risultato accessorio di questa dimostrazioae, il  parametro  di Feynman  assoeiato 
ad  ttna linen in teraa  si ideatifica (a meao di un far ,ore di proporzionMit-~) con il tempo 
in c u i l a  particella esiste fra le co]lisioai, diviso per la massa della particella. 

(*) T r a d u z i o n e  a c u r a  de l la  R e d a z i o n e .  


