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Summary. — Sequent correlations in multiplicative stochastic processes
are defined with the aid of product densities associated with the process.
Such sequent correlations describe the process in a more detailed manner
than the conventional correlations especially with regard to the para-
metric values characterizing the process. The evolution of any particular
member of the multiplicative entities in the parameter is brought out
by the sequent correlations. It is found that such types of correlation
functions are very useful in the description of electromagnetic and perhaps
nucleon cascades. To demonstrate this possibility, correlation functions
of the first few orders are evaluated for the simple case of electron-photon
cascade.

1. — Introduction.

Let us consider a multiplicative stochastic process progressing with respect
to a certain continuous parameter f, characterizing the process. The process
may depend on another continuous parameter x which may or may not be
independent of ¢. Many processes arise in Physics and Biology where we deal
with entities distributed over a continuous infinity of states. The parameter
may stand for the energy of a cosmic-ray particle or the age of a member of
a bacterial growth. Thus a natural way to describe the system is by the intro-
duction of an evolving continuous set of random variables. However, we
encounter a difficulty due to a situation where only probability densities can
be attached to particular values of the parameter # and not nonzero proba-

18 - Il Nuovo Cimenlo.
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274 5. K. SRINIVASAN and K. 8. 8. IYER

bilities. For this reason such processes have been known as point processes
(see for example BARTLETT (*)). While integration of the above-mentioned
probability density over x will yield only the mean number of entities distri-
buted over the range of integration, this procedure does not yield any result
pertaining to the fluctnations in the mean which is a very important criterion.
To overcome this difficulty, higher-order density functions expressing corre-
lations in x-space have been introduced by KENDALL (?), BHABHA (3) and
RAMAKRISHNAN (%), These are called cumulant functions by KENDALL (the
reason being that these functions enable us to obtain the cumulants) and pro-
duct densities by RAMAKRISHNAN for the obvious reason that it is a probabi-
lity magnitude in the product space. In view of the elegance and simplicity
in interpretation, we shall use the product density notation of Ramakrishnan.

2. — Product densities.

If N(x,t) is the stochastic variable representing the number of entities at
time ¢ with parametric value X <x, the density relation (*)

(2.1) fi(@, tyde = E{AN(x, 1)}

exists (**) such that the probability of one entity having a parametric value
in (@, x+3z) is fi(x)dz, the total probability of more than one entity having
a parametric value in the range being O(3x). f,(x,?) is termed the product
density of degree one. The product density of degree two is defined by

(2.2) fo@y, @y, 1) Ay dw, = éa{dN(xl, 1) AN (x,, t)} y Ty 7 Xy

(2.2) may be interpreted as the simultaneous probability of finding the para-
metric values of two entities in the intervals (z,, #,+dx,) and (x,, 2,4 dx,),
provided the two intervals do not overlap. However, when there is a overlap
(T.6., =),

(2.3)  E{dN (2, t) AN (a, 7:)},D1=m2 = &{[dN(z, 1)]*} = E{AN (2, 1)} = fulw, t)de .
In a similar manner higher-order densities can be defined.

) M. S. BARTLETT: Siochastic Processes (Cambridge, 1955).
) . G. KENDALL: Journ. Roy. Statistist. Soc., B 11, 230 (1949).
3) H. J. Baasiua: Proe. Roy. Soc., A 202, 301 (1950).
) A. RaAMARRISHNAN: Proc. Camb. Phil. Soc., 48, 595 (1950).

(*) Throughout this paper, the symbol & will be used to denote the expectation
value of the quantity within the brackets.

(") The term existence is used from a purely physical point of view in the sense
that there are a number of physical situations wherein such conditions hold good.
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SEQUENT CORRELATIONS IN EVOLUTIONARY STOCIHASTIC PO'NT PROCESSES ETC. 273

To obtain the second moment of the number of entities with parametric
values over a finite interval (a, b) we need integrate &{dN(x,,t)dN (i3, 1)} and
take into account the degeneracy introduced by the overlap of dx, and dw,.
Writing the number of entities in the interval (a, b) as N(a, b, t), we obtain

(2.4) &{[N(a, b5 )]} = f fule, 1y de - f f fuln, 2, 1) dry do

a

Higher-order moments have been arrived at in a similar way and the explicit
expression for the r-th moment in terms of linear combinations of integrals
of product densities of degree less than or equal to » have been obtained by
RAMAKRISHNAN (%).

So far, we have not paid any attention to the nature of the parameter x.
The parameter x may be called the intrinsic parameter for obvious reasons.
If x denotes the age of an individual in a birth and death process, the age is
a deterministic function in the sense that if the time #, of birth is known, the
age of the individual can be specified at any later time ¢ > {,, the parameter ¢
standing for time in this case. However, there are a number of physical
processes where the time or position in ¢-axis of a creation of a particle and
its then z-value do not determine its subsequent x value. A concrete example
is provided by the energy state x of an electron in the electron-photon cascade.
In this case, the multiplicative stochastic process under consideration evolves
with respect to both ¢ and », the energy parameter. In fact it makes sense
to talk of the parametric value at the point of the creation of the particle.
Experimentally, it is convenient to make energy measurements at the point
of production. As a matter of fact, the data on electromagnetic cascades ob-
served in nuclear emulsions makes reference only to the energies of the pairs
of electrons at the point of production. Thus we can talk of product density
in the product space of ¢ and x. Such product densities have been used in the
formulation of cascade theories (see for example reference (%) and (°)).

To define such a product density in the product space of « and t, we de-
fine .#(z,t) as the random variable representing the number of entities which
are « born » at a parametric value T <{, the intrinsic parametric value X being
less than or equal x. The .#(x, ) is the stochastic variable representing the
number of entities that are created between ¢ and ¢+ d¢ and have an intrinsic
parametric value between z and x-+dx at its inception. If m(n) is the proba-
bility that n entities are born between ¢ and ¢+ d¢ with intrinsic parametric

(*) A. Ramagrisuxax and 8. K. Srinivasan: Proe. Ind. dcad. Sci., A 44, 263
(1956).

(¢) 8. K. SriNivasax, J. C. BurcHEr, B. A. CHARTRES and H. MrssEL: Nuovo
Cimento, 9, 77 (1958).
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276 §. K. SRINIVASAN and K. S. 8. IYER
values between z and x--d¢, then

7(1) = fy(e, t) de dt + o(dx dt) = &{d.#(, 1)},
(2.5) 7(0) = 1 — f,(2, t) de dt + o(dx dt) ,
‘wt(n) = o(dxdt) , r>1.

From this point onwards, it is clear that a product-density technique for the
product space £ of x and ¢ can be carried in toto. The moment formula (2.5)
can be written for the product space by replacing dz by d:.

From the above, it is clear that once the product densities are known, the
problem of fluctuations involves only integration over the parametric range.
Thus the main task in any problem will be the explicit determination of the
product densities. The method of obtaining product densities for the case of
electron-photon cascades has been dealt with by RAMAKRISHNAN (%) and BHABHA
and RAMAKRISHNAN (7). However a glance at the Mellin transform sclution
obtained by BHABHA and RAMAKRISHNAN will convince us of the gigantic mag-
nitude of the task of anyone who attempts to obtain some numbers from those
results. Thus calculation of higher moments becomes, though not impossible,
formidably difficult. To offset this difficulty, there have been attempts to re-
formulate the problem in such a way that the evaluation of the cumulants
{factorial moments) of the number distribution is somewhat less tedious (see
for example references (%) and (*)). This method completely eliminates the use
of product densities of any other type of correlation functions and will not
be discussed any further. Alternatively, we can introduce new density func-
tions which include more information. Thus in terms of those functions, it
may not be necessary to go beyond the second order in any physical situation.
For example in the case of electromagnetic cascades, we can introduce two-
point correlations in E-space. Specifically we can deal with particles that have
been produced between ¢ and f+dt with energy lying between F and E--dF
at the point of production and are found to have an energy between E’ and
E'+dE’ at t'>t. Such a generalization, apart from the possibility of over-
coming certain computational difficulties mentioned above, may be interesting
from the point of view of comparison with experiments, particularly in cas-
cades. Moreover, there are certain physical features characterizing the par-
ticles, an example being polarization of electrons or mesons which is directly
related to the energy at the point of production rather than at a later point
of observation. These new densities associated with more than one interval of

