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S u m m a r y .  - -  The many-particle scattering amplitude is pro:ected on 
the matrix elements of the unitary irreducible representations of the 
three-dimensional Lorentz group. The usefulness of this transformation 
in the treatmen~ oi a cer~Mn class of integrM equations satisfied by the 
amplitude is pointed ou~. A generalization %aking into ~ecount a set 
of nonunitary representations is shown ~o lead ~o a transformation which 
has many of the properties of the classicM Laplace transforma$ion and 
can be used to obtMn asymptotic expansions similar to those obtMned 
from the WatsomSommerfeld formula. 

1 .  - I n t r o d u c t i o n .  

The a im of this work is to enlarge and  develop the  ideas oi a preceding 
paper  (1) abou t  a possible general izat ion oi the  par t i a l -wave  analysis of the  
scat ter ing ampl i tude.  

The ma in  progress consists in the fact  t h a t  here we t r ea t  an ampl i tude  

which involves an a rb i t r a ry  num ber  of part icles  wi th  a rb i t r a ry  spin. This 

general izat ion of the me thod  developed in (1) for the  scat ter ing of two spinless 

part icles is useful not  only for its wider appl icabi l i ty ,  bu t  also because it  per-  

mi ts  a deeper  insight  into the  s t ructure  of the t r ans fo rmat ion  and a more  

direct  connect ion wi th  the work of mathem~Jticians. 

The m a t h e m a t i c a l  background  of bo th  the expansion developed here and  

of the usual  par t iM-wave analysis  can be found in the  theory  of (( ha rmonic  

analysis )~ t ha t  is, the  general izat ion of the  Four ier  analysis f rom funct ions 

(1) L. S~RTORIO and M. TOLLEd: NUOVO Cime~to, 33, 413 (1964). 
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defined on a s t ra igh t  line or on a circle to funct ions defined on an a rb i t r a ry  

{locally compact)  group (2,a). The usual  pa r t i a l -wave  analysis  can be regarded  
~s the  harmonic  analysis  appl ied to the sca t te r ing  ampl i tude  considered as a 
func t ion  defined on the ro t a t ion  group.  This is not  ve ry  clear in the ease of 
two-body  scat ter ing,  because in this ease i t  is s impler  to consider the ampli -  
tude  as a funct ion defined on a spherical  surface, but ,  when three  or more  
part icles  are involved,  this point  of v iew leads to the mos t  clear definition of 
the  par t ia l -wave  ampl i tudes  (4-7). 

I n  order to unders tand  the usefulness of our expansion,  let  us analyse 

which  are the advan tages  of the usual par t i a l -wave  representat ion.  The mos t  

in te res t ing  are the following: 

a) i t  permi ts  the descript ion of the low-energy scat ter ing by  means  of 

a small  numbe r  of pa ramete r s ;  

b) it  pe rmi t s  a simplification of some relat ions satisfied by  the ampli-  
*ude (e.g. in tegra l  equat ions of the  L ippmann-Schwinger  or of the Bethc-Sal-  
pe t e r  type  or un i t a r i t y  relations).  

Another  me thod  to represent  the sca t te r ing  ampl i tude  is its analysis in 

t e r m s  of the  complex angular  m o m e n t u m  in the  crossed channel.  The ana- 
logous of the advan tage  a) is t ha t  the  complex angular  m o m e n t u m  represen- 

t a t i on  can give rise to a descr ip t ion  of very-high-energy scat ter ing in t e rms  

of  a small  n u m b e r  of (~ Regge-pole pa ramete r s  ~>. An advan tage  similar  to b) 

is not  ve ry  appa ren t  because the usual theory  does not  indieate any  direct  
connect ion  be tween  the complex angular  m o m e n t u m  and the s y m m e t r y  group 

of the equat ion to be simplified. This is connected wi th  the fact  tha t  the  
usual  complex angular  m o m e n t u m  theory  cannot  be inser ted direct ly into the 
:framework of harmonic  analysis.  

Two a t t e m p t s  have  been made  to eonnee~ complex angular  m o m e n t u m  wi th  
~he group theory ;  the fo rmer  uses some (~loeal ~> representa t ions  of the rota-  
t ion  group (7.s), the l a t t e r  uses the representa t ions  of the three-dimensional  

/Lorentz group (~). Here  we shall deal wi th  the second one. 

(2) G. MACKEY: Bull. Amer. Math. Sac., 56, 385 (1950). 
(3) L. g .  Loov[Is : Ann Introduction to Abstract Harmonic Analysis (Princeton, 1953). 
(4) M. JACOB and G. C. WICK: Ann. Phys., 7, 404 (1959); G. C. WICK: Ann. Phys., 

t8, 65 (1962). 
(5) R. L. OMN]~S: On the Three.Body Scattering Amplitude, I, I I  and I I I ,  

U.C.R.L. reports and Phys. Rev., 134, B 1358 (1964). 
(6) j .  B. HARTLE: Phys. Bey., 134, B 610, B 620 (1964). 
(7) M. ANDREWS and J. GUNSON: Complex Angular Momentum in Many-Particle 

States, I and II,  preprint (University of :Birmingham, 1963). This paper gives also 
the connection between the raatrix elements of the local representations of the rotation 
group and of the representations of the three-dimensional Lorentz group. 

(s) E. G. BELTnA~,~TTI and G. LUZZATTO: ~VUOVO Cimento, 29, 1003 (1963). 
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In  order to apply harmonic analysis to the scattering amplitude, the first 
thing to 40 is to represent it as a function of the elements of a group (and of 

other parameters which are not affected by the following transformation). 
A general method to reach this object is described in Sect. 2 and 3. This pro- 
cedure gives rise to various possibilities, besides the one which leads to the 
usual partial waves. Each case corresponds to a certain subgroup of the Lo- 
rentz group and, as we show in Sect. 4 and 5, in each case it is possible to 
project the amplitude on the matrix elements of the unitary irreducible repre- 
sentations of the corresponding group. Only one of these possibilities, con- 
necte4 with the three-dimensional Lorentz group, is investigated in detail in 
this paper, but also some of the others could lead to physically interesting 
concepts and deserve a detailed study. 

The reason which has prevented an earlier investigation of the properties 
of these new representations of the scattering amplitude is, besides their some- 
what hidden physical meaning~ the difficulty inherent in the harmonic analysis 
of functions defined on noncompact noncommutative groups. In fact the uni- 
tary representations of these groups are all infinite-dimensional and generally 
depend on continuous parameters; these facts lead to the necessity of using 
infinite matrices and integrals instead of sums over the contributions of the 
various representations. 

In Sect. 6 we show how the transformations defined in the preceding Sec- 
tions can be used to diagonalize certain relations between amplitudes. 

