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Summary., — Classical electrodynamics with the hypothesis of a universal,
Lorentz invariant, background radiation (stochastic electrodynamics)
has been proposed as a possible alternative to quantum electrodynamics.
The stochastic equations of motion of a charged particle are derived
according to this theory, and they are compared with those of Brownian
motion. A development of the equations in powers of the fine-structure
constant « is considered. The harmonic oscillator is studied with the
result that the oscillator performs a simple harmonic motion very stable
in phage. The amplitude changes slowly and at random. The mean values
of the kinetic and potential energy are calculated and agree quite well
with the results of quantum electrodynamies up to first order in «.
The existence of excited states is shown which prove to be very similar
to the coherent states of the quantum oscillator. The calculated rate
of spontaneous emission of radiation agrees with the result of quantum
electrodynamics but the line width does not agree. Arguments are given
which show that the gquantum line width caleulated according to the
Weisskopf-Wigner theory cannot be correct in the case of the oscillator.
A general expression for the evolution of the expectation value of any
observable of the oscillator in quantum electrodynamics is also derived.

1. - Stochastic electrodynamics.

It has been suggested that classical electrodynamics may be sufficient to
interpret the experimental facts of the atomic domain, that is, that classical
electrodynamics, properly understood, may be an alternative to quantum
electrodynamics (1). For this to be true, one must assume the existence of

() Areview of the field is presented in the article by M. SURDIN : Ann. Inst. H. Poincaré,
15, 203 {1971). New developments and further references are given by E. SanTos:
Lett. Nuovo Cimento, 4, 497 (1972).
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a random background radiation in the whole space. We emphasize that this
is not an additional postulate to classical electrodynamics. On the contrary,
a new postulate will be to assume that there is no background radiation. In
fact, the general solution of Maxwell’s equations is always the sum of a par-
ticular solution plus the general solution of the homogeneous equations; this
lasgt represents a background radiation. In order to develop classical electrody-
namics consistently, the background radiation cannot be excluded from the
beginning. Rather, the experiments must decide whether it exists or not.
The point is that the quantum phenomena may be the experimental evidence
for a background radiation.

The complexity of the world implies that the background radiation must
be considered a random field. Then, in order to preserve the equivalence of
all inertial frames, we must assume that the stochastic parameters of the ra-
diation are Poincaré invariant. It can be shown (%) that this implies that the
spectrum of such radiation is of the form

(1.1) o{m) = const ®3,  const =#/2a%c®,

where ¢ is the speed of light (introduced here for later convenience) and % some
constant which gives a measure of the intensity of the radiation. On empirical
grounds, the constant #% is identified with the reduced Planck constant. Ac-
cording to eq. (1.1), the total energy density of the radiation diverges as the
fourth power of w, so that a cut-off at high frequencies must be assumed and,
accordingly, a loss of Poinearé invariance. However, this loss of invariance
would be observable only in processes taking place in very short time inter-
vals, Therefore, we will assume that the spectrum (1.1) is correct up to an
angular frequency o, and consider that the theory makes predictions only
about those quantities which are finite in the limit w,,, — co. Physical bases
for the cut-off might be the gravitational interaction or the pair creation (!).
The theory based upon these hypotheses is called stochastic electrodynamics.

Stochastic electrodynamics has provided a classical interpretation for
several phenomena usually considered purely quantal (}). A consequence of
the theory is that the motion of any charged particle has a random character.
On the other hand, it has been speculated that the (complex) Schrédinger
equation might be interpreted as a pair of real stochastic equations (®), which
might give the general connection between stochastic electrodynamics and
quantum mechanics. Nevertheless, there is no proof that the random motion

() T.W. MaRsHALL: Proc. Cambridge Phil. Soc., 61, 537 (1965); T. H. BOYER: Phys.
Rev., 182, 1374 (1969).

(®) E. Santos: Brownian motion and the stochastic theory of quantum mechanics, in
Irreversibility in the Many-Body Problem, edited by L. M. GarrIDO, J. BiELand J. REA
(New York, 1972). Standard references are: E. NeLsoN: Phys. Rev., 150, B 1079 (1966);
L. DE LA PEYA-AUERBACH: Journ. Math. Phys., 10, 1620 (1969).
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due to the background radiation is just what is needed to derive the Schrd-
dinger equation. (The derivation of the Schrodinger equation directly from
stochastic electrodynamics, made by SURDIN (%), does not seem conclusive to
the author of the present paper.)

At first sight, there is an essential difficulty with stochastic electrodynamics
because it can apply only to charged particles. Consequently, it seems un-
suitable as an alternative for quantum mechanics in dealing with uncharged
particles. In other words, the electromagnetic background radiation might
be the origin of the quantum behaviour of charged particles but apparently
it cannot explain the quantum behaviour of the uncharged ones. The idea of
a new, independent, explanation is very unsatisfactory, so that we are forced
to agsume that all particles are composed of charged parts (it is not necessary
to assume that all bodies have a total charge different from zero). But, if this
is so, the electromagnetic interaction is more fundamental that the strong
(nuclear) interaction (and, indeed, more fundamental than the weak one). This
conclusion is the opposite to the current opinion in elementary-particle physics.
We see, then, that the acceptance of stochastic electrodynamics as the basic
theory of the microworld means 2 very radical departure from the current opin-
ions in theoretical physics. In fact, we would return to a conception of the
physical world very similar to that of eighty years ago.

The purpose of this paper is to study the nonrelativistic harmonie oscillator
according to stochastic electrodynamics. Several papers have been devoted
to this subject (%), but many points remain unclear. In this paper we rederive
some known results and develop the theory further. In this way, the analogies
and differences between stochastic and quantum electrodynamics can be seen
more clearly. The main interest of this research is to shed some light on
the way in which we might deal with nonlinear systems, which have not been
studied till now.

2. — Equations of motion.
If we neglect the force due to the magnetic radiation field, as is usnal in
many nonrelativistic calculations, the equation of motion of a particle in the

presence of radiation is

(2.1) mr =¢E+ f+ mtF T = 2€/3me? ,

(*) M. SurpIN: Intern. Jowrn. Theor. Phys., 4, 117 (1971).

() T.W.MARsHALL: Proc. Roy. Soc., A 276, 475 (1963); P. BRAFrFORT and C. TzARA:
Compt. Rend., 239, 1779 (1954); P. Brarrorr, M. SurDiN and A. TaroNI: Compt.
Rend., 261, 4339 (1965).
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where m is the mass and ¢ the charge of the particle, f=f(r, F, {) the external
{given) force and E the electric field of the radiation. The last term of eq. (2.1)
represents the damping due to the reaction on the particle of the radiation
emitted by it. The time variation of the electric force due to the radiation is

d cE .
ai (GE) = 6-55 —+ 6(7‘ V)E

In the nonrelativistic domain it is consistent to neglect the second term com-
pared with the first one and, therefore, to assume that the electric field is a func-
tion of time but not of position. It can be shown that this is equivalent to the
electric dipole approximation of quantum electrodynamics, familiar from atomic
physies.

Equation (2.1) is a stochastic differential equation which can be solved,
in principle, provided we know the properties of the stochastic process E(t).
The information available about E(t) is the power spectrum, which can be
derived from eq. (1.1). We define the power spectrum of any function, x(¢),
in the form

T
(2.2) G (w) = 21imit |#e, T)|?, Fw, T) = (4aT) H 2(t) exp [iwt]d .
T—>c0
-7

The autocorrelation function of any (possibly complex) variable is defined by
(2.3) ) at A+ T)) — %sz(m) exp [—ioT] do.

For real variables, where G,(w) = (/,(— w), this relation takes the more usual
form (Wiener-Khintchine theorem)

(2.4) (otyat+ T)> :fo(w) cos wTdow.
V]

Now, the power spectrum of E(¢) is derived from eq. (1.1) ag follows. The
average value of the electric fleld of the radiation is related to the radiant
energy density « in the form

“max

u :fg(w)dw — (18 a)CE 4+ HY = (1/4m)<E2> = (3[4 n) (B,

0

where we have taken into account that the mean-square values of any component
of the electric and the magnetic fields of the radiation are equal. Now, by com-
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parison with eq. (1.1) it follows that the power spectrum of a component of
the electric field, say E,(t), is

(2.5) Gglw) = 2fi|w|*[37c® .

We write |o] (not just ) in order that, for negative frequencies, the power
spectrum Ggz(w) be positive, as it should be in agreement with eq. (2.2).