() H.J. BaaBaa and A. RAMAKRISHNAN: Proc. Ind. dcad. Sci.,, A 32e, 141 (1950).
(8) L. JaNossy: Proc. Phys. Soc. London, A 63, 241 (1950).
(9 8. K. Srivivasan: Zeit. Phys., 161, 346 (1961),
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SEQUENT CORRELATIONS IN EVOLUTIONARY STOCHASTIC POINT PROUCESSES ETC. 277

parametric space may be called evolutionary sequent correlations for obvious
reasons. In Sect. 3, the sequent correlation functions are defined and the
moment formulae for the number distribution as well as other quantities of
physical interest are deduced. Section 4 of the paper will deal with physical
examples, particularly from cascade theory of cosmic radiation.

3. — Sequent correlations.

The concept of sequent product densities were first introduced by Rama-
KRISHNAN and RApHA (*°) who distinguished between «instant » and « sequent »
correlations in point processes. The instant correlation relates to the study
of correlations of the random variables corresponding to the same value of ¢
while the sequent correlation relates to that between the random variable
corresponding to different values of ¢{. Though the arguments used by Ra-
MAKRISENAN and RApHA heavily depend on ¢ being the time parameter, the
results are applicable to any ordered parameter. In fact if N(x,?) in the no-
tation of Sect. 2 is the stochastic variable representing the number of entities
having a parametric value X >a, then the sequent product densities can be
obtained by considering the expectation value of the product dN(x,,1),-
-dN(zy, t,) ... AN(®,, t). The sequent product densities contain more infor-
mation than the instant product densities in that it partly explains the de-
pendence of N(x,, t;) on N(x;,t,). However, the second-order sequence density
is always expressible only in terms of second-order instant density and as such,
there seems to be no advantage from a computational point of view. On the
other hand, the evolutionary sequent correlation will be shown to have a de-
cisive advantage over the instant or even sequent densities.

We now proceed to a proper definition of evolutionary sequent correlations.
Towards this end, let us define the primitive parametric value of an entity as
the parametric value at (its time of inception) the point of its production.
We can now consider the random variable M (a4, #,; x,, {,) representing the num-
ber of entities produced between 0 and ¢, the primitive parametric value of
each of which is greater than or equal x,, the entities having a parametric value
greater than or equal @, at t=1,. Then we can define an evolutionary se-
quent correlation density by considering dM(axy, ¢,; #,,t,) which denotes the
stochastic variable representing the nmmber of entities that are produced be-
tween #, and t,+ df, with the primitive parametric value of each of which is
between «, and x, |- dw,, the parametric value of these entities lying between
%, and x,+dx, at t=1,. We shall reserve the symbol # to denote such a
product density. If P(n) is the probability that the random variable dM

(1 A. RavaxrisaNax and T. K. Rabpua: Proc. Cam. Phil. Soc., 57, 843 (1961).
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278 8. K. SRINIVASAN and K. 8. S. IYER

takes the value #, it is reasonable to assume that P(1) is of the order 3£
while P(n) for n>2 is of a smaller order of magnitude as compared to 3£,
3£ being an infinitesimal element in the space in which the density functions
are defined (*). Thus we can define the sequent correlation density of degree
one by

P(1) = Fy(@y, by 75, £,) 82 + 0(302),
= E{dM(x,, t;; &3, 15)},

P(0) =1 — F (2, t,;;%,, t,) 82 + 0(32)

P(n) = 0(302), n>1.

(3.1)

Higher-order sequent correlation densities are defined in a similar manner.
Correlation density of degree n is defined by

(3.2)  E{AM(wy, ty; @', 1) AM (2, ty; Ty, 1) e AM(2y, t,; @, 1)} =

= By, by gy byl eoe By B Ty Ty oe Ty 1) 82,802, ... 38,
provided the 30, are disjoint. If all the 30,’s are not disjoint, then a dege-
neracy as in the case of usual product densities occur. We shall not any further
discuss since all the steps leading to the moment formula (2.5) are applicable
in the present case provided we replace dz by df.

4. — Sequent correlations in cascades.

4’'1. Two point correlations: sequent correlation density of degree one. — The
sequent correlation density is very useful in the description of electromagnetic
cascades. Let us consider an electron-photon shower initiated by an electron
or a photon of energy E,. We shall assume that the shower develops by
pair creation by photons and bremsstrahlung by electrons. Defining
FUEy, t; By, t|E,) as the sequent product density of degree one of electrons
in a shower initiated by a primary of i-th type (i=1, 2 denotes an electron
and a photon primary, respectively) we can obtain differential equations by
considering the various possible outcomes of events that may happen in the
infinitesimal interval (0, A4), of f{-axis. The primary electron (photon) may
radiate a photon and drop down to a lower energy (create an electron posi-
tron pair) in the interval (0, 4), thus giving rise to two independent primaries.
To incorporate the contribution from such an outcome of events, we use the

(") Q is the product space of |, , and f,.
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invariant imbedding method {1!). To be precise, we imbed the process cor-
responding to a thickness ¢ into a class of processes obtained by letting ¢ take

any positive value.
Thus we obtain

1) Fi(By s By t] By = (1_g f RA(E'| ) dE’) Fi(Bns 1—A; By t—A | B+

+AfRi(E’;E0) AE {F{(E, t,—A; By t— A E') +
+F7 By i — A Eyyt— A|B,— E)} .
By making 4 ->0, we derive the differential equation

8

a i i A TN
(4.2) (az 48 )y(z«; . 2,t!Eo)=wfR’(E1E0){ﬁ71(191,t1;E’2,t[E0)—
1 .
— FYBs, 1y: B, }dEf+f By F(Bs, t; By, t| Bo— B) I

To solve (4.2), we note that asymptotic forms of R(E'|E,) are given by (%)

I e V=

o el () (EE) L

In view of the cross-sections Ri(E’'/E) being homogeneous in ¥ and E', we
notice that

) ) E E
(4.5) Fi(H, t;; B,y t| By) AE, AE,=F (e, t1; &2, 1) dey de, (81: El , By = 2) .

Thus {4.2) can be written as

(4.6) (a% + a)%(el,tl,eg,n——f}z @) {%(sl,ti,ez, ) — f( o2, )}de+
1

_+_f 18)0"3—1(“ /, 1,182 t) dt‘)’«

(**) R. BeLLman, R. Karasa and G. M. Wine: Jouwrn. Math. Phys., 1, 280 (1960).
(**) H. A. Berue and W. HEITLER: Proc. Roy Soc., 146, 83 (1934).
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Defining the Mellin transform of F4(e,, t,; ¢,, 1) as
(4.7) 7 (S1y 13 855 0 —~ff Pt 32-1 F 31, b1 &y 1) ey de,

we can write (4.6) in the matrix form as

0 0
(4.8) ”a’t‘l + a)yl(su ty; 8oy t) = LP\ (34, b5 82y 1),

where 2, is a vector whose components are Zi(s,,t,; s,,t) and L is the two-
by-two matrix given by

—A(s; +8,—1) C(sy+ 8,—1)

(4.9) L= ( ) ’

B(s; - 8,— 1) —D
(4.10a) Ag) =1 — e ) R'(e)de",

0

(4.10b) B(s)= 2]834 R ) de’,
(4.10¢) C(s) :f(l —g) 1,
(4.100) D :fR"’(a') de’ .

The initial conditions to be imposed on (4.2) are given by

(4.11a) FUEy, 05 By, t|By) =0,

(4.11b) FY By, t,; By, t| B,) = 2RE, | B,) n(B,| By, 1),

where 7(H,|E,, t)dE, denotes the probability that an electron of energy E,
at t=0 drops to an energy between E, and E,+dF, after traversing a thick-

ness ¢. Thus the initial conditions satisfled by the system of eqs. (4.8) are
given by

(4.12a) P81,y 05 85,1) =0,
(4.12b) P8y, 05 85, 8) == exp[— A(sy) ] B(s; + 8,—1),
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SEQUENT CORRELATIONS IN EVOLUTIONARY STOCHASTIC POINT PROCESSES ETC. 281

where we have made nse of the well-known expression for the Mellin transform
of n(B,|Ey;t) (*%):

1

(4.13) (s By t) = } Byt n(By | By 1) dE, = B¢

0

(4.8) can be solved either by taking a Laplace transformation with respect
to ¢ and ?, or by diagonalizing the matrix L and solving the resulting partial
differential equations. As the method is straightforward, we refrain from giving
the intermediate steps. The final solution is given by

1 . _,,,%+'92_1,)B(81+82_1)——'
() 2400 s oo D = s =) — Ao e 1)

: {exp [_ As1 4 8,— 1)t1] — exp [_ /u(sl + 8 — 1)t1]} e€xp [_ As,) it — tl)] y
. Beits—1)
(84 85— 1) — A(s; +8,— 1)
“{[u(s: 4+ s.— 1) — D) exp[— As; + s, — 1)t,] —

—[D— Ay + s,— 1)] exp [— pu(s; + 8. — 1)t1]} exp[— A(s)(t — )] .

(4.14D)  Fi(sy, by; 8y, 1) =

The mean number of electrons that are produced with primitive energies greater
than ¢, times the energy of the primary between 0 and ¢ and remain above a
certain fraction of the primary energy at ¢ >t can be calculated by invert-
ing F, and ¢, over the appropriate range. The occurence of functions with argu-
ments $,+s,—1 and s, will simplify the evaluation of the inversion integrals
to a great extent. Thus, we can conveniently study the mean numbers for
small values of ¢'. The method of evaluation of inversion integrals of the type
encountered on the right-hand side of (4.14) has been discussed by us (M) in
connection with the fluctuation problem of electromagnetic cascades and can
be taken over in toto. A study of these mean numbers will give us a deeper
insight into the problem since the manner in which the electrons drop down
in energy as ¢ increases is made transparent.

4'2 Sequent correlation density of degree one: alternative approach. -
The densities #3(Es, t;; Es, t|E,) can be arrived at by different arguments.

(13) L. Janossy: Oosmic Rays (Oxford, 1950).
(1) S. K. Srinivasax, K. 8. 8. Iver and N. V. Koreswara Rao: Zeit. Phys. (1963)
(in press).
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The method is very simple and consists in expressing #;, in terms of the
conventional product densities of degree one of electrons and photons that
exist at . Since the electron is produced between ¢, and ¢,+di,, it is neces-
sary that there should be a photon at ¢, and it should create a pair between
t, and t,+d¢,, one of the electrons having an energy in the prescribed range.
Thus, if ¢(¥|E,; t) is the product density of degree one of photons that exist
at t due to a shower excited by a primary of energy E, and type ¢, then

(4.15) fﬁ(El,tl;E2,t2[EO):2fg§(E‘E(,;t) YE,|E)a(E,|E;t—4¢)dE .

