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Summary. — The mathematical aspects of singular potentials in non-
relativistic quantum mechanics are studied in terms of the self-adjoint
transformations related to singular differential operators in the space
L,(0, o). The physical content is expressed by the spectral decompositions
and for attractive potentials found to be determined only up to a para-
meter defining a particular extension. In general it is not possible to
determine a specific extension by a cut-off procedure.

1. — Introduction.

The recent work of FEINBERG and PAIs (2} has made it desirable to study
the formal techniques applied by them to unrenormalizable field theories on
the firmer ground of singular potential scattering (*®°). Unfortunately the
mathematical implications of singular potentials in nonrelativistic quantum
mechanics have not been worked out in such detail as in the more familiar
case, although a first step in this direction has been done by the work of
CASE (°*) and ScarrF (?). This may be due to the fact that attractive potentials
singular as = (c>2) are of a rather academic interest from the physical point of
view, because in general they do not lead to a Hamiltonian bounded inferiorly.

G. FEINBERG and A. Pais: Phys. Rev., 131, 2724 (1963).
G&. FeINBERG and A. Pa1s: Phys. Rev., 133 B, 477 (1964).
N. Kuurt and A. Pais: Singular Potentials and Peratization, I, preprint.
A. Pars and T. T. Wu: Singular Potentials and Peratization, II, preprint.
5) A. Pais and T. T. Wu: Scaitering Formalism for Singular Potential Theory,
preprint.
(%)) K. M. Case: Phys. Rev., 80, 797 (1950).
(7) F. L. Scarr: Phys. Rev., 109, 2170 (1938).
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SINGULAR POTENTIALS IN NONRELATIVISTIC QUANTUM MECHANICS3 691

This does not mean that the mathematical situation is obscure. Singular
differential operators are either self-adjoint or give rise to a well-defined class
of self-adjoint extensions in the Hilbert space of square-integrable functions
L,(0, co) (Sect. 2 and 8). The corresponding resolutions of the identity are dis-
cussed in Sect. 4 in terms of scattering solutions and bound-state wave func-
tions. Analyticity properties in the coupling constant g® are displayed by
a spectral representation of the resolvent in the complex g*-plane. Finally
it is shown (Sect. 5) that it is not possible to fix a specific self-adjoint extension
by a cut-off procedure, except in a special range of coupling-constant values
for the potential r—2. This leaves the « physical » content of Hamiltonians not
bounded below undetermined up to a parameter fixing the extension.

2. — Singular differential operators,

In order to study the possible meaning of singular potentials in quantum
mechanics we begin with some results from the theory of singular differential
operators. An exhaustive treatment of the subject can be found in Stone’s
book (*), from which we have borrowed the general statements of this Section.

We consider the differential operator

2

(2.1) L:_agﬂ;zr(z)

in the interval (0, co). The potential function V(z) shall be integrable over
every closed interval interior to (0, co). To avoid complications not of inte-
rest in our context we assume V(z) > 0. The point 2= oo is a singular point
of the operator (2.1) and the point 2z =0 is said to be singular, if the integral

@

(2.2) J.dzlv(zn, >0,

0

does not exist. This is the case we are interested in.

The operator L defines a linear transformation H* in the space L0, oo}
with domain D*. D* is essentially the set of all funections fe L,(0, co) such
that Lfe L,(0, 00). For f, g€ D* we have

(2.3) (9, Lf) =g, fic + (Lg, ),

(®) M. H. Stoxr: Linesr Transformations in Hilbert Space, in Ann. Math. Soc,
(New York, 1932).
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692 K. MEETZ

where the limits

(24 (9, 715 = M. (= G+ §'Dl oy — i (— 3+ ).,

do exist (§ is the complex conjugate of g). If D is the set of all fe D* such
that

(2.5) [g9,fl7 =0  for every ge D,

then the operator L with domain D defines a symmetric transformation H
in L,(0, co) with adjoint H*.

For physical interpretation H needs to be self-adjoint or a physically rea-
sonable self-adjoint extension has to be given. To find out whether H is
self-adjoint or not we consider the solution w(z, k) of the differential equation

2
d—:f + g2 VEew =kw,

(2.6) Lw = —
where k is in the upper half-plane (Im k> 0). We call n, or n, the number
of linear independent solutions of (2.6) which belong to L,(0, a) or L,(a, co),
where a is arbitrary > 0. The number » of independent solutions in L _(0, co) is

Lo

(

.7) no==NyF Ny —2.

It is called the «deficiency-index » of the transformation H. The numbers
n, and n, are independent of & in the upper half-plane and may have the
values 1,2 each. Hence n =0, 1, 2.

It has been shown by voNn NEUMANN (?) that the domain D* can be de-
composed in the form

(2.8) D*—D@®D.® Ds.

D,. and D;; are the linear manifolds in L,(0, co) belonging to the eigenvalues
k®* and k® of (2.6). Because

(2.9) dim D, = dim D — n ,

H is clearly self-adjoint for » =0, while for n =1, 2 self-adjoint extensions
have to be constructed.
We now determine the numbers n_ and n, for certain classes of potentials.

(®) N. I. Acuieser and I. M. GrassmManN: Theorie der linearen Operatoren im
Hilbert Raum (Berlin, 1958).
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SINGULAR POTENTIALS IN NONRELATIVISTIC QUANTUM MECHANICS 693

For a potential with the property

(2.10) fdz 2| V()| <oo, b>0,

b

there exists only one solution of (2.6) in IL,(0, co) for Imk > 0. We call it
f(z, g, —k) and define it in the usual way by the Volterra integral equation

snk(@ )

] e, 9, — k) = exp[ike} + g fd VG, 9, — k)

(2.11)
lfz,g, —]‘z,g,—k)

The second solution
(2.12) (=, 9, k) = f(zy g, —k exp [Lﬂ]) y W(f(zy g, k), 1(2, 9, “‘k)) = 2ik

(W means the Wronskian determinant) is not in L,(a, co) and we have n=1.
The solutions for the potential
1

(2.13) GV (2) = -2

a2

are

. 1
f(zy v, — k) = anz HP(kz) exp leg (v +§)] .

<

]\.N l
{(zy%, k ‘/n H? (kz) exp [-—i%(v—l—;)il )

where H" and H are the Hankel functions of first and second kind.
f(z,», —k) is in IL.(a, o0), and f(z, v, k) is not, independent of the value ».
Again n_ =1. To determine n, for the potential (2.13) we look at the general
solution of (2.6):

(2.15) w(z, v, k) = av/z J,(k2) + /7 N,(k?)

in terms of the Bessel function J, and the Neumann function N,.
If v>1, only vzJ (k?) is in L,(0, a) and we have n,=1. But for 0<v<1
and purely imaginary values of ¥y =14y (y real) every solution (2.15) is in
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694 K. MEETZ

L,(0, @) and n,=2. Hence the transformation H is self-adjoint for a repulsive
potential (2.13) with »?>1 (n=0), while for »><1 we have to look for pos-
sible extensions (n=1). It is a peculiar property of the potential (2.13) that
H has the deficiency-index 1 in the range }<»*< 1, where the potential is
repulsive.

We now turn to potentials that are more singular than 22 at the origin.
For the sake of simplicity we assume the form

V@) = 2+ V),

where

b
(2.16) fdz 2| V'(z)|< o0 for b>0

0

and o >2. The transformation
1 ~ -
(2.17) 2 =1 w (-,) =w(E') =)

of (2.6) leads to the differential equation

d

2 , 1 (1)) . k2.
— dz,2+g2(z“-‘+zT4V (;))v:;ﬂv'

Because of (2.16) we can obtain asymptotic solutions for z’—oo (2—0), from

(2.18)

ds,

(2.19) i

+ greoiP,=0.
These have the form

. - o . gl
(2.20) 00(2') = V& Zyjia-n (ltg &E,_,,, 1) )

where Z, is a cylinder function of index ». We define as a fundamental system
of the equation
d2w,  g?

(2.21) doe T oW =10
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the functions

. 7—_; igz 3 . igar—(2) 7 o« — 2 1
Pol5s g)_l/z (oz/2—1) H"‘“‘z’(m—l explig\=—5— +3)| =

—49 ;
R 2L 1—{oe/ 2)
2—0 k3 exp l:a/2~1z ] ’
(2.22) N af ige \' ., iget- D\
@ol2, — 9) = pol(, g exp[in]) = |/ 5 a2 1 Hiew\o5—T 5T

LTt 1 1 g
. 5 —_ — 064 1—(x/2)
exp[ 1,2(“__2—}—2)] P exp[ 12— z ],

W(%(z, 9)y @olzy — g)) =—32g.

A solution of the full eq. (2.6) in L (0, ) for the potential (2.16) can be
obtained from the Volterra integral equation

P2, ¢, k) = @o(2, ) — *fdc {pe(2y @05 — 9) —@o(z, — 9) @olL5 9)} -

(2.23) (R— g2 V(D) e&, g, k) -

o2, 9, k) = ¢(2, g, ]2) .

We clearly have n,=1 for a repulsive potential (g2 > 0)and n, =2 for an
attractive potential (g2<< 0). n =1 is the «limit-point » and n =2 the «limit-
circle »-case, first discussed in the famous paper of WEYL (). The functions
¢(2, g, k) may be compared with the solutions

gz, v, k)  =T(1+v)2" k" Vzd (ks) —>2* exp[vInz],
(2.24) @2, —v, k) = (1 —»)2°k" vz J_ (k2) —> 2*exp[—»Inz],

W(p(z, v, k), plz, —, k) = —2v,

for the potential (2.13) (v not an integral number).

3. — Self-adjoint extensions,

To construct all self-adjoint extensions of the transformation H, if n=1,
we use the method of Stone (%)). According to (2.8) we can decompose the

(1) H. WryL: Math. Ann., 68, 220 (1910).
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696 K. MEETZ

domain D* in the form

(3.1) D*=De® D, ®D_,;,

where D., and D_, are the linear manifolds which belong to the eigenvalues
k*=-41 and k2=-—¢ of (2.6). Because of n =1 these have dimension one.

As we have seen in Sect. 2 every solution of (2.6) is now in L,(0, a). Hence
we may span Dy, and D_; by the functions

(3-2)  fr=7 (z, g, — exp [7'%]) ’ f-o=F (Z, 7, — exp [i3 %}) =Ffru s

defined by (2.11) for a potential of the class (2.10) or by (2.14) for (2.13).
We now show that the domain D of H can be characterized as the set of all
elements fe D* which satisfy

(3.3) Ui flo= (—Fa '+ F2 D e = 0.

To see this we recall that we have defined D as the set of all fe D* such
that (2.5) holds for every ge D*. EKvery ge D* can be written in the form

(3.4) g =0+ ofy, + of, y g.€ D,

where o;, o, are some complex numbers. Hence (2.5) is equivalent to

(3.5) [fers 7l =0

To reduce (3.5) to the condition (3.3) we use another decomposition of ¢:
(3.6) 9 = gy + Buhy + Bohs 9,€D.
hy, and h, are functions with compact support such that

(3.7) Wi(hys hs), ., 70 .

Hence for every g and fe D*

(3.8) [f, 91" = 1f, 90" = [}, 9,)y = 0,

where we have used the fact that D is the closure of the set of functions ¢
with compact support and ¢(0) =0 = ¢'(0). f., are, of course, elements of
D* and (3.5) implies (3.3).

Because the Hamiltonian is a real transformation, we have to define self-
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SINGULAR POTENTIALS IN NONRELATIVISTIC QUANTUM MECHANICS 697

adjoint extensions which are real with respect to complex conjugation. To
do so we define the function

(3.9) 79=% {fﬂ exp [¢ g] — [ exp [— @?”

and the domanin D, as the set of all elements fe D* such that

(3.10) [fy folo= 0 -

The differential operator L with domain Dy is a self-adjoint transformation H
in L,(0, co):

(3.11) (9, Hof) = (He9, ) » 1, 9€ Dg.

H, is real, because f is a real function. This guarantees that the resolu-
tion of the identity is real. As @ runs from 0 to 2z we get all possible self-
adjoint extensions with this property.

Next we determine the solutions gg(2, ¢, k) of the differential equation (2.6)
which satisfy the boundary condition (3.10). Consider first the potential (2.16).
The general solution is

(3.12) Pol?) 9, k) = @(2, g, k) — cp(2, —g, k)

with some complex number ¢, The condition

(3.13) [for Polo = (—fove + foPe) | sms = W,oo(@er fo) = 0
{W, means the Wronskian evaluated at 2) yields

(3.14) o Werlfol?)y @(z 9, 0)  _ Ween(fol2)s 94l 9))
. Wz=u (f@(z)a 95’(2, — 8 k)) Wz-o(fg(z), (po(z, — g)) '

fo is a real function and from (2.22) we see for ¢2< 0

(3.15) Pol?, — 9) = @ol2, 9 -
Hence |¢|=1 and (3.14) may be written as

W’z-o (f@(z)’ @0(27 g))

(3.16) exp [2i%(0)] = Wz=0(f@(z)7 @ol?, — g)) )

By (3.16) a one-to-one correspondence of @ and y is set up in the inter-

45 - Il Nuovo Cimento
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698 K. MEETZ

vals 0< @ < 2x and 0<y <zm. The solutions

B17) polz, g, k) = o exp[ix(O]gle, 9, k) — exp[— ix(ONple, — g, b}

are real for purely imaginary values of k=14 (x real). (3.17) leaves undeter-
mined the phase of the solution for z — 0. This property of the wave-func-
tions has already been discussed by CASE ().

The situation is completely the same for the potential (2.13) in the range
1?< 0. We just have to substitute » for g in (31.6). But for 0 <v <1 we
find with (2.24) that

Wz=o(f@(z)’ @o(?y ")) — 9w I'(14-v) cos ((W’:/‘l) + (@'/2))

T Wolfo2), @oler — )~ T(1— ) cos ((va/4) — (@'[2)) ’

(3.18) s
0 =06+ T”

is a real number which may have every value between —oco and +4oco. A
one-to-one correspondence between @ in 0< B <27 and ¢ in —oo < ¢ < -+ o0
is given by (3.18). It is possible to define a specific extension by putting
¢=20. This means that the solutions of the differential eq. (2.6) shall behave
like the more regular function g,(z,»)=2"** near the origin. We emphasize
that such a boundary condition does not make sense for »2<C 0 or attractive
potentials of the class (2.16). If v =4, the potential (2.13) vanishes and z =0
is a regular boundary point. We may then use a regular boundary condition

(3.19) @(0) cosy — ¢'(0) siny =0, o<y <m.
The constant — ¢ is equal to tgy:

(3.20) tgpoPEr=B—mlr=—4 _

T ol(e v =13) —eqole v = — %) le-o0

{3.19) defines all self-adjoint extensions, if z=10 is a regular boundary point,
i.e., if the integral (2.2) exists.
4. - Spectral representations.

The self-adjoint transformation H (n=0) as each self-adjoint extension
H, (n=1) gives rise to a spectral decomposition of the unit operator F in
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SINGULAR POTENTIALS IN NONRELATIVISTIC QUANTUM MECHANICS 699

L,(0, 00). An arbitrary funection ke L,(0, co) can be represented in the form

+o ©
(1) k)= f do(k*) h(k) (e, g, k), B(k?) = [ deh(2)g(z, g, ) -

Here as in the following we give only the formulae for the transformation H
(n=0). In case of Hy, g, takes the place of g.

To determine the spectral density de/dk? we extend the method of Krein (1)
to our problem which derives dg/d%? from the resolvent

@2, g, k) f(C, g, — k)

b S; C ?
1 s T2\ flg, — k)
(4.2) T{A—u—k‘TE > G(z, C|g ’ k ) - (p(é-, g, k) f(Z, g, — k) . C
g, — k) '
flg, —k) is Jost’s function (*2):
(4.3) flg, — k) = W(f(zy g, — k), (2, 9, k)) .

For two functions h;, h,€ L,(0,c0) we have

(4.4) (hyy hy) =fdz Pa(2) ho(2) —fdQ (k%) (k) )

This yields

+
(4.5) fdzdeG(z,C(sf k) h(2)h(E) = | do(k™?) Lhz(k

-0

for hy=h and h,= (1/(H—Ek2))h. Let h(z) be a function of compact sup-
port in a circle of radius §, around 2=a such that

(4.6) h=4g,,, fiqa,,(z)lZdz =1.
1}

(11) See e.g. ref. (%).
(12) R. Jost: Helv. Phys. Acta, 20, 256 (1947).
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700 K. MEETZ

Making a subtraction at k?=+i we obtain from (4.5)

+o
. . " do(k'?) -
WD) 6l alg k) = 6l algy i) + lim | [ 8 @00

-

At i r2)
S 8 )
k' — ITEE 1

Because

(4.8) ImG(a,alg? i) = hmf \q(k’2) 2,

k+4-1

where the integrand is positive, we can interchange limit and integration
(Dini’s theorem!). Hence

do(k'?)
(4-9) ImG(ay “‘g ‘—f k,g4 11 (‘P(“a g, k’))2 ’
and
do(k'2) 1 + K2k .
(4'10) ( lg ! kz) = Re G(a’ ) +f}v'€+ 1 km_ .2 ( (ay 9y k’))~ ’

where we have used

2

= ((p(a, g, kl))2 ’

Jim 12, () |* = lim ! f & g,,(2) p(2, 9, )
0

(p(a, g, k) is real for real k). Similarly as in Regge’s analysis of complex
angular momenta (13} it follows from (4.3) and the definitions of the functions
f(z, g, —k) and g@(z, g, k) that the Jost function f(g, —Fk) is analytic in the
product of the half-planes Im k> 0 and Reg >0 with continuous boundary
values on Imk=0 and Reg=0. Hence we may infer from (4.10) and (4.2):

. d . . .
(4.11) 2mi(g(a, g, k)2 af% = £1_1)101 {G(a, a|g? k*+ie) — G(a, alg? k*— ie)} =

(‘P(a, g, k))2

_ f(a,g,—k)¥f(a,g,k)_ . ;
=) T T T R R g, — k) fig, )

(1¥) A. Bortivo, A. M. LovgoxI and T. REGGE: Nuovo Cimento, 23, 954 (1962).
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This is the result of Jost and Kohn (14):

do k 1
2 _— = — — 2

- ak* 7 [flg, b’ k>0
(f(g, — k) =f(g, k)). For k*< 0 we get

d 1
(4.13) T = 3 33 8l #2) k< 0

r . 1 . df(g, — =)
= a0 |

[

from the zeros of f(g, —k) in the half-plane Imk > 0.

Let us consider the possible cases for the potential (2.13) as examples. In
the range »>1 we have n=0. The spectral density can be evaluated with
the functions (2.14) and (2.24):

do k 1 1
4.14 1: g _ . .
1 " a2 " w fn, BT 28T vk k>0,

The corresponding decomposition of E leads to the Hankel transformation

@© 0

(4.15) y>1:  h(z) = %fdk'ww,(k'z)fdz'\/EfJ,,(k/z')h(z').

¢ 0

For yp-values between 0 and 1 we define a self-adjoint extension by
(4.16) Po(?; vy k) = @(2, v, k) — cp(z, —, k),

where ¢ is a real number. We find

2k
[folv, k) |2 = — (1 4+ v) k= {1 — 2¢' k™ cos ym +e'2 k),

, 277 (1—v)
T 21+

() R.Jost and W. Konx: Kyl. Dan. Viden. Sels., Mat.-Fys. Medd., 27, no. 9 (1953).
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702 K. MEETZ

The resolution of the identity is

0<r<i;
¢ >0,

1 1
e ’2 .
h(z) = 5 dak (1—2¢'k'* cosym + ¢'2k'%")

0

(4.18)

‘AVE(J(k'2) — ' k'> J.,,(k'z))fdz2 VE (T, (k'2') — ' J_(k'2")) h(z') .
0
The Jost function

(4.19) folv, — k) = n—k 2_ exp [z Z] 221+ ) -

2 i 4
LT 7
Ak-v e ) — ¢’ kv ex Y
{ exp [721)] c'k exp[ 121:]}

has a zero in the upper half-plane at

(4.20) ® = (—1)””,

0/

if ¢'> 0. This obscure « bound state» does not occur for the physically rea-
sonable boundary condition ¢= 0. The example (4.18) can be found in Titch-
marsh’s book ().

Last we consider the attractive range »2<C 0 (v =14y, y real). The Jost
function of the self-adjoint extension

, 1 , . . .
(4.21) o2, iy, k) = o= {exp [ix ()¢ (2, iy, k) — exp[— ix(O)] (e, — iy, k)}

is
(4.22) f@('éyy — k) = W(f(z, i'}’a — k), ‘P@(zy i')/’ k)) =

= exp [—%ﬂ B2 ravin)-

. {exp [— g ‘y] exp[i(y'—y Ink)]—exp [g y] exp[— iy’ —y Ink)j;,
where

(4.23) ¥=x+oy)+yin2, I+ iy)=|I(1+iy)|exp [ip(y)].

(%) E. C. Trrcamarsa: Figenfunciion Expansions Associated with Second-Order
Differential Equations (Oxford, 1946).
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It has zeros in the upper half-plane at

(4.24) X2 = exp [2—"] exp [2"”] . n=0, b1, +2,..,
14 Y

accumlating at k2=0 and k?=oco. These bound states have already been

obtained by CASE (%). Each spectral point is shifted to the next one, if '

runs from 0 to =, i.e., all extensions are passed. The point spectra for y' =0

and y'=wm= are identical, because there are two accumulation points. (4.22)

yields the spectral density

ko1 1
. 7 folt ~ 2|T(1+ iy)|*4{cosh? (mp/2) — cos® (' — y n k)}’
(4.25) dez - k>0,
T 2%,,
S 2k 4 x2) . k2< 0.

It is invariant under the transformation y'— y' 4+ ma (m an integral num-
ber). The S-matrix element is

(4.26)  Solv, k) = ;?f”’_ )k, =
.exp [y(n/2)] exp[i(y'—y In k)] — exp[— p(7/2)] exp[— i(y'—y In k)]
exp[— y(n/2)] exp [i(y' — y In k)] — exp [p(z/2)] exp [— i(y'— y In k)]

Imk> 0.
Thus far we have considered the spectral representation of the resolvent

1 1
H—kE —ayde+ g2V — k>

(4.27)

in the complex k2-plane (Imk > 0) for real values of g2 In a similar way
we can arrive at a spectral representation in the complex g*-plane for k<< 0
which displays the analyticity properties in g2. The representation is related
to a resolution of the identity in the space L](0, co) which is the set of all
functions v(z) such that
(4.28) fdz Viz)|e(z)2< oo .

0

(Recall V(2)>0.) Every veLl(0,c0) can be represented in the form

+o

(4.29)  o(e) = |dolg?) 5g?) fle, g, %), Blg?) =fdz o(2) V() f(z, g, %) -

—c0
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704 K. MEETZ
Proceeding as in the k*-plane we obtain

(g'>) 1+g g’z

(4.30) G(a, a|g?, — »*) = Re G(a, ali, — x? —%—f (fla, g', )2

Because of (2.11) the functions f(z, ¢’, ix) are real for all g2Z 0. The lh.s.
of (4.30) is analytic in the half-plane Re g > 0. Hence the spectrum extends
only from —co to 0 and we can determine the continuous part of the spectral
density from the discontinuity across the cut:

do _—ig 1 1 2
(4.31) i~ = g P + Z w7 8(g2-+42), g2 <0,
(4.32) N2=|dzV(2) f2(z, @., ix) .

