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S u m m a r y .  - -  Sequent correlations in multiplicative stochastic processes 
are defined with the aid of product densities associated with the process. 
Such sequent correlations describe the process in a more detailed manner 
than the conventional correlations especially with regard to the para- 
metric values characterizing the process. The evolution of any particular 
member of the multiplicative entities in the parameter is brought out 
by the sequent correlations. It  is found that such types of correlation 
functions are very useful in the description of electromagnetic and perhaps 
nucleon cascades. To demonstrate this possibility, correlation functions 
of the first few orders are evaluated for the simple case of electron-photon 
cascade. 

1 .  - I n t r o d u c t i o n .  

Let  us consider a multiplicative stochastic process progressing with respect 

to a certain continuous parameter  t, characterizing the process. The process 

may  depend on another continuous parameter  x which may  or m a y  not  be 

independent  of t. Many processes arise in Physics and Biology where we deal 

with entities distr ibuted over a continuous infinity of states. The parameter  x 

may  s tand for the energy of a cosmic-ray particle or the age of a member  of 

a bacterial growth. Thus a natural  way  to describe the system is by  the intro- 

duct ion of an evolving continuous set of random variables. However,  we 

encounter  a difficulty due to a si tuation where only probabil i ty densities can 

be a t tached to part icular  values of the parameter  x and not  nonzero proba- 
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bilities. Fo r  this reason such processes have  been known as poin t  processes 

(see for example  BARTLETT (1)). While in tegra t ion  of the  above-ment ioned  

p robab i l i ty  densi ty  over  x will yield only the  mean  number  of enti t ies distri- 

bu ted  over  the  range of integrat ion,  this procedure  does not  yield any  result  

per ta in ing  to the  f luctuations in the  mean  which is a very  i m p o r t a n t  criterion. 

To overcome this difficulty, h igher-order  density funct ions expressing corre- 
lat ions in x-space have  been in t roduced  by  KENDALL (2)~ B I I A B H A  (3) and 

]:~A~vIAKRISHNAN (a). These are called cumulan t  functions b y  KENDALL (the 

reason being t ha t  these functions enable us to obta in  the  cumulants)  and pro- 

duct  4ensities by  ]~AMAKRISHNAN fos the obvious reason t h a t  i t  is a probabi-  

l i ty  magni tude  in the product  space. In  view of the elegance and  s implici ty  

in in terpre ta t ion ,  we shall use the produc t  densi ty  nota t ion  of Ramakr i shnan .  

2.  - P r o d u c t  d e n s i t i e s .  

I f  N(x,  t) is the stochastic var iable  represent ing the number  of enti t ies a t  

t ime  t with pa ramet r i c  value X < x ,  the densi ty  relat ion (*) 

(2.1) f~(x, t )dx = #{dN(x, t)} 

exists  (**) such t ha t  the  probabi l i ty  of one en t i ty  having  a pa ramet r i c  value 

in (x, x §  is ]~(x)3x, the  to ta l  p robabi l i ty  of more t han  one en t i t y  hav ing  

a pa ramet r i c  value in the  range being O(3x). ]~(x, t) is t e rmed  the produc t  
dens i ty  of degree one. The p roduc t  dens i ty  of degree two is defined by  

(2.2) ]2(&, x2, t) d& dx2 : #{dN(x~, t) dN(&,  t)}, x~ ee x~. 

(2.2) m a y  be in te rpre ted  as the  s imultaneous probabi l i ty  of finding the  para-  

met r ic  values of two enti t ies in the  intervals  (Xl, x~+dxD and (x2, x2+dx2), 
provided the  two intervals  do not  overlap. However ,  when there  is a over lap  

(i.e., xl = x2), 

(2.3) #{dN(&, t) dN(x2, t)}x~=,~ = #{[dN(x, t)] 2} = #{dN(x, t)} = ],(x, t) d x .  

I n  a similar manne r  higher-order  densities can be defined. 