In Sect. 7 we generalize the harmonic analysis on the three-dimensional 
Lorentz group, obtaining a transformation which has many of the properties 
of the classical Laplace transformation. In p~rticular~ if certain conditions are 
satisfied, one can obtain from this transformation asymptotic expansions si- 
milar to those obtained from the Watson-Sommerfeld-~gandelstum formula (9) 
extended to the many-particle case (~-7) (Sect. 8). 

A disadvantage of our method with respect to the Watson-Sommerfeld- 
~andels tam formula is due to the fact that  it can be applied only to ampli- 
tudes which~ roughly speaking, decrease more rapidly than s-�89 when the square 
of the center-of-mass energy s goes to infinity. However we remark that  this 
is a natural  difficulty for a transformation which diagonulizes a fixed mo- 

mentum transfer integral equation. In fact, if the amplitude which forms the 
kernel of t h e  equation has not a sufficiently <( good ~) asymptotic behaviour, 

the kernel cannot be iterated, the Neumann series cannot be written for any 

value of the coupling constant and the equation does not make any sense. 

I t  may happen that  the physically significant solution of the equation has 

a (~ bad ~ asymptotic behaviour, but, at least, if the projected equation is of 

(9) S. MANI)]~LSTAM: Ann. Phys., 19, 254 (1962). 

41 - I1 N u o v o  Oimento .  
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the Fredholm type,  i t  can be obta ined f rom a well-behaved solution adding 
to i t  l~egge-pole contr ibut ions in the way explained in (1). 

At last, we remark  tha t  the subject  of this paper  can be pu t  in re la t ion 
wi th  the theory  of the representat ions of the inhomogeneous Lorentz  group (lO.12). 
An outgoing part icle  can be considered as an incoming part icle with a nega- 
t ive energy and therefore  we can associate to i t  a representa t ion of the inhomo- 
geneous (orthocronous) Lorentz  group wi th  real mass and negat ive energy. 
When one considers the direct product  of a representa t ion of this k ind  with 
a posi t ive energy, real  mass representat ion,  corresponding to an incoming par- 
ticle, it  can easily be seen tha t  this product  contains representat ions with ima- 

ginary mass. The ~( l i t t le  group ~) associated to these representat ions is the 
three-dimensional  Lorentz  group considered in this paper.  

2. - The scattering amplitude as a function of the group elements.  

We consider the off-shell scat ter ing ampli tude for an a rb i t ra ry  number  of 
incoming and outgoing' particles with a rb i t ra ry  spins. This ampli tude depends 
on N four-vectors and N dSserete indices which describe the four-momenta  
and the spins of the involved particles.  

We adopt  the usual F e y n m a n  convention,  i.e., when the four -momentum 
of an incoming (outgoing) part icle  has negat ive energy component ,  it  has to 
be in te rpre ted  as the four -momentum of a corresponding outgoing (incoming) 
ant ipart icle  with the sign changed. 

The Lorentz  invarianee of the ampli tude can be wri t ten  in the f o r m  (la) 

(1) A,,x' D(1)81si[a , ... D~s~v(a) lgsl.. .s~(L(a -1) P1 ... Z (a  -1) P~) =- M~I..,s~(P1 ... P~v) , 
81..,8N 

where a is an e lement  of the Lorentz  spinor group Lf (proper or wi th  reflec- 
tions included), L(a) is the ma t r ix  of the corresponding t ransformat ion acting 
on four-vectors and D(~(a) are the matr ices of the corresponding spinor repre- 
sentations corresponding to the various particles involved. 

The part ial-wave analysis can be considered as a description of the be- 
haviour  of the ampli tude When the parameters  of the incoming particles are 

fixed and the parameters  of the outgoing particles are contemporaneously 

ro ta ted  in the center-of-mass system. In  order to generalize the part ial-wave 
formalism, we divide the part icles involved in  the ampli tude into two sets, 

(10) ]~. ]). WIGNER: Ann. Math., 40, 149 (1939). 
(11) I~:. M. SmRoxov: Soy. Phys., JETP. ,  6, 919 (1958). 
(1~) H. Joos: .Forts. d. Phys., 10, 65 (1962). 
(la) H. P. STAre': Phys. Bey., 125, 2139 (1962). 
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A and B,  which 4o not  necessarily coincide with the sets of the incoming and 
of the outgoing particles.  

We use the indices I A . . . n A  to label the n part icles of the set A and 
1B ... m B  to label the m part icles of the set B. In  order to obtain more com- 
pact  formulas, we use some shor thand notat ions:  with _P~ we indicate the set 
of vectors PI~ ... P.~, wi th  s~ we indicate the set of spin indices s~A ... s~  and 
in a similar way we define PB and ss. Fur the rmore  we call Ds~s](a) the direct 

~ ( 1 A ) ,  / ~ D(nA) , , product  of the matr ices ~)s~sf la)  ... s . j . f l a ) ,  and in a similar way we define 

With  these shor thand notat ions the Lorentz  invariance (1) can be wri t ten  as 

(2) ~ ( A )  + (B)  1 Y �9 , , ~ 'sj~(a)D,~js(a)ZVIs'Js(L(a- )t)A, L(a  -~) .P~) : M,~ss(P4 t)B) 
8 A 8 B 

With  the sign convent ion we want to use, the four-vectors  /)A indicate 
outgoing momenta  and the four-vectors PB indicate incoming momenta .  This 
does not  mean ingoing and outgoing particles because the energies can be 
negative.  Then the energy-momentum conservation can be wri t ten  in the 
form 

i = l  i ~ l  

The meaning of Q is to ta l  energy-momentum if B is the set of the incoming 
particles, otherwise i t  is a four -momentum transfer.  

Now we divide the 4n-dimensional space of P~ into sets such tha t  if P~ 
and P~ belong to the same set they  can be connected by  a t ransformat ion of 
the group Lf. By means of cer ta in  well-defined conditions, we choose for each 
set a representa t ive  e lement  P~. Then any P~ can be represented in the 
form 

(4) e~ = L ( a 2 P ]  �9 

The same procedure can be applied to  the vectors Ps and we obtain 

(5) P~ - L(a~)p~.  

I t  is clear tha t  if P'a = L(a) _P~ (a ~ ~,), _P~ and P'~ correspond to the same / )o ;  

this means tha t  the independent  components  of s can be expressed by  means 
of the invariants  (with respect  to ~ )  which can be buil t  wi th  the vectors P~. 

The conditions which determine the representa t ive  vectors 2~ and Ps ~ can 
be chosen in many  ways (a possible set of conditions is given in the Appendix A) ; 
the only assumption tha t  we need for a general discussion is tha t  these con- 

v~ 
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ditions imply tha t  

<,) i ~176 iA = P i B  
i=1 i=1 

Then we have 

Q = L(a~)QO = L(%)Qo 

and 

(7) Qo=  L(a~a~)QO . 

This means tha t  g :  {~]-1% belongs to the subgroup G of ~e which contains 
all the  t ransformat ions  which leave the four-vector  QO unchanged.  

F r o m  eq. (2) i t  follows tha t  

where we have defined 

= i)(/~) ,--1~ (9) MsAs~(P~, g, .pc) ~ Ms~s'~(-P~, L(g)_P~) s~s'~(g , (g E G). 
8~B 

The funct ion (9) is a different way of expressing the scat ter ing ampli tude.  
The advantage  of expressing it  as a funct ion of the group element  g is due 
to the  existence of the expansion theorems which we shall use in Sect. 5. 

3.  - Proper t i e s  of  the  g r o u p  G. 

l~ow we assume tha t  ~q~ is the proper  Lorentz  spinor group and invest igate 
the proper t ies  of the group G. The s t ructure  of groups of this kind has been 
invest igated by  WIG~E~ in his classical work on the unhomogeneous Lorentz  
group (10). He distinguishes four cases (1,): 

i) t = Q ~ >  0; then  we can chose QO= (VT, 0, 0, 0) and the group G is 

the group of spatial  rotat ions (more exactly,  the corresponding spinor 
group). 

ii) t = Q2< 0; then  we can chose Q0= (0, o, o v / ~ )  and G is the group 

of the Lorentz  t ransformat ions  in the three-dimensional  pseudo- 

(14) We use  the  metric Q2= ~ ~ 2 2 
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euclidean space with one t imel ike dimension and two spacelike di- 

mensions. 

iii) t = Q 2 = 0 ;  Q # o .  

iv) Q = 0. 

In  tile first case our general  t r ea tmen t  becomes the usual part ial-wave 
analysis and the case iii) is a l imit ing case of the first two, not  ve ry  interest ing 
f rom the physical  point  of view. 

The cases ii) and iv) have a great  physical interest  in connection, respec- 

t ively,  with nonforward and forward scattering. In  this paper  we begin the 
s~udy of case ii) and leave case iv) to  a fu ture  work. 

A ra ther  complete invest igat ion of the mathemat ica l  propert ies  of the 
three-dimensional  Lorentz  group has been given by  BARG~A~ (~5) and we 
follow essentially his work with slightly modified notations.  

The spinor group corresponding to the 3-dimensional Lorentz  group can 
be identified wi th  the group of the matr ices  

(Jo) 

with  

(11) ~5-- f l f l  = l .  

The group elements can be identified by means of the parameters  #, ~, v through 
the relat ion 

(12) W ( g )  = 
o ]Fco h   inhl][~ ~ 1 

�9 . o 

0 exp [i#] [sinh ~ cosh 0 exp [iv] 

The range of the parameters  is 

0 < ~ <  c~, 0 ~ < # < 2 ~ ,  0-< v <  2~r, 

bu t  the parameters  /~, ~, v and #=t:z, $, v •  correspond to  the same group 
element.  The invar iant  measure on the group is given by  

(13) dg = (2~r) -~ sinh (2$) d# dv d$ . 

The whole measure of the group is infinite as the group is not  compact.  

(1~) V. BARGMs Ann. Math., 48, 568 (1947). 
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The t r ans fo rmat ion  

X ' ~ -  L ( g ) X  

on the four-vector  X =  (t, x, y, z) is g iven by  

x' ~- iy'  t ' - -  z' ] fi I.x -~ iy  t - -  z ] 

and  therefore  

(14) L(g )=  

[1 0 0 
0 cos2#  - - s in2 /~  . 

0 sin 2# cos 2# 

0 0 0 

�9 sinh 2~ eosh2~ 0 eos2f  - - s i n  2~ 
�9 o 

0 0 1 sin 2~ cos 2~ 

0 0 0 0 0 

As required,  the  co-ordinate  z is not  affected by  the t ransformat ion .  
~ o w  we show the connect ion be tween  g and the center-of-mass energy.  

We assume t h a t  there  are only two incoming part icles  wi th  fou r -momen ta  

P ~  and P~B- According to the Append ix  A we choose 

(15) 
l p~ = (-~,~, o, o, -q~) ,  

I P~, (~ ,  o, o, q.) 

The square of the  centre-of-mass energy is g iven by  

(16) 8 = ( L ( ~ ) ~ -  z ( ~ ) P ~ , ) ~  = ( p ~  - Z ( g ) ~ ) ~  

and f rom eq. (14) we have  

(17) s : (u~ + eo~+ 2~oa~o n cosh 2~ - -  (qn-~ qa) 2 . 

Note  t h a t  the  h igh-energy beh~viour  of the  scut ter ing ampl i tude  is g iven by  
the  l imi t  ~--> oo. 
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4. - The generalized partial-wave expansion. 

Let  us remember some important  properties of the uni ta ry  irreducible re- 
presentations of a compact group G (~6): 

(18) ~ ~ , (g )  ~,~(g') = ~ ( g g ' )  
r 

(representation property), 

(19) 

(unitarity),  

(20) 

( y  �9 ( /  

f (N~)_I ~,~, a.~, ~ ,  ~ ( g )  ~ , r  dg = 
q 

(orthogonMity). We assume tha t  f d g = l  and indicate by ~Vo the dimension 
of the representation ~. 

I f / (g )  is an L 1 function defined on G, we can perform the following trans- 
formation 

(21) )dg ~ =  2,~,,(g) l(g 
J 

G 

and, under certain more restrictive conditions, we have the following inversion 
formula 

(22) t(g) ~ : : ~ o ~ :  ~ ~ = �9 5%~_@~,Jg ) 
ty m~  ff ~nn 

If  ](g) is also an L 2 function, the following Plancherel formula holds 

(23) f ir(g) I ~ d g =  ~ N~, ~, I~'~,,p . 
G ~ t n  

q 

These properties can be extended to a certain class of noncompact groups which 
contains the groups we are considering. 

The main difference is tha t  the uni tary  representations are all infinite- 
dimensional and there is a continuous infinity of them. Therefore we have 

(1G) E. P. WIGNE•: Group Theory and its Applicatiou to the Quantum Mechanics 
o/ Atomic Spectra, Ch~p~. IX ~and X (New York~ 1959). 

2 
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to replace the operat ion ~ hr, with the more general one fd~ where d~ is a 
(T 

suitably chosen measure in the space of un i ta ry  representat ions (Planeherel 
measure).  The explici t  form of this measure will be given la ter  for the ease 
which we consider. 

In  the following we consider the quanti t ies  ~ ( g )  and ~-~,, as the ma t r ix  
elements of the operators 2~(g) and ~ " .  Wi th  these modifications the for- 
mulae (18), (19), (21), (22) and (23) become 

(24) 

(25) 

(26) 

(27) 

(28) 

2~(g) 2~(g') = 2~(gg') ,  

2~(g)[~"(g)]* = [2~(g)]* 2"(g) = 1 ,  

y =f o(g) dg, 
t7 

i(a) 

fl/(g)l~dg=f l~',2da, 
r O 

where I ~-~1 is the Hi lber t -Schmidt  norm (~7) of the operator  ~-" and Tr  indi- 
cates the trace.  The correspondence (26) can be extended to functions ](g) 
which are L 2 bu t  not  L ~ and the Plancherel  re la t ion (28) is still valid for this 
ex tended correspondence.  

:Now we apply the t ransformat ion  (26) to the scat ter ing ampli tude expressed 
in the form (9). In  order to remain  in the f ramework of the simplest mathe-  
mat ical  theorems,  we have to assume tha t  the ampl i tude  is an L ~ or an L 2 
funct ion of g, bu t  this is by  no means t rue  for all the  physical amplitudes.  I t  
can be strewn, however,  t ha t  for cer ta in  F e y n m a n  diagrams the ampli tude is 
actual ly an L ~ and also an L 2 funct ion of g for almost  all the  values of the 
other  parameters .  Therefore  i t  is reasonable to develop the theory  for this 
simpler case and then,  to look for the extension to more general  cases. 

According to this program we define the  following operator-valued func- 
t ion of po po, s~, ss: 

(29) d/s~B(P~, po) = ~(g)Ms~sB(P~, g, P~)dg.  

O 

This is the generalized part ial-wave ampli tude.  

(17) If the vectors Z~ form an orthonormal basis, the trace and the Hilbert-Schmidt 
norm are defined by Tr (if) = ~ (~-X., Z~), = zm)I ] 

n ~n~ 



THREE-DIMENSIONAL LORENTZ GROUP AND IIAR~fIONIC ANALXSIS ETC. 641  

5. - The unitary representation of the three-dimensional  Lorentz group. 

In order to give to the formulae of the preceding Section a more explicit 
form when G is the spinor three-dimensional Lorentz group, we have to classify 
the unitarity irreducible representations of G and to find explicitely the (~ Plan- 
eherel measure )~ da. 

Following :BAI~GMANN (15), we call H~, H~ and H o the infinitesimal (Her- 
mitian) operators of a representation, corresponding respectively to the infini- 
tesimal Lorentz transformations along the axes x and y and to the infinite- 
simal rotations around the axis z. The operator H~-I-H~--H~ commutes with 
all the operators of the representation and therefore we can write 

(30) 

where I is the identity operator and q is a number which can be used to label 
the representation. 

However q is not sufficient to determine univoquely the representation and 
we have to consider also the spectrum of the operator Ho. Its possible eigen- 
values are, of course, m = 0 ,  =[=�89 =~- .... 

According to these principles, BhRG~A~N classifies the representations in 
the following four classes: 

C~ {q > o ,  

m~---0 ,  ~ 1 ,  •  

/ q 
[ m =  ; 

D~" : 

l q = k ( 1 - - k ) ,  

m = - - k ,  - - ( k §  

3 k ----�89 1, ~ . . . ;  

- - ( k + 2 ) . . . ,  

l q = k ( 1 - - k ) ,  

D~+: r e = k ,  ( k + l ) ,  ( k + 2 ) . . . ,  

3 k = � 8 9  1, ~ .... 

One can distinguish between representations of the integral type, when m 
tl~kes only integral values, and representations of the half-integral type when 
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m takes only half- integral  values. I f  we call ( - -e)  the group e lement  cor- 
responding to the parameters  # = - $ = 0 ,  v = ~  (i.e., a complete rota t ion 

around the z axis), these representat ions  have the following p roper ty  

~ ( ~  e) = I (integral type),  

(half-integral type) .  

F r o m  eq. (9) and (2) i t  follows tha t  

(31) ( _  = • g, p i ) ,  

where the  + sign appears if the set A contains an even number  of half- integral  
spin part icles and the - - s ign  appears if this number  is odd. I t  follows tha t  in 

the first case only representat ions  of the integral  type  are needed in the ex- 
pansion and in the second case only representat ions of the half-integral type  

give a contr ibut ion.  
The normalizat ion propert ies  of the representa t ion mat r ix  elements can be 

wr i t ten  wi th  our notat ions in the form (is) 

(32) I N(g) =f~" ~(g) d~, 

where yJ~ is an a rb i t ra ry  funct ion defined on the set of the uni tary  irreducible 
representat ions.  By  comparison with the analogous formulae given by  BANG- 
NA~N~ we obtain the explici t  form of the ~ Plancherel  measure ~) da, which is 

given by  the formula 

c ~  c o  

0 0 

where q = � 8 8  2. 
~ o t e  tha t  some un i ta ry  irreducible representat ions do not  appear  in cq. (33); 

they  form a set of vanishing Plancherel  measure.  

(is) We always understand that the integrations are extended to the whole range 
of the group parameters, which cover twice the group manifold. 
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6. - Diagonalization of integral relations between amplitudes. 

Now we consider u process which can be decomposed into two v i r tua l  pro- 
cesses in the way described in 
Fig. 1 (the arrows do not  indicate 
the incoming and the outgoing 
particles,  bu t  give only the sign 
convent ion ~or the energy-momen- 
tum four-vectors).  

Fig. I. 

The connect ion be tween the corresponding ampli tudes is of the ~orm 

(34) 
808 c *~ 

, P c )  0 8 c ~ ( P c )  " 

(2) r 

i=1 

where Q is defined by  eq. (3)�9 I f  the ampli tudes M, M (" ~nd M ~2) satisfy the 
Lorentz  invariance conditions (2) and 

(35) 

(A) (C) (1) 6~_ 1 - ,~,,Dsffa(a)Dsj~(a)M~],s'c(L( ) PA, L(a-~) Pc) 
- 8A8 c l (O') ( . )  (2) 1 ,~ D8jo(a) Dsis(a) M:,'~s'~(L(a- ) Pc, L(a -~) P.) 

8( !8 .  

= e . ) ,  

= ~ ' ~ )  ( p  P. )  

the  formula (34) is Lorentz-inv~ri~nt  if the weight-funct ion ~8c8~(Pc) satisfies 
the equat ion 

D (e.) /a~ (c,~ (36) z.,~-~cSc, , Ds~s'o(a) es~s'~(L(a)Pc) = qsj~(Pc) �9 
868C 

I f  we use eq. (9) and the similar ecluations 

(37) 

I Mm (pc = M(,) ipo 
8'~ 

.M(2) (pc  M(2), Ipo D ('~ , 1" 8cs., c, g, P~ -= ~ sc8.x c, L(g)P~ s.s'sig- )�9 
8 .  

$ 

the eq. (34) becomes 

o I ~i) pc p (38) M8~8B(P~, g,P~) = ,~_,, .Mi-~8a( ~, o)08jo(Pc)" 
8 .  'dcj8 c ,r 

i=l 

,2 
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Now we take 

(39) P~ = L(%) P~ 

and note tha t  the &funct ion appearing in the integral  (38) does not  vanish 

only if a a belongs to G. 

Equa t ion  (39) can be used to perform a subst i tut ion of integrat ion variables 

in eq. (38), i.e., we t ransform an integral  over Pv in an integral over the ele- 

ments % of the group ~ and over the independent  components of po. Take- 

ing into account  the &function,  we can integrate  over the group G instead 

of over the whole group Lf. In  the Appendix A we show tha t  if the particles 

belonging to C are at  least three (19) and Q2< o, there is a measure dV o in 

the space of the independent  components of po with the proper ty  

(~o) ~o(pe)d~ o _  o d'Pla...d~P~o = d d V o ~ L ( g ) P ,  
*J t = 1  

q 

where ~v(Po) is an arb i t rary  funct ion and dg is the invar iant  measure on the 

group G. The explicit form of 4Vo will be given in Appendix.  I f  we take into 

account  this formula, eq. (38) becomes 

~ . ( p ]  g, po) ,~:, d dg M;;+(P:,~(g)P~). 
8 B S 0 8  ff i t  , , I  

('t 

, ; 0 ( 2 )  t 0 ~ ( B )  r I ~ �9 e~v~u(L(g )Pa) M's'e4(L(g )Po, L(g) P~ --s,s'~tg- ) 

and, af ter  use of eqs. (35), (36) and (37), we obtain 

(41) M.~A~B(pO g, po) ~ d dg Ms,r176 g,, pov). 
8(7S ~ 

�9 eseso~ v) Ivls'vs~ro, g'-lg~ po) 

I f  we consider only the dependence on the group elements g and g', this equa. 

(19) If only two spinless particles belong to one of the sets, some difficulty arises 
due to the fact that one of the group parameters is unnecessary. On the other hand 
the amplitude has the property M(hg)= M(g) if h belongs to a subgroup H of G. 
If H is not compact, as it can happen if we consider the off-shell amplitude, M(g) 
cannot be an L 1 or an L 2 function of g. These difficulties do not prevent the treatment 
of the two-particles case, as is shown in (1), but the application of the formalism of the 
present paper to this case needs a particular technique. 
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t ion becomes 

(42) M (g) = fag '  M, 1,(g,) (g'-* g) . 
G 

This means tha t  M is the (( convolut ion ~> of M (1) and M (2). 
I t  is useful to give two sufficient conditions for the existence of an integral  

of the type  (42) (2o): 

i) I f  M<l)(g) and M<~)(g) belong to the class L 1, M(g) is defined almost  
everywhere  in G and is an L 1 function.  

if) I f  M(1)(g) belongs to L 1 and M(~)(g) belongs to L 2, M(g) is defined 
almost everywhere  ~nd belongs to L 2. 

Now we show tha t  a re la t ion of the k ind (41) can be considerably simplified 
by  means of the t ransformat ion (29). We consider explicit ly the simpler case 
(42) and we have 

(43) , J f f ~ f M ( g ) ~ { g ) d g ~ d g f d g l M ( 1 ) ( g l ) M ( 2 ) ( g l - l g ) "  
(7 (t G 

�9 ~q(g')~q(gl--lg) = ; d g '  Z ( 1 ) ( g  1) ~f f (g l ) fdg If Z(2)(g ll) >q(gll) -~ ~(1 )G~/ (2 ,G  , 

G (7 

The change of the order of in tegrat ion is easily justified if the condition i) 
is satisfied. I f  the condition if) is satisfied, the justification is less simple, 
but  the result  still holds. 

In  the general  c~se (41) we obtain in the same way the relat ion between 
operator-valued functions 

(44) 
8080 

This is the desired (< par t ia l ly  diagonalized >> form of the formula (34). This 
procedure can be applied to integral  equations of the Bethe-Salpeter  type  (21) 

which are useful to find the sum of infinite series of F e y n m a n  diagrams. Con- 

(20) ~VL A. 7NAIMARK: ~ormed Rings, Sect. 28 (Groningen, 1964). 
(~*) The possibility of writing down an integral equation for the relativistic three- 

particle amplitudes has been investigated by A. TUCCIARON]~: Thesis (Roma, 1964). 
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sider for instance the equation 

f K  ~ / 4 I (451 M(P,,P,) -~ V(P~, P,) + (P~, PI)M(P'A,P, lO4(Q--~ P,~)d PI~ ... d~P'~ 
i = l  

(all the particles are spinless). 
If  we apply to this equation tile above explained procedure we obtain, 

using obvious notations 

(46) M(pO, g, p~) .= V(po, g, p~) + f f K(pO, gg,-1, po,) M(P~', g', po) dg' dV'~ 

and finally 

f~ Ot O" O/ 0 / (47) ~,~(po, p]) ~_ S/~o(p], p]) + a(P], Pa )rid (P], P~) dVa . 

The kernel of the eq. (47) can be considered an operator acting both on the 
representation space and on the space of the functions of _P~. Its complete 

Hilbert-Sehmidt norm is given by 

(48) f f  l s , (p]  ' pc,) I~dVA dV~ 

and if this integral is finite the equation (47) can be solved by means of the 

Fredholm method. 
Note that  the original eqs. (45) or (46) can never be solved with the 

Fredholm method if the group G is not compact. In fact the integral 

is always divergent. 

7 .  - T h e  ~< L a p l a c e - t r a n s f o r m  ~ .  

T h e  formulae given in Sect. 4 can be considered as the analogue of the 

Fourier transform; in fact the classical Fourier transform is given by the pro- 
jection of a function ](x) on the functions exp[ikx] which are the unitary 
representations of the translation group. In this Section we want to gene- 
ralize the transformation (29) in the same way as the Laplace transform ge- 
neralizes the Fourier transform. As the Laplace transform makes use of the 
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functions exp[sx] (with complex s) which are in general nonunitary repre- 
sentations of the translation group, the generalization we are looking for should 
be connected to the nonunitary representations of the group G. 

A general theory of the Laplace transform for functions defined on Abelian 
locally compact groups has been given by MAcI~Eu if2), but we do not know 
a similar theory for noncommutative groups, which could provide ~ general 
mathematical framework for this investigution. 

The advantage of the generalized Luplace transform with respect to the 
transformation given in Sect. 4 is twofold. First it permits the use of the 
theory of the operator-vMue4 analytic functions which has been found very 
useful in the investigation of the properties of the complex angular momentum 
in potential and field-theoreticM models (23.24). Secondly it generates high-energy 
asymptotic expansions of the scattering amplitude, as we shall see in the fol- 
lowing Section. 

The transform we arc going to study is based on two families of repre- 
sentations which depend on a complex parameter 1. They are given by the 
following linear operators acting on the L 2 functions defined in the interval 
0 < ~ < 2 ~ :  

(49) 

(50) 

where 

(51) 

.~(g) z(~)  = 1~ + fl exp I:i~':]12~§ z (~ ' ) ,  

.~'qg) .~(~) = (~ + fl exp [ i~'2) Is + fl exp [@']l  2~+:'- z (~ ' ) ,  

exp [ir = ~ exp [ir § fi 
+ fi exp [ir ' 

x . , ~. e x p  [ i r  fi e p [ z ~ ]  = 
- f l  e x p  [ i r  

d ~  
d~5' -- Is -~ fi exp [i~b'] t-2. 

These representations have been investigated by ]3ARG~ANS~ (15); we give 
here for easier reference a summary of their properties. 

The representations given by eq. (49) are of the integral  type and those 
given by eq. (50) are of the hMf-integrM type; in both cases they correspond 

r162 

(2~) G. MAeKnY: Proc. Nat. Acad. Sci. USA, 34, 156 (1948). 
(~a) G. COS]~NZA, L. SERTORIO and M. TOLL]~R: Nuovo Cimento, 35, 913 (1935). 
(24) G. TIKTOeOVLOS: Phys. Rev., 133, B 1231 (1964). 
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to a value of q given by  

(52) = - 1,(~ + ~ ) .  

I f  we define the scalar product  in the usual way 

2~ 

0 

the operators (49) and (50) are bounded and the i r  norm is given by  

(53) ][ ~'(g)[I : [I ~"(g)][ : exp [I 2 I~e l + 1 ]~J. 

~ o r e o v e r  i t  can be shown tha t  these operators are continuous functions of g 
in the strong operator  topology and analyt ic  operator-vMued functions of 1 
in the uniform topology. I t  can also be shown tha t  the representat ions ~'~ 
and ~ are ~ weakly equivalent  ~> (~5) to the representat ions ~,-z-1 and ~-z-~, 

respectively.  
I f  l-~--�89 the  representat ions ~ coincide with the un i t a ry  represen- 

tat ions of the class C~ with q >  �88 and the representat ions ~,z coincide with 
the un i t a ry  representat ions of the class C~. 

Now we are enabled to generalize eq. (29) and to define the following 

~ Laplace t ransforms ~ 

= ~  (g) ](g) dg , 
G 

(54) 
----|2'~(g) ](g) dg . 

G 

Of course if l~---�89 ~z  and y ,L  coincide with some of the @~ defined 
by  (26). 

We t r ea t  here  in detai l  only the integral  spin case; then  of course ~'~-----0 

and we huve to iaves t igate  only the propert ies  of ~ .  The hMf-integrM spin 

case can be t r ea t ed  in a ve ry  similar way. 
I f  one requires the absolute convergence of the integral  (54), the Laplace 

t ransform is defined as a bounded operator  in the strip of the complex/ -p lane  

(25) For a discussion of the concept of equivalence for nonunitary infinite- 
dimensional representations, see: IV[. h. NAI~A~K: Linear Representations o] the Lorentz 
Group, translations AMS (1957), p. 379; G. MACKEu Bul~. Am. Math. Soc., 69, 628 
(1963). 



THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 649 

where  the  integral  

(55) fexp [I 
O 

2 I~e I + 1 I~] If(g) I dg 

converges.  However ,  the  absolute convergence is ~ too res t r ic t ive  condit ion 
four  our pourposes  and,  on the  other hand,  it is ve ry  useful  to know tha t  
is an Hi lbe r t -Sehmid t  operator .  Therefore  we in te rpre t  the in tegral  (54) as 

(56) 

where  we assume tha t  the  in tegral  is an Hi lbe r t -Schmid t  opera tor  and the l imit  
has  to be  t a k e n  wi th  respect  to the Hi lbe r t -Schmid t  opera tor  norm.  

We 4o not  inves t iga te  here all the proper t ies  of the  classical Laplace  trgns- 
fo rm which have  the i r  analogue in this case, bu t  give only a sufficient con- 
di t ion for the  exis tence of the  l imi t  (56). 

We assume t h a t  ](g)= ](/~, ~, ~) belongs to L~; then  the  funct ion 

(57) 

2~ 2~ 

0 o 

and  the opera tor -va lued  funct ions 

(58) 
2~ 2~ 

0 o 

are  defined a lmos t  everywhere  and  moreover  we can write 

(59) 

I f  we t ake  

{60) 

w e  t l a v e  

(6~) 

z 

0 

2~  1/ 
(~qg)  Zn, Zm I) = ~ t s + fi exp [ i r  I ~+~ exp [in~'] exp [ - - i m r  dO = 

0 

= exp [ - -  2im#]d~(~) exp [ - -2 in~] ,  

42 - I I  N u o v o  C i m e n t o .  
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where the function d~(~) can be expressed in terms of the hypergeometric 
function (see Appendix B). In the simplest case we have 

(62) dZoo(~) ---- ~(cosh 2~) . 

From the integral (61) it follows at once that  

(63) Id~.(~) ]< do~'($) = Par 2~) . 

From (56) and (61) we have 

(64) (~'(~)Z-, Z ~ ) =  d',..(:) ,-~,~ (d#fdv/ (# ,~ ,v)exp[--2 im#]exp[--2inv]  
(7~) j j 

0 0 

and using the inequality (63) 

i ~ , (~ )  I ~ = X I (~ ' (r  z . ,  z~) I ~ < 
~ n  

that  is 

(65) 

2 ~  2 ~  

0 0 

I.~'(~) I < P.o,(cosh2~)~](~) �9 

Therefore we have that  the limit of eq. (59) exists if l lays in the strip where 
the integral 

(66) 

converges, and it is 

(67) 

co 

PR~ (eosh 2~)](~) sinh 2~d~ 

0 

co 

'l ~ I <fPmz (eosh 2~) T(~) sinh 2~ d~. 

0 

Note that  the strip where the integral (66) converges can be wider than 
the strip where the integral (55) converges. If 

(6s) 7(~) = o(exp [ 2 z ~ ) ,  L <  - - }  

r162 
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it  can easily be deduced f rom the asymptot ic  propert ies  of the Legendre func- 
t ion tha t  (66) converges and therefore  the Laplace t ransform (56) is defined for 

(69) 

F rom the ana ly t ic i ty  of the operators 2~(g) it  follows tha t  the functions 
d~.($) are analyt ic  in the whole / -p lane  and f rom eqs. (64) and (65) if follows 
tha t  ~-~(~) is an operator-valued analyt ic  funct ion of l whenever  ](~) is finite. 
F rom eq. (59) we deduce tha t  the Laplace t ransform ~ is an analyt ic  operator-  
valued funct ion in the strip where the integral  (66) converges. 

Note  tha t  ~ does not  determine uniquely  ](g); in fac t  if we add to ](g) 
a ma t r ix  e lement  of a representat ion of the discrete class, ~ does not  change 
for l = - - � 8 9  due to the or thogonal i ty  relations, and, f rom the ana ly t ic i ty  
of ~z ,  i t  follows tha t  i t  does not  change ~nywhere.  F ro m  Sect. 4 and 5 i t  is 
clear that ,  in the integral  spin case, ](g) is uniquely  de termined by  ~ z  and by  
the projections ~+k and ~--k on the representat ions of the discrete classes. 

8. - The asymptotic behaviour of the amplitude. 