Equation (2.1) is nonlinear in general and, therefore, very difficult to solve.
In this paper we will deal only with the linear problems (free particle and har-
monic oscillator) which are easy to handle. Nevertheless, we make in the fol-
lowing some general considerations which might be useful in the study of non-
linear problems. In the first place, it must be pointed out that eq. (2.1) is a
third-order differential equation, but only two independent solutions are
physically meaningful. For instance, if E and f were zero, the general solution
of eq. (2.1) would be

r=A-+Bt-C exp [t/r].

The exponentially increasing function of time is absurd, and it is present due
to the approximate nature of the damping term, mt ¥ (¢). A procedure to elim-
inate these undesirable solutions is to use, ingtead of eq. (2.1), the following
integro-differential equation:

oo o3

(2.6) m¥= efE(t—I— 15) exp [—s]ds —|—ff(t + 1s) exp [—s]ds = F(t) + f:(¢) .
)

0

It iy eagy to show that this equation has the same solutions as eqs. (2.1) except
the undesirable ones. Equation (2.6) has the formal appearance of the Newton
law for a particle which is subject to a random force F besides the external
force f(t). The random force has a power spectrum which can be easily derived
from that of E. For one of the components of F it is

2.7 Gplw) = mhiv|w|¥[=z(1 4+ 12 0?)].

The comparison of this with eq. (2.2) shows that the damping term, mz #, gives
rise to some kind of cut-off in the power spectrum of the effective random force.
Unfortunately, the simplicity of eq. (2.6) is misleading, because the effective
external force f,; cannot be determined before the equation is solved.

(¢) See, for example, L. D. Laxpau and E. M. Lrrsairz: Classical Theory of Fields
(London, 1965).
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In the search for a solution of eqs. (2.1) or (2.8) it is useful to ask for a small
number which may allow some perturbative approach. By combining the para-
meters of the basic equations (1.1) and (2.1), which are m, ¢, ¢ and %, a single
independent pure number can be obtained, which is convenient to write in the
form « = ¢*/fic. For a particle with the elementary charge, this is just the fine-
structure constant, which has so fundamental a role in quantum electrodyna-
mics (QED). If stochastie electrodynamics (SED) is to be an alternative to
QED, we must compare the predictions of both theories to every order in a.
In particular, the zeroth-order approximation to SED should be a theory paral-
leling ordinary quantum mechanics (QM). For short, we will call SM (sto-
chastic mechanices) this zeroth-order approximation to SED. The limit o —0
means 1 — 0 for given m, ¢ and #. However, it is important to point out that
the limit + — 0 may not be a good approximation (even for « «1) in some
cases, as, for example, in studying the motion in time intervals of order
T (~H%afme?). So, we expect a break down of 8M for times of order T or lengths
of order fia/me. This might be the case for quantum mechanics also, being here
the origin of the difficulties in elementary particle theory. Taking the limit
T—0 in eqgs. (2.6) and (2.7), we expeet to obtain the basic equations of SM,
which we write

(2.8) mr = Fit)+ fit+ ze),
(2.9) G o) = mhelw)lo®,  eo)=lm (: j2)/(1+ 120?).
>0

The quantity ¢ appearing in eq. (2.8) is an infinitesimal equivalent to 7/7, as
is shown in the following:

oo

[ fit+ sy expi—slds = fity + fit) -+ ofx) = fit-+ 7) + olr)

0

It is important to retain it in eq. (2.8) because the limit ¢ =0 is to be taken
only at the end of the caleulation. The symbolie function e(w) has a meaning
only under an integral and can be defined as a distribution such that, for any
bounded function f{e),

o 2

(2.10) Ja(w)f(w) do = {f> =limit (2.(.))‘1ff(w)dw .

' >0 0

The function ¢(w) can be also considered the inverse of the Dirac é for positive
o, that is

y(@) = 0(x),2x> 0 <> x(y) =ely),y> 0.
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It must be noted that the infinitesimal ¢ of eq. (2.8) must be such that the
quotient &(w)fe is unity.

Equations (2.8) and (2.9), being the basic equations of SM, must correspond
to the basic equations of QM, that is either the Schrodinger equation plus the
probability interpretation of the square modulus of the wave function, or
the Heisenberg equation plus the fundamental commutation relations. The
connection between the basic equations of SM and QM is not trivial and it
will be studied in subsequent papers.

3. - Momentum and energy.

A problem which we must solve is to define the momentum and the energy
of a charged particle in the presence of radiation. This is not trivial becanse
only the momentum and the energy of the whole system {particle plus radiation)
are clearly defined. Indeed, the definitions cannot be arbitrary if we wish that
the calculated quantities agree with the experimental ones. So, the momentum
of the particle must be defined as a function of observable quantities and in
such a way that the change in momentum with time is equivalent to the ex-
perimentally controllable forces acting on the particle (therefore excluding
those due to the background radiation). A similar statement is true for the
energy. Therefore, a particle subject only to the random forces—which we
will call a free particle in the following—must have a constant linear momen-
tum. It is obvious that the momentum of such a particle cannot be defined by
means of the equation

(3.1) p = mi,

this being a rapidly fluctuating quantity. According to the above-stated prin-
ciple, the rate of change in (observable) momentum must be equal to the ex-
ternal force, that is

(3.2) p=f.
From this and eq. (2.1) follows the definition
(3.3) p=mF (efc) A—ma¥ (gauge ¢ = 0)

where A is the vector potential (remember that 4 was assumed to depend only
on time). It is seen that the mechanical momentum (eq. (3.1)) has two parts:
the observable momentum p and a hidden, fluctuating momentum given by
minus the two last terms of eq. (3.3). In order that the (observable) momentum
of a free particle equal the mean mechanical momentum, the potential A
must be so chosen that its time averag is also zero, and we will make this
choice from now on.
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It is not easy to define the kinetic energy in such a way that it is related to
observable quantities. The rate of change of the kinetic energy should be equal
to the work made by the external forces, i.e.

(3.4) dK/dt = f-F.

However, the kinetic energy so defined is a rapidly fluctuating quantity. This
is best seen if we write eq. (3.4) in terms of the momentum, taking into account
eqs. (3.2) and (3.3). In fact, eq. (3.3) can be transformed into

oo oo

(3.5) mi(t) :fp(t+ 78) exp [—s] ds—(e/c)fA(t -+ 18) exp [—s]ds.

0 0

Combining this with eqs. (3.2) and (3.4) we obtain

[oe]

(3.6) mdK)dt — p(t) -jp(t +7s)exp[—s]ds L p-q,

1]

where g(t) is the last term of eq. (3.5). This equation shows that the fluctuating
part of the kinetic energy is due to the quantity q, which is related only to the
random forces produced by the radiation field. We have assumed that these
are independent of the external forces, so that the mean value of the last term
of eq. (3.6) is zero. This suggests to define the (averaged) kinetic energy sothat
the following relation holds:

oo

(3.7) mdK|dt = p(t) -fp(t 1 78) exp [— s]ds.
0

Indeed, with this definition, the kinetic energy of a free particle does not change
with time, Nevertheless, this definition is not very useful because eq. (3.7)
cannot be integrated. Physically, this means that the change in kinetic energy
does not only depend on the change in momentum but also on the speed of
this ehange. As we have dropped the last term of eq. (3.6) because it is a flue-
tuating quantity, eq. (3.7) seems reasonable only when the momentum changes
slowly with time. In this case the constant 7 can be neglected and eq. (3.7)
leads to the following definition of kinetic energy:

(3.8) K = (p(t):2m.
Nevertheless, other definitions of energy seem possible in SED and some am-

biguity remains. In the limit T — 0 (SM) the situation is much better because
eq. (3.7) can be integrated directly to give eq. (3.8).
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The passage from the mechanical definition of kinetic energy (m#?/2) to
eq. (3.8) corresponds to the mass renormalization of quantum electrodynamics.
In fact, the mechanical definition leads to an energy which is divergent when
@Wpax 20€8 to infinity as we will show in the next Section. In the nonrelativistic
theory which we are considering, although there is an energy renormalization
there is no mass renormalization. In fact, if the observable mass is defined
ag the ratio between force and acceleration, we show in the following that the
mass which appears in the equation of motion (2.1) is already the observable
mass. In order to define an observable acceleration, independent of the time
intervals used to measure it, we will consider a constant external force f. As
we are agsuming that E is only a function of time and f a constant, there are
solutions of eq. {2.6) such that

r=r,+ R,
where
mR=f, m#,=F.

If we remember that the mean value of F is zero due to Lorentz invariance,
the mean acceleration is

Gy = (Foy + <Ry = <) = R=fm,

which shows that the observable mass does not need renormalization. This
fact contrasts with the situation in QED, where the mass must be renormalized
even in the nonrelativistic approximation (7).