(1) M. S. BARTLETT: ,~'tochastic Processes (Cambridge, 1955). 
(2) 1). (3. KENDALL: Journ. Roy. Statistist. S~w., B 11, 230 (1949). 
(3) H. J. BrrAm'[A: Proc. Roy. Soc., A 202, 301 (1950). 
(4) A. RA~AKR[S[INA~: Proc. Ca~rt~. Phil. Sot.., 46, 595 (1950). 
(*) Throughout this paper, the symbol d ~ will be used to denote the expectation 

value of the quantity within the brackets. 
(**) The term existence is used from a purely physical point of view in the sense 

that there are a number of physical situations wherein such conditions hold good. 
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To obtain  the second m o m e n t  of the  number  of enti t ies wi th  paramet r ic  
values over  a finite in terval  (a, b) we need in tegra te  #(dN(x~, t) dN(x~, t )}  and 

take  in to  account  the  degeneracy in t roduced by  the overlap of dXl and dx~. 
Wri t ing  the number  of entit ies in the in terval  (a, b) ~s N(a ,  b, t), we obtain 

b b b 

(2.4, b; t,] } 
a r a 

Higher-order  momen t s  have  been arr ived a t  in a similar way and the explicit  

expression for the r - th  m o m e n t  in te rms  of l inear combinat ions  of integrals 
of product  densit ies of degree less than  or equal to r have  been obtained by  
I ~ A M A K R I S H ] N A N  (4) .  

So far, we have  not  paid any  a t t en t ion  to the na ture  of the p a r a m e t e r  x. 

The pa rame te r  x m a y  be called the  intrinsic p a r a m e t e r  for obvious reasons. 

I f  x denotes the age of an individual  in a b i r th  and dea th  process, the  age is 

a determinis t ic  funct ion in the  sense t h a t  if the t ime  to of b i r th  is known, the 

age of the  individual  can be specified a t  any  la ter  t ime  t ~ to, the  p a r a m e t e r  t 

s tanding for  t ime  in this case. However ,  there are a number  of physical  

processes where the t ime  or posi t ion in t-axis of a creat ion of ~ part icle and 
i ts  then  x-value do not  de te rmine  its subsequent  x value. A concrete example  

is provided by  the  energy s ta te  x of an electron in the e lect ron-photon cascade. 

I n  this case, the  mul t ip l ica t ive  stochast ic  process under  consideration evolves 

wi th  respect  to bo th  t and  x, the  energy parameter .  In  fact  i t  makes  sense 
to ta lk  of the pa ramet r i c  value a t  the  point  of the creat ion of the  particle.  

Exper imenta l ly ,  i t  is convenient  to make  energy measurements  a t  the point  

of production.  As a m a t t e r  of fact ,  the da ta  on e lect romagnet ic  cascades ob- 
served in nuclear emulsions makes  reference only to the  energies of the pairs 

of electrons ~t the poin t  of product ion.  Thus we can ta lk  of p roduc t  densi ty  
in the  produc t  space of t and x. Such product  densities have  been used in the 

formula t ion  of cascade theories (see for example  reference (5) and  (6)). 
To define such a p roduc t  density in the  product  space of x and t, we de- 

fine J//(x, t) as the  r andom  var iable  represent ing the  number  of enti t ies which 
are (~ born ~) a t  a pa ramet r i c  value T <  t, the  intr insic pa ramet r i c  vahte X being 

less than  or equal x. The  J / ( x ,  t) is the stochast ic  var iable  represent ing the 

number  of enti t ies t ha t  are created between t and t §  and have  an intrinsic 

pa ramet r i c  vahm between x and x + d x  at  its ineept ien.  I f  z(n) is the proba- 

bi l i ty t ha t  n entit ies are born between t and t + d t  with intrinsic pa ramet r i c  

(5) A. RAMAKR]Sr~:AN and S. K. SRINIVASAN: Proc. Ind. Acad. Sci., A 44, 263 
(1956). 

(6) S. K. S R I N I V A S A N ,  ,J. ( : .  B U T C H E R ,  B .  A .  C H A R T R E S  and H. MESSEL: Nuovo 
Cimetdo, 9, 77 (1958). 
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values between x and x + d t ,  then  

{2.5) [ z(1) ~-- ]~(x, t ) d x d t  + o(dxat)  = # { d ~ ( x ,  t)}, 

~(0) = 1 - -  ]~(x, t) d x d t  + o(dxdt)  , 

~(n)  = o(4x dt) , x > 1. 