One of the meri ts  of the classical Laplace t ransformat ion is given by  the 
fact  t ha t  asymptot ic  expansion of the original funct ion can be obtained f rom 
the analyt ic  propert ies  of the t ransformed funct ion (2% A similar use can be 
made of the t ransformat ion defined in the preceding Section, bu t  in this case 
theorems as powerful  as in the classical case are not  available, and fur ther  
mathemat ica l  work in this field would be welcome. 

An asymptot ic  expansion of the type  

i = l  

can be in te rpre ted  in many  ways, corresponding to the various possible con- 
ditions which can be imposed on the remainder  R(/~, $, ~). For  instance 

i) conditions can be imposed on the asymptot ic  behaviour  of R(/~, ~, v) 
for fixed values of ,u and v; 

(~) G. DO]~TSCn: Theorie und Anwenduug der Zaplace-Trans]ormagon, III  Teil 
(New York, 1943). 
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ii) conditions can be imposed on the functions 

2~ 27~ 

0 0 

exp [--  2im#] exp [--  2inv] R(/~, ~, ~') 

for m and n fixed; 

iii) conditions can be imposed on the funct ion 

2~ 2~ 

m n  
0 0 

Of course the most  useful expansions are those of the kind iii) and we 
shall invest igate  them in a fu r ther  work. Here  we give only some indication 
about  the way to obtain expansions of the type  ii), or in other  words, to find 
asymptot ic  expansions for the functions 

(71) 

2~: 27~ 

1 d 

0 0 

exp [--  2imv] exp [--  2inv]/(/~, ~, v) �9 

F r om eq. (27) and (61) we have  

(72) ]~,~(~) : f  d~(~) ~ d a ,  

where 

(78) 

The contr ibut ion to (72) of the representat ions of  the discrete classes has 
a l ready the form of an asymptot ic  expansion, the representat ions of the half- 

integral  type  do not  contr ibute  because we are considering the integral-spin 
ease, therefore  we have to consider only the contr ibut ion of the class C~ which 

can be wr i t ten  in the form 

-�89 

(74) 2-7 j d~ ( r  at; 
_�89162 

using the eqs. (B.13), (B.14) and (B.16) of the Appendix B we can write eq. (74) 

r 
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in the form 
-�89162 

(75) = - i f + tg ~ d l .  
_�89 

Now we assume tha t  ~ ,  is a meromorphic  funct ion of 1 in the strip 
- - L - - I < R e I < L .  This happens, e.g., if  the operator  ~-* is the resolvent  of 
~n integral  equat ion of the Fredholm type,  whose kernel  is a meromorphic  
operator-vMued funct ion of 1 in this strip (~,.24). 

Then if certain conditions (which we do not  invest igate here) are satisfied, 
the asymptot ic  behaviour  of ],,.(~) is dominated by  the contr ibut ion of the 
poxes encountered when the integrat ion pa th  is shifted towards the line 

R e / = - - L - - 1 ,  i .e. ,  we can wri te  

(76) 

where r ~  are the residues of the poles of ~-~n at  li; and the second sum has 
to be extended to the integral  values of 1 in the in terval  - - L - - l <  l ( - - � 8 9  

Tha t  the last t e rm of eq. (76) necessarily appears,  can be unders tood as 
follows. Assume tha t  ] . , . ( ( )=  0 for ( ~  Z;  the contr ibut ion of the represen- 
tat ions of the discrete class in general does not  vanish. However  they  cannot  
give any contr ibut ion to the asymptot ic  beh~viour of ],~n((), therefore they  
have to be compensated by analogous terms in the asymptot ic  expansion of 
the contr ibut ion t~) ]~(~) of the continuous class. In  fact ,  a~Z~-~(() for integral  1 
and I m I>~ - -  l, In I ~ - -  l, m n  >~ O coincides, apar t  a factor,  wi th  the correspond- 
ing ma t r ix  e lement  of the representa t ion of the discrete class with k-------1 
(1 < O). 

A P P E N D I X  A 

We have seen in Sect. 2 tha t  the conditions which define the vectors .po 
(we leave off the subscripts A or B which distinguish the set of particles) are some- 
what  arbi t rary.  Here  we give a possible specification of the conditions when 
Q~< 0 and the particles belonging to the set considered are at  least three.  
Moreover we assume tha t  the group ~ does not  contain the  reflections. 

Four  of these conditions are given by  

(A.1) 

Q ~  

QO = o ,  

QO = o ,  

Qo = > o .  
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t n  order  to  d e t e r m i n e  the  o the r  condi t ions  we have  to d is t inguish  th ree  cases, 
depend ing  on the  sign of t he  quan t i t i e s  

= -  Q2 (Q,t)l) 
(A.2) u (P1, Q) P~ , v = 

Q2 (Q,/71) (Q, P2) 

(P~, Q) P~ (P1, P~) 

(P2, Q) (P2, ~1) P~ 

These  quan t i t i e s  are  nega t ive  if the  subspace  spanned  by  the  vec tors  i nvo lved  
is Euc l idean ,  o therwise  t h e y  are  posi t ive.  

The  th ree  cases we have  to  consider  are :  

i) u > 0, t he  condi t ions  are  

(A.3) P~, = 0 ,  /3o = 0 ,  p o  > 0 ,  p o  = 0 .  

ii) u < 0, v > 0, t he  condi t ions  are  

(A.4) po = 0  po = 0  p o  > 0 ,  P~  0 
2X , 2 ~  , = " 

iii) u <  0, v < 0, t he  condi t ions  are  

= = po 0 (A.5) P~, O, P~= > O , P~, O, 2, = �9 

~ o t e  t h a t  w h e n  on-shell  ampl i tudes  are  t r ea t ed ,  we need  to  consider  on ly  
t he  case i). 

N o w  we have  to  calcula te  the  expl ic i t  f o r m  of the  measure  d V  in  the  
sp~ce of the  i n d e p e n d e n t  componen t s  of po. F r o m  eq. (40) we have  

(A.6) f + / P 1  ... d,P  ... = 

f f4 = 9 ~ ( P 1 . . . P , _ I , Q ~  d dVq~(L(g )P~  
i= l  

0 

The calcula t ion proceeds  in different  ways  in  the  th ree  cases considered above.  
I n  t he  case i) we have  (27) 

(A.7) 4 d g d V = d P 1 . . . d P ~ _ l  ] j i d / z d ~ d v  po o o o o d~po dP~ 1, = d it dPI~ alP2, dP2~ dP2, . . . .  

where  

J =  
~(P1, P2, ...-P.-1) 

~(~, ~, p01, poo, v, po ,  ~"L, P~ p03... P,_1)~ �9 

(27) The factor 4 is due to the fact that, when the group parameters vary in their 
range, the same vectors P~ are obtained four times. 
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(when we do not  indicate the relativist ic index, we mean thu t  all the  four 
components  should be writ ten).  I f  one writes down explicit ly the  determi-  
nan t  J one easily sees tha t  i t  can be decomposed in the following way 

J = ~(t,, ~, ~;,) ~0,, P~,, v~:) ~ ( ~  ' ~(--~-~5:5 

Clearly only the first two terms are different from one and, if we evaluate 
them explicitly, we obtain 

(A.S) : tpo ~po 

F r o m  (A.7) and (A.8) taking into account  the form (13) of the invar iant  
measure dg, we obtain 

2'2 '~'P~ ,2po dpo dpo ,trio a ~o dpo d4pO a4po (case i)) . (A.9) d V :  t x~) ~ :~) ~ ' ~ t ' ~  ~ 3 . . . . . .  : 

In  a similar way in the other  two cases we get 

(A.10) dV 2(2~)~/po ~po dpO ,tlJo ,t~o d~O dpO ~ o 4 o = d .P~_~ d ~3 2t] 1~ 2t u ~ 2 z  ~ t ' t l t  ~ 2 x  2z "'" 

and 
2"2 ,2,~,o ,~,o ~po ~po ~po dpO Jpo ddpo 4 o (A.11) d V :  [ ~T~)(/~1~)"~2y (~ l~U 1~U 2~ 2~U 2' 3. . .dP, , -1  

(case i i ) ) .  

(case i i i ) ) .  

A P P E N D I X  B 

In  this Appendix  we give the explicit  form and some propert ies of the 
ma t r ix  elements of the representat ions used in the text .  

I f  we use the orthogonal  basis formed by  the vectors Z,. with 

(B.1) 
we have tha t  

(B.2) 

Ho Z,~ = m zm , 

(~~ Z., g~) = exp [--  2im#] d~,($) exp [--  2in~,]. 

dm.(~) given by  B A n G ~ A ~  (:5) We repor t  for easier reference the functions • 
for the un i t a ry  representat ions of the discrete classes. For  m >  n i t  is 

1 [r(m + 1 - - k ) F ( m  + k)~ �89 
(B.3) d+~(~) -- (m - -  n)! [ ~  1 - -  k)/~(n -/- k) ] (cosh ~)-('~+~) (sinh ~) . . . .  

�9 F~l(k--n,  1 - - n - - k ;  1 + m - -  n;--(s inh~) 2) ---- 

(-- 1) "-k ( F(m + k)I~(n + k) ~�89 (sinh $)-2z~ (tgh $)m+,. 
--  P(2k) [ F ( m + l ~ k ) F ( n +  l - - k ) ]  

�9 F2~(k--m, k - - n ;  2 k ; -  (sinh ~)-~), 

(B.4)  ,~7.~.($) = d+~._,.($),  
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and for m < n  we have 

(B.5) d,~,~(~) = (-- 1)~-~a~(~-). 

The m~t r ix  e lements  of the  r ep resen ta t ions  ~ and  ~ ' :  are  different  f r o m  
those  g iven  b y  B ~ I ~ G ~  because  we use a different  basis.  Our  m a t r i x  
elements are less symmetric  than  BAICGMA~'S ones, but  present the advantage 
of being analytic in the whole /-plane. From eq. (61) we have for the repre- 
sentations ~z 

27~ 

(B.6) d~(~) : ~ f ( co sh :  e x p [ i ~ ] - - s i n h ~ )  ~-'-~. 
~ 3  

0 

�9 (cosh $ - -  s inh $ exp [ i~ ] ) - ' - " -1  (exp [~r d e .  

For the representations ~'~ if we introduce the basis 

(B.7) z: (r  = exp [ i ( m -  �89 r  

we have in the same way 

(B.S) (~"(g) Z',~, Z~) = exp [-- 2irate ] d~($)  exp [-- 2inv], 

where d~(~) is still given by eq. (B.6) (note however tha t  now m and n are 
half-integers). 

The integral (B.6) can be transformed into an integral representation of 
the hypergeometrie function (~s) and after  some calculations we obtain 
for m > n  

(B.9) d~(~) -- 1 F(1 + m + 1) (cosh ~)'~+~ (sinh ~) . . . .  
( m - -  n)! r ( l  + n + 1) 

�9 F ~ l ( m - - l ,  m + l + 1; m - - n  + 1 ; - - ( s inh~)  ~) . 

F o r  m < n  we have 

(B.IO) 

Note also the following property  which can be directly verified on eq. (B.9) 

(B.11) 

where 

dm/-l(~) (__l)m-nd~nm(~) - l - l  ~ 

(B.12) ~ _ F(1 + m + 1) 
F ( m - -  l) ' . . . .  " 

(2s) A.ERI)ELu W. MAGNUS, F. 0BERHETTINGER and F. G. TRICO~tI: Higher 
Transceude~tal Functions, vol. i ,  formula 2.1.3.13. 
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The last  equations show tha t  the  representat ions  corresponding to l and  to 
- - l - - 1  are weakly  equivalent  (2~). I f  /=--�89 we have  t h a t  ] ~ l  = 1  
and the  representa t ions  are also un i t a ry  equivalent.  F r o m  eq. (B.11), (61)~ 
(73) and (54) i t  follows tha t  the  Laplace t r ans form defined in Sect. 6 has  
the  p rope r ty  

At  last  we express the  m a t r i x  elements  d~,,(~) in t e rms  of functions which 
generalize the  Legendre  functions of the second k ind  and  have  a s imple  
a sympto t i c  behav iour  for ~-~co .  This decomposi t ion can easily be  ob ta ined  
f rom a well-known p rope r t y  of the  hypergeomet r ie  functions (29) and  can 
be wr i t t en  as follows 

(B.14) 

where 

(B.15) 

dL(0 = aL(0  + b~.(0, 

(--  1) ...... F ( - -  21 - -  1) 
a~.(~) - -  F ( - -  1 - -  r e ) F ( - -  l + m) (sinh ~)-2~-2 (tgh ~)~+.. 

�9 E2~(l + 1 - - n ,  1 + 1 - m ;  21 + 2; - (sinh ~) -2) 

and 

(B.16) 

Note  t h a t  

(B.17) 

= &.a,~. (r 

a~o($) = ~-~ tg ~lQt(cosh 2~) . 

(~) Lee. cir., formula 2.1.4.17. 

R I A S S U N T O  

L'ampiezza di diffusione per un processo a pi~ particelle viene proiettata sugli 
elementi di ma~riee delle rappresentazioni unitarie irriducibili del gruppo di Loren~z 
tridimensionale. Si me~te in luce l'utilit~ di questa Crasformazione nello studio d i u n a  
eerta elasse di equazioni integrali a cui soddisfa l'ampiezza di diffusione. Si mostra che, 
utilizzando an certo insieme di rappresentazioni non unitarie, si o%iene una Crasfor. 
mazione pifi generale che ha molte delle propriet/~ della trasformazione classica di Laplace 
e pub essere usaCa per ottenere sviluppi asintotiei simili a quel]i ehe si oCtengono dalla 
formula di Watson-Sommerfeld. 