The equivalence of (4.14) and (4.13) can be verified by taking a Mellin trans-
form of both sides of (4.14) and using well-known solutions (!?) of cascade
theory for g;(E|E,; t). However the method indicated in the earlier part of
this Section does not make use of the conventional product densities and il-
lustrates the method of building up cascade theory purely in terms of the
sequent correlation densities. The advantage of this method will become trans-
parent in the final part of this Section where the invariant imbedding method
will be shown to yield a simple set of equations for the second-order densities.

4’3 Higher-order sequent correlation density: invariant imbedding approach. —
We now deal with FUE,,t; By, t,; B, E,, t|E,) the sequent correlation
density of degree two of electrons produced between ¢, and ¢,4d¢, and ¢, and
t,-+ d¢, and observed at a later thickness #>#,, f,. Exactly as in the first
part of this Section, we analyse the possible outcome of events in (0, 4) of
the ¢-axis and use the invariant imbedding technique. Thus we have

(4.16) F (B, 4 By, ty; By By, t|B,) =

:(I—Af (E”E)dE') Z( I bh— A5 Eyy 6 — AyEaaEut_AtEo)‘}‘

+AfR"(E’on) {Fu(By, ti— A5 By t,— A5 By, Byt — A|E') +

‘I‘y;s-“( 17tl A Ezyt‘)_A E3, Eu A‘\EO_EI) +
+ FUEy, i — A By, t — A ') FI By t,— A3 Byt — A|E,— B') +
+ FUUE, t,— A; Byt — A By— E') F1(B,, t,— A; Eyy t — A|E')}.

(*5) H. J. BuaBua and W. HerrLer: Proc. Roy. Soc., A 159, 432 (1937).
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By letting 4 — 0, we obtain

i1 & 8 a\ .
(4.17) E+E+Eﬁ F/Ta(EutﬁEzytz;Estut‘Eo):

B _fRi(E/EEo) {f;(En t; By, ta5 By, By, 1| By) —
— gz-;(Ela b5 By sy By, By, t‘E,)} dE' +
+fRi(EI!Eo) {5{72"(1«]” t; By, ty; By, By, 1| Ey— F') +

-+ ji(Eu s K, t}El) e9('-?_1( oy bo3 By, t1E0_E’) +
-+ fﬁ‘i(El, t; B, t‘EO— E’) ’7{(E2, ty; Ey, HE')} dE’ .

The boundary conditions satisfied by % are given by
(4.18¢) F(E,, 0; E,, 0; By, By, t|E,) =0,

(4.18b) yZ(Eu 0; E,, 0; E,, K, tlEo)

I

= 2RY(E, | E,) 8(Ey— E,— Ey) n(By| By, t) (B | By, 1)

I

(4.18¢) g’v;(Eu 05 By, 1y3 E37E4,t|Eo) 0,
(4.18d) F(E,, t:; B,, 0; Es, By, t|Ey)=0.

In addition to the above conditions, we also need the value of F#3(E,, 0;
E,, t,; By, By, t|E,) and FYE,, t,; E,, 0; Ey, By, t|E,). These cannot be spe-
cified directly but can be obtained after some calculations which are straight-
forward. To this end, we observe that by definition of F#3,

(4.19) =¢§(E17 0; Ey ty; By, By, t|E0) = Rz(E1|E0)[9ni(E2, ty; B, By, ”El) +
+ ﬂ(Ea‘Eﬂ t) f%(Ez, 1o5 Hy, tIEo*‘Ex)] y

where % nf(Ez, t.; Hy, By, tIEl) dB,dE,dE,dE,dt, denotes the joint probability
that an electron of primitive energy between E, and E,-dE, is created between
{, and ,+ dt, in the shower excited by an electron having an energy E,, the
primary and the secondary electron so created dropping the energies lying in
the intervals (E,, E,+ dE,) and (E,, E,+ dE,) respectively. Fnal is an un-
known function; however this need not trouble us since it is easy to write
down integral equation satisfied by F=a}, by the use of invariant imbedding
techniques. The equation can be solved by simple transform technique and
will not be discussed any further in this paper. F=i by itself is important
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284 S. K. SRINIVASAN and K. S. 8. IYER

in the study of bursts produced by u-mesons. The relevance of the techniques
developed in this paper and the properties of the function F =} are discussed
by us in the following paper () dealing with the fluctuations in size of bursts
produced by electrons and p.-mesons.

Just as in the case of two-point correlations, it is quite possible to relate
the three-point correlation product density in terms of the conventional single-
point product density as well as the product densities defined in the product
space of E and . We shall not go into the details since the object of the
present contribution is just to point out the utility of sequent correlation
densities to multiple processes and in particular to cascade theory of cosmie-
ray showers.

Finally we observe that eq. (4.17) can be generalized to n-point sequent
correlation densities easily and the equations do not lose the simplicity of the
structure present in (4.17). This is particularly interesting if we compare the
equations with those satisfied by the conventional product densities of n-th
order (see for example MESSEL and PoTTS (*")) where we encounter matrix
equations, the matrices being of order 27. The simple structure is essentially
due to the formulation of the problem based on invariant imbedding techni-
ques. The utility of such a formulation in stochastic multiplicative process
has been discussed in detail by RSV ().

5. — Concluding remarks.

In conclusion we wish to make a few general remarks. The functions
Fy(y, 85 T4, t,) introduced in Sect. 2 are defined in 2, the product space of
@, @, and {;. On the other hand, it may be worthwhile to introduce the cor-
relation between .#(z, t), the random variable representing the number of enti-
ties that are created between 0 and ¢ with primitive parametric values not
less than x, and the variable Nz, t) representing the number of entities that
are found at ¢ with parametric values not less than x. Thus, we can deal with
the function F(x,, t,; x,,1,) defined by

(5.1) Py, by 0y 1) AQ = E{dM (w0, 1,) AN (2, 1,)} .

Two interesting cases arise according as f, > 1, or #,>1¢, and both the cases
are of great importance in the interpretation of data on cosmic ray showers.

(*¢) 8. K. Srintvasan and K. S. 8. Iver: Nuovo Cimenio, to appear (1964).
(1) H. MesseL and R. B. Porrs: Phys. Rev., 86, 847 (1952).
(18) RavakrisaNax, S. K. Srinivasax and R. Vasupevan: (1964) (to be

Al
published).
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SEQUENT CORRELATIONS IN EVOLUTIONARY STOCHASTIC POINT PROCESSES ETC. 285

Apart from this, F(x,, ,; #,, t,) has some interesting limiting properties very
similar to those of sequent product densifies introduced by RAMAKRISHNAN
and RApHA (**). The relevance of F(wy, t; «,, {,) and higher-order correlations
to evolutionary Markovian processes has been discussed in detail by RSV (19).

¥ %k
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RIASSUNTO (%

Si definiscono le correlazioni susseguenti nei processi stocastici moltiplicativi, con
{'aiuto delle densitd di prodotto associate al processo. Tali correlazioni susseguenti
descrivono il processo in modo pit dettagliato delle correlazioni convenzionali, special-
mente per quanto riguarda i valori parametrici che caratterizzano il processo. L’evolu-
zione di ciascun membro delle entita moltiplicative del parametro & messa in evidenza
dalle correlazioni susseguenti. Si trova che questi tipi di funzioni di correlazione sono
molto utili nella descrizione delle cascate elettromagnetiche e forse di quelle nucleoniche.
Per dimostrare questa possibilitd, si valutano le funzioni di correlazione del primo ordine
nel caso semplice della cascata elettrone-fotone.

(*) Traduzione a cura della Redazione.
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