F r o m  this point  onwards, i t  is clear t ha t  a product-densi ty  technique for the  
produc t  space f2 of x and t can be carried in toto.  T h e  moment  formula (2.5) 
can  be wr i t t en  for the product  space by  replacing (Ix by  dr. 

F r om the  above, i t  is clear tha t  once the product  densities are known, the 
problem of fluctuations involves only integrat ion over the parametr ic  iange. 

Thus  the main  task in any problem will be the explici t  determinat ion of the 

produc t  densities. The method of obtaining product  densities for the case of 
e lec t ron-photon cascades has been dealt  with by  RAI~iAKRISHNAN (~) and BHABHA 

and  RAMAKRISHNAN (7). However  a glance at  the ~[ellin t ransform solution 
ob ta ined  by  BttABHA and RAMAKRISHNA5 ~ will convince us of the gigantic mag- 
n i tude  of the task of anyone who a t t empts  to obtain some numbers from those 
results. Thus calculation of higher moments  becomes, though not  impossible, 
formidably  difficult. To offset this difficulty, there have been a t t empts  to re- 
fo rmula te  the problem in such a way tha t  the evaluation of the cumulants  
(factorial  moments)  of the number  distr ibution is somewhat  less tedious (see 
for example references (s) and (9)). This method  completely eliminates the use 
of product  densities of any other  type  of correlation functions and will not  
be discussed any further .  Alternat ively,  we can introduce new densi ty func- 
t ions which include more information.  Thus in terms of those functions, i t  
m a y  not  be necessary to go beyond the second order in any physical si tuation. 
Fo r  example in the ease of electromagnetic  cascades, we can introduce two- 
poin t  correlations in E-space. Specifically we can deal with particles t ha t  have 
been  produced between t and t + d t  with energy lying between E and E + d E  

~t  the  point  of product ion and are found to have  an energy between E '  and 
E ' + d E '  at  t ' >  t. Such a generalization, apar t  from the possibility of over- 

coming cer ta in  computat ional  difficulties ment ioned above, m~y be interest ing 

f rom the  point  of view of comparison with experiments,  part icular ly in cas- 
cades. Moreover, there  are certain physical features characterizing the par- 

r an example being polarization of electrons or mesons which is direct ly 

re la ted to  the energy at  the point  of product ion ra ther  than  at  a later  point  
of observation.  These new densities associated with more than one interval  of 

(7) H. J. B:IABH~ and A. RAMAKRISHNAN: Proc. Ind. A~'ud. Sci., A 32 e, 141 (1950). 
(s) L. JANOSSY: Proc. Phys. Sac. Lo~don, A63, 241 (1950). 
{9) S. K. SRI'~'IVASA~*: Zeit. Phys., 16i, 346 (1961). 
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parametric space may be called evolutionary sequent correlations for obvious 
reasons. In Sect. 3, the sequent correlation functions are defined and the 
moment formulae for the number distribution as well as other quantities of 
physical interest are deduced. Section 4 of the paper will deal with physical 
examples, particularly from cascade theory of cosmic radiation. 

3. - Sequent  correlat ions.  

The concept of sequent product densities were first introduced by RA_~IA- 
K~IS~A~ and ~ADHA (lo) WhO distinguished between ~ instant ~) and (~ sequent ~) 
correlations in point processes. The instant correlation relates to the study 

of correlations of the random variables corresponding to the same value of 

while the sequent correlation relates to that  between the random variable 
corresponding to different values of t. Though the arguments used by RA- 

MAKRIS~A~ and RADHA heavily depend on t being the time parameter, the 
results are applicable to any ordered parameter. In  fact if _iV(x, t) in the no- 

tation of Sect. 2 is the stochastic variable representing the number of entities 

having a parametric value X>~x,  then the sequent product densities can be 
obtained by considering the expectation value of the product 4N(x~, t)~- 

�9 dN(x2,  t~) . . .dN(xm,  tin). The sequent product densities contain more infor- 
mation than the instant product densities in that  it  part ly explains the de- 
pendence of 1V(x~, ti) on  N(xi~ t~). However, the second-order sequence density 
is always expressible only in terms of second-order instant density and as such 
there seems to be no advantage from a computational point of view. On the 

other hand, the evolutionary sequent correlation will be shown to have a de- 
cisive advantage over the instant or even sequent densities. 