The above definitions of momentum and energy (egs. (3.3) and (3.8)) were
first proposed by BRAFFORT, SURDIN and TArONI (}). In our justification of
these definitions we have shown that the first follows from very general prin-
ciples, but the second is not without ambiguity.

4. - Comparison with Brownian motion.

The stochastic theory best known in physics is the theory of Brownian
motion (8) and it is useful to compare this theory with stochastic electrodyna-
mies. In its simplest form—due to EINSTEIN and SMOLUCHOWSKI—the theory of
Bro nian motion states that the motion of a particle in the absence of external
forces—subject only to the random forces produced by the-interaction with
the molecules of the liquid in which it moves—is characterized by a stochastic

(") See, for example, J. J. SAKURAL: Advanced Quantum Mechanics (New York, 1967),
p. 70.
(%) N.Wax (Editor): Selected Papers on Noise and Stochastic Processes (New York, 1954).

5 ~ Il Nuovo Cimenlo B.
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process x(t), known as Wiener process. The Wiener process has the property
that its mean-square fluctuation in a time 7' is proportional to T, <.e.

(41) 2DT =Az={[z(t+ T)—a(®)]*> = 2Kz(t)*) —2zt)x(t+ T)),

where the brackets mean ensemble averages, and D is a constant, called the
diffusion coefficient, which measures the intensity of the random motion. (For
simplicity, we will work in one dimension throughout this Section.) From
eq. (4.1) it can be shown that the probability density of z(1) — x(0) is Gaussian
or, equivalently, that this probability density obeys the diffusion equation

do(z, t O2p(x, t
(4.2) Qg )_p %(;”2 )

If we assume now that eq. (4.1) holds also for time averages, it follows, from
the Wiener-Khintchine theorem, that

4.3) 1Az = <o) —{z(t)x(t+ T)> :fo(w)(l —cos oT)dw = DT.

The power spectrum that fulfils this equality is
(4.4) GYw) =2D|re?,

and it fully characterizes the Wiener process. In this way we have, for Brown-
ian motion, a connection between the power spectrum (4.4) of its characteristic
stochastic process (Wiener process) and the evolution equation (4.2) of the
agsociated probability density (the Fokker-Planck equation of the stochastic
process). On the contrary, in zeroth-order stochastic electrodynamics (SM)
although it is eagy to obtain the power spectrum of the basic stochastic process,
the associated Fokker-Planck equation is not known. (This equation should
be equivalent to the Schrodinger equation if SM is to be an alternative to
QM.) The power spectrum of the basic stochastic process of SM is

(4.5) Fw) = tie(w)/m|o].

This is obtained from egs. (2.8) and (2.9) when f = 0. It is seen that eq. (4.5)
has some analogy with eq. (4.4) if we identify

fi=2mD.

This is just the equality which hag been used in all stochastic theories of quantum
mechanics (3). On the other hand, there are clear differences between eqs. (4.4)
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and (4.5), which show that the basic stochastic process of SM is different from
the one of Brownian motion (Wiener process). Indeed, it is now well established
that the Wiener process is not suitable for a stochastic theory of quantum
mechanics (°).

The analogy between the basic stochastic processes of SM and Brownian
motion is summarized in that both are Markovian processes characterized by
a gingle parameter of dimensions, lenght squared over time. The Markovian
property can be roughly defined by the equality

(4.6) GG+ T)> = f @o(w) 0* cos 0T dw =0, if T-£0;

this means that the velocities at two different times are uneorrelated. Strictly
speaking, the velocity & is not defined because #(f) is not differentiable, but
eq. (4.6) can be stated rigorously as

[~}

(4.7) lim Re| G, (w)w? exp [iwT — tw]dw =0, if T#0.

>0
o

It is easy to show that this condition holds for both egs. (4.4) and (4.5). An
interesting question is whether there are other Markov processes characterized
by a single parameter of dimensions lenght squared over time. The answer is
important because a conclusion of the stochastic theories of quantum mechanics
is that there are only two basic processes that fulfil the apparently related prop-
erty eq. (4.1) (note that this equation refers to ensemble averages, not to time
averages). It seems as if these two processes were those which we are consider-
ing here (whose power spectra are eqs. (4.4) and (4.5)). Indeed, it has been
shown that one of them gives rise to a diffusion-type equation (which suggested
to identify it with the Wiener process) and the other leads to the Schrodinger
equation (®). If it can be shown that this second process is the same as that
which appears in SM (whose spectrum is given by eq. (4.5)), we would have an
indirect derivation of the Schrodinger equation from stochastic electrody-
namics. However, there are many unclear points and a true derivation does
not exist at present. For example, the spectrum given by eq. (4.5) does not
fulfil eq. (4.3) although it might fulfil eq. (4.1) for suitably chosen ensemble
averages. This problem will be dealt with in subsequent papers.

(®) See E. 8aNTOS: Brownian motion and the stochastic theory of quamtum mechanics,
in Irreversibility in the Many-Body Problem, edited by L. M. GARRIDO, J. BIEL and J.
Rae (New York, 1972).
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Let us consider now the theory of Brownian motion due to ORNSTEIN and
UHLEXBECK. The basic equation of the theory is

(4.8) mi=F—mr &4 f,

where f is the external (systematic) force and F the stochastic force. The power
spectrum of the stochastic force is white (roughly speaking, it is the derivative
of a Wiener process). It can be written

(4.9) Gp0)=m*Dlrr, 1'=6many/m, D=kbr/m,

where m is the mass of the Brownian particle and e its radius, # the viscosity
of the medium and 8 its absolute temperature, k being the Boltzmann constant.
Actually, eq. (4.8) is incorrect because the acceleration # and the force F are
not defined (the Wiener process has no derivative), and it should be substituted
by a suitable pair of equations (Langevin equations). Nevertheless, we write
the basic equation as in eq. (4.8) because it is easier to understand physically
(compare with eq. (2.1)). If there are no external forces (f =0), eq. (4.8) can
be written

(4.10) Z=u(l),
where the spectrum of the velocity u(?) is
(4.11) G (w) = (2D[n)](14 12w?).

It can be shown that this implies the following Gaussian distribution for the
velocities of the Brownian particle (Maxwell distribution):

(4.12) o(u) = (27/aD)* exp [—1u2/2D],

a fact which will be used in the next Section.

The Ornstein-Uhlenbeck theory of Brownian motion (OU) is similar to
SED in the same way that the Einstein-Smoluchowski theory (ES) is similar
to SM. Indeed, ES is the limit of OU as SM ig the limit of SED. In fact, if
we search for a pure number by combining the parameters of OU—m, a, »,
k—we obtain

y =mkln*at.

This number is small for large enough Brownian particles (remember that
at/m i proportional to the size for particles of constant density). For fixed
conditions of the medium in which the Brownian particle moves (i.e. 6 and
7 fixed) it is easy to see that the Brownian particles have characteristic times v
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proportional to y if they have the same diffusion parameter D. Then, the
limit 7 — 0 usually becomes a good approximation if y < 1. We emphagize
that this may not always be the case, similarly to the situation encountered
in 8SM (and, presumibly, in QM). In the limit 7 —+0, eqs. (4.8) and (4.9)
become

(4.13) #=u(t)+o(t), w=limitrF/m, v=1mit7f/m,
-0 -0

where the spectrum of the stochastic velocity  is
(4.14) Gw) =2D|x.

These are just the basic equations of ES. Indeed, from eqs. (4.13) and (4.14)
eq. (4.4) follows easily in the absence of systematic forces.

Finally, it is useful to compare the mean-square velocity and the fluctuation
of pogition in SED and OU. For simplicity, let us consider a free particle (i.e.
f=01in eqgs. (4.8) and (2.1)). In OU, the spectrum of the velocity u(t) is given
by eq. (4.11) and that of the co-ordinate 2(f) by

(4.15) @ () = G (0)|w? = 2D/ro?) /(1 + 120?).

Hence, the mean-square velocity is
(4.16) (U= f @, (w)do = Dz,
0

and the mean fluetnation of position is

[ DT for large T,
4.17 Az =fG“’ 1—coseT)dw ~
@1 o (@)1 = cos o) {DTZIT for small T .

In SED, the spectrum of the velocity is eq. {(4.9) and that of the co-ordinate
(4.18) G,(w) = (fix]mm|w|) /(14 T2w?) .