]

The discrete points g2 << 0 are the necessary coupling constants for the exist-
ence of bound states with energy — »2. The resolvent can be represented by
the integral:

(4.33)  d(2 Lg% —#?) = Re G(z, L ]i, — %% +

da( 2y 1 4
f T e S )
The existence of (4.33) follows from
(4.34) Im G(a, a|i, — »? f ,4+1(f a, g',ix))>.

If the potential has the property

@

(4.35) f dz 2V (2) < oo,

0

then there are only discrete spectral points accumulating at —oo (1¢). For
k2> 0 the g2 become clearly complex. An illustration of this situation is given
by Regge’s analysis of complex angular momenta (1*) which is related to the

(1) K. MeETz: Journ. Math. Phys., 3, 690 (1962).
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potential (2.13). In this case the spectral integral extends only from —oo to
9°=-—1% (»=0). Hence the resolvent can be expanded into powers of g2 in
the region [g2|< } for k*< 0. From the experience with potentials of the class
(4.35) (%) we believe that this is also true for k2> 0.

5. — Cut-off limits.

Having discussed the mathematical problems connected with singular po-
tentials in some detail we are left with the question of physical interpretation.
In principle these potentials have to be rejected, if they do imply a Hamil-
tonian not bounded below, but one may regard them as mathematical ideali-
zations. However, this does make sense only, if a specific self-adjoint extension
can be selected according to physical arguments. We shall show now that
the usually adopted cut-off procedure does not offer a possibility to do so.

We define the «regularized » potential

V(z) b<ez,
(5.1) V(&) =
Vi(b) 0<z<b,

where V(z) is a singular potential of the class (2.13) or (2.16). We could just
as well have chosen another function V,(z) which is regular at the origin and
tends to V(2) in the limit of some cut-off parameter. The eonclusions to be
drawn do not depend on the method of «regularization ». Now consider z =15
as a regular boundary point. Then a boundary condition of the form (3.19)

(5.2) w(b) cos yw(b) — w'(b) siny(b) = 0

defines some self-adjoint extension of the differential operator L in the inter-
val (b, co). The solution of the differential eq. (2.6) under the boundary con-
dition (5.2) is

(5.3) (2, g, k) = ¢(2, g, k) — 1(b) p(z, — g, k), 2>b,
with

x o ‘71_[37 g, k) cos p(b) — ¢'(b, g, k) sin 'P(b)‘_
(6-4) M) = (b, — g, ) 605 p(b) — ' (b, — g, k) sin p(b)

In the interval 0<z< b we have the solution

(5.5) w(z) = sin 2 VEk2— g2V (b)

5753
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under the regular boundary condition w(0) =0. Hence
(5.6) cotgy(b) = Vk*— g2V (b) cotg Vk*— g2 V(b) b

The question is: does t(b) tend to a definite limit for & — 0, if we insert (5.6)
into (5.4)?
Consider first the potential (2.13) with the fundamental system (2.24):

v —1 J @(b, v, k) —> b+t

o0 PYO=T57 0 gty = ndy pors b0

This yields:
\/i—vzcos\/&—v} (v+ 3 sinV}—?

. b) — b T
(5:8) O cos VI— v (v + §) sinVi—»

Hence #(b) -0 for b—>0, if v>0 (the system (2.24) cannot be used for
integral values of ») and the regularization selects the solution ¢(z, v, k). While
this is to be expected for » >1 because then ¢(z, v, k) is the only solution in
L,(0, a), a specific self-adjoint extension corresponding to the value ¢=0 (see
(3.14)) is defined in the range 0 <y <<1. However, for »*< 0 (v =1iy) we find