We now proceed to a proper definition of evolutionary sequent correlations. 
Towards this end, let us define the primitive parametric value of an entity as 
the parametric value at (its time of inception) the point of its production. 
We can now consider the random variable M(x~, t~; x~, t2) representing the num- 
ber of entities produced between 0 and t~, the primitive parametric value of 
each of which is greater than or equal x~, the entities having a parametric value 
greater than or equal x~ at t ~-t2. Then we can define an evolutionary se- 

quent correlation density by considering dM(x~, t~; x2, t~) which denotes the 
stoehastic variable representing the number of entities that  are produced be- 

tween t~ and t~+ dt, with the primitive parametric value of each of which is 
between x~ and x~ + dx~, the parametric value of these entities lying between 

x2 and x2-b dx2 at t ~--t~. We shall reserve the symbol ~ to denote such a 

product density. If P(n) is the probability that  the random variable dM 

(10) A. ]~A~IAKRISI~NAN and T. K. RADtIA: P~'o(~'. Cam. Phil. Soc., 57, 843 (1961). 
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takes the value n, i t  is reasonable to assume th a t  P(1) is of the order 8Q 

while P(n) for n>~2 is of a smaller order of magni tude  as compared to 8Q, 
~2  being an infinitesimal element in the  space in which the densi ty  functions 

Thus we can define the sequent correlation densi ty of degree are defined (*). 

one by  

(3.1) 
~ -  W(dM(x~, t l ;  X2 ,  t 2 ) } ,  

P(0) = 1 --o~l(x , ,  t~;x~, t~) ~Q + o(~s 

P(n) ~- o(31~), n > 1. 

Higher-order  sequent correlation densities are defined in a similar manner .  
Correlation densi ty of degree n is defined by  

(3.2) 
! [ 

~r tl; x', t)dM(x~, t2; x 2, t) ... dM(xn, t~; x~, t)} ~- 

t [ l 
~ n (  X l  , t l  ; X2 , t2 ; .." Xn  , tn  ; 217 X 2, .." X n ~ t )  ~ r ~ 1 ~ ( ~ 2  . - .  ~ r  

provided the  ~1~i are disjoint. I f  all the  81~'s are not  disjoint, then  a dege- 
neracy  as in the case of usual product  densities occur. We shall not  any  fur ther  
discuss since all the  steps leading to the moment  formula (2.5) are applicable 
in the  present  case provided we replace dx by d~2. 

4. - S e q u e n t  corre la t ions  in cascades .  

4" 1. Two point correlations: sequent correlation density o/ degree one. - The 
sequent  correlation density is ve ry  useful in the description of electromagnetic 
cascades. Le t  us consider an electron-photon shower ini t ia ted by  an electron 
or a photon  of energy Eo. We shall assume tha t  the  shower develops b y  
pair  creation by  photons and bremsstrahlung by  electrons. Defining 
~ ( E 1 ,  tl; E2, t lEo) as the sequent product  densi ty  of degree one of electrons 

in a shower ini t ia ted by  a pr imary  of i-th type  (i ~ 1, 2 denotes an electron 

and a photon pr imary,  respectively) we can obtain differential equations by  

considering the various possible outcomes of events t ha t  may  happen in the 
infinitesimal interval  (0, A), of t-axis. The pr imary  electron (photon) m ay  

radia te  a photon and drop down to a lower energy (create an electron posi- 
t ron  pair) in the interval  (0,/I) ,  thus  giving rise to two independent  primaries. 
To incorporate  the contr ibut ion from such an outcome of events, we use the 

(*) .O is the pro.duct space of .rt, x 2 and t 1. 
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invar iant  imbedding me tho4  (~1). To be precise, we imbed the  process cor. 
responding to  a thickness t into a class of processes obtained by  let t ing t take 

any  posit ive value. 
Thus  we obtain 

(4.~) .~';(E~, t~; E2, tlEo) = 1 - /J  R'(E'IEo) dE' J~'~(E,, 

+A f R'(E'IEo ) dE' {~(E, ,  t~- A; E:, t - A i E') + 

+ ~y~(E.  t~- A; 

By  making A -~ O, we derive the  differential equat ion 

(~.2) 

t - A ;  E2, t - A  }Eo)+ 

E0, t--  ~ !E0-- Z')}.  

---- (~'1(I~1, tl; E2, ttEo ) -- -~ + ~ JZ~(E,, tl; E2, t, - -  tEo) ~ " 

f i , a-~ leo E ' ) d E ' .  --~'~(E~,tl;E2, tlE')}dE'+ R ( E I E o ) ~  (E,t~;E2, t 

To  solve (4.2), we note  t ha t  asymptot ic  forms of Ri(E ' lEo) are given by  (1~) 

E '~ 1 

I n  view of the cross-sections R~(E'/E) being homogeneous in E and E',  we 
notice t h a t  

( E l  ) E~ 
d.E1 dE2--~ ' l (el ,  tl; e~, = . (4.5) .~i(E1, tl; E2, tlEo ) ~ '  t~)ds~ds2 s~= Eoo' s+. Eoo 

Thus (4.2) can be wri t ten  as 

(4.6) 

wa 
ca. 

(11) R. BELLMAN, R. KALABA and G. M. WING: Journ. ~lath. Phys., 1, 280 (1960). 
(12) H. A. BETtIE and W. HEITLER: Proe. Roy Soc., 146, 83 (1934). 
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Defining the 2VIellin transform of ~-*(e,, ta; 6.2, t) as 

(4.7) 
1 1 

f f 81--1 S,--1 ~) d6.1 d6.2 "~1(6"1,  t l ;  6'2, t , ;  .6., 

0 0 

we can write (4.6) in the matr ix  form as 

(4.8) ( ~t~ q-~t) ~a(s~' tl; s2' t) =- L~l(sl '  t~; s2' t) ~ 

~" t) and L is the two- where ~ is a vector whose components are :~(s~, tl; s2, 
by-two matr ix  given by 

(4.9) L =  
(--A(sl+s,--]) C(s1+80.--1)) 

B(sl q- s3 -  1) -- D ' 

1 

(4.10a) A(s) = f ( l  -- 6.~-')R'(e ') de ' ,  

0 

1 

(4.10b) B ( s )  ---- ef6., I d6.' , 
0 

1 

(4.10e1 C(,) = f  (1 - el,'-', 
o 

1 

(4.1Ob) D d6.'. 

o 

The initial conditions to be imposed on (4.2) are given by 

(4.11a) 

(4.ilb) 

1 o~(E1, O; E2, t]Eo) ~- 0 , 

o~21(E,, t,; E2, tiE0) = 2R2(E~]Eo)zr(E2IE~, t), 

where :~(E21E1, t)dE2 denotes the probabili ty tha t  an electron of energy E1 
at  t ~ 0 drops to an energy between E2 and E2§ after traversing a thick- 
ness t. Thus the initial conditions satisfied by the system of eqs. (4.8) are 
given by 

(4.12a) .~(sl ,  0; s~, t) = 0 ,  

(4.12b) -~(s~, 0; s2, t) = exp[--A(sO't]B(s~ § s ~ - - l ) ,  



S E Q U E N T  CORRELATIONS I N  E V O L U T I O N A R Y  STOCHASTIC P O I N T  P R O C E S S E S  ETC.  ~ 8 1  

where we have  made  use of the well-known expression for the  Mellin t ransform 
of ~r(E2]E1; t) (,8): 

1 

(4.13) ~(s]E~; t) - - i E ~ - l ' r d E  1 E(I~-I> --.] 2 ~ e / E 1 ; t )  d E . - - - -  . 

0 

(4.8) can be solved e i ther  b y  tak ing  a Laplace t rans format ion  with  respect  
to t and tl or b y  diagonalizing ~he m a t r i x  L and solving the  result ing par t ia l  
differential equations.  As the  me thod  is s t raightforward,  we refrain f rom giving 

the  in te rmedia te  steps. The final solution is given b y  

(4.14a) 
C(81 + 8 2 - -  1 ) B ( s ~  + s ~ - -  1)  

~l(s l ,  t,; s~, t) = - 
tt(Sm + s e -  1) - -  ,~(s~ + s ~ -  1) 

�9 { e x p  [ - -  2 (81  -~- 8 2 - -  1)t,] --  exp [ - -  ~ ( s  1 i ~ -  s 2 - -  1)tl]} exp [ - -  A(s~)(t -- tl)] ,. 

(4.14b) 
B(sl + s ~ -  1)  

2 ~ ( S l ,  t l ;  s"-, t) - -  
# ( s l  + s~ - -  1)  - -  2 ( s l  + s 2 -  1)  

�9 ([#(s~ + s ~ -  1) --  D] exp [--  )~(sl + ,% --  1)t~] - -  

- -  [ D  - -  ~ ( s  1 ~ -  s 2 -  ] )]  e x p  [ _ - - / ~ ( s  1 ~ -  ,s. 2 - -  1)tl] } exp [ - -  A(s.2)(t - -  t l ) ] .  

The mean  number  of electrons t h a t  are produced with  p r imi t ive  energies g rea te r  

than  sl t imes the energy of the  p r i m a ry  between 0 and t and remain  above a 
cer ta in  f ract ion of the  p r i m a r y  energy a t  t ' >  t can be calculated b y  inver t -  

ing E1 and tl over  the  appropr ia te  range. The oceurence of functions with argu- 
ments  Sl--S"---1 and s"- will s implify the  evaluat ion  of the  inversion integrals 

to a great  extent .  Thus, we can convenient ly  s tudy  the  mean  numbers  for  
small values of t'. The me thod  of evaluat ion  of inversion integrals  of the  t ype  
encountered on the  r igh t -hand  side of (4.14) has been discussed b y  us (14) in 
connection with  the  f luctuat ion problem of e lectromagnet ic  cascades and can 
be t aken  over  in to to .  A s tudy  of these mean  numbers  will give us a deeper  

insight  into the  problem since the  manner  in which the  electrons drop down 
in energy as t increases is made  t r ansparen t .  

4"2 Sequent correlation density o] degree one: alternative approtwh. - 
The densities ~ ( E 1 ,  tl; E2, t i E  o)can be arr ived a t  b y  different arguments .  

(la) L. JANOSSY: Cosmi*~ Ray.~ (Oxford, 1950)�9 
(1~) S. K. SRINIVASAN, K. S. S. IYER and N. V. KOTE,~WARA RAO: Zeit. Phys�9 (1963) 

(in press). 
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The method  is very  simple and consists in expressing J ~ ,  in terms of the 
convent ional  product  densities of degree one of electrons and photons t h a t  

exist  a t  t. Since the electron is produced between tl and tl-kdtl, i t  is neces- 
sary tha t  there  should be a photon  at  t~ and it  should create a pair between 
tl and t~§ dt~, one of the electrons having an energy in the prescribed range. 
Thus, if g~(E[Eo; t) is the product  densi ty of degree one of photons tha t  exist  
a t  t due to  a shower excited by  a pr imary  of energy Eo and type  i, then  

(4.15) ~'~(E~, t~; E2, t2[Eo) : 2fgi(E! Eo; t,) RZ(EllE).~(E21E,; t--t1)dE. 

The equivalence of (4.14) and (4.13) can be verified by  taking a 5Iellin trans- 
form of both sides of (4.14) and using well-known solutions (15) of cascade 
Cheory for g~(E[Eo; t). However  the method  indicated in the earlier p~rt  of 
this  Section does not  make use of the conventional  product  densities and il- 
lustrates the  method  of building up cascade theory  purely in te rms of the 
sequent  correlation densities. The a d w n t a g e  of this method will become trans- 
paren t  in the final par t  of this Section where the invar iant  imbedding method  
will be shown to yield a simple set of equations for the  second-order densities. 

4"3 Higher-order sequent correlation density: invariant imbedding approach. - 
We now deal with Y~(E~, tl; Et, t2; Ea, E~, tlEo ) the sequent correlation 
densi ty  of degree two of electrons produced between t~ and t~d t l  and t2 and 
t2+ dt2 and observed at  a later  thickness t>tl ,  t2. Exac t ly  as in the first 
par t  of this Section, we analyse the possible outcome of events in (0, A) of 
the  t-axis and use the  invar iant  imbedding technique.  Thus we have 

(4.16) .~-~(E1, tl; E2, t.,; E3, E4, t[Eo) --~ 

= (1-- AfR~(E'[Eo) dE') o~(Et, tI-- A; E , t , - -  A, E3, E, , t - -  A~,Eo) + 

A f Ri(E'! Eo) (~(Et ,  tl-- A; E2, t2-- A; E3, E4, t -- ALE') -k § 

(3~i) 

+ t , - -  t - -  t - -  IEo-- E ') + 

+ t,-- IEo--E3   (E2, E,, t - -  [E3}. 

(,5) H. J. BHABHA and W. HEITLER: Proc. Roy. Soc., A 159, 432 (1937). 
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By letting z]-+ 0, we obtain 

(4.17) ( ~  ~) t~; E2, t~; = 
\ 

+ + E3, E4, t[ Eo) 

= {~,~(E,, t~; E~, t~; E3, E,, tlEo) - -  

-- ~ ( E ~ ,  tl; E~, t~; E3, E~, t i E ' ) }  d E ' +  

+fR'(E'!Eo) {~- ' (E~,  t,; E.,, t~; E3, E,, t iE o -  E') + 

i ~'1 (E2, t~; E~, + + ~ ( E I ,  t~;E3, t]E') ~ . 3 - - i  ~ t lEo_E ,  ) 

+ ~3-i(Ei, tl; E3, t]Eo_ E, ) .,z:.~ , tiE')} ~1(~2, t2; E4, dE ' .  

The boundary conditions satisfied by ~ are given by 

(4.18a) ~I:(Ex, 0; E:, 0; Ea, E4, tlEo) = O, 

(4.18b) ~ . . 2  " 5~ 2(Ex, 0; E2, 0; E3, E4, t lEo)= 

= 2R2(E~IEo) 3(Eo--E,--E2)ze(E31E~, t)z(E,]E,,  t ) ,  

(4.18c) ~12(E~ , 0; E2, t2; Ea, Ed, tlEo) = 0,  

(4.18d) ~,~'~2(E~, tl; E2, 0; E3, Ed, tlEo) = O . 

2 In addition to the above conditions, we also nee4 the value of ~-2(E~, 0; 
E2, t2; E3, Ed, ttEo) and ~,~22(E~, t,; E2, 0; Ea, E~, flEe ). These cannot be spe- 
cified directly but  can be obtained after some calculations which are straight- 
forward. To this end, we observe that  by definition of ~ ,  

(4.19) o~~(E~, 0; E2, t~; E3, E,, tlEo ) = R2(EI[Eo)[~~(E2, t2; E3, Ed, tiE1 ) + 

,~-~ l E o _  , +z(E31E,;t)~' l(E2,  t2;E3, t E1)] 

where ~-21E~eli 2, t2; E3, Ed, t I E1) dEl dE2dE3dEddt2 denotes the joint probability 
that  an electron of primitive energy between E~ and E~+dE~ is created between 
t2 and t2+ dr2 in the shower excited by an electron having an energy El, the 
primary and the secondary electron so created dropping the energies lying in 
the intervals (E3, Ez+d_E3) and (E4, Ed+dE,) respectively. ~ze2~ is an un- 
known function; however this need not trouble us since it is easy to write 
down integTal equation satisfied by ~ ,  by the use of invariant imbedding 
techniques. The equation can be solved by simple transform technique and 
will not be discussed any further in this paper. ~z~  by itself is important  
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in the  s tudy of bursts produced by  ~z-mesons. The relevance of the  technique~ 
developed in this paper  and the  propert ies of the funct ion o ~  are discussed 
by us in the following paper (~+) dealing with the  fluctuations in size of bursts  
produced by  electrons and y.-mesons. 

Jus t  as in the  case of two-point  correlations, i t  is quite possible to relate  
the  three-point  correlation product  densi ty in terms of the conventional  single- 
point  product  density as well as the  product  densities defined in the  produc t  
space of E and t. We shall not  go into the details since the  object  of the  
present  contr ibut ion is just  to point  out  the  ut i l i ty  of sequent correlat ion 

densities to multiple processes and in par t icular  to cascade theory  of cosmic- 
ray  showers. 

Final ly  we observe tha t  eq. (4.17) can be generalized to n-point  sequent  
correlation densities easily and the  equations do not  lose the simplicity of the  
s t ructure  present  in (4.17). This is part icular ly interesting if we compare the  
equat ions with those satisfied by  the  conventional  product  densities of n-th 
order (see for example MESSEL and POTTS (~7)) where we encounter  mat r ix  
equations, the  matrices being of order 2". The simple s t ructure  is essentially 
due to  the formulat ion of the  problem based on invar iant  imbedding techni- 
ques. The ut i l i ty  of such a formulat ion in stochastic mult ipl icat ive process 
has been discussed in detail  by  RSV (~8). 

5. - C o n c l u d i n g  r e m a r k s .  

In  conclusion we wish to  make  a few general remarks.  The functions 
o~(x~, t~; x2, t:) in t roduced in Sect. 2 are defined in g2, the  product  space of 
x~, x2 and tl. On the  other  hand, i t  may  be worthwhile to introduce the cor- 
relat ion between =Y/(x, t), the  random variable representing the  number  of enti- 
t ies t ha t  are created between 0 and t with primit ive parametr ic  values not  
less than  x, and the variable N(x,  t) representing the  number  of entit ies t ha t  
are found at  t with parametr ic  values not  less than  x. Thus,  we can deal with 

the funct ion 2'(Xl, t~; x2, t~) defined by  

<5.~) /~(Xm, t~; x2, t2)ds = #(dAt'(x, t~)dN(x2, t2)}. 

Two interest ing cases arise according as t~> t2 or t2 > tl and both  the cases 
are of great  importance in the in terpre ta t ion of data  on cosmic ray  showers. 

(16) S. l~. SRINIVASAN and K. S. S. IYER: Nuot'o Cimento, to appear (1964). 
(17) H. :~[ESS]~L and R. B. POTTS: Phys. Rev., 86, 847 (1952). 
(is) A. RA~AKRI~HNAN, ~. K. ,~t~INIVASAN and R. VASUDF:VA.~': (1964) (t~) be 

published). 



~ E Q U E N T  CORRELATIONS IN EVOLUTIONARY STOCIIASTIC POINT PROCESSES ETC. 2 8 5  

Apart  from this, F(Xl, tl; x~, t~) has some interesting hmit ing properties ~-ery 

similar to those of sequent product  densities introduced by  RAMAKRISH~AN 

and RADI=[A (lo). The relevance of F(xl ,  t~; x~, t~) and higher-order correlations 

to evolutionary ~ a r k o v i a n  processes has been discussed in detail by  RSV (~). 

One of the authors (S.K.S.) acknowledges with pleasure the interesting dis- 

Cussions tha t  he had with Professor R. VASUDEVA.N'. 

(19) A. RAMAKRISHNAN, S. K. SRINIVASAN and R. VASUDEVAN: (1964) (to be 
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R I A S S U N T O  (*) 

Si definiscono le correlazioni susseguenti nei processi stocastici moltiplicativi, con 
l'aiuto delle densit~ di prodotto associate al processo. Tali correlazioni susseguenti 
descrivono il proeesso in modo pifl dettagliato delle correlazioni convenzionali, special- 
mente per quanto riguarda i valori parametrici che earatterizzano il processo. L'evolu- 
zione di ciascun membro delle entits moltiplicative del parametro ~ messa in evidenza 
dalle correlazioni susseguenti. Si trova che questi tipi di funzioni di eorrelazione sono 
molto utili nella descrizione delle cascate elettromagnetiche e forse di quelle nucleoniche. 
Per dimostrare questa possibilits si valutano le funzioni di correlazione del primo ordine 
nel caso semplice della cascara elettrone-fotone. 

(~ Traduz ione  a cura della Redazione.  