Hence, the mean-square velocity results logarithmically divergent and the
fluctuation of the position is

% (fir[rm) logg for large T,
#r {(1—cos wl)dw T
{4.19) Agggp=—| ————— ~
am o+ T?w? T
o (BT?[2em7) log-f for small 7.
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(See Appendix A for the calculation of this integral.) We see that the fluctuation
in position is larger in SED that in OU for small time intervals, but smaller
for large time intervals. This is a consequence of the fact that random motion
has the character of a vibration in SED but in Brownian motion it is similar
to a sequence of random steps. It is to be noted that in Brownian motion the
fluctuation is a very simple function of 7' for large T and it is independent of 7.
In SED, however, the dependence of the fluctuation in T is rather complex
and depends on 7t even in the limit 7 -+ co. This is the origin of the difficulty
in finding the Fokker-Planck equation of SM (presumably equivalent to the
Schrédinger equation).

5. — Ground state of the oscillator.
The harmonic oscillator is characterized by an external force of the type
(5.1) f=—const r=—maolr.

It is useful to study the oscillator both starting with eqs. (2.1) and (2.2) (SED)
and from eqs. (2.8) and (2.9) (SM). The results obtained from this last pair
of equations must agree with the limit « -0 of this obtained from the first
one. This will give us a test of the usefulness of eqs. (2.8) and (2.9). Inthe prob-
lem of the oscillator a new parameter, w,, appears which is not present in the
general theory. Hence, another pure number can be obtained besides o = ¢?/fic,
which is conveniently written in one of the forms

(5.2) B =hwofme*, y=2e2w/3me®=2af[3 =TW,.

The number § gives a meagure of the validity of the nonrelativistic approxi-
mation. Although it is usually much smaller than « (for instance, § ~10-%°
in molecular vibrations), it is less significant for the theory. Most times, the
numbers « and f will appear combined in such a way that y is the best expansion
parameter (¢.e. we will obtain the results of SM by taking the limit y -0 in
the results of SED).

The equation of motion of the oscillator in SED is obtained from egs. (2.1)
and (3.1). In one dimension it is written

(5.3) &= (e/m) E, — wfa + 1.

The general solution of this equation is the sum of the general solution of the
homogeneons part plus a particular solution of eq. (5.3) itself. The general
solution will be considered later. Let us now find the particular solution such that

(5.4) {x) = (&) = (&) = 0.
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(The bracket means now time average, a convention which we will always use
in the following.) This particular solution represents a motion which we will
call ground state of the oscillator. From eqs. (2.2), (5.3) and (5.4), the power
spectrum of x(t) is easily found to be

(8.5) G (w) = (Fzjam)|wP[[(0® — o3+ 12 0%].

&

Hence, if we take eq. (3.2) into account, the power spectrum of the momentum
p(?) is obtained:

(5.6) G, (w) = (mFrobjm)|o|[(0® — o)+ 120,

The peaks of these functions at w ~ 4+ w, indicate an approximately harmonie
variation of z(¢) and p(?).

In order to study the motion of the oscillator in more detail, it is useful
to follow the path in phase space, which is a two-dimensional manifold for a
system with one degree of freedom. It is convenient to represent the points
of phage space by complex numbers @, such that

(5.7) Re a = maw,a|/@mhioy)t, Tm a = (w,plw,)/(2mhiw,)},

where the angular frequencies w, and w, will be defined later. In this way,
the motion of the oscillator in phase space can be represented by a single com-
plex function of time. We will see that the angular frequencies w, and w, be-
come identical with w, in the limit « — 0 (¢.e. in SM). In this case the funec-
tion a(f) is written

(5.8) a(t) = [mw,a(t) + ip(t)]/(2mAiw.)* ,

which shows the parallelism between a(f) and the usual ladder operator of
quantum mechanics. The power spectrum of the function a(t) can be obtained
from eq. (5.5) (remember our definition of power spectrum for complex fune-
tions, eq. (2.3)). It is

(5.9) G, (o) = (Twlf27m,) | )(w, + )P [[{0? — wf): 4 1% w,] .

At this moment, we define w, by normalizing «(f) in such a way that (ja|*> is
one-half (which is the value which it takes for w;, = w, = w,, 4.6. in SM). This
normalization is important in order to compare the fluctuations of a(t) for
different values of w,. Then, we have w, in terms of w, as follows:

(6:10) 3=ClaPy=}[G,(@)do =1/ m00))[(x—7)(wi+ of) —2ylog yaf] + o).

-0

(See Appendix A for the calculation of the integral.)
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Tt is seen that the function G ,(w) has a peak at o ~ w,, but, unlike eqs. (5.5)
and (5.6), the peak at m ~ —w, is not present (remember that w, ~ w,). This
shows that the function a(t) varies with time approximately as exp [— ¢wot]
and it suggests introducing the new function

(5.11) b{t) = a(t) exp [iwyt],

where the angular frequency w, can be considered the mean frequency of the
oscillator if it is chosen so that the function b(t) varies with time as slowly as
possible. This leads us to define w, and v, in such a way that the fluctuation
of b(t) is 4 minimum, that is

(8.12)  Ab= (bt + T)—b(t)]2) =
= 2{{b(t)*

(t)b(t 4 T)> — (b*(t) b(t — T)) = minimum

This fluctuation must be calculated from the power spectrum of b(¢) which,
from eq. (5.11), can be found to be

(5.13) Golow) = G (o + w,) .

Hence, if we take into account eqs. (5.12) and (2.4), the fluctuation Ab is given
by

(5.14) Ab = f Gy(0)(1— cos oT) do = f G (0)[1 — 08 (0 —wy) T] de» =

-co —0a

_1—-fG ) cos (w—w,) T,

where the last equality was written taking eq. (5.10) into account. The values
of w, and w, which make eq. (5.14) a minimum depend on 7, so that we must
specify the value of 7 at which the minimum must be calculated. It seems
that the best choice is to consider large values of 7. Then, the contribution
to the last integral in eq. (5.14) comes mainly from frequencies near w,, so that
the minimum of Ab oceurs at the maximum of G,(w;). If we take into account
eq. (5.10), this leads to the following values of w;, w, and w;:

(8.18) w1 = w[1—(2p/m)log y], = wo[l—yln—(2y[n)logy]l, ;= w,

calculated up to first order in y.

The fluctuation Ab can be calculated now from eqs. (5.14) and (5.15). It
can be shown that this fluctuation is very small (of order y) for times of order
w7 or less. This is best seen by evaluating the fluctuations of x(#) and p(t) for
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T = 2an{w,, n being an integer. It follows that

(5.16) Az =2

!ﬁg

G (1—cos 0T)dw =

e

(% [mmaw,)[—y log y + y cosh (2zn) + 27wny sinh (27n)] 4 o(y) ,

617  Ap=2 f @,(0)(1 — cos wT)dew = mhwyny sinh (2n) + o(y) .
0

For n < 1/y, these fluctuations are very small in comparison with the mean
values of #? and p? respectively. These are

(5.18)  <2* =[6,(w)dw = (h[2mon)[1— 2y}x) log y —ylml+ oly),
0

(5.19)  <p*>=[6,(w)do = (mhiwy2) (1 —yjm) + o).
1]

For times much larger than ! it is convenient to write G,(w) in terms of the
variable

(5.20) % =20y,
and to retain only terms of zero order in y. In this way we have
(5.21) G, () do ~ (wofm) du([v®+ w]].

Hence, the following value for the fluctuation Ab is obtained:
(5.22) Ab =be(a))(1 —cos 0T) do ~2yw, T, if ;' <T <y lwgt.

The limit of Ab for T — co is unity, as it should be because Ab approaches
2¢|b[z> in this limit (see eq. (5.12)) and this equals 2{|a|*) (eq. (8.11)), which
is unity (eq. (5.10)).

The linear dependence of the fluctuation Ab on T (eq. (3.22)) is typical of
Brownian motion (compare with eq. (4.1)). Also, the power spectrum of b(t)
(eq. (5.21)) is identical with that of the velocity in the Ornstein-Uhlenbeck
theory of Brownian motion (eq. (4.11)) with the replacement —>wy*, 2D/r—1.
Then, as eq. (4.12) is a consequence of eq. (4.11), the following probability
distribution results for @ from eq. (5.21):

(5.23) o(lal) = 27 exp [— |a|2].
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In the limit « — 0 this becomes (see eq. (5.7))
(5.24) o(z, p) = (1/2 7th) exp [— mow,2?[2f — p?[2mAicr,] .

The picture which emerges from the results obtained up to now, is as follows.
The oscillator performs a harmonic motion almost as if the background radiation
and the damping were not present. Both the phase and the amplitude are
extremely stable for many periods (about 10° perjods in molecular vibrations).
Nevertheless, they change slowly, performing a kind of Brownian motion,
with the result that the memory of the initial phase and amplitude is finally
lost. The probability distributions of position and momentum are Gaussian
and independent of each other (eq. (5.24) can be factorized).

In the limit « 0, eqgs. (5.5) and (5.6) become

(5.25) G (z) = (Fjm)d(® —0d), G lo)= mliokd(w* — o) .

These power spectra can be obtained also from eqs. (2.8) and (2.9) (SM), if
some care is used in taking the limit ¢ — 0. Similarly, one can obtain

(8.26) G (w) =0(w—wy), Gylw)=0w).
Hence, the first eq. (5.10) can be also found, but the fluctuations Ab, Az and
Ap become zero for all T (compare this result with egs. (5.16), (5.17) and (5.22)).
The mean values of 22 and p® can be obtained from eq. (5.25) and agree with
the results eqs. (5.18) and (5.19) in the limit y — 0. Nevertheless, eq. (.21),
which is essential in order to find the probability distribution of z and p, cannot
be obtained from eq. (5.26). This shows that the limit ¢ - 0 cannot be taken
at intermediate stages of the derivation or some information is lost.

6. — Comparison with quantum theory.

In the following we show that the ground state of the oscillator is very
similar in stochastic and quantum electrodynamics. We start with the com-
parison in zeroth order of «, that is we first compare the ground state in
SM and QM. After this, we will study the corrections due to the finite wvalue
of « both in SED and QED.

The ground state of the oscillator in QM is characterized by an energy

(6.1) By = imair® 4+ 12 m){p*> = £ ficw,,

and the following probability distributions for the co-ordinate and the mo-
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mentum:

o(r) = (mawy[2h)} exp [— mw,r?[2h],
6.2
o2 o(p) = (2nfimw,) ™} exp [— p?[2miicw,] .

In SM, the mean energy is given also by eq. (6.1) (see egs. (5.18) and (5.19))
and there is a probability distribution in phase space given by eq. (5.24).

It is seen that the predictions of both theories are similar, but there are
some differences between them. In the first place, in SM it is assumed that
the particle has a precise position and a precise momentum at any time; this
allows one to define a probability distribution in phase space. In QM, there isno
such probability distribution in phase space because it is assumed that the
position and the momentum ecannot be dispersionless simultaneously. Ac-
tually, this difference seems not very important in practice because eq. (5.24)
is just the product of the two functions (6.2). A more dramatic difference ex-
ists in the predictions about the energy. In fact, QM predicts that the energy
is dispersionless and that it takes the value 2 fw,. In contrast, in SM the oscil-
lator can have any instantaneous energy, and the value 7w, represents only
the time average over an infinite time interval. The probability distribution
for the energy is given by eq. (5.24), which can be written

(6.3) o(B) = (1/hiw,) exp [— Effiw].

Incidentally, we note that this probability distribution is just the Boltzmann
distribution for a temperature

(6.4) kg0 =i, .

These differences between the predictions of SM and QM are summarized in
the statement that the ground state is a pure state in QM, but it is a mixture
(or statistical ensemble) in SM. In fact, in SM the ground state of the osciliator
does not correspond to a single path r(¢) but to a whole class of paths, i.e. all
those fulfilling eqs. (5.3) and (5.4). (More precisely, the ground state in SM
is defined by a probability distribution in the space of the functions r().) In
order to see whether these differences are important in practice we should ask
what quantities can be actually measured in the ground state of the oscillator.
As any measurement is a time-dependent phenomenon, no definite conclusion
can be obtained from the study of a strictly stationary state.

The finite value of « produces changes in the probability distributions of
position, momentum and energy. Unfortunately, there is no procedure avail-
able for making calculations in QED other than perturbation theory, so that
we must limit ourselves to making comparisons in the first orders in «. In prin-
ciple, the whole probability distributions can be calculated, but we will con-
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sider only the mean values of r?, p? and E. The first-order correction to {(p*>
is given, both in QED and SED, by

(6.5) Ap* = — TP wiafme .

The SED result is derived easily from eq. (5.19); for the QED calculation see
Appendix B. The leading correction to (r?) in SED is a logarithmic term,
which shows that the quantity (r*) is not analytic in «. Up to terms of order
«, the correction is, from eq. (5.18)

(6.6) Ay = (2B a/mm? ¢®)[log (B3med[2hw, ) — 4]

In QED, the first-order correction is divergent; this may be interpreted as
indicating that the quantity (r®) is also nonanalytic in . If we introduce
a cut-off w,. in the frequencies, the first-order correction is (see Appendix B
for the calculations)

(6.7) Ar?y = (2hafam? ¢)[10g (1 + wgag/mo) — 31

It is remarkable that both the coefficient of the logarithmic term and the
linear term are the same in SED and QED.

There is some uncertainty in the comparison of the corrections to the energy
due to the fact that the definition of kinetic energy is ambiguous in SED. In
fact, the definition eq. (3.8) is only correct in the limit « — 0 as we have indicated
in Sect. 3. If we accept this definition as valid up to first order of «, we obtain,
from egs. (6.5) and (6.6),

(6.8) E = (FFoi]amc®)log (3me®[2Fhwyx) —1].

This result was first derived by SoxorLov and TuMaNov (1¢) from a theory in
which the electron was assumed classical, but the radiation field was quantized.
From a purely classical theory (i.e. from SED) this result was first obtained
by BRAFFORT, SURDIN and TARONI ().

In QED the energy is not just the sum of kinetic and potential energy
because it is assumed that an additional interaction energy is present. Then,
the correction to the energy is not obtained from eqs. (6.5) aud (6.7) but must
be calculated directly. The first-order correction is divergent and, introducing
a cut-off, we have (see Appendix B)

(6.9) AE = (FPofajamc®) 1og (1 + @,/ @) -

() A. A. Boxorov and V. M. Tuvmanov: Sov. Phys. JETP, 30, 802 (1956).
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Although the agreement with eq. (6.8) is good, the linear term which appears
in eq. (6.8) is not present in the QED result. It seems probable that this is
because something equivalent to the interaction energy, which was considered
in the derivation of eq. (6.9), is lacking in eq. (6.8).

7. — Excited states.

Up to now, we have obtained a particular solution of the complete equa-
tion (5.3) (although, of course, the explicit form of the function r(f) cannot
be found). The homogeneous equation has the solution

(7.1) r(t) = (A sin bt - B cos bt) exp [-—at] + C exp [et],

where 4, B and C are arbitrary constants and @ -+ bi, a — bi, ¢ are the roots
of the characteristic equation

{(7.2) F+wi—1=0.

One of these roots is real and positive and it gives rise to the last term of eq. (7.1).
This term is absurd because it implies for the oscillator an always rising en-
ergy (see the comment just before eq. (2.6)), so that we take C = 0. The com-
plex roots, caleulated up to first order in 7 (or y), are

(7.3) a +ib = — 102 4 i, = — ywy/2 + tw,,
and eq. (7.1) becomes
(7.4) r(t) = (r, sin wet 4 ry cos wyt) exp [— yw,t/2].

Once we have obtained the general solution of the homogeneous part of
eq. (6.3), we can determine the general solution of the complete equation by
adding the particular solution corresponding to the ground state of the oscil-
lator. The momentum associated with the motion represented by eq. (7.4) is
(7.5) P = MF =~ mwy(r; Co8 wyf — I, sin wyt) eXp [—yw,et[2],
and the energy
(7.6) E = (m[2)(0}irt+ r®) = (ml[2)(rZ 4 rd) exp [—ywet],
where we have neglected higher-order terms in y. We see that the co-ordinate

and momentum of the oscillator at any time is the sum of a systematic part
(given by egs. (7.5) and (7.6)) and a stochastic part (with a probability distri-
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bution given by eq. (5.24)). Thus, although we cannot determine the actual
path of the particle we are able to calculate the probability distribution of its
co-ordinate and momentum at any time. Thisis obtained by combining eq. (5.24)
with eqs. (7.4) and (7.5) and the following results:

(7.7) o(r, p, t) = (2a%)7F exp [— (mwo[25)(r — ri(t) cOs wyt — ry(t) Sin wy1)2] X

Xexp [(p + moyry(t) sin eyt — mwo ry(t) €os wet)?/(2fimamy)]"
In this expression the functions ry(t) and r,(f) depend on time in the form
(7.8) r(t) = r(0) exp [—yw,t/2].

In zeroth order of « (SM), the functions r; and r, become constant and eq. (7.7)
gives the same probability distributions of the co-ordinate and the momentum
which gives QM for the coherent states of the oscillator. These states are rep-
resented by time-dependent minimum uncertainty wave packets and they
form a nonorthogonal overcomplete system in the Hilbert space of the states
of the oscillator (**). The probability distribution eq. (7.7) shows the analogy
betewen SM and QM. In both theories there are an infinity of different states
characterized by the values of the vectors r, and r,. These states can be rep-
resented by «packets» whose centre moves according to classical mechanics.
In QM the packets are considered of wave character. In SM they are the ob-
vious representation of our ignorance of the actual position and momentum
of the particle, this ignorance being inherent to the stochastic nature of the
theory.

‘We have studied only the states given by eq. (7.7), but it is clear that any
probability distribution po(r, p,t) obtained by linear combination (with real
and positive coefficients) of several distributions of the type (7.7) can represent
a state of our knowledge of the oscillator. These probability distributions will
contain less information than that of eq. (7.7), which is the maximum one
compatible with the stochastic character of the theory. These states may
correspond to the mixed states of quantum statistical mechanics, while eq. (7.7)
corresponds to a pure state of the quantum theory,

The absence of truly stationary excited states of the oscillator in SM shows
that there is a striking difference between SM and QM. In SM only states
represented by eq. (7.7) (or mixtures with real positive coefficients of these
states) are possible. In particular, there are no states similar to the quantum-
mechanical excited eigenstates of the Hamiltonian., Stated differently, in
quantum mechanics any wave function of the form

P(r, ) = 3 ¢, @ulr) exp [—iE, t[h],

(1Y) See, for example, S. STENHOLM: Phys. Lett., 60, 1 (1973) for a study of coherent
states and its applications.
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where @,(r) are eigenfunctions of the Hamiltonian, represents a possible state.
On the other hand, the physically realizable states of SM correspond only
to some particular states of QM (the coherent states), i.e. to some sets of values
of the ¢,. This difference is very important because it shows that SM does
not fulfil one of the basic postulates of quantum mechanics, the superposition
principle. It is obvious that the interpretation of the experiments according
to stochastic electrodynamics, if it is possible, needs to be radically different
from the interpretation given by the quantum theory.

8. — Emission and absorption of radiation.

We have seen that the predictions of QM and SM are similar both for the
ground and for the excited states of the oscillator, and also that the corrections
due to the finite value of « are similar in SED and QED for the ground state.
Now, we must compare the consequences of the finite value of « for the excited
states. These are the phenomena of spontaneous emission and line breadth
of the spectrum. We proceed first to the study of spontaneous emission.

In SED, the state characterized by eq. (7.7) is a decaying state as eq. (7.8)
shows. The rate of energy decrease of the oscillator is given by eq. (7.6), which
can be written

(8.1) dE[dt = —yw, B,

where E is the energy above the ground state. According to QED, the proba-
bility of decay per unit time from a state with quantum numbers n,, %y, Ng,
is (see Appendix C)

(8.2) I' = (2afiwk[3mc®)(n, + ny+ ng) = YE/[h,

where E is also the energy above the ground state. Now, taking into account
that the energy change in the transition between two states is #fiw,, we have

(8.3) dEB/dt = — ko, ;

this shows that eq. (8.1) is also true in QED, although the interpretation is
different from the one of SED. In QED, the perturbation techniques used in
the calculations are not suitable for the study of continuous evolution and there
are no other techniques available. The calculation of eq. (8.2) is typical of the
way in which quantum field theoretical calculations are made. Probability
transitions are calculated between quasi-stationary states and, although the
time evolution is assumed to be continuous in principle, we deal always with
quasi-stationary states and discontinuous jumps between them, in practice.
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So, in quantum theoretical language, we speak of a collection of oscillators,
each one in a quasi-stationary state, making discontinuous transitions be-
tween these states from time to time, in such a way that eq. {8.1) holds in the
mean. Nevertheless, this picture is not unavoidable in quantum theory, but
a consequence of the use of perturbation techniques.

In stochastic electrodynamics we have a quite different picture. Any oscil-
lator is in a state which can be represented by a probability distribution of the
type of eq. (7.7). Each one radiates continuously in such a way that eq. (8.1)
holds individually. In this theory there is no room for the « quanta » of light.
We note that we speak here only about the coherent radiation emitted by the
oscillator. Besides this, the oscillator is continuously emitting and absorbing
radiation to or from the background field. This is almost unobservable because
it is rapidly fluctuating. In other words, the presence of the oscillator changes
the background field without altering its stochastic parameters. Actually, the
random absorption and emission of radiation give rise to some observable
effects. For instance, if there are two oscillators, with the same characteristic
frequency, some distance apart, the absorption and emission give rise to some
correlation in its motion with the result that there is an effective attraction
between them. It has been shown that this is just similar to the long-range
van der Waals force predicted by QED (!2).

The result eq. (8.1) has been obtained by MARSHALL (1?), with a technique
different from the one used here. MARSHALL studied, according to SED, the
evolution of excited states analogous to the stationary excited states of quantum
mechanics. Nevertheless, it seems difficult to take seriously such states in a
purely classical theory because they have « probability » distributions in phase
space which are not positive definite. Instead of introducing unphysical states
in SED, we must study the time evolution of the coherent states in QED.
In order to study quantitatively the time evolution of the coherent states of
the oscillator in QED, we have used time-dependent perturbation theory.
The change of the state of the oscillator has been calculated in a time interval
which is large in comparison with the period of the oscillator, but short enough
for perturbation theory to be valid. 1t is shown then that the evolution ofa
coherent state is represented by a minimum uncertainty wave packet whose
centre moves according to the classical laws eqs. (7.4) and (7.5). The details
of the caleulation can be seen in Appendix C. The similarity between the time
evolution of the coherent states in QED and SED is remarkable. In fact, the
only difference in the evolution of the probability distributions of the co-
ordinate and the momentum is that in SED the distribution is defined in phase
space, but in QED there are two different distributions, one in co-ordinate
space and the other in momentum space.

BoYER: Phys. Rev. 4, 6, 314 (1972).

T. H.
T. W. MARSHALL: Izvestiya VUZ, Fizika, 12, 34 (1968).
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Besides the intensity of the spontaneously emitted radiation, it is possible
to measure its spectrum (and maybe other properties such as the angular dis-
tribution). For simplicity, let us consider an oscillator in one dimension and
the radiation emitted in a jump between eigenstates of the unperturbed Hamil-
tonian. The line width, being directly observable, must be independent of the
approach used in the calculation, ¢.c. we have no need to consider coherent
states in this case. According to QED the emission of radiation from a state
with quantum number » carries the oscillator to the state with quantum number
n—1. (The emission to any other state is forbidden.) The mean frequency
of the emitted radiation is obviously w, and the line shape can be calculated
by means of the Weisskopf-Wigner theory. According to this theory, the line
width is the sum of the inverses of the lifetimes of the initial and the final states.
The inverse of the lifetime of a state is just eq. (8.2), so that the line width in
the case considered here is

(8.4) =T+ = 02n—1)yw,.
Then, the line shape is given by

(8.5)  I(w)ac (n— %) ywyfl(w —we)*+ (n— )y wp] =
= (By[B)[[(« — wof* + B*Y*[F*],

where E is half the sum of the energies of the final and the initial states above
the ground state.

In SED, the excited states have a time dependence which is given by
eqs. (7.7) and (7.8). The line shape of the emitted radiation can be obtained
from the Fourier transform of eq. {7.4), which gives

(8.6) I(w) o (yo/2)[[(0 — we)® + PP arff4].

It is seen that this result only agrees with the QED result (eq. (8.5)) for the
gquantum excited state with n = 1. The line width caleulated with SED is
smaller than the QED prediction for all other excited states. The above cal-
culation of the line width in SED may be too naive because only the systematic
part of the motion (eq. (7.4)) has been considered, neglecting the random part,
which may be incorrect. In order to see whether the discrepancy between
QED and SED is real, let us calculate the line width in SED from another point
of view. We consider, instead of the spontaneous emission, a situation of equi-
librium between the oscillator and the radiation. We assume that the back-
ground field has an additional amount of radiation besides the random one.
Then, the spectrum of the electric field will be of the form (compare with

eq. (2.2))
(8.7) Gg(w) = (2% [3nc®)(|o|*+ Ho) 5

6— I1 Nuovo Cimento B.
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where f(w) is some function which we consider slowly varying (representing
almost white light). From egs. (8.7) and (5.3) we obtain instead of eq. (5.5)

(8.8) G (w) = (Firfam)(Jo + f(w)) [[(0? — of+ T20®].

This shows that the interaction between the oscillator and the radiation is in
agreement with eq. (8.5) for any funection f(w) which varies little in a frequency
interval of the order ywm,.

As a conclusion, there is a definite discrepancy between SED and QED
in the prediction of the line width of the oscillator except for the first excited
state. It is remarkable that, in this case, the quantum prediction cannot be
correct because for high enough excitation energy the line width would increase
indefinitely according to eq. (8.5). However, it is well known that for high »
the quantum result must approach the classical one, which is zero width if
the damping is neglected or just eq. (8.6) if the damping is taken into account.
We have here an interesting case of inadequacy of the Weisskopf-Wigner theory
(if not of QED).

9. — Discussion.

We have studied in some detail the harmonic oscillator according to sto-
chastic electrodynamics. The predictions of this theory agree rather closely with
those of quantum electrodynamics. In view of this result, it seems very im-
probable that the agreement is accidental. On the other hand, there are de-
finite differences in some predictions besides sharp differences in the interpre-
tation of some similar results. This means that both theories are experimentally
differentiable, at least in principle. Nevertheless, the most easily testable re-
sults agree fairly well and, therefore, a crucial experiment seems difficult to
perform. On the other hand, the simple system studied in this paper—the
harmonic osecillator—is too singular to make clear whether stochastic electro-
dynamics has a real possibility to become a substitute of quantum theory.
In any case, the convenience of further research on this line is strongly sup-
ported.

APPENDIX A

Calculation of integrals.

oo

(A —cos (0T ]dco [1— cos (Tz/z)]dx
A(T [z :f (1+1:2 —f pER .
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We are interested only in the behaviour of this integral for T'[r — oo and
T/[v—0. We write

_JT!T[I — cos (Tz[7)]dz 4, f [1— cos (Tz[t)]dx
1427 1+ a2) )

A=4,+4,,
VT

For T/v <1, it is possible to approximate cos (Tz[r) by 1— T?x*[27? in A,
and to neglect unity compared with 2 in A4,. Then, it follows that

‘r/T

f T2w2/2r2)dac [l—cos (Tofr)]de T 7

1 4 #2) 3 T 9q zlog—T—’

VT

Tlr—0.

For T'[x>1, it is possible to neglect x* compared with unity in 4, and
cos (T'z[r) in A,, so that we have

o0

VT
A~ [1— cos (Tx[z)]d J‘ do

@ 2(1 + 2%)
1/1/T

T
rlog?, Tlt— oo,

'm)ow cos (wT) do yx co8 (a)0 Tx)dax
Blw, ,?’)_ _]_.L.zwe' 2_‘_7,976'

This integral is convergent for all y >0 and all w,T. In practice y <1, so
that we calculate the integral in powers of y up to first order. The zeroth
order gives

By(w, T) =1lim B(w, T, y) = (7/2) co8 (@, T) .
>0

The first-order contribution can be calculated as

By(w,T) =lim y~1B(w, T, y) — Bo(ewo T) =
>0

_ w4w cos (0o T) — (# + 1)% cos (w, 1) 1
—f 1= 1) do 1 cos (w,T),

where the following identity was used:

o0 0

| ycos (on)dw y cos (we T Y
By(w, T f4 f w—l)z—l— 2—!— cos (@, T) + o(y) .

0
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The remaining integration is straightforward and we obtain

B(w, T, y) = (n[2) cos (w,T') —
— (¥[2)[1 + @o T cos (0, T) sinh (w,T) — w, T sin (w,T) cosh (w, T)] + o(y) .

The integral B(0,y) can be calculated as the limit of B(w,T,y) for T —0,
which gives

B(0 YY) = /2+0(y

10)0w3 cos (oT) dm yx%os (o T) dar
Ul y) = (0P — 03)® + TP (22— 1)2 + p2a®

This integral can be easily evaluated by taklng the second derivative of
B(w,T, y) with respect to 7. Hence, it follows that

Clwo T, y) = (7[2) €08 (0, T) — (9/2)[1 4 2 cos (w, T') cosh (w,T) + 2 8in (w,t)-
*8inh (@, T') — @, T sin (wo T) cosh (w, T) 4 o T ¢os (we T') sinh (w, T)] + o(y) .

This expression does not have a finite limit for 7 —0, so that the integral
C(0, y) must be evaluated directly. We use the identity

. yride ydo w1
(0, y) *J\(xz_ )m fm -+ E_éamtg (¥/2) .
0 0

Now, subtracting the integrals before performing the integration we have

V1 o
p(dad— r2— 20— 1)d® f ydw w oy
0 = .
C(0, ) f L(ar— 1)2 + z + pead +2 4+0(V)a
0 Vi

where y was neglected compared with 1/z in the first integral and unity was
neglected compared with x in the second. Also, an integral giving a term of

order »! was not included. The remaining integrations are straightforward
and we obtain

C0,y)=(m—y)/2 +ylogy +o(y).

APPENDIX B

Ground state of the oscillator in quantum electrodynamics.

The Hamiltonian of an oscillator in nonrelativistic QED is

(A1) H =Y oobuibii+ (p— eA)[2mq + Fmawor?,
kA
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where m, is the bare mass, ¢ the charge and mw, the force constant of the
oscillator, and we take # = ¢ =1. The vector potential A is written, in the
electric dipole approximation,

(A.2) A= g'\/ 27] Voo (bay -+ big) €1

where bi; (bss) is the creation (destruction) operator of photons with mo-
mentum k and polarization 1, € being the polarization vector of these pho-
tons; w is the angular frequency of the photons (equal to |k| in our units)
and V is the normalization volume. The bare mass can be related to the
observable mass by means of (%)

(A.3) mm, =1+ p(a), pla) = 402{3wm + o(ax) ,
where 2 is a cut-off in high frequencies. The unperturbed Hamiltonian is
(A.4) H, = Hpaq + p22m + fmogr?.

The perturbing Hamiltonian is best written by introducing the ladder oper-
ators a, a' of the oscillator in the form

(A.5) r=(a'+a)/Vo2mw,, p=iVmo,2(a’'—a).
Hence, the perturbing Hamiltonian is
(A.6)  H,=— (uoo[4)(a’— a)— (1 + p)v/ap-Am + (1 + p)xA?[2m .
Let us calculate the correction to the ground-state energy of the oscillator
up to first order in «. This correction has a first-order contribution in H,

plus a second-order contrbution from the term p-A4, which is of order one-
half in «. The energy correction results

(A7) AB, = u0[p*2m|0> + (afm?) 3 [<0|p-Aln |H/(E,— E.) .

In order to give contributions, the states |») must be one-photon states with
the oscillator in the first excited state. The term in 4* was neglected because
it contributes the same constant energy to a free particle and to any state
of the oscillator. A straightforward calculation gives

(A.8) AE, = (xwjjmm) log (2[w,) .
The first-order correction in « to the ground-state vector of the oscillator is

(A.9) [y =ﬂ§0]n> {n|HL 0> [(By— E,) +
+(°‘/’m“')l §0¥%> {njp- Al (ip-A|0Y [(Bo— E ) E— E,) .
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With this correction, the ground-state vector is not normalized but it has
the norm

(A.10) (O] + <) (10> + [ye) = 1 — (ewosfmm)[1 — log (2]wn)] .

Now, we caleulate the first-order correction to the expectation value of
Hose = Hy— Hpaa, which is

(A11) AlHpser = (| Hose| > = (afm?) ;0w0|<n[p~A[O>|2/(EO—- E,)?*=
= (awsfrm) log (1 + 2[w,) — (aewefam) 2[(ws + 2) .

After this, we calculate the first-order correction to the expectation value of
the operator M defined by

(A12) M = mw,r2[2 — p*[2m = wy(a’? + a?)/2,
which is
(A.13) AL = (0| M [y = w,)<0/azyl%(ln> [u{n|p?/2m|0> 1[(By— E,) +
+ (a/m2) {n|p - Al (| p - A|0) [[(Bo— B ) (Ey— B,)] = (awogmm) log (1 + Qfex,) .

By addition and subtraction of eqgs. (A.11) and (A.13) it is easy to obtain the
first-order corrections to (p2> and {r2, which are given in egs. (6.5) and (6.7).

APPENDIX C

Motion of coherent states of the quantum oscillator.

The excited states of the oscillator which are eigenstates of the unperturbed
Hamiltonian can be represented by |n,#,n,>, where the three (integer) quan-
tum numbers are associated to the three Cartesian co-ordinates. The proba-
bility per unit time for spontaneous emission of radiation from these states
can be calculated by means of the golden rule. This gives

(A.14) I'= (4w,0e/3) 3 [{f|r|m,mams> |2 = (20c05/3m) (1 + My + 15)
b4

{(as in the preceding Appendix, we use units such that # =¢=1).

It is a little more difficult to calculate the spontaneous emission from states
which are not eigenstates of the unperturbed Hamiltonian. For a general
state of the oscillator, the emission of radiation must be calculated by means
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of time-dependent perturbation theory. This gives, in first order,
13

(A.15) P> = (1— if ar Hy(e) ) 20>
[

where |Pi(t)> represents the state of both the oscillator and the radiation field
in the interaction representation. The vector [¥(0)) represents a general state
of the oscillator and the vacuum of the field. Affer a time #, much larger
than wy® but short enough for perturbation theory being valid, the amount
of radiation emitted is

(A.16) CPUD) | Hroa P1(2)) = (2050/3m) t (P (0) @ -a[F(0)) = yiwo B

where E is the mean energy of the oscillator above the ground state. This
formula, which can be derived from eq. (A.15) by straightforward calculation,
is a generalization of the previous one.

Besides calculating the amount of radiation per unit time, it is interesting
to follow more closely the time evolution of the quantum states in QED.
In order to do this, we derive in the following an expression for the time
dependence of the expectation value of any operator acting only on the degrees
of freedom of the oscillator (i.e. commuting with the creation and destruction
operators of photons). Let us consider that the oscillator is in a state [¥(0)>
at time t = 0, the state at time ¢ will be

11 t 3
(A.17) [P(t)> = [1— ; f ar Hy(t') — f At Hy(t') J' dt”HI(t”)] [Z(0)> .
[1] 0 4]

It is necessary to use second-order perfurbation theory to obtain the state
vector |¥:(t)>, correct up to first order in «. This is because the term p4d
is of order one-half in «. In eq. (A.17), however, it was enough to have |¥1(t)>
calculated up to first order in perturbation theory because second order does
not contribute to one-photon states and the two-photon states give a contribu-
tion of second order in «. If M is any time-independent operator (not neces-
sarily an observable) which acts only on the degrees of freedom of the oscil-
lator we have

(A.18) )| M| Pty = PO MP0)> +
+ (wiat/3m) (P(0)|(2a*- Ma— at-aM — Ma'-a)|P(0)) .

This equation can be obtained from eq. (A.17) by a straightforward although
lenghty calculation. It is to be noted that the equation is not valid for too
short time intervals because the following replacement has being made in
deriving it:

(A.19) |1 — exp [i{w — w,) t]]/(0 — @o)? = 7 (w — @)
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This prevents us from deriving an equation like eq. (A.18) directly from the
Heisenberg equation of motion.

We are now ready to study the evolution of the coherent states of the
oscillator according to QED. The coherent states (') are eigenstates of the
ladder operator a defined in eq. (A.5). As the spectrum is nondegenerate,

each coherent state can be labelled by its eigenvalue. In one dimension, the
eigenvalue can be any complex number, and the following relations hold:

(A.20) s =2z, | = exp [~ |2%/2] So(zn Waln .

To study the change in energy with time, we put the oscillator Hamiltonian
(see just before eq. (A.11)) instead of M in eq. (A.18) and we obtain

(A.21)  (Hoseds = CPr(t)| Howo (1)) = (1 — 20tat(3m) B ~ E exp [— 2weaEt[3m]

where E is the energy above the ground state. This means that the energy
decreases exponentially. Now, we choose M to be a power of a ecomponent a.
of the ladder operator, and we have

(A.22) <P ()] an] Py = 2"(1— nyt) ~ 2" exp [— nyt].

In particular, this shows that the coherent states remain eigenstates of the
ladder operator, i.e. they remain coherent states. In fact, from eqs. (A.21)
and (A.22) it follows that

(A.23) Fr(t)la’-alPi(t)) = [K¥Pr()|alPr(t)]?,

which proves that |¥;(t)> is an eigenstate of a.

The evolution of the coherent states can be seen more intuitively going
from the state vector in the interaction representation to the Schrdédinger
state vector by the usual relation

[7,(t)) = exp [iH,1]|¥s(t)> .
This ig given by
(A.24) s(t)|a|Ps(t)) = Cay, = 2z exp [— twot — pt] .

We remember that the wave function of a coherent state can be represented
by a minimum uncertainty wave packet whose centre is given by

(A.25) XLy = \/2[mw0 Rez, Po=V2mw, Im 2 .

This shows the analogy between the motion of the coherent states and eq. (7.7).
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® RIASSUNTO (%

L’elettrodinamica classica, insieme con l'ipotesi di esistenza di una radiazione univer-
sale di fondo, invariante rispetto a trasformazioni di Lorentz (elettrodinamica stocastica),
¢ stata proposta come possibile alternativa all’elettrodinamica quantistica. Si ottengono
gecondo questa teoria le equazioni stocastiche del moto di una particella earica e si con-
frontano con quelle del moto browniano. Si considera uno sviluppo delle equazioni in
funzione delle potenze della costante di struttura fine «. Si studia 1’oscillatore armonico
e si trova che esso esegue un moto armonico semplice notevolmente stabile in fase.
L’ampiezza varia lentamente ed a caso. Si calcolano i valori medi dell’energia cinetica
e dell’energia potenziale e si trova che essi concordano molto bene con i risultati del-
’elettrodinamica quantistica fino al primo ordine in «. S8i dimostra esistenza di stati
eccitati che risultano molto simili agli stati coerenti dell’oscillatore quantistico. Il risul-
tato del calcolo del rapporto di emissione spontanea coincide con guello fornito dal-
Pelettrodinamica quantistica, ma le ampiezze delle linee non coincidono. 8i forniscono
argomenti che dimostrano che le ampiezze quantistiche delle linee, calcolate secondo
la teoria di Weisskopf-Wigner, non possono essere corrette nel caso dell’oscillatore.
8i ottiene inoltre, secondo elettrodinamica quantistica, un’espressione generale del-
I’evoluzione del valore atteso di qualsiasi osservabile dell’oscillatore.

(") Traduzione a cura della Redazione.

TI'apmonmveckuil OCHR/LIATOP B CTOXACTHMECKOH JIEKTPOTMHAMMAKE.

Pesiome (*). — Kak BO3MOXHas ajbTePHATHBA KBAHTOBOH 3JIEKTPOAWHAMHKE, Iperla-
raerTcA Kiaccuyeckas 3JIEKTPOMHAMHKA C I'MIIOTe30i yHWMBEpcanbHOTo, JIOpeHTI-HHBA-
pUaHTHOTrO, JOHOBOTO M3MYUEHHS (CTOXACTHYECKAS IEKTPOAMHAMAKE). B COOTBETCTBHH C
3TOM Teopueil BHIBOAATCA CTOXACTHYCCKHNE YpPABHEHHs NBHKCHHS 3APSDKCHHOM YacTHIBL
OTH ypaBHCHWS! CpPaBHMBAIOTCS C ypaBHeHWsMM OpDOYHOBCKOro IBHXeHms. PaccMaTpm-
BaeTCs Pa3’NONKEHHE JTHX YPABHEHMI IO CTCICHSM IOCTOSHHOH TOHKOH CIDYKTYPHI a.
HUccnenyerca rapMoRrIeCKHii OCOIIIIATOP C TeM Pe3yIBTATOM, YTO OCHHIIATOD COBEPIIACT
IIPOCTOe TAPMOHHYECKOE ABIKEHHE, OYEeHb yCTOWUmBOe o daze. AMIUIATYIAa A3MEHSCTCH
MEIJICHHO M XaOTHYECKH. BBMHCIAIOTCS CpENHME BEAHYMHBLI KHHETHIECKOW H IOTCH-
npanpHOM sueprmm. Ilosrydaercst mOBOJNBHO XOpoIee Cornacme C pesysibTaraMy KBaH-
TOBOH 3NEKTPOOHUHAMHUKA BIUIOTH IO HEPBOTO IOPsAKA Mo o. ITOKasbBaeTCs CYIIECTBO-
BanMe BO3OYXHEHHBIX COCTOSHMM, KOTOPHI® OKAa3bIBAIOTCH KOTEPEHTHBIMH COCTOSHWAMM
KBaHTOBOT'O OCLHIINATOPA. BhrMucieHHass UHTEHCHBHOCTE CIIOHTAHHOIO H3JIyYCHHUA COrla-
CYeTCs ¢ PE3yILTATOM KBAHTOBOH 3JIEKTpONHHAMEAKY, HO IHPHHA JIMHAKA HE COIJIACYeTCA.
IIpuBoaaTAss aprymMeHThl, KOTOPHIE MOKa3bIBAIOT, YTO KBAHTOBAs, LIAPAWHA JIMHHH, BBIYH-
cnennas coryiacHo Teopuu Balicckonda-Burmepa, e MoxeT ObITh OPaBHIILHON B Clydae
ocmsiropa. Takke BHBOWTCs oOliee BhIpaXKeHHe ISl SBOJIOLMH OXHAAEMOH BeIIH-
9HBL I3 F0060M HabmromaeMoii OCIUIISATOpa B KBAHTOBOH 3JICKTPOTAHAMUKE.

(*) Ilepesedeno pedaxyuei.