(5.9)  t(b) —exp[2iy Inb— 2i8(y)], exp[— 2id(y)] =

_ \/}4—;/200%\/1—4—;/ —(zy+%)s1n\/}+y
\/i+y200<\/i+y —(—iy+3) s1n\/i+y

and all we can say is |#(b)|=1. No definite extension of the form (3.10) can
be obtained by regularization.
A gimilar analysis for the potential (2.16) with the fundamental system (2.23)

) (b, g, k) —— b*4 exp [‘T" b~«]
(3.10) V()= 5+ V'();

o

9 q= —1
70, = 0, 1)t exp [£0] g

results in

0 b—q] cos (V—g*b=) V—g* — g sin (V'— g*b~1)

5.11)  #(b) =5 e — g —g2b7)
(3.11)  tb) 5= “p[ ¢ leos (V— g*b=1) V/— g* -+ g sin (V— g2 b~

The regularization selects the solution ¢(2, g, k) in L,(0,a) for g2>0 and
does not lead to some definite self-adjoint extension for g*< 0, because

(6.12) t(b) — exp [— Z%ﬁ b7 — 2iﬁb—q] , g=13.
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We arrive at the disappointing conclusion that either the regularization is
not necessary, because the transformation H is already self-adjoint (»=0),
or it does not result in a definite extension H,(n=1) with the only excep-
tion of the potential (2.12) in the range 0 <<y < 1.

6. — Conclusion.

The potentials which we have discussed are examples of the more general
class:

(6.1) Ve =L + V@),
where
b
fdzzsz(z)|<oo and «a>2.

0

The sign of the regular potential V(z) may be arbitrary. As we have seen
the case « =2 has to be considered separately. We may then put g2=1»2—1}
and have to distinguish three ranges of »%-values:

1) »2> 1. The potential is « strongly » repulsive near the origin. The trans-
formation H is self-adjoint (n»=0). Every sequence of regular-
ized transformations tends to H in the limit of the cut-oft para-
meter.

2) 0<»*<<1. The potential is « weakly » repulsive (} <<»*<<1) or « weakly»
attractive (0<v*<}) near the origin. There exists a class of
self-adjoint extensions H,(n =1). A regularization method se-
lects the extension belonging to the boundary condition
Pol?) ~ 2"+t for 2 —0.

3) »*< 0. The potential is « strongly » attractive near the origin. Again
we have a class of self-adjoint extensions Hg(n =1). But a re-
gularization does not lead to a definite extension.

The generalization to higher angular momenta (!> 0) is obvious. We just
have to substitute »*—1I(I+1) for »2.

If x> 2, only two ranges of coupling constant values g% have to be dis-
tinguished:

1) ¢>>0. The potential is repulsive near the origin. Every regularization
method results in the self-adjoint transformation H (n=0).
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2) ¢2< 0. The potential is attractive near the origin. There is a class of self-
adjoint extensions Hg(n =1). It is not possible to select a definite
one by a regularization method.

If we wish to consider higher angular momenta (!> 0), we may treat the
centrifugal term —I(I+1)/22 as a perturbation and absorb it in the integrand
of the Volterra eqs. (2.11) and (2.23).

The general theory can of course also be extended to superpositions of po-
tentials of the class (6.1), e.g.:

~

+ “z>2'

~ 9

(6.2) g g

2
In analogy to (2.21) we may then use

2

d 2w K b
(6.3) o+ (Z' ;"7) w(e) = 0
< =1 &%
as the unperturbed equation for the definition of the solutions ¢(z), where in
the sum Y’ all terms with «, =2 have been dropped, because they can be
treated as a perturbation.

RIASSUNTO (1)

8i studiano gli aspetti matematici dei potenziali singolari nella meccanica quan-
tistica non relativistica in funzione delle trasformazioni autoaggiunte riferite a operatori
differenziali singolari nello spazio L,(0, oo). I1 contenuto fisico & espresso dalla decom-
posizione spettrale e per potenziali attrattivi si trova che & determinato solo sino ad
un parametro che definisce una particolare estensione. In generale, con un procedimento
di taglio non & possibile determinare un’estensione specifica.

(*) Traduzione a cura della Redazione.
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