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Summary. The many-particle scattering amplitude is pro ected on
the matrix elements of the unitary irreducible representations of the
three-dimensional Lorentz group. The usefulness of this transformation
in the treatment of a certain class of integral equations satisfied by the
amplitude is pointed oubt. A generalization taking into account a set
of nonunitary representations is shown to lead to a transformation which
has many of the properties of the classical Laplace transformation and
can be used to obtain asymptotic expansions similar to those obtained
from the Watson-Sommerfeld formula.

1. — Introduction.

The aim of this work is to enlarge and develop the ideas of a preceding
paper (*) about a possible generalization of the partial-wave analysis of the
scattering amplitude.

The main progress consists in the fact that here we treat an amplitude
which involves an arbitrary number of particles with arbitrary spin. This
generalization of the method developed in () for the scattering of two spinless
particles is useful not only for its wider applicability, but also because it per-
mits a deeper ingight into the structure of the transformation and a more
direct connection with the work of mathematicians.

The mathematical background of both the expansion developed here and
of the usual partial-wave analysiz can be found in the theory of « harmonic
analysis », that is, the generalization of the Fourier analysis from functions

() L. 8erTor1O and M. TorLLer: Nuove Cimento, 33, 413 (1964).
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632 M. TOLLER

defined on a straight line or on a circle to functions defined on an arbitrary
(locally compact) group (*?*). The usual partial-wave analysis can be regarded
as the harmonic analysis applied to the scattering amplitude considered as a
function defined on the rotation group. This is not very clear in the case of
two-body scattering, because in this case it is simpler to consider the ampli-
tude as a function defined on a spherical surface, but, when three or more
particles are involved, this point of view leads to the most clear definition of
the partial-wave amplitudes (+7).

In order to understand the usefulness of our expansion, let us analyse
which are the advantages of the usual partial-wave representation. The most
interesting are the following:

a) it permits the description of the low-energy scattering by means of
a small number of parameters;

b) it permits a simplification of some relations satisfied by the ampli-
tude (e.g. integral equations of the Lippmann-Schwinger or of the Bethe-Sal-
peter type or unitarity relations).

Another method to represent the scattering amplitude is its analysis in
terms of the complex angular momentum in the crossed channel. The ana-
logous of the advantage @) is that the complex angular momentum represen-
tation can give rise to a description of very-high-energy scattering in terms
of a small number of « Regge-pole parameters ». An advantage similar to b) .
is not very apparent because the usual theory does not indicate any direct
connection between the complex angular momentum and the symmetry group
of the equation to be simplified. This is connected with the fact that the
usual complex angular momentum theory cannot be inserted directly into the
framework of harmonic analysis.

Two attempts have been made to connect complex angular momentum with
the group theory; the former uses some «local » representations of the rota-
tion group (”8), the latter uses the representations of the three-dimensional
Lorentz group (Y). Here we shall deal with the second one.

G. Mackey: Bull. Amer. Math. Soc., 56, 385 (1950).

. H. Loomis: Ann Introduction to Abstract Harmonic Analysis (Princeton, 1953).
M. Jacos and G. C. Wick: Ann. Phys., T, 404 (1959); G. C. Wick: Ann. Phys.,
5 (1962).

5) R. L. Omn®s: On the Three-Body Scattering Amplitude, 1, II and III,
U.C.R.L. reports and Phys. Rev., 134, B 1358 (1964).

(°) J. B. HARTLE: Phys. Rev., 134, B 610, B 620 (1964).

(") M. AxprEWS and J. Gunson: Complex Angular Momentum in Many-Particle
Siates, I and II, preprint (University of Birmingham, 1963). This paper gives also
the connection between the matrix elements of the local representations of the rotation
group and of the representations of the three-dimensional Lorentz group.

(8) E. G. BELTRAMETTI and G. LuzzarTo: Nuovo Cimento, 29, 1003 (1963).
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 633

In order to apply harmonic analysis to the scattering amplitude, the first
thing to do is to represent it as a function of the elements of a group (and of
other parameters which are not affected by the following transformation).
A general method to reach this object is described in Sect. 2 and 8. This pro-
cedure gives rise to various possibilities, besides the one which leads to the
usual partial waves. Each case corresponds to a certain subgroup of the Lo-
rentz group and, as we show in Sect. 4 and 5, in each case it is possible to
project the amplitude on the matrix elements of the unitary irreducible repre-
sentations of the corresponding group. Only one of these possibilities, con-
nected with the three-dimensional Lorentz group, is investigated in detail in
this paper, but also some of the others could lead to physically interesting
concepts and deserve a detailed study.

The reason which has prevented an earlier investigation of the properties
of these new representations of the scattering amplitude is, besides their some-
what hidden physical meaning, the difficulty inherent in the harmonicanalysis
of functions defined on noncompact noncommutative groups. In fact the uni-
tary representations of these groups are all infinite-dimensional and generally
depend on continuous parameters; these facts lead to the necessity of using
infinite matrices and integrals instead of sums over the contributions of the
various representations.

In Sect. 6 we show how the transformations defined in the preceding Sec-
tions can be used to diagonalize certain relations between amplitudes.

In Sect. 7 we generalize the harmonic analysis on the three-dimensional
Lorentz group, obtaining a transformation which has many of the properties
of the classical Laplace transformation. In particular, if certain conditions are
satisfied, one can obtain from this transformation asymptotic expansions si-
milar to those obtained from the Watson-Sommerfeld-Mandelstam formula (?)
extended to the many-particle case (*7) (Sect. 8).

A disadvantage of our method with respect to the Watson-Sommerfeld-
Mandelstam formula is due to the fact that it can be applied only to ampli-
tudes which, roughly speaking, decrease more rapidly than s-* when the square
of the center-of-mass energy s goes to infinity. However we remark that this
is a natural difficulty for a transformation which diagonalizes a fixed mo-
mentum transfer integral equation. In faet, if the amplitude which forms the
kernel of the equation has not a sufficiently «good » asymptotic behaviour,
the kernel cannot be iterated, the Neumann series cannot be written for any
value of the coupling constant and the equation does not make any sense.
It may happen that the physically significant solution of the equation has
a «bad » asymptotic behaviour, but, at least, if the projected equation is of

(°) 8. MaxDELSTAM: Ann. Phys., 19, 254 (1962).

41 - Il Nuovo Cimento.
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634 M. TOLLER

the Fredholm type, it can be obtained from a well-behaved solution adding
to it Regge-pole contributions in the way explained in ().

At last, we remark that the subject of this paper can be put in relation
with the theory of the representations of the inhomogeneous Lorentz group (10-12),
An outgoing particle can be considered as an incoming particle with a nega-
tive energy and therefore we can associate to it a representation of the inhomo-
geneous (orthocronous) Lorentz group with real mass and negative energy.
When one considers the direct product of a representation of this kind with
a positive energy, real mass representation, corresponding to an ineoming par-
ticle, it can easily be seen that this product contains representations with ima-
ginary mass. The «little group » associated to these representations is the
three-dimensional Lorentz group considered in this paper.

2. — The scattering amplitude as a function of the group elements.

We consider the off-shell scattering amplitude for an arbitrary number of
incoming and outgoing particles with arbitrary spins. This amplitude depends
on N four-vectors and N discrete indices which describe the four-momenta
and the spins of the involved particles.

We adopt the usual Feynman convention, ¢.e., when the four-momentum
of an incoming (outgoing) particle has negative energy component, it has to
be interpreted as the four-momentum of a corresponding outgoing (incoming)
antiparticle with the sign changed.

The Lorentz invariance of the amplitude can be Wntten in the form (13)
(1) X D@ ... Digy;

Susy

(a )Msi...s}v(L(“_l)Pl--- N) = 51 Sy (P;y... Py},

Sl SN

where « is an element of the Lorentz spinor group % (proper or with reflec-
tions included), L(a) is the matrix of the corresponding transformation acting
on four-vectors and D!%(a) are the matrices of the corresponding spinor repre-
sentations corresponding to the various particles involved.

The partial-wave analysis can be considered as a description of the be-
haviour of the amplitude when the parameters of the incoming particles are
fixed and the parameters of the outgoing particles are contemporaneously
rotated in the center-of-mass system. In order to generalize the partial-wave
formalism, we divide the particles involved in the amplitude into two sets,

u. M. Smirokov: Sov. Phys., JETP., 6, 919 (1958).
H. Joos: Forts. d. Phys., 10, 65 (1962).
H. P. Starp: Phys. Rev., 125, 2139 (1962).
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 635

A and B, which do not necessarily coincide with the sets of the incoming and
of the outgoing particles. ‘

We use the indices 14 ...nA to label the n particles of the set A and
1B...mB to label the m particles of the set B. In order to obtain more com-
pact formulas, we use some shorthand notations: with P, we indicate the set
of vectors P, ... F,,, with s, we indicate the set of spin indices s,,...s,, and
in a similar way we define P, and s,. Furthermore we call D(si’s;(a) the direct

. (14) (nd . . .
product of the matrices Dg, s(@) - Ds: A;; (@), and in a similar way we define
(B)
DsBs};(a)-

With these shorthand notations the Lorentz invariance (1) can be written as

@) X Diysu(@) Digyla) My, (L(a™) P,y L(a™) P,) = M,

548

’ (P, B) .
S48p
With the sign convention we want to use, the four-vectors P, indicate
outgoing momenta and the four-vectors P, indicate incoming momenta. This
does not mean ingoing and outgoing particles because the energies can be
negative. Then the energy-momentum conservation can be written in the
form

(3)

3P

'PiA:sz'BzQ'
i1

i=1

I

The meaning of @ is total energy-momentum if B is the set of the incoming
particles, otherwise it is a four-momentum transfer.

Now we divide the 4n-dimensional space of P, into sets such that if P,
and P; belong to the same set they can be connected by a transformation of
the group #. By means of certain well-defined conditions, we choose for each
set a representative element P}. Then any P, can be represented in the
form

(4) P, = L(a
The same procedure can be applied to the vectors B, and we obtain

P .

B

(5) By = L(a,)
It is clear that if P‘;:L(a) P (ac¥), P, and P;_ correspond to the same PY;
this means that the independent components of P} can be expressed by means
of the invariants (with respect to .#) which can be built with the vectors P,.

The conditions which determine the representative vectors P and Pj can
be chosen in many ways (a possible set of conditions is given in the Appendix A);
the only assumption that we need for a general discussion is that these con-
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636 M. TOLLER

ditions imply that

(6) 2 P,=2 Ph=
i=1 i=1

Then we have

and

(M Q° = L(a;'a,)Q° .

This means that g=a;'a, belongs to the subgroup G of % which contains
all the transformations which leave the four-vector @° unchanged.

From eq. (2) it follows that
(8) M,

S48R

(L(tlA)Pg 2 Dfei)sA (el;)s}g(“g) Ms;s}g(Pga ay aB’ P, 2) 1

SASB
where we have defined

9) M ,s,(P3, 9, P3) = E 0455(Pay L(g) P3) D (67" (ge@).

The function (9) is a different way of expressing the scattering amplitude.
The advantage of expressing it as a function of the group element g is due
to the existence of the expansion theorems which we ghall use in Sect. 5

3. — Properties of the group G.

Now we agsume that £ is the proper Lorentz spinor group and investigate
the properties of the group ¢. The structure of groups of this kind has been
investigated by WIGNER in his classical work on the unhomogeneous Lorentz
group (°). He distinguishes four cases (14):

i) t=@*>0; then we can chose "= (V7, 0, 0, 0) and the group & is
the group of spatial rotations (more exactly, the corresponding spinor
group).

ii) ¢=@*< 0; then we can chose @°= (0, 0, 0 v/—7) and @ is the group
of the Lorentz transformations in the three-dimensional pseudo-

(14) We use the metric Q2 =@} —Q>—@Q2 —Q2.
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 637

euclidean space with one timelike dimension and two spacelike di-
mensions.

iil) t=Q2=0; @ =+~0.
iv) @=0.

In the first case our general treatment becomes the usual partial-wave
analysis and the case iii) is a limiting case of the first two, not very interesting
from the physical point of view.

The cases ii) and iv) have a great physical interest in connection, respec-
tively, with nonforward and forward scattering. In this paper we begin the
study of case ii) and leave case iv) to a future work.

A rather complete investigation of the mathematical properties of the
three-dimensional Lorentz group has been given by BARGMANN (1%) and we
follow essentially his work with slightly modified notations.

The spinor group corresponding to the 3-dimensional Lorentz group can
be identified with the group of the matrices

« f
(10) Wig) = [ }
@
with
(11) ak—Pf=1.

The group elements can be identified by means of the parameters y, £, v through
the relation

(12)  Wl(g) =

sinh { cosh{

exp [— iu] 0 } cosh¢ sinh | [exp[—iv] 0
[ ] [ 0 exp [M}'

0 exp [iu]
The range of the parameters is

0<li< o0, O<p<2m, o<y << 2m,

but the parameters u, {, v and u--m, {, v4a correspond to the same group
element. The invariant measure on the group is given by

(13) dg = (2#)~? sinh (2{)dudvdl .
The whole measure of the group is infinite as the group is not compact.

(1) V. BARGMANN: Ann. Math., 48, 568 (1947).
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638 M. TOLLER

The transformation

X'=I{g)X

on the four-vector X = (¢, x, ¥, 2) is given by

- w’—iy’} [oc ﬂ} t+2 a;—iy]
a4yt —z m_ﬁ @ |lot+iy t—z]| |f «

and therefore

Ri
=
J S——

1 0 0 0
0 cos 2y —sin 2u 0
(14) L(g)= )
0 sin 2u co8 2u 0
K 0 0 1 |
[cosh2f sinh2e 0 o] [1 0 0 0
ginh 2¢ cosh 2¢ 0 0 0 cos 2y —gin 2v 0
0 0 1 0 0 sin 2y cos 2y 0
0 0 o 1] ]o 0 0 1

As required, the co-ordinate z is not affected by the transformation.

Now we show the connection between g and the center-of-mass energy.
We assume that there are only two incoming particles with four-momenta
P,, and P,,. According to the Appendix A we choose

(15) ! PL = (—w, 07 0, —q,),

l 1)23 = ((037 07 07 qB) .

The square of the centre-of-mass energy is given by

(16) s = (L) Py, — I{ay) Pip)* = (P, — Lig) P3,)°*
and from eq. (14) we have

(a7) s = w} + w,+ 20,0, cosh2f — (¢, 4 q,)* .

Note that the high-energy behaviour of the scattering amplitude is given by
the limit ¢ — oo.
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 639

4, — The generalized partial-wave expansion.

Let us remember some importé,nt properties of the unitary irreducible re-
presentations of a compact group & (*4):

(18) > 9°.(9) 2% (9") = 25,(99")

(representation property),

(19) z Drl9) Don(9) = O
(unitarity),
(20) f‘@fnn(g) ‘ggnt'n'h(g) dg = (Na')_l 600’ 5mm' 6%"'

(orthogonality). We assume that fdg 1 and indicate by N, the dimension
of the representation o.
If f(g) is an L' function defined on G we can perform the following trans-

formation

(21) Fo— f 22.(0) f(9) dg

and, under certain more restrictive conditions, we have the following inversion
formula ‘

(22) g) ZN 2 FonDoalg) =D N, > F o D397

If f(g) is also an L* function, the following Plancherel formula holds
23) [ECIREDESAEAT
(43 mn
(]

These properties can be extended to a certain class of noncompact groups which
contains the groups we are considering. '

The main difference is that the unitafy representations are all infinite-
dimensional and there is a continuous infinity of them. Therefore we have

(%) E. P. WieNER: Group Theory and ils Application to the Quantum Mechunics
of Atomic Spectra, Chapt. IX and X (New York, 1959).
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640 M. TOLLER

to replace the operation Y N, with the more general one f do where do is a
o

suitably chosen measure in the space of unitary representations (Plancherel
measure). The explicit form of this measure will be given later for the case
which we consider.

In the following we consider the quantities 2° (g) and 7 as the matrix
elements of the operators 2°(g) and #°. With these modifications the for-

mulae (18), (19), (21), (22) and (23) become

(24) P°(g) 2°(g') = D(gy') ,
(25) [ 2°()} = [2°4)] 2°(g) — 1 ,
(26) 7o f () fl9) g,

@1) fg) = f Tr[F°9°(g1)]do

(28) flf(g)lzdg:flﬁ‘""lzda,

where | #°1 is the Hilbert-Schmidt norm (*?) of the operator #° and Tr indi-
cates the trace. The correspondence (26) can be extended to functions f(g)
which are L? but not I! and the Plancherel relation (28) is still valid for this
extended correspondence.

Now we apply the transformation (26) to the scattering amplitude expressed
in the form (9). In order to remain in the framework of the simplest mathe-
matical theorems, we have to assume that the amplitude is an L! or an L®
function of g, but this is by no means true for all the physical amplitudes. It
can be shown, however, that for certain Feynman diagrams the amplitude is
actually an L' and also an L2 function of g for almost all the values of the
other parameters. Therefore it is reasonable to develop the theory for this
simpler case and then, to look for the extension to more general cases.

According to this program we define the following operator-valued func-
tion of P%, P}, s,, 8;:

(29) Aoy Py P = f D) Mogsn(P g, Ph) g .
(23

This is the generalized partial-wave amplitude.

(17) If the vectors y, form an orthonormal basis, the trace and the Hilbert-Schmidt
norm are defined by Tr (y): z(an’ Xﬂ)» I(gfl = [ZHan’ Xm)iz]%'
mn

n
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 641

5. — The unitary representation of the three-dimensional Lorentz group.

In order to give to the formulae of the preceding Section a more explicit
form when G is the spinor three-dimensional Lorentz group, we have to classify
the unitarity irreducible representations of ¢ and to find explicitely the « Plan-
cherel measure » do.

Following BARGMANN (%), we call H,, H, and H, the infinitesimal (Hez-
mitian) operators of a representation, corresponding respectively to the infini-
tesimal Lorentz transformations along the axes # and y and to the infinite-
simal rotations around the axis 2. The operator H}--H:—H; commutes with
all the operators of the representation and therefore we can write

(30) HY + B} — H = qT

where I is the identity operator and ¢ is a number which can be used to label
the representation.

However ¢ is not sufficient to determine univoquely the representation and
we have to consider also the spectrum of the operator H,. Its possible eigen-
values are, of course, m=10, +1-+1, +45...

According to these principles, BARGMANN classifies the representations in
the following four classes:

o (170
“lm=0, L1, L2..;

¢ >1,

ct: \
lm:i%y 2.
g = k(1—Fk),

D =—k, —(k+1), —(k1+2)..,
k 2%7 ]’ H 3
¢ = k1—h),

Dic sm=k, (k+1), (k+2)..,
k=%, 1, 3

One can distinguish between representations of the integral type, when m
takes only integral values, and representations of the half-integral type when
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642 ] M. TOLLER

m takes only half-integral values. If we call (—¢) the group element cor-
responding to the parameters uy=_=0, v=—mx (i.e., a complete rotation
around the z axis), these representations have the following property

YD(—e)= I (integral type),

D—e)y=—1 {half-integral type).
From eq. (9) and (2) it follows that

(31) M5, (P (—0)gy Pp) = & M5 (P, g, P3)
where the 4 sign appears if the set A contains an even number of half-integral
spin particles and the —sign appears if this number is odd. It follows that in
the first case only representations of the integral type are needed in the ex-
pansion and in the second case only representations of the half-infegral type
give a contribution.

The normalization properties of the representation matrix elements can be
written with our notations in the form (*2)

B(g) =|v° 2°(g) do

lfl 00 ) Py = a2 [l e

where y° is an arbitrary function defined on the set of the unitary irreducible
representations. By comparison with the analogous formulae given by BARG-
MANN, we obtain the explicit form of the « Plancherel measure » do, which is
given by the formula

fovd

(33) fw“ do :f@pg% tgh mts ds—l—f 12s ctgh ms ds + Z 2k —1)(vE + vi),
I
0 0

where ¢=73%-s2.
Note that some unitary irreducible representations do not appear in eq. (33);
they form a set of vanishing Plancherel measure.

(*¥) We always understand that the integrations are extended to the whole range
of the group parameters, which cover twice the group manifold.
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6. — Diagonalization of integral relations between amplitudes.

a]

i"U i:ﬁ <
ua w

]

o) |N\J
TR
u: ©

Fe
Fz’

Now we consider a process which can be decomposed into two virtual pro-
Fig. 1 (the arrows do not indicate

the incoming and the outgoing

convention for the energy-momen- Fig. 1.

tum four-vectors).

cesses in the way described in
A Fs
particles, but give only the sign
The connection between the corresponding amplitudes is of the form

(34)  Miysp(Pus Po) = 3 | MiysolPuy Po) 0sgsy(Po)-
8g8¢
() r

MSOSB(P(J’ P, )6 (Q —EP';O) d4P10 v Q%P ’

=1

where ) is defined by eq. (3). If the amplitudes M, MV and M® satisty the
Lorentz invariance conditions (2) and

[ 2 Dis, (@) Dy (@) Mty (L(a~) B,, L(a™) P) = My (B, B,)

548¢

(35) 1 ED(O) ( )D(B) ( )M(Z) ( ( _1)P L(a_) ) M(2) (P P)
4 5080 853 SoS8 S¢Sg\ 01 B/

EYT

the formula (34) is Lorentz-invariant if the weight-function g, (P,) satisfies
the equation

(36) 2 Dy (a ) Dikdo(@) 0535 (T(@)B,) = 055, (F,) -

Saso

If we use eq. (9) and the similar equations

[ Mg, (P, g, P 2 My (P%, L(g)PY) Dax,(g ™)

37)
IM;?SB(P:;, g, P) = ZM;Z’SB(Pz, ()P Dy (g7 -

the eq. (34) becomes

(88)  Myusy(PYy 9,P5) = 3 | Miysy(Ph, Po) gscoi(Po)
-5’35030
D0 Miysy(Poy () P3) 84(Q°— X Pio) B .. AP -

i=1

5



644 M. TOLLER

Now we take

(39) F, = L(a,) P,

and note that the d-function appearing in the integral (38) does not vanish
only if @, belongs to G.

Equation (39) can be used to perform a substitution of integration variables
in eq. (38), 4.e., we transform an integral over P, in an integral over the ele-
ments a, of the group % and over the independent components of P,. Take-
ing into account the J-funection, we can integrate over the group ¢ instead
of over the whole group #. In the Appendix A we show that if the particles
belonging to ¢ are at least three (*°) and 2< 0, there is a measure dV, in
the space of the independent components of P! with the property

(40) [otPad(@—3p0) atpy...atpo = f dgdew(L(g) Py,

where @(P,) is an arbitrary funetion and dg is the invariant measure on the
group G. The explicit form of dV, will be given in Appendix. If we take into
account this formula, eq. (38) becomes

Mopsy(Phyg, P = 3 [aF f dg' MO (P2, L(g") ) -
SBSCSO

(B)

005, L(g") P3) M, (L(g') P5, L(g) P5) Disiy(g™)

and, after use of eqs. (35), (36) and (37), we obtain

(1) Mywy(Po g, P = 3 [av, fdg M(PL, o, PY)-
"aso

(2)

. @sgs'o(Po) MsosB(P%, g’“lg, Pg) .

If we consider only the dependence on the group elements g and ¢', this equa -

(**) If only two spinless particles belong to one of the sets, some difficulty arises
due to the fact that one of the group parameters is unnecessary. On the other hand
the amplitude has the property M(hg)= M(g) if % belongs to a subgroup H of G.
If H is not compact, as it can happen if we consider the off-shell amplitude, M(y)
cannot be an L' or an I? function of ¢. These difficulties do not prevent the treatment
of the two-particles case, as is shown in (1), but the application of the formalism of the
present paper to this case needs a particular technique.
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THREE-DIMENSIONAL LORENTZ GROUP AND HARMONIC ANALYSIS ETC. 645
tion becomes

(42) M(g) :fdg’M(l)(g’)M(2)(g’—1g) _

G

This means that M is the « convolution » of MY and M.
It is useful to give two sufficient eonditions for the existence of an integral
of the type (42) (*):

i) If M@(g) and M‘®(g) belong to the class L', M(g) is defined almost
everywhere in ¢ and is an L! function.

ii) If MY (g) belongs to L' and M‘®(g) belongs to L2, M(g) is defined
almost everywhere and belongs to L2

Now we show that a relation of the kind (41) can be considerably simplified
by means of the transformation (29). We consider explicitly the simpler case
(42) and we have

(43) M° ZJ-M(g) 2°(g) dg _—_fdg dg’ M (g") M (g'~1g) -

2]

Gl 279" g) = f g U (g0 M2(g") Tl = el
43

[

The change of the order of integration is easily justified if the condition i)
Is satisfied. If the condition ii) is satisfied, the justification is less simple,
but the result still holds.

In the general case (41) we obtain in the same way the relation between
operator-valued functions

(2o

(44) Moy (P, PY) = 3 | AVllsgsy(Ph, P3) 05 o PY) My (P, PY) .

8030

This is the desired « partially diagonalized » form of the formula (34). This
procedure can be applied to integral equations of the Bethe-Salpeter type (21)
which are useful to find the sum of infinite series of Feynman diagrams. Con-

(%0) M. A. NamMaRK: Normed Rings, Sect. 28 (Groningen, 1964).
(*') The possibility of writing down an integral equation for the relativistic three-
particle amplitudes has been investigated by A. TucciarRoNE: Thesis (Roma, 1964).
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sider for instance the equabion

(45) M(Ps,Py)=V(Py, B) + f K(P,, P,)M(P\, P)8:(Q — 3 PL)diPL, ... Pl

i=1

(all the particles are spinless).
If we apply to this equation the above explained procedure we obtain,
uging obvious notations

(46) M(PS, g, P3) = V(Pi, g, P3) +ffK( % 99" PY) M(PY, ', Pp)dg' dV,

and finally

(47) MO(P, Py) = V7o(Py, Pp) +ff“(P3, P)M°(PY, Py) AV, .

The kernel of the eq. (47) can be considered an operator acting both on the
representation space and on the space of the functions of PS. Tts complete
Hilbert-Schmidt norm is given by

(48) f Lre(Py, PY) 1AV, av,

and if this integral is finite the equation (47) can be solved by means of the
Fredholm method.

Note that the original eqs. (45) or (46) can never be solved with the
Fredholm method if the group ¢ is not compact. In fact the integral

fl K(P}, 99~ PY)|*dgdg'dV,avV, :f[K(P‘;, g, PY)[PdgdV,av, 'fdg’

is always divergent.

7. — The « Laplace-transform ».

The formulae given in Sect. 4 can be considered as the analogue of the
Fourier transform; in fact the classical Fourier transform is given by the pro-
jection of a function f(#) on the functions exp[ik»] which are the unitary
representations of the translation group. In this Section we want to gene-
ralize the transformation (29) in the same way as the Laplace transform ge-
neralizes the Fourier transform. As the Laplace transform makes use of the
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functions exp[sz] (with complex s) which are in general nonunitary repre-
sentations of the translation group, the generalization we are looking for should
be connected to the nonunitary representations of the group @.

A general theory of the Laplace transform for functions defined on Abelian
locally compact groups has been given by MACKEY (22), but we do not know
a similar theory for noncommutative groups, which could provide a general
mathematical framework for this investigation.

The advantage of the generalized Laplace transform with respect to the
transformation given in Sect. 4 is twofold. First it permits the use of the
theory of the operator-valued analytic functions which has been found very
useful in the investigation of the properties of the complex angular momentum
in potential and field-theoretical models (2*-24), Secondly it generates high-energy
asymptotic expansions of the secattering amplitude, as we shall see in the fol-
lowing Section.

The transform we are going to study is based on two families of repre-
sentations which depend on a complex parameter I. They are given by the
following linear operators acting on the L* functions defined in the interval
0<D< 2m:

(49) Dg) 2(D) = |+ B exp[iD]|** y(D'),
(50) D"'(9) 7(D) = (ax+ f exp[iD']) |« + B exp[iD']|*+ 4 (D) ,
where

o &exp[i®]+ B
S peatio’
(51) explid’] = 3%%; ’
o —la+pexplionf.

These representations have been investigated by BARGMANN (1%); we give
here for easier reference a summary of their properties.

The representations given by eq. (49) are of the integral type and those
given by eq. (50) are of the half-integral type; in both cases they correspond

{(**) G. MACKEY: Proc. Nat. Acad. Sci. USA, 34, 156 (1948).
(*¥) G. Cosexza, L. SerTorI0 and M. ToLrEr: Nuovo (imento, 35, 913 (1935).
(**) G. TixToPOULOS: Phys. Rev., 133, B 1231 (1964).
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to a value of ¢ given by

(52) q¢=—1U1-+1).

If we define the scalar product in the usual way

27

(s 2) =5 [ (@) @100

the operators (49) and (50) are bounded and their norm is given by
(53) 12'(9)] =12"(9)] = exp[|2 Rel+1|C].

Moreover it can be shown that these operators are continuous functions of ¢
in the strong operator topology and analytic operator-valued functions of !
in the uniform topology. It can also be shown that the representations &'
and 9" are « weakly equivalent » (25) to the representations @' and 27,
regpectively.

If 1==—1--is the representations Z* coincide with the unitary represen-
tations of the class C) with g>% and the representations @' coincide with
the unitary representations of the class ij.

Now we are enabled to generalize eq. (29) and to define the following

« Laplace transforms »

(54)
s f 9'g) flg) dg
q
Of course if 1=—1-is, #* and F'* coincide with some of the #° defined
by (26).

We treat here in detail only the integral spin case; then of course F''=0
and we have to investigate only the properties of #*' The half-integral spin
case can be treated in a very similar way.

If one requires the absolute convergence of the integral (54), the Laplace
transform is defined as a bounded operator in the strip of the complex I-plane

(35) For a discussion of the concept of equivalence for nonunitary infinite-
dimensional representations, see: M. A. NAIMARK : Linear Representations of the Loventz
Group, translations AMS (1957), p. 379; G. Mackey: Bull. Am. Math. Soc., 69, 628
(1963).
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where the integral

(85) fexp[m Rel-+112] 11(g)|dg

@

converges. However, the absolute convergence is a too restrictive condition
four our pourposes and, on the other hand, it is very useful to know that &%
is an Hilbert-Schmidt operator. Therefore we interpret the integral (54) as

(56) Fl=lim | Z4g)f(g)dg,

2>
<z

where we assume that the integral is an Hilbert-Schmidt operator and the limit
has to be taken with respect to the Hilbert-Schmidt operator norm.

We do not investigate here all the properties of the classical Laplace trans-
form which have their analogue in this case, but give only a sufficient con-
dition for the existence of the limit (56).

We assume that f(g) =f(g, {, ) belongs to L2; then the function

R ]- 27 27 3
7) 20 = [@— f au f a |, €, ) 12]

and the operator-valued functions

~

1 2n 2
(58) FYL) = Wfdufdv@(u, o) flus &)

are defined almost everywhere and moreover we can write

z

(59) F1=1lim | FU¢) sinh 20 d7 .
0

If we take

(60) ' A (D) = exp [im®],

we have

1 21
61) (DD tur 1)) = ﬁf‘a + B exp[i®'][5+* exp [in®'] exp [— imP]dD =
— exp [— 2imp]di(£) exp[—2im]

42 - Il Nuovo Cimento.
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where the function d’ () can be expressed in terms of the hypergeometric
function (see Appendix B). In the simplest case we have

(62) @, (¢) = P(cosh 20) .
From the integral (61) it follows at once that
(63) |2, (0) | < dwt(£) = Payy(cosh 20) .

From (56) and (61) we have

2r 25

(d[ufdvf 1y &y v) exp [— 2imu] exp [— 2ény]

of
0 0

A 1
(64) (FUE) %y 2m) = Dol ©) )

and using the inequality (63)
FUOE =3 (FUE) xur 1m) IP<
" 2n 2 .
<Pudeosh 2013 | 51 [ars[ a1 £, expL—implexp [ 2im]
0 1]

that is
(63) 17() | < Pa,,(cosh 20)F(0)

Therefore we have that the limit of eq. (59) exists if I lays in the strip where
the integral

~

(66) Pre, (cosh 20) f(£) sinh 2248

converges, and it is

@

(67) 1 m|<fPRel cosh 28) 7(¢) sinh 22 d¢ .

0

Note that the strip where the integral (66) converges can be wider than
the strip where the integral (55) converges. If

A
l
[

(68) 7(8) = O(exp [212)) , L
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it can easily be deduced from the asymptotic properties of the Legendre func-
tion that (66) converges and therefore the Laplace transform (56) is defined for

(69) L<Rel< —L—1.

From the analyticity of the operators 24g) it follows that the functions
d’ () are analytic in the whole l-plane and from eqs. (64) and (65) if follows
that FY¢) is an operator-valued analytic function of I whenever ?(5) is finite.
From eq. (b9) we deduce that the Laplace transform £7is an analytic operator-
valued function in the strip where the integral (66) converges.

Note that &' does not determine uniquely f(¢); in fact if we add to f(g)
a matrix element of a representation of the discrete class, #* does not change
for 1=——1-+is, due to the orthogonality relations, and, from the analyticity
of #, it follows that it does not change anywhere. From Sect. 4 and 5 it is
clear that, in the integral spin case, f(g) is uniquely determined by & and by
the projections F+* and F~* on the representations of the discrete classes.

8. — The asymptotic behaviour of the amplitude.

One of the merits of the classical Laplace transformation is given by the
fact that asymptotic expansion of the original function can be obtained from
the analytic properties of the transformed function (%¢). A similar use can be
made of the transformation defined in the preceding Section, but in this case
theorems as powerful as in the classical case are not available, and further
mathematical work in this field would be welcome.

An asymptotic expansion of the type

N
(70) flu, &y v) = z fi(uy &y v) + R(u, £, v)

i=1
can be interpreted in many ways, corresponding to the various possible con-
ditions which can be imposed on the remainder R(y, ,»). For instance

i) conditions can be imposed on the asymptotic behaviour of R(y, ¢, »)
for fixed values of u and »;

(36) G. Dorrsca: Theorie und Anwendung der Laplace-Transformation, TIT Teil
(New York, 1943).
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ii) conditions can be imposed on the functions
Ronll) = o f du f dv exp [— 2imy) exp[— 2inv] R(g, &, »)

for m and » fixed;

iii) conditions can be imposed on the function

[ fdudeIRu,C, J =[2 [ Bl €)1

Of course the most usefunl expansions are those of the kind iii) and we
shall investigate them in a further work. Here we give only some indication
about the way to obtain expansions of the type ii), or in other words, to find
asymptotic expansions for the functions

(1) fan(0) = f d f v exp [— 2imw] exp [— 2im] f(u, &, »)

From eq. (27) and (61) we have

(72) fmn(C) = dfrm(é.) ‘g'-grmdo‘7
where
(73) Fon = (FYny Ym) -

The contribution to (72) of the representations of the discrete classes has

~ already the form of an asymptotic expansion, the representations of the half-

integral type do not contribute because we are considering the integral-spin

case, therefore we have to consider only the contribution of the class €} which
can be written in the form

—%+z'°°

(74) © () — f ) 214 1

I3

—";—-ioo

using the eqs. (B.13), (B.14) and (B.16) of the Appendix B we can write eq. (74)
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in the form

—34i0
. 2141
" (c) — —1=1 Zt
(75) () =—i f GO Frng 7 A

Now we assume that £, is a meromorphic function of ! in the strip
—L—1<Rel< L. This happens, e.g., if the operator Z* is the resolvent of
an integral equation of the Fredholm type, whose kernel is a meromorphic
operator-valued function of I in this strip (2*2¢).

Then if certain conditions (which we do not investigate here) are satisfied,
the asymptotic behaviour of f,,({) is dominated by the contribution of the
poles encountered when the integration path is shifted towards the line
Rel=—L—1, t.6., we can write

2L,+1 i, D~ ot i
tgﬂll T un Cn (C)—i_ﬂge/’mnamn (C)(QZ_}_]_)’

) 0~

where »¢ are the residues of the poles of #! at I;; and the second sum has
to be extended to the integral values of ! in the interval —L—1<l<—1%.

That the last term of eq. (76) necessarily appears, can be understood as
follows. Assume that f,.({)=0 for {> Z; the contribution of the represen-
tations of the discrete class in general does not vanish. However they cannot
give any contribution to the asymptotic behaviour of f,.({), therefore they
have to be compensated by analogous terms in the agymptotic expansion of
the contribution f({) of the continuous class. In fact, a;-Y({) for integral 1
and |m|>—1, |n|>—1, mn>0 coincides, apart a factor, with the correspond-
ing matrix element of the representation of the discrete class with k=—1

1< 0).

APPENDIX A

We have seen in Sect. 2 that the conditions which define the vectors P°
(weleave off the subscripts 4 or B which distinguish the set of particles) are some-
what arbitrary. Here we give a possible specification of the conditions when
Q*<< 0 and the particles belonging to the set considered are at least three.
Moreover we assume that the group ¥ does not contain the reflections.

Four of these conditions are given by

Qg:07
ngoa
(A'l) Qg:()a

Q=V—t>0.
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In order to deftermine the other conditions we have to distinguish three cases,
depending on the sign of the quantities
Q* @, P) (@, Py) |
’ V= (PUQ) Pi (PuPz) .
(P, @) (P, P,) P

@ (@, PR)
(P,Q) P

These quantities are negative if the subspace spanned by the vectors involved
is Euclidean, otherwise they are positive.
The three cases we have to consider are:

i) >0, the conditions are
(A.3) =0, Ww=0, P.>0, P,=0.
ii) < 0, v>0, the conditions are
(A.4) P,=0, pP,=0, % >0, W =0.
iii) # <0, v << 0, the conditions are
(A.5) P=0, PL,>0, Py, =0, % =0 .

Note that when on-shell amplitudes are treated, we need to consider only

the casge i).
Now we have to calculate the explicit form of the measure dV in the

space of the independent components of P°. From eq. (40) we have

(A.6) f G(Py... P) 84(Qu— 3 P) A*P, ... 4P, —

=1

n—1
:f(p(Pl o Pty 90— Pi) d*P;...d*P,_, :fdgdecp(L(g)P”) .
i=1
¢
The calculation proceeds in different ways in the three cases considered above.
In the case i) we have (27)
(A7) 4dgdV =dP,...dP,, = |J |[dudl dv AP}, d P}, d Py, APS, AP, d*PS ... dP._,

where
O(Pyy Poy ... Ppy)
(;u7 Cy Pgt’ P‘l)z’ Y, (2)t7 Pgm sz; Pg--- 2«1) '

J=73

(") The factor 4 is due to the fact that, when the group parameters vary in their
range, the same vectors P, are obtained four times.
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(when we do not indicate the relativistic index, we mean that all the four
components should be written). If one writes down explicitly the determi-
nant J one easily sees that it can be decomposed in the following way

J_a(Plt’le’Plv) a(Pz'szvaZy) ﬂlfs) al%:ﬁ
o a(ﬂ, Z, Pgt) a("’} gn Pgm) a(Pg) o( ?z—-l) )

Clearly only the first two terms are different from one and, if we evaluate
them explicitly, we obtain

(A.8) {J | = 8 sinh 2¢ (PY,)* Py, ,

From (A.7) and (A.8) taking into account the form (13) of the invariant
measure dg, we obtain

(A.9) AV =2(27) (P%)? PS, AP%, AP, dPS,dPS, APy, d* Py ... A* Py, (case 1)) .
In a similar way in the other two cases we get

(A10) AV =2(27)* (P5,)* Ede{,’,dP;’zdP‘LdP;’mdsz a‘py...d°Py_, (case ii)) .
and

(AJ1) AV =2(2m)® (P%,)* P, dPY, dPY, dPS, dP;y, dPS,d* Py ... *Py_y (case iii)) .

APPENDIX B

In this Appendix we give the explicit form and some properties of the
matrix elements of the representations used in the text.
If we use the orthogonal basis formed by the vectors y,, with

(B.1) Hy oy = My, ,
we have that
(B.2) (2°(9) 2ns xm) = €xp[—2imu]dy, (L) exp [—2iny] .

We report for easier reference the functions d-(() given by BARGMANN (15)
for the unitary representations of the discrete classes. For m>n it is

1 (F(m+1—k)F(m+k)
(m—n)!\I'(n +1—Fk)I'(n -+ k)
Fo(b—m, 1—n—Fk; 1 + m — n; —(sinh {)?) =

) ( I(m + §)I(n + k)
T TR \Im+1—%In+1—Fk

“Fo(k—m, k—mn; 2k; — (sinh £)2) ,
(B.4) don(8) = 425, _(0)

(B.3)  dpa(0) = )% (cosh £)=tm+» (sinh J)m=n-

) Giat -2 6gh e
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and for m<n we have
(B.5) h () = (— 1)~ dh(C)

The matrix elements of the representations ' and £'* are different from
those given by BARGMANN because we use a different basis. Our matrix
elements are less symmetrie than BARGMANN’S ones, but present the advantage
of being analytic in the whole I-plane. From eq. (61) we have for the repre-
sentations 2!

25

(B6)  d0) =5 f (cosh ¢ exp [i5] — sinh £}t

- (cosh £ — sinh £ exp [i@])—+ (exp [iB])—m++1 d .
For the representations 2't if we introduce the basis
(B.7) Zn(®) = exp [i(m — }) ] ,
we have in the same way

(B.8) (D'9) ar 1) = €D [— 2impa)dlon (&) exp [— 2ins] ,

where d.,,(£) is still given by eq. (B.6) (note however that now m and » are
half-integers).

The integral (B.6) can be transformed into an integral representation of
the hypergeometric funetion (28) and after some -calculations we obtain
for m>n

1 I'l+m+1)
m—a)! I'l+n-+1)

Fop(m—1,m—+1+1;m—n-1;—(sinh)?) .

(B.9) () = (eosh £)™+" (sinh £)m— -

For m<n we have

(B.10) Brn(0) = AL, (D) -

Note also the following property which can be directly verified on eq. (B.9)

(B.11) T (0) = (= )" T(8) = &7 Al ) &
where
(B.12) bn= %, £, =1.

(*®) A.Erperyi, W. Maenus, F. OBERHETTINGER and F. G. TricomIl: Higher
Transcendental Functions, vol. 1, formula 2.1.3.13.
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The last equations show that the representations corresponding to ! and to
—1—1 are weakly equivalent (). If I=—3}+ s, we have that |&,|=1
and the representations are also unitary equivalent. From eq. (B.11), (61),
(73) and (54) it follows that the Laplace transform defined in Sect. 6 has

the property
(B.13) Tt = 6T

At last we express the matrix elements d.,,({) in terms of functions which
generalize the Legendre functions of the second kind and have a simple
agymptotic behaviour for {-—>oco. This decomposition can easily be obtained

from a well-known property of the hypergeometric functions (**) and can
be written as follows

(B.14) Bun(0) = () + balL)

where

iy (D=2 T)
(B15)  apall) = F o T ) SO (bR O

Foyy(l+1—mn, I +1—m; 20 4+ 2; — (sinh £)~2)

and

(B.16) boal0) = &t (£) &1
Note that

(B.17) alo(l) = tg wl Qy(cosh 27) .

(2%) Loc. ecit., formula 2.1.4.17.

RIASSUNTO

L’ampiezza di diffusione per un processo a pit particelle viene proiettata sugli
elementi di matrice delle rappresentazioni unitarie irriducibili del gruppo di Lorentz
tridimensionale. Si mette in luce l'utilith di questa trasformazione nello studio di una
certa classe di equazioni integrali a cul soddisfa 'ampiezza di diffusione. Si mostra che,
utilizzando un certo insieme di rappresentazioni non unitarie, si ottiene una trasfor-
mazione pit generale che ha molte delle proprieta della trasformazione classica di Laplace
6 pud essere usata per ottenere sviluppi asintotici simili a quelli che si ottengono dalla
formula di Watson-Sommerfeld.
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