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Summary. - -  Classical electrodynamies with the hypothesis of a universal, 
Lorentz invariant, background radiation (stochastic eleetrodynamies) 
has been proposed as a possible alternative to quantum eleetrodynamics. 
The stochastic equations of motion of a charged particle are derived 
according to this theory, and they are compared with those of Browuian 
motion. A development of the equations in powers of the fine-structure 
constant ~ is considered. The harmonic oscillator is studied with the 
result that  the oscillator performs a simple harmonic motion very stable 
in phase. The amplitude changes slowly and at random. The mean values 
of the kinetic and potential energy are calculated and agree quite well 
with the results of quantum eleetrodynamics up to first order in ~. 
The existence of excited states is shown which prove to be very similar 
to the coherent states of the quantum oscillator. The calculated rate 
of spontaneous emission of radiation agrees with the result of quantum 
eleetrodynamics but the line width does not agree. Arguments are given 
which show that  the quantum line width calculated according to the 
Weisskopf-Wigner theory cannot be correct in the ease of the oscillator. 
A general expression for the evolution of the expectation value of any 
observable of the oscillator in quantum eleetrodynamics is also derived. 

1, - Stochastic electrodynamics.  

I t  has  been  sugges ted  t hu t  classical  e l ec t rodynamics  m a y  be  sufficient to  

i n t e r p r e t  t he  e x p e r i m e n t a l  fac ts  of t he  a tomic  domain ,  t h a t  is, t h a t  c lass ical  

e lec t rodynamics ,  p r o p e r l y  unders tood ,  m a y  be an  a l t e r n a t i v e  to  q u a n t u m  

e l ec t rodynamics  (1). F o r  th i s  to  be  t rue ,  one mus t  assume the  ex is tence  of 

(1) A review of the field is presented in the article by M. SURDIN : Ann. Inst. H. Poi~ward, 
15, 203 (1971). New developments and further references are given by  E. SANTOS: 
Lett. Nuovo Cimento, 4, 497 (1972). 
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a r andom background  radia t ion in the  whole space. We emphas ize  t h a t  this 
is not. an  addi t ional  pos tu la te  to classical e lect rodynamics .  On the  contrary ,  
a new pos tu la te  will be to assume t h a t  there  is no background  radiation. I n  
fact ,  the  general  solution of ) [axwel l ' s  equat ions is a lways the  sum of a par-  
t icular  solution plus the  general  solution of the  homogeneous equat ions;  this 

last  represents  a background  radi~tion. In  order to develop classical electrody- 
namies consistently,  the  background radia t ion cannot  be  excluded f rom the  
beginning. Ra ther ,  the  exper iments  mus t  decide whether  it  exists or not. 
The point  is t h a t  the  q u a n t u m  phenomena  m a y  be the  exper imenta l  evidence 

for a background  radia t ion.  
The complex i ty  of the  world implies t ha t  the  background radia t ion mus t  

be considered a r a ndom  field. Then,  in order to preserve  t.he equivalence of 
all iner t ia l  f rames,  we mus t  assume t h a t  the  stochast ic  pa r ame te r s  of the  ra- 
diat ion are Poinear5 invar iant .  I t  can be shown (-~) t ha t  this implies t h a t  the  

spec t rum of such radia t ion  is of the  fo rm 

(1.].) e((')) = eonst oP, const - -  li/2n 2 P ,  

where c is the speed of light ( introduced here for l a te r  convenience) a n d / / s o m e  
constant  which gives a measure  of the in tens i ty  of the  radiation.  On empir ical  
grounds,  the  constant  ]~ is identified with the  reduced P lanck  constant .  Ac- 
cording to eq. (1.1), the  to t a l  energy densi ty  of the  radia t ion  diverges as %he 

four th  power of ~o, so t ha t  a cut-off a t  high frequencies mus t  be  assumed and, 
~ecordingly, a loss of Poinear5 invar ianee.  However ,  this  loss of invar ianee  
would be observable  only in processes t ak ing  place in ve ry  short  t ime  inter-  
vals. Therefore,  we will assume tha t  the  spec t rum (1.1) is correct  up to an 
angular  f requency  O~m~ ~ and consider t h a t  the  theory  makes  predict ions only 
about  those quant i t ies  which ~re finite in the  l imit  O9m~ ~ ---> oo. Physical  bases 
for the  cut-off might  be the  grav i ta t iona l  in te rac t ion  or the  pair  creat ion (~). 
The theory  based upon these hypotheses  is called s tochast ic  e lect rodynamies .  

Stochnstie e lee t rodynamies  has provided ~ classical in te rpre ta t ion  for 
several  phenomena  usually considered pure ly  quantM(~). A consequence of 
the  theo ry  is t ha t  the  mot ion  of any  charged par t ic le  has a r andom character .  
On the  other  h~md, it h~s been specula ted  t h a t  the  (complex) Schr6dinger 
equat ion migh~ be in t e rp re t ed  as a pair  of real  s tochast ic  equations (3), which 
might  give the  genera.1 connect ion be tween stochast ic  e lee t rodynamics  ~nd 
quan tum mechanics.  Nevertheless ,  there  is no proof  t ha t  the  r andom mot ion 

(~) T .W.  MARSHALL: Proc. Cambridge Phil. Soc., 61, 537 (1965); T. H. BOY]~R: Phys. 
Rev., 182, 1374 (1969). 
(3) E. SANTOS: Brow~ian motion and the stochastic theory o] quantum mechanics, in 
Irreversibility i~ the Many-Body Problem, edited by L. M. CTARRIDO, J. BI]~L and J. ]~EA 
(New York, 1972). Standard references are: E. NELSOn: Phys. Rev., 150, B 1079 (1966); 
L. DE LA PE.~A-AuERBACH: Journ. Math. Phys., 10, 1620 (1969). 
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due to  the  background radiat ion is jus t  what  is needed to derive the SchrS- 
dinger equation. (The der ivat ion of the Schr6dinger equat ion d i rec t ly  f rom 
stochastic electrodynamics,  made by  St~R])I~ (4), does not  seem conclusive to 

the  au thor  of the  present  paper.) 
At  first sight, the re  is an essential difficulty with stochastic e lect rodynamics  

because it  can apply only to  charged particles.  Consequently,  it  seems un- 
suitable as an a l ternat ive  for quan tum mechanics in dealing with uncharged 
particles.  In  o ther  words, the  e lectromagnet ic  background radiat ion might  
be the  origin of the  quan tum behaviour  of charged part icles bu t  apparent ly  
it  cannot  explain the quan tum behaviour  of the uncharged ones. The idea of 
a new, independent ,  explanat ion is ve ry  unsat isfactory,  so tha t  we are forced 
to  assume tha t  all part icles are composed of charged par ts  (it is not  necessary 
to  assume tha t  all bodies have a to ta l  charge different f rom zero). But ,  if this 
is so, t he  e lectromagnet ic  in terac t ion  is more fundamenta l  t h a t  the  s trong 
(nuclear) in terac t ion  (and, indeed, more fundamenta l  t h an  the  weak one). This 
conclusion is the  opposite to  the  current  opinion in e lementary-par t ic le  physics. 
We see, then,  t ha t  the  acceptance  of stochastic e lec t rodynamics  as the  basic 
t heo ry  of the  mieroworld means a ve ry  radical  depar ture  f r o m t h e  current  opin- 
ions in theore t ica l  physics. I n  fact ,  we would r e tu rn  to  a conception of the  
physical  world ve ry  similar to  t ha t  of e ighty years  ago. 

The purpose of this paper  is to s tudy the  nonrelat ivist ie  harmonic  oscillator 
according to  stochastic electrodynamics.  Several  papers have been devoted  
to  this subject  (5), bu t  many  points remain unclear. In  this paper  we rederive 
some known results and develop the  theory  further .  In  this way, the  analogies 
and differences between stochastic and quan tum eleetrodynamics can be seen 
more clearly. The main in teres t  of this research is to shed some light on 
the  way in which we might  deal with nonlinear systems, which have not been 
studied t i l l  now. 

2. - E q u a t i o n s  o f  m o t i o n .  

I f  we neglect the  force due to  the  magnet ic  radiat ion field, as is usual in 
m an y  nonrelat ivist ic  calculations, the  equat ion of mot ion  of a part icle  in the  
presence of radia t ion is 

(2.1) mi ~ = eE ~- f -~ mT'i" , ~: ---- 2e2/3mc ~ , 

(4) M. SURDIN: Intern. Journ. Theor. Phys.,  4, 117 (1971). 
(s) T .W.  MARSHALL: Proc. Roy. Soc., A 276, 475 (1963); P. BRAFFORT and C. TZARA: 
Compt. Rend., 239, 1779 (1954); P. BRAFFORT, M. SURDIN and A. T ~ o ~ I :  Compt. 
Rend., 261, 4339 (1965). 
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where m is the  mass  and e the  charge of the  part icle ,  f = f ( r ,  i', t) the  ex te rna l  
(given) force and  E the  electr ic  field of the  radiat ion.  The  l~st t e r m  of eq. (2.1) 
represents  the  damping  due to the  reac t ion  on the  par t ic le  of the  radia t ion  

emi t t ed  by  it. The t ime  var ia t ion  of the  electric force due to the  radia t ion is 

~cE 
d (eE) = e + e(i" .W)E 
d--t - ~  " 

I n  the  nonrelat ivis t ie  domain  it is consis tent  to neglect  the  second t e r m  com- 
pared  with the  first one and, therefore,  to assume t h a t  the  electric field is a func- 
t ion of t ime  bu t  not of position. I t  can be shown tha t  this is equivalent  to the  
electric dipole approx imat ion  of q u a n t u m  elect rodynamics ,  famil iar  f rom a tomic  

physics.  
Equa t ion  {2.1) is a s tochast ic  differential  equat ion which ctm be solved, 

in principle,  provided we know the  proper t ies  of the  s tochast ic  process E(t). 
The informat ion  avai lable  abou t  E(t) is the  power  spec t rum,  which can be 
der ived f rom eq. (1.1). We define the  power  spec t rum of any  function,  x(t), 
in the  form 

T 

(2.2) G~((~) --  2 l imi t  I2(o~, T)I2 , s T) =_ (4~T)-*jx(t) exp [ivgt]dt. 
T--->r - T 

The autocorrclat ion funct ion of any  (possibly complex) var iable  is defined by  

(2.3) 

co 

<x*(t)x(t + T)> = �89 exp [--iv~T] deo. 
- o o  

For  real  variables ,  where  G~(o9) = G~(--~), this re la t ion takes  the  more  usual 

fo rm (Wiener-Khiutchiue  theorem)  

(2.4) 
co 

<x(t)x(t + T)> =fG (o) cos ajTd~o. 
0 

Now, the  power  spec t rum of E(t) is der ived f rom eq. (1.1) as follows. The  
average  value of the  electric field of the  radia t ion is re la ted  to the  rad iant  
energy densi ty  u in the  form 

O m a x  

u =f@(go) d,o = (1/8 ~)<E 2 -]- H2> = (1/4 ~)<E z> = (3/4 ~)<E2~>, 
0 

where we have  t aken  into account  t h a t  the  mean-square  values of any  component  
of the  electric and  the  magne t ic  fields of the  radia t ion  are equal. 2qow, by  corn- 



THE HARMONIC OSCILLATOR IN STOCHASTIC ELECTRODYNAMICS 61 

parison with eq. (1.1) it follows that  the power spectrum of a component of 
the electric field, say E~(t), is 

(2.5) 

We write (not just co) in order that,  for negative frequencies, the power 
spectrum G~(r be positive, as it should be in agreement with eq. (2.2). 

Equation (2.1) is nonlinear in general and, therefore, very difficult to solve. 
In this paper we will deal only with the linear problems (free particle and har- 
monic oscillator) which are easy to handle. Nevertheless, we make in the fol- 
lowing some general considerations which might be useful in the study of non- 
linear problems. In  the first place, it must be pointed out that  eq. (2.1) is a 
third-order differential equation, but only two independent solutions are 
physically meaningful. For instance, if E and f w e r e  zero, the general solution 
of eq. (2.1) would be 

r = A + B t + C  exp It/T]. 

The exponentially increasing function of time is absurd, and it is present due 
to the approximate nature of the damping term, mT ~" (3). A procedure to elim- 
inate these undesirable solutions is to use, instead of eq. (2.1), the following 
integro-differential equation: 

(2.6) 
0 o  

0 0 

I t  is easy to show that  this equation has the same solutions as eqs. (2.1) except 
the undesirable ones. Equation (2.6) has the formal appearance of the Newton 
law for a particle which is subject to a random force F besides the external 
forcefef(t ). The random force has a power spectrum which can be easily derived 
from that  of E. For one of the components of F it is 

(2.7) 

The comparison of this with eq. (2.2) shows tha t  the damping term, m~ F ,  gives 
rise to some kind of cut-off in the power spectrum of the effective random force. 
Unfortunately, the simplicity of eq. (2.6) is misleading, because the effective 
external force fef cannot be determined before the equation is solved. 

(s) See, for example, L. D. LANDAU and E. M. LIFSHITZ: Classical Theory o] Fields 
(London, 1965). 
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I n  the  search for a solution of eqs. (2.1) or (2.6) it  is useful to ask  for a small  
n u m b e r  which m~y allow some p e r t u r b a t i v e  approach.  By  combining the  para-  
me te r s  of the  basic equations (1.1) and (2.1), which are m, c, e and  h, a single 
independent  pure  n um ber  can be obtained,  which is convenient  to write in the  
fo rm ~ _-- c~/hc. For  a par t ic le  with the  e l emen ta ry  charge, this is jus t  the  fine- 
s [ ructurc  constant ,  which has so fundamen ta l  a role in q u a n t u m  elec t rodyna-  

mics (QED). I f  s tochast ic  e lec t rodynamics  (SED) is to be an a l te rna t ive  to 
QED, we mus t  compare  the  predict ions of both  theories to every  order in ~. 
I n  par~icubtr, the  zeroth-ordcr  approx imat ion  to SED should be a theory  paral-  
leling ordinary  q u a n t u m  mechanics  (QM). For  short,  we will call SM (sto- 

chastic mechanics)  this zeroth-order  approx imat ion  to SED. The l imit  ~--~ 0 
means  T -~ 0 for given m, c and /i. However ,  it is i m p o r t a n t  to point  out  t ha t  

the  l imit  T--~ 0 m a y  not be a good approx imat ion  (even for ~ << 1) in some 
cases, as, for example ,  in s tudying the mot ion  in t ime  intervals  of order 
T ( ~ h~/mc2).  So, we expect  a b reak  down of SM for t imes  of order T or lengths 
of order l ~ / m c .  This might  be the case for qua n tum mechanics  also, being here 
the origin of the  difficulties in e l emen ta ry  par t ic le  theory.  Taking  the  l imR 

T--> 0 in eqs. (2.6) and (2.7), we expect  to obta in  the  basic equat ions of SM, 
which we wri te  

(2.8) mi ~ = F i t )  - -  f t t  - -  ne) , 

(2.9) G~ = ml~(oJ)!~,)l ~, ~(~,)) lira (~/z)/(1 @ ~ ~o)2) . 
T~>0 

The quan t i ty  e . tppeariug in cq. (2.8) is ~m infinitesimal equivalent  to T/z, as 
is shown in the  following: 

0o 

f f ( t - ~  Ts) exp [ - - s ]  ds = f ( t ) - - f ( t ) ~ - ~  o(7) = f i t - ~  ~ ) 4- o(~) . 
0 

I t  is i m p o r t a n t  to re ta in  it in eq. (2.8) because  the  l imit  e - >  0 is to be  t a k e n  
only at the end of the calculation. The symbolic function e(~) has a meaning 

only under an integral and can be defined as a distribution such that~ for any 

bounded function ](c,)), 

(2.10) 
c~ D 

j e(o)) ](o)) do) = (]} l i m i t ( 2 ~ ) - l f ] ( o g ) d o g .  
- c o  - -~  

The funct ion e((o) can be also considered the  inverse of the  Dirac  6 for posit ive 
o), that is 

y(x )  ~ (x ) , x  > O c:> x (y )  s(y) , y > O . 
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I t  must be noted tha t  the infinitesimal s of eq. (2.8) must be such that  the 
quotient e(~)/e is unity. 

Equations (2.8) and (2.9), being the basic equations of SM, must correspond 
to the basic equations of QNI, tha t  is either the SchrSdinger equation plus the 
probability interpretation of the square modulus of the wave function, or 
the Heisenberg equation plus the fundamental  commutation relations. The 
connection between the basic equations of SM and QN[ is not trivial and it 
will be studied in subsequent papers. 

3. - M o m e n t u m  and energy .  

A problem which we must solve is to define the momentum and the energy 
of a charged particle in the presence of radiation. This is not trivial because 
only the momentum and the energy of the whole system (particle plus radiation) 
are clearly defined. Indeed, the definitions cannot be arbitrary if we wish that  
the calculated quantities agree with the experimental ones. So, the momentum 
of the particle must be defined as a function of observable quantities and in 
such a way that  the change in momentum with time is equivalent to the ex- 
perimentally controllable forces acting on the particle (therefore excluding 
those due to the background radiation). A similar statement is t rue for the 
energy. Therefore, a particle subject only to the random forces--which we 
will call a free particle in the following--must have a constant linear momen- 
tum. I t  is obvious that  the momentum of such a particle cannot be defined by 
means of the equation 

(3.1) p = m P ,  

this being a rapidly fluctuating quantity.  According to the above-stated prin- 
ciple, the rate of change in (observable) momentum must be equal to the ex- 
ternal  force, that  is 

(3.2) ib = f .  

From this and eq. (2.1) follows the definition 

(3.3) p = mi" + (e/c) A -  m~i ~ (gauge q = O) 

where A is the vector potential (remember that  A was assumed to depend only 
on time). I t  is seen that  the mechanical momentum (eq. (3.1)) has two parts: 
the observable momentum p and a hidden, fluctuating momentum given by 
minus the two last terms of eq. (3.3). In  order that  the (observable) momentum 
of a free particle equal the mean mechanical momentum, the pote,ntial A 
must  b e so chosen that  its t ime averag is also zero, and we will make this 
choice from now on. 
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I t  is not  easy to define the  kinetic energy in such a way t h a t  it  is re la ted to  
observable quantities.  The ra te  of change of the kinetic energy should be equal 
to the  work made by  the  externa l  forces, i.e. 

(3.4) dK/dt = f . i ' .  

However,  the kinetic energy so defined is a rapidly f luctuat ing quant i ty .  This 
is best  seen if we write eq. (3.4) in te rms of the  momentum,  t ak ing in to  account  
eqs. (3.2) and (3.3). In  fact ,  eq. (3.3) can be t rans formed  into 

(3.5) 

o o  0 3  

m~(t ) = f p(t § 78) e~p [-,~] ds--  (elc) f A(t + ~)  exp [-- ~] ds . 
0 0 

Combining this with eqs. (3.2) and (3.4) we obtain 

(3.6) 

c ~  

mdK/dt = p ( t ) . f p ( t  -[- rs) exp [--s]  ds + / )  -q ,  
0 

where q(t) is the  last t e rm  of eq. (3.5). This equat ion shows tha t  the  f iuctuating 
par t  of the kinetic energy is due to the  quan t i ty  q, which is re la ted only to the 
random forces produced by  the radiat ion field. We have assumed t h a t  these 
are independent  of the  external  forces, so tha t  the  mean  value of the  last t e rm 
of eq. (3.6) is zero. This suggests to  define the  (averaged) kinet ic  energy so t h a t  
the  following relat ion holds: 

(3.7) 

c o  

m d K / d t  = p( t )  . f p(t § ~s) exp [ -  s] as .  
0 

Indeed,  with this definition, the  kinetic energy of a free part icle  does not change 
with t ime. Nevertheless,  this definition is not  ve ry  useful because eq. (3.7) 
cannot  be integrated.  Physical ly,  this means tha t  the change in kinetic energy 
does not  only depend on the change in momentum but  also on the  speed of 
this change. As we have dropped the  last t e rm of eq. (3.6) because it  is a fluc- 
tua t ing  quant i ty ,  eq. (3.7) seems reasonable only when the momen tum changes 
slowly with t ime. In  this case the  constant  ~ can be neglected and eq. (3.7) 
leads to the  following definition of kinetic energy:  

(3.s) K = (p(t))U2m. 

Nevertheless,  other  definitions of energy seem possible in SED and some am- 
biguity remains.  In  the  limit T -* 0 (SM) the  s i tuat ion is much  be t t e r  because 
eq. (3.7) can be in tegra ted  di rect ly  to give eq. (3.8). 
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The passage f rom the  mechanical  definition of kinet ic  energy (m~/2)  to  
eq. (3.8) corresponds to  the  mass renormalizat ion of quan tum eleetrodynamics.  
In  fact ,  the  mechanical  definition leads to  an energy which is divergent  when 
win:  goes to  infinity as we will show in the  nex t  Section. I n  the  nonrelat ivist ie  
t heo ry  which we are considering, a l though the re  is an energy renormalizat ion 
there  is no mass renormalizat ion.  I n  fact ,  if the  observable mass is defined 
as the  rat io be tween force and acceleration,  we show in the  following t h a t  the  
mass which appears  in the  equat ion of mot ion  (2.1) is a l ready the  observable 
mass. In  order  to  define an observable acceleration,  independent  of the  t ime 
intervals  used to  measure  it,  we will consider a constant  ex te rna l  force f .  As 
we are assuming tha t  E is only a funct ion  of t ime and f a constant ,  the re  are 

solutions of eq. (2.6) such t h a t  

where 

r :  r o §  R ,  

m R  = f , nf~o = F .  

I f  we r emember  t ha t  the  mean  value of F is zero due to  Loren tz  invariance,  

the  mean  accelerat ion is 

which shows t ha t  the  observable '  mass does not  need renormalization.  This 
fact  contrasts  with the  si tuat ion in QED, where the  mass must  be renormalized 
even in the  nonrelat ivist ie  approximat ion (7). 

The above definitions of momen tum and energy (eqs. (3.3) and (3.8)) were 
first proposed by  BRAPFORT, SURDIN and  TARO~I (~). In  our  justification of 
these definitions we have shown tha t  the  first follows f rom ve ry  general  prin- 
ciples, bu t  the  second is not  wi thout  ambiguity.  

4.  - Compar i son  w i t h  B r o w n i a n  m o t i o n .  

The stochastic theory  best  known in physics is the  theory  of Brownian 
mot ion  (8) and it  is useful to  compare  this t heo ry  with stochastic e lect rodyna-  
mies. In  its simplest f o r m - - d u e  to  EINSTEIN and SMOLUCROWS~:~--the theory  of 
Bro  nian mot ion  states t ha t  t he  mot ion  of a part icle  in the  absence of external  
forces- -subjec t  only to  the  random forces produced by  t h e  in teract ion with 
the  molecules of the  l iquid in which it  moves- - i s  character ized by  a stochastic 

(7) See, for example, g. J. SAKURAI: Advanced Quantum Mechamics (New York, 1967), 
p. 70. 
(8) N. WAx (Editor) : Selected Papers o~ .Noise and Stoehas~o Processes (New York, 1954). 

5 - N N u o v o  G i m e n t o  B .  
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process x(t), known as Wiener  process. The ~Viener process has the  p roper ty  
tha t  its mean-square  f luctuat ion in ~ t ime T is proport ional  to T,  i.e. 

(4.1) 2 D T - -  A x - -  <[x(t  ~- T ) - - x ( t ) ]  ~} = 2 < x ( t ) ~ } - - 2 < x ( t ) x ( t  + T)} ,  

where the  brackets  mean  ensemble averages, and D is a constant ,  called the 
diffusion coefficient, which measures the  in tens i ty  of the random motion.  (For 
simplicity, we will work in one dimension th roughout  this Section.) F rom 
eq. (4.1) it  can be shown tha t  the  probabi l i ty  densi ty  of x( t )  - -  x(O) is Gaussian 
or, equivalently,  t ha t  this probabi l i ty  density obeys the  diffusion equat ion 

(4.2) 8O(x, t) 8~O(x, t) 
8 ~  - D 8x 2 

If  we assume now tha t  eq. (4.1) holds also for t ime averages, it follows, from 

the Wiener-Khintchine  theorem,  tha t  

(4.3) 
oo 

�89 = <x(t)2> - - < < t ) x ( t  + ~)> =fV,(o~)(1 - -  cos ~oT) dco : D T .  

The power spectrum tha t  fulfils this equal i ty is 

(4.4) G~ = 2 D / ~ w  2 , 

and it full)- characterizes the  Wiener  process. In  this way we have,  for Brown- 
ian motion,  a connection between the  power spectrum (4.4) of its characterist ic  
stochastic process (Wiener process) and the  evolution equation (4.2) of the 
associated probabil i ty densi ty (the Fokker-Planck  equation of the  stochastic 
process). On the  contrary,  in zeroth-order  stochastic e lectrodynamics (SSi) 
a l though it  is easy to obtain the  power spec t rum of the  basic stochastic process, 
the  associated Fokker -Planck  equation is not  known. (This equat ion should 
be equivalent  to the Schr6dinger equat ion if SSI is to be an al ternat ive to 
QM.) The power spect rum of the  basic stochastic process of SSi is 

(4.5) 

This is obta ined f rom eqs. (2.8) and (2.9) when f -- 0. I t  is seen tha t  cq. (4.5) 
has some analogy with eq. (4.4) if we ident i fy  

h = 2 m D .  

This is just  the  equal i ty  which has been used in all stochastic theories of quantum 
mechanics (3). On the  other  hand, there  are clear differences between eqs. (4.4) 
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and (4.5), which show that  the basic stochastic process of SM is different from 
the one of Brownian motion (Wiener process). Indeed, it is now well established 
that  the Wiener process is not suitable for a stochastic theory of quantum 
mechanics ("). 

The analogy between the basic stochastic processes of SM and Browuian 
motion is summarized in that  both are Markovian processes characterized by 
a single parameter of dimensions, lenght squared over time. The ~arkovian 
property can be roughly defined by the equality 

(4.6) (~(t) ~ ( t+  T)~ --f(~(w) o~ ~ cos eoTd~o = 0, if T r  
0 

this means tha t  the velocities at  two different times are uncorrelated. Strictly 
speaking, the velocity ~ is not defined because x(t) is not differentiable~ but 
eq. (4.6) can be stated rigorously as 

co 

(4.7) lim RefG,(~o)o~ 2 exp [io~T-- vo)] dw ~- 0 ,  if T r 0 .  
T-'d} 

0 

I t  is easy to show that  this condition holds for both eqs. (4.4) and (4.5). An 
interesting question is whether there are other l~Iarkov processes characterized 
by a single parameter of dimensions lenght squared over time. The answer is 
important because a conclusion of the stochastic theories of quantum mechanics 
is tha t  there are only two basic processes tha t  fulfilthe apparently related prop- 
erty eq. (4.1) (note that  this equation refers to ensemble averages, not to time 
averages). I t  seems as if these two processes were those which we are consider- 
ing here (whose power spectra are eqs. (4.4) and (4.5)). Indeed, it has been 
shown that  one of them gives rise to a diffusion-type equation (which suggested 
to identify it with the Wiener process) and the other leads to the SchrSdinger 
equation (s). If  it can be shown that  this second process is the same as that  
which appears in SM (whose spectrum is given by eq. (4.5)), we would have an 
indirect derivation of the SchrSdinger equation from stochastic electrody- 
namics. However, there are many unclear points and a true derivation does 
not exist at present. For example, the spectrum given by eq. (4.5) does not 
fulfil eq. (4.3) although it might fulfil eq. (4.1) for suitably chosen ensemble 
averages. This problem will be dealt with in subsequent papers. 

(9) See E. SANTOS: Brownia~ moti(m and the stochastic theory o] quan$um mechanics, 
in Irreversibility in the Many-Body Problem, edited by L. M. GARRIDO, J. BmL and J. 
R ~  (New York, 1972). 
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Le t  us consider now the  theory  of Brownian  mot ion  due to OR~STEI1N ~ and  

UHLE~ECK. The basic equat ion of the  theory  is 

(4.8) m2 = ~ - - m  7 -1 2 + / ,  

where  ] is the  ex te rna l  (systemat ic)  force and F the  stochast ic  force. The power  
spec t rum of the  s tochast ic  force is whi te  (roughly speaking, it is the  der iva t ive  

of a Wiener  process).  I t  can be wr i t t en  

(4.9) G~((o) = m2D/~ 7,  7 -1 ~ 6nab~m, D = kOT/m, 

where  m is the  mass  of the  Brownian  par t ic le  and  a its radius, ~ the  viscosity 
of the  m e d i u m  and 0 its absolute  t e m p e r a t u r e ,  k being the  ]~oltzmann constant .  

Actually,  eq. (4.8) is incorrect  because the  accelerat ion 2 and  the  force F are 
not defined (the Wiener  process has no der ivat ive) ,  and it should be subs t i tu ted  
by  a sui table pair  of equat ions (Langevin  equations),  l~evertheless,  we wri te  

the  basic equat ion as in eq. (4.8) because  it is easier to unders tand  physical ly 
(compare  wi th  eq. (2.1)). I f  there  are  no externa l  forces (] = 0), eq. (4.8) can 
be wri t ten  

(4.10) 2 = u(t) ,  

where the  spec t rum of the  ve locky  u(t) is 

(4.1~) 

I t  can be shown t h a t  this implies the  following Ganssian dis t r ibut ion for the  
velocities of the  Brownian  par t ic le  (Maxwell distr ibution):  

(4.12) @(u) ~ (27/zD) �89 exp [--~ua/2D], 

a fac t  which will be  used in the  nex t  Section. 
The  Orns te in-Uhlenbeck theo ry  of Brownian  mot ion  (OU) is s imilar  to 

SED in the  same way  t h a t  the  Eins te in-Smoluchowski  t heo ry  (ES) is similar 
to SM. Indeed,  ES is the  l imit  of OU as SM is the  l imit  of SED. I n  fact ,  if 

we search for a pure  n u m b e r  b y  combining the  p a r a m e t e r s  of O U - - m ,  a, ~, 
kO--we obta in  

y -- mkOlV~ a ' .  

This n u m b e r  is small  for large enough :Brownian part icles  ( r emember  t h a t  
a*/m is p ropor t iona l  to  the  size for part icles  of constant  density).  Fo r  fixed 
conditions of the  med ium in which the  Brownian  part ic le  moves  (i.e. 0 and 

fixed) it  is easy to see t h a t  t h e B r o w n i a n  part icles  have  character is t ic  t imes  
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proportional to 7 if they have the same diffusion parameter D. Then, the 
limit ~-+ 0 usually becomes a good approximation if 7 << 1. We emphasize 
tha t  this may not always be the case, similarly to the situation encountered 
in SI~ (and, presumibly, in QIVI). In  the limit T-> 0, eqs. (4.8) and (4.9) 

become 

(4.13) ~ = u(~) + v(~), u ---- limit ~F/m,  v ~-- limit T]/m, 

where the spectrum of the stochastic velocity u is 

(4.x4) = 2D/ . 

These are just the basic equations of ES. Indeed, from eqs. (4.13) and (4.14) 
eq. (4.4) follows easily in the absence of systematic forces. 

Finally, it is useful to compare the mean-square velocity and the fluctuation 
of position in SED and OU. For simplicity, let us consider a free particle (i.e. 
] = 0 in eqs. (4.8) and (2.1)). In  OU, the spectrum of the velocity u($) is given 
by eq. (4.11) and tha t  of the co-ordinate x(t) by 

(4.15) ~ ( ~ )  -~ G,,(oo)/o~ ~ = (2D/n'o~)/(1 -}- ~eo~) . 

Hence, the mean-square velocity is 

(4.16) <r ) do) = D/T, 

and the mean fluctuation of position is 

f G { .DT for large T ,  
(4.17) Axou - - - -  ~(o))(1 -- cos coT) do) _~ DT~/v for small T .  

0 

In  SED, the spectrum of the velocity is eq. (4.9) and tha t  of the co-ordinate 

(4.18) = (a l=ml >l)l(1 + . 

Hence, the mean-square velocity results logarithmically divergent and the 
fluctuation of the position is 

(4.19) ~v f (1 -- cos o)T) deo 
Axs~u ---- ~m 3 (o + T ~ ~3 --~ 

T (~v[gm) log -- for large T ,  

T 
(tiT2/2~m~) l o g ~  for small T .  
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(See Appendix  A for the  calculat ion of this  integral .)  We see t h a t  the  f luctuat ion 
in posi t ion is la rger  in SED t h a t  in OU for small  t ime  intervals ,  bu t  smal ler  

for large t i m e  intervals .  This is a consequence of the  fac t  t h a t  r andom mot ion  
has the  charac te r  of a v ib ra t ion  in SED bu t  in Brownian  mot ion  i t  is similar 
to  a sequence of r a n d o m  steps.  I t  is to  be  noted  t h a t  in :Brownian mot ion  the  
f luctuat ion is a ve ry  simple funct ion of T for large T and  it  is independent  of ~. 
I n  SED, however ,  the  dependence  of the  f luctuat ion in T is r a the r  complex 
and  depends on z even in the  l imit  T -+ oo. This is the  origin of the difficulty 
in finding the  Fokke r -P lanck  equat ion of SM (presumably  equivalent  to the 
Schr6dinger equation).  

5.  - G r o u n d  s t a t e  o f  t h e  o s c i l l a t o r .  

The ha rmonic  oscillator is charac ter ized  b y  an  ex te rna l  force of the  t ype  

(5.1) f---- - -  const r ~ - - m e i e r .  

I t  is useful to s tudy  the  oscillator bo th  s ta r t ing  wi th  eqs. (2.1) and  (2.2) (SED) 
and  f rom eqs. (2.8) and  (2.9) (SM). The  resul ts  obta ined f rom this last  pai r  
of equat ions m u s t  agree with the  l imi t  ~ - +  0 of this ob ta ined  f rom the  first 
one. This will give us a t e s t  of the  usefulness of eqs. (2.8) and  (2.9). I n t h e  prob-  
lem of the  oscillator a new paramete r ,  O~o, appears  which is not  present  in the  
gene ra l theo ry .  Hence ,  ano the r  pure  n u m b e r  can be obta ined besides a ~ e2/]~c,  

which is convenient ly  wr i t t en  in one of t he  fo rms  

(5.2) - -  h ~ o o / m c  ~ , ? - -  2 e 2 c o o / 3 m c  3 ~-- 2 ~ f l / 3  - -  "c~oo . 

The n u m b e r  fl gives a measu re  of the  va l id i ty  of the  nonrelat ivis t ic  approxi-  
mat ion.  Al though it  is usual ly  much  smaller  t h a n  ~ (for instance,  fl ~ 10 -1~ 
in molecular  vibrat ions) ,  i t  is less significant for the  theory .  Most t imes,  the  
numbers  g and fl will appea r  combined in such a way  tha t  7 is the  best  expans ion  
p a r a m e t e r  ( i . e .  we will obta in  the  resul ts  of SM b y  tak ing  the  l imit  y--> 0 in 
the  resul ts  of SED). 

The equat ion  of mot ion  of the  oscillator in SED is obta ined f rom eqs. (2.1) 
and  (3.1). I n  one dimension it  is wr i t t en  

(5.3) 

The general  solution of this equat ion is the  sum of the  general  solution of the  
homogeneous pa r t  plus a par t icular  solution of eq. (5.3) itself. The general  
solution will be  considered later.  Le t  us now find the  par t icu lar  solution such t h a t  

(5 .4 )  <x> = <~> = <~> = o .  



T H E  H A R M O N I C  O S C I L L A T O R  I N  S T O C H A S T I C  E L E C T R O D Y N A M I C S  7 1  

(The bracket means now time average, a convention which we will always use 
in the following.) This particular solution represents a motion which we will 
call ground state of the oscillator. From eqs. (2.2), (5.3) and (5.4), the power 
spectrum of x(t) is easily found to be 

(5.5) G=(co) = (~,-~/~)lcol$/[( 0 ) ' -  o-'~) ~ + "~co']- 

Hence, if we take eq. (3.2) into account, the power spectrum of the momentum 
p( t )  is obtained: 

(5.6) %(co) = (m~, 0),?=)]~oll[(co ~ -  co~)~ + ,'co~]. 

The peaks of these functions at  r _~ • coo indicate an approximately harmonic 
variation of x( t )  and p( t ) .  

In  order to study the motion of the oscillator in more detail, it  is useful 
to follow the path in phase space, which is a two-dimensional manifold for a 
system with one degree of freedom. I t  is convenient to represent the points 
of phase space by complex numbers a, such that  

(5.7) Re a = m0)oX/(2m~0)2) t , Im a = (0)lp/coo)/(2mh0)2) ~ , 

where the angular frequencies col and r will be defined later. In this way, 
the motion of the oscillator in phase space can be represented by a single com- 
plex function of time. We will see that  the angular frequencies 0)1 and 0)2 be- 
come identical with coo in the limit a -*  0 (i.e. in SM). In this case the func- 
tion a(t) is written 

(5.8) a(t) = [mcoox(t) + @(~)]/(2m~coo) + , 

which shows the parallelism between a(Q and the usual ladder operator of 
quantum mechanics. The power spectrum of the function a(t) can be obtained 
from eq. (5.5) (remember our definition of power spectrum for complex func- 
tions, eq. (2.3)). I t  is 

(5.9) 

At this moment, we define 0)2 by normalizing a(t) in such a way that  (lal 2) is 
one-half (which is the value which it takes for col = 0)2 ~ OJo, i .e.  in SLY[). This 
normalization is important in order to compare the fluctuations of a(t) for 
different values of 0)1. Then, we have 0)2 in terms of wl as follows: 

r 

(5.10) �89 <lal ~) :  �89 ---- (114 ~0)oC%)[(~ --  7)(w~ + w~) --  2y log 7w~] + o(7). 
--r 

(See Appendix A for the calculation of the integral.) 



72 E. SANTOS 

I t  is seen tha t  the funct ion G~(co) has a peak at r ~ coo, but ,  unlike eqs. (5.5) 

and (5.6), the peak at c,) _~--co0 is not  present  (remember tha t  col ~ coo). This 

shows tha t  the  funct ion a(t) varies with t ime approximately  as exp [--/coot] 

and it suggests introducing the  new funct ion 

(5.1]) b(t) ~ a(t)  exp [ico3t] , 

where the  angular  f requency co3 can be considered the  mean f requency of the 

oscillator if it is chosen so tha t  the funct ion b(t) varies with t ime as slowly ~s 

possible. This leads us to define c,9~ and co3 in such a way tha t  the f luctuation 

of b(t) is a minimum,  tha t  is 

(5.12) Ab ~ < ]b(t ~- T)  - -  b(t)[~-) = 

= 2<]b(t)12> - -  <b*(t)b(t -~ T ) )  - -  <b*( t )b ( t - -  T)> ---- m i n i m u m .  

This f luctuat ion must  be calculated from the power spect rum of b(t) which, 

f rom eq. (5.11), can be found to be 

(5.13) Gb(co) = G~((o ~ coa). 

Hence,  if we take into account eqs. (5.12) and (2.4), the fluctuation Ab is given 

by  
c o  c o  

(5.14) Ab =fG (co)(1- r.os coT) de,) =fGo(co)[1-- cos (,o-- co ) T] do) = 
- - r  - - r  

o o  

= I - f  Go(co) cos (co-  co ) r ,  
- - o o  

where the last equali ty was wri t ten taking eq. (5.10) into account.  The vMues 

of col and co3 which make eq. (5.]4) a min imum depend on T, so tha~ we must  

specify the  value of T at which the  min imum mus t  be calculated. I t  seems 
tha t  the  best choice is to consider 1,~rge values of T. Then, the contr ibut ion 

to the  last integral  in eq. (5.14) comes mainly  from frequencies near co3, so t h a t  

the  minimum of Ab occurs at  the  max imum of G~(co3). If  we take  into account  

eq. (5.10), this leads to the  following values of co~, co2 and co3: 

(5.15) co, = cou[1 - -  (27/~) log y] ,  co2 = co0[1 - -  7 / ~ - -  (27/z~) log y] ,  co3 = coo, 

ca]culated up to first order in y. 
The fluctuation Ab can be calculated now from eqs. (5.14) and (5.15). I t  

can be shown tha t  this f luctuation is very  small (of order y) for t imes of order 

co~-1 or less. This is best seen by  evaluating the fluctuations of x( t )  and p(t )  for 
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T ~ 2zn/too, n being an integer. I t  follows tha t  

(5.16) 

(5.17) 

co 

Ax : 2fG~(1 - cos ~ T )  do) - -  

0 

---- (~/~mto0)[-- r log r ~- r cosh (2zn) ~- 2zn~, sinh (2~n)] + o(~), 

co 

Ap = 2fG~,(to)(1 - -  cos toT)dto ---- m~toon~ sinh (2zn) ~- o(r) .  
0 

For  n << 1/?, these  fluctuations are very  small in comparison with the  mean 
values of x ~ and p~, respectively.  These are 

(5.18) 

(5.19) 

,(x ~) =fGx(to ) de) = (~/2mwo)[1 - -  (2r/z) log r - - r / z ]  + ~ 
0 

co 

,(p~) = f G,(to) dto = (m~wo/2)(1-- r /z) -~  o(r) .  
0 

For  t imes much larger than  eo~ 1 it is convenient  to  wri te  Gb(to ) in terms of the  
variable 

(5.20) u ---- 2to[r ,  

and to  re ta in  only te rms  of zero order in r .  In  this way  we have  

(5.21) Gb(to ) dto ~_ (COo/Z) dul[u 2 ~- to~]. 

Hence,  the  following value for the  fluctuation Ab is obtained: 

(5.22) 
oo 

Ab :fG+(to)(1 - c o s  toT) dto ~ 2rto0 T ,  i f  too I ~ T ~ r--ltoo 1 �9 

The limit of Ab for T--> c~ is unity,  as it should be because  Ab approaches 
2(]b] ~) in this limit (see eq. (5.12)) and this equals 2([a] ~) (eq. (5.11)), which 
is un i ty  (eq. (5.10)). 

The linear dependence of the  f luctuat ion Ab on T (eq. (5.22)) is typical  of 
Brownian motion (compare with eq. (4.1)). Also, the  power spect rum of b(t) 
(eq. (5.21)) is identical with tha t  of the  veloci ty in the  Ornstein-Uhlenbeck 
theory  of Brownlan motion {eq. (4.11)) with the  replacement  ~_>to~l, 2D]7:-->1. 
Then, as eq. (4.12) is a consequence of eq. (4.11), the  following probabi l i ty  
dis t r ibut ion results  for a f rom eq. (5.21): 

(5.33) e(l~L) = 2 z  -+ exp [ - ] ~ l ~ ] .  
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I n  the  l imit  ~-+ 0 this becomes (see eq. (5.7)) 

(5.24) @(x, p) = (1/2 :~?i) exp [-- mo~oXZ/2h--p2/2m?i~o]. 

The pic ture  which emerges from the  results obtained up to  now, is as follows. 
The oscillator performs a harmonic  mot ion almost  as if the  background radiat ion 
and the  damping  were not present .  ]3oth the  phase and the  ampli tude are 
ex t remely  stable for m a n y  periods (about  10 ~~ periods in molecul'~,r vibrations).  
Nevertheless,  t he y  change slowly, performing a kind of Brownian motion, 
with the  resul t  t ha t  the  m e m o r y  of the  initial  phase and ampli tude is finally 
lost. The  probabi l i ty  distr ibutions of position and m o m en tu m  are Gaussian 
and independent  of each other  (eq. (5.24) can be factorized).  

In  the  l imit  ~ - ~ 0 ,  eqs. (5.5) and (5.6) become 

(5.25) G ~ ( x )  = ( l ~ l m )  ~ ((o 2 - -  ( ,~ )  , G~(o~) ---- m~(u~o~)(e.~ 2 - -  oJ~) . 

These power spectra  can be obta ined also from eqs. (2.8) and (2.9) (S]~f), if 
some care is used in taking the l imit  s -+  0. Similarly, one can obtMn 

(5.26) G(~)=6(~--~o),  G(~)=6(~).  

Hence,  the  first eq. (5.10) can be also found, bu t  the  f luctuations Ab, Ax and 
Ap become zero for all T (compare this result  with eqs. (5.16), (5.17) and (5.22)). 
The  mean  values of x 2 and p2 can be obta ined from eq. (5.25) and agree with 
the  results  eqs. (5.18) and (5.19) in the  limit y - >  0. Nevertheless,  eq. (5.21), 
which is essential in order  to  find the  probabi l i ty  distr ibution of x and p, cannot  
be obta ined f rom eq. (5.26). This shows tha t  the  l imit  s -+  0 cannot  be  t aken  
at  in te rmedia te  stages of the  der ivat ion or some informat ion  is lost. 

6. - Comparison with quantum theory. 

In  the  following we show tha t  the  ground s ta te  of the  oscillator is ve ry  
similar in stochastic and quan tum electrodynamies.  We s tar t  with the  com- 
parison in zeroth order  of ~, t ha t  is we first compare  the  ground s ta te  in 
S ~  and QM. After  this, we will s tudy the  corrections due to the  finite value 

of ~ bo th  in SED and QED. 
The ground s ta te  of the  oscillator in QM is character ized by  an energy 

(6.1) 1 2 2 E o : ~mcoo<r } ~- (I[2 m)<p2> = 3 ~(Oo ' 

and the  following probabi l i ty  distributions for the  co-ordinate and the  mo- 
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mentum: 

(6.2) 
@(r) = (mwo/2z~) ! exp [--moo r~/2~] , 

@(p) = (2~mwo) -t exp [--p~/2m~wo]. 

In  S~[, the mean energy is given also by eq. (6.1) (see eqs. (5.18) and (5.19)) 
and there is a probability distribution in phase space given by eq. (5.24). 

I t  is seen tha t  the predictions of both theories are similar, but there are 
some differences between them. In the first place, in S ~  it is ~ssumed that  
the particle has a precise position and a precise momentum at any time; this 
allows one to define a probability distribution in phase space. In Q~,  there is no 
such probability distribution in phase space because it is assumed that  the 
position and the momentum cannot be dispersionless simultaneously. Ac- 
tually, this difference seems not very important in practice because eq. (5.24) 
is just the product of the two functions (6.2). A more dramatic difference ex- 
ists in the predictions about the energy. In fact, Q/V[ predicts tha t  the energy 
is dispersionless and tha t  it takes the value ~ ~wo. In  contrast, in S~I the oscil- 
lator can have any instantaneous energy, and the value ~Oo represents only 
the time average over an infinite time interval. The probability distribution 
for the energy is given by eq. (5.24), which can be written 

(6.3) 

Incidentally, we note tha t  this probability distribution is just the Boltzmann 
distribution for a temperature 

(6.4) k~0 = ~,COo. 

These differences between the predictions of S~I and Q ~  are summarized in 
the statement that  the ground state is a pure state in QM, but it is a mixture 
(or statistical ensemble) in SM. In f~ct, in Sl~ the ground state of the oscillator 
does not correspond to a single path r(t) but to a whole class of paths, i.e. all 
those fulfilling eqs. (5.3) and (5.4). (More precisely, the ground state in SM 
is defined by a probability distribution in the space of the functions r(t).) In  
order to see whether these differences are important in practice we should ask 
what quantities can be actually measured in the ground state of the oscillator. 
As any measurement is a time-dependent phenomenon, no definite conclusion 
can be obtained from the study of a strictly stationary state. 

The finite value of a produces changes in the probability distributions of 
position, momentum and energy. Unfortunately, there is no procedure avail- 
able for making calculations in QED other than perturbation theory, so that  
we must limit ourselves to making comparisons in the first orders in ~. In prin- 
ciple, the whole probability distributions can be calculated, but we will con- 
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sider only the  mean  values of r z, p :  and E. The first-order correct ion to <p2} 
is given, bo th  in QED and SED, by  

(6.5) h ( p b  = - -  ~ ~,~ ~ / z c  ~ �9 

The SED resul t  is derived easily f rom eq. (5.19); for the  QED calculation see 
Appendix  B. The leading correct ion to ( r  2) in S ED  is a logari thmic te rm,  
which shows t h a t  the  quan t i ty  ( r  ~} is not  analyt ic  in ~. Up to te rms of order 
a, the correct ion is, f rom eq. (5.18) 

(6.6) A(r:  } ---- (2h: :r  ~ c 2) [log (3mc3/2~(9o :6 - -  �89 

In  QED, the  first-order correct ion is d ivergent ;  this m ay  be in te rp re ted  as 
indicat ing t ha t  the  quan t i ty  ( r  ~} is also nonanalyt ic  in a. I f  we in t roduce 
a cut-off ~ o ~  in the  frequencies,  the  first-order correct ion is (see Appendix ]3 
for the calculations) 

(6.7) A ( r  ~} ---- ( 2 h ~ l u m  2 e2)[log (1 -t- og~x/~o) - -  �89 

I t  is remarkable  tha t  bo th  the  coefficient of the  logarithmic t e rm and the  
l inear t e r m  are the  same in SED and QED. 

There  is some uncer ta in ty  in the  comparison of the  corrections to the  energy 
due to the  fact  tha t  the definition of kinetic energy is ambiguous in SED. In  
fact ,  t he  definition eq. (3.8) is only correct  in the  l imit  ~ -+ 0 as we have  indicated 
in Sect. 3. I f  we accept  this definition as valid up to  first order  of ~, we obtain, 
f rom eqs. (6.5) and (6.6), 

(6.8) E = ( ~ % 9 ~ ] z m c e ) [ l o g  (3mcS/2]gWo ~) - -  1].  

This result  was first der ived  by  SOKOLOV and TuM•Nov (lo) f rom a theory  in 
which the  electron was assumed classical, bu t  the  radiat ion field was quantized. 
F rom a pure ly  classical t heo ry  (i.e. f rom SED) this result  was first obta ined 
by  ]31~AFFO1~T, S~-aDLX and TARO~-I (5). 

In  QED the  energy is not  just  the  sum of kinetic and potent ia l  energy 
because it is assumed tha t  an addit ional  in teract ion energy is present.  Then, 
the  correct ion to  the  energy is not  obta ined f rom eqs. (6.5) and  (6.7) bu t  mus t  
be calculated directly.  The first-order correction is divergent  and, introducing 
a cut-off, we have (see Appendix ]3) 

(6.9) AE = ( ~ % ~ / ~ m c  ~) log (1 + ~ / ~ o )  �9 

(lO) i .  i .  SOKOLOV and V. M. TUMANOV: Soy. Phys .  J E T P ,  30, 802 (1956). 
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Although the agreement with eq. (6.8) is good, the linear term which appears 
in eq. (6.8) is not present in the QED result. I t  seems probable that  this is 
because something equivalent to the interaction energy, which was considered 
in the derivation of eq. (6.9), is lacking in eq. (6.8). 

7 .  - E x c i t e d  s t a t e s .  

Up to now, we have obtained a particular solution of the complete equa- 
tion (5.3) (although, of course, the explicit form of the function r( t )  cannot 
be found). The homogeneous equation has the solution 

(7.1) r( t )  -~ ( A  sin bt + B cos bt) exp [ - - a t ]  + C exp [et], 

where A, B and C are arbitrary constants and a + bi, a - -  bi, e are the roots 
of the characteristic equation 

(7.2) c ~ + co~--  ~e ~ = o .  

One of these roots is real and positive and it gives rise to the last term of eq. (7.1). 
This term is absurd because it implies for the oscillator an always rising en- 
ergy (see the comment just before eq. (2.6)), so tha t  we take C ---- 0. The com- 
plex roots, calculated up to first order in ~ (or 7), are 

(7.3) a Q- ib ~- - - zco~/2  -4- iCe o ~ -- 7coo/2 =J=/coo, 

and eq. (7.1) becomes 

(7.4) r( t )  : ( r  1 sin COot + r: cos COot) exp [--TCOot/2]. 

Once we have obtained the general solution of the homogeneous part of 
eq. (5.3), we can determine the general solution of the complete equation by 
adding the particular solution corresponding to the ground state of the oscil- 
lator. The momentum associated with the motion represented by eq. (7.4) is 

(7.5) p -~ mi" ~_ mcoo(rl cos coot -- r2 sin COot) exp [--TCOo t/2], 

and the energy 

(7.6) E = (~ /2 ) ( co~ , -~+  ,'~) = (~o)~o/2)(~ + ,-~) e x p  [ - -7coo~] ,  

where we have neglected higher-order terms in 7. We see that  the co-ordinate 
and momentum of the oscillator at any time is the sum of a systematic part 
(given by eqs. (7.5) and (7.6)) and a stochastic part (with a probability distri- 
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but ion  given b y  eq. (5.2~)). Thus,  a l though we cannot  de te rmine  the  ac tua l  
p a t h  of the  par t ic le  we are ~ble to  calculate  the  p robabi l i ty  dis t r ibut ion of its 
co-ordinate  and  m o m e n t u m  at any  t ime.  This is obta ined b y  combining eq. (5.24) 

wi th  eqs. (7.4) and (7.5) and  the  following resul ts :  

(7.7) e(r, p, t) = (2.-~1/) -~ exp [--  (m~oo/2h)(r - -  r~(t) cos O~o t - -  r2(t ) sin O)ot) 2] >( 

X exp [(p + m~oo r~(t) sin o ) o t -  mcoor2(t) cos (oot)2/(2limo~o)]" 

I n  this  expression the  funct ions  r~(t) and  r2(t) depend on t ime  in the  fo rm 

(7.8) r(t) = r(O) exp [--~r 

In  zeroth order of a (SS[), the  funct ions  r 1 and r2 become cons tan t  and  eq. (7.7) 
gives the  same probab i l i ty  dis t r ibut ions of the  co-ordinate and  the  m o m e n t u m  
which gives QS[ for the  coherent  s ta tes  of the  oscillator. These s ta tes  are rep-  
resented  b y  t ime-dependen t  m i n i m u m  unce r t a in ty  wave  packets  and t hey  

form a nonor thogonal  overcomple te  sys t em in the  Hi lbe r t  space of the  s ta tes  
of the  oscillator (11). The p robab i l i ty  d is t r ibut ion eq. (7.7) shows the  ana logy 
be tewen  SM and QM. I n  bo th  theories  there  are an infinity of different s ta tes  

charac ter ized  b y  the  values  of the  vectors  r~ and  r2. These  s ta tes  can b e  rep-  
resented  b y  <~packets ~ whose cent re  moves  according to classical mechanics .  
I n  Q3I the  packets  are considered of wave  character .  I n  SM they  are the  ob- 
vious represen ta t ion  of our ignorance of the  ac tua l  posit ion and  m o m e n t u m  
of the  part icle ,  this  ignorance being inherent  to the  s tochast ic  na tu re  of the  
theory .  

We  have  studied only the  s ta tes  given by  eq. (7.7), bu t  it  is clear t h a t  any  
p robab i l i ty  dis t r ibut ion @(r,p, t) obta ined  b y  l inear  combinat ion  (with real  
and  posi t ive coefficients) of several  d is t r ibut ions  of the  t y p e  (7.7) can represent  
a s ta te  of our knowledge of the  oscillator. These p robabi l i ty  dis t r ibut ions will 
contain less in format ion  t h a n  t h a t  of eq. (7.7), which is the  m a x i m u m  one 
compat ib le  wi th  the  s tochast ic  charac[cr  of the  theory .  These s ta tes  m a y  

correspond to the  mixed s ta tes  of q u a n t u m  stat is t ical  mechanics ,  while eq. (7.7) 
corresponds to a pure  s ta te  of the  q u a n t u m  theory .  

The  absence  of t r u ly  s t a t iona ry  exci ted s ta tes  of the  oscillator in SIV[ shows 
t h a t  the re  is a s t r ik ing difference be tween  SM and QM. I n  SM only s ta tes  
represen ted  b y  eq. (7.7) (or mix tu res  with real  posi t ive coefficients of these 
states)  are possible. In  par t icular ,  the re  are no s ta tes  similar  to the  quan tum-  
mechanica l  exci ted eigenstates  of the  I t ami l ton ian .  S ta ted  differently, in 

q u a n t u m  mechanics  any  wave funct ion of the  fo rm 

~(r, t) = ~ cn cp,~(r) exp [--  iE~ t/?i] , 

(11) See, for example, S. STE~IO~M: Phys. Lett., 60, 1 (1973) for a studs of coherent 
states and its applications. 
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where r  are eigenfunetions of the Hamiltonian, represents a possible state. 
On the other hand, the physically realizable states of SM correspond only 
to some particular states of QM (the coherent states), i.e. to some sets of values 
of the c~. This difference is very important  because it shows that  SM does 
not fulfil one of the basic postulates of quantum mechanics, the superposition 
principle. I t  is obvious that  the interpretation of the experiments according 
to stochastic electrodynamics, if it is possible, needs to be radically different 
from the interpretation given by the quantum theory. 

8. - Emission and absorption of  radiation. 

We have seen tha t  the predictions of QM and SM are similar both for the 
ground and for the excited states of the oscillator, and also that  the corrections 
due to the finite value of ~ are similar in SED and QED for the ground state. 
:Now, we must compare the consequences of the finite value of ~ for the excited 
states. These are the phenomena of spontaneous emission and line breadth 
of the spectrum. We proceed first to the study of spontaneous emission. 

In  SED, the state characterized by eq. (7.7) is a decaying state as eq. (7.8) 
shows. The rate of energy decrease of the oscillator is given by eq. (7.6), which 
can be written 

(8.1) d E/ d $  ---- - - ~ ' w o E ,  

where E is the energy above the ground state. According to QED, the proba- 
bility of decay per unit time from a state with quantum numbers nl, n~, n3, 

is (see Appendix C) 

(8.2) I '  .~ (2a~w2o/3m~)(nl + n g .  ~ n a) : ~ E / ~  , 

where E is also the energy above the ground state. Now, taking into account 
tha t  the energy change in the transition between two states is ~eoo, we have 

(8.3) 4 E / d t  ---- - -  Fl~o~o ; 

this shows that  eq. (8.1) is also true in QED, although the interpretation is 
different from the one of SED. In QED, the perturbation techniques used in 
the calculations are not suitable for the study of continuous evolution and there 
are no other techniques available. The calculation of eq. (8.2) is typical of the 
way in which quantum field theoretical calculations are made. Probability 
transitions are calculated between quasi-stationary states and, although the 
time evolution is assumed to be continuous in principle, we deal always with 
quasi-stationary states and discontinuous jumps between them, in practice. 
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So, in q u a n t u m  theoret ical  language,  we speak of a collection of oscillators, 
each one in a quas i -s ta t ionary  s ta te ,  mak ing  discont inuous t ransi t ions  be- 

tween  these  s ta tes  f rom t ime  to t ime,  in such a way t h a t  eq. (8.1) holds in the  
mean.  Nevertheless ,  this  p ic ture  is not  unavoidable  in q u a n t u m  theory ,  bu t  
a consequence of the  use of pe r tu rba t ion  techniques.  

In  s tochast ic  e lect rodynamics  we have  a quite different picture.  Any  oscil- 
la tor  is in a s ta te  which can be represented  by  a probabi l i ty  dis tr ibut ion of the  
t ype  of eq. (7.7). Each  one radia tes  cont inuously  in such a way t h a t  eq. (8.1) 
holds individually.  In  this theory  there  is no room for the  <~ qn~nta  }~ of light. 
We note  t h a t  we speak here only abou t  the  coherent  radia t ion emi t t ed  by  the  

oscillator. Besides this~ the  oscillator is cont inuously  emi t t ing  and  absorbing 
radia t ion to or f rom the  background  field. This is a lmost  unobservable  because 
it is rap id ly  fluctuating.  I n  other  words, the  presence of the  oscillator changes 

the  background  field wi thout  a l ter ing its s tochast ic  pa ramete r s .  Actual ly,  the  
r a n d o m  absorpt ion and  emission of radia t ion  give rise to some observable  
effects. For  instance,  if the re  are two oscillators, wi th  the  same character is t ic  
f requency,  some dis tance apart~ the  absorpt ion  and  emission give rise to some 
correlat ion in its mot ion  with the  resul t  tht~t there  is an effective a t t r ac t ion  
be tween  them.  I t  has been  shown t h a t  this is jus t  similar to the  long-range 

van  der W~als force predic ted  by  QED (~-~). 
The result  eq. (8.1) has been ob ta ined  by  M~ARSHALL (13), with a technique  

different f rom the one used here. ~I.~nSHALL studied,  according to SED, the  
evolut ion of excited s ta tes  analogous to the  s ta t ionary  exci ted sta,tes of q u a n t u m  
mechanics.  Nevertheless,  i t  seems difficult to t ake  seriously such s ta tes  in a 
pure ly  classical theory  because t hey  have  ~ probabi l i ty  ~> dis t r ibut ions in phase  
space which are not  posi t ive definite. I n s t ead  of in t roducing unphys iea l  s ta tes  
in SED, we mus t  s tudy  the  t ime  evolution of the  coherent  s ta tes  in QED. 
I n  order to s tudy  quan t i t a t ive ly  the  t ime  evolut ion of the  coherent  s ta tes  of 

the  oscillator in QED, we have  used t ime-dependen t  pe r tu rba t i on  theory .  
The change of the  s ta te  of the  oscillator has been  calculated in a t ime  in te rva l  
which is large in comparison with the  period of the oscillator, bu t  short  enough 
for p e r t u r b a t i o n  theory  to be  valid.  I t  is shown then  t h a t  the  evolut ion of a 
coherent  stt~te is represented  by  a m i n i m u m  unce r t a in ty  wave  packe t  whose 
cent re  moves  according to the  classical laws eqs. (7.4) and  (7.5). The details 
of the  calculation can be seen in Append ix  C. The s imilar i ty  be tween  the  t ime  
evolution of the  coherent  s ta tes  in QED and SED is remarkab le .  I n  fact ,  the  
only difference in the  evolut ion of the  p robab i l i ty  dis t r ibut ions of the  co- 
ord ina te  and  the  m o m e n t u m  is t h a t  in SED the  dis t r ibut ion is defined in phase  
space, b u t  in QED there  are two different distr ibutions,  one in co-ordinate  

space and  the  other  in m o m e n t u m  space. 

(13) T. H. BOYER: Phys. Rev. A, 6, 314 (1972). 
(18) T. W. MARSHALL: Izvestiya VUZ, Fizika, 12, 34 (1968). 
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Besides the  in tens i ty  of the  spontaneously  emi t t ed  radiat ion,  i t  is possible 
to  measure its spec t rum (and maybe  other  proper t ies  such as the  angular  dis- 
t r ibut ion) .  For  simplicity, let  us consider an oscillator in one dimension and 
the  radiat ion emi t t ed  in a jump between eigenstates of the  unpe r tu rbed  Hamil-  
tonian.  The line width,  being di rec t ly  observable,  mus t  be independen t  of the  
approach used in the  calculation, i .e. we have  no need to  consider coherent  
states in this case. According to  QED the  emission of radia t ion f rom a s ta te  
with qua n tum number  n carries the  oscillator to the  s ta te  with q u an tu m  number  
n -  1. (The emission to  any  o ther  s tate  is forbidden.)  The mean  f requency  
of the  emi t t ed  radiat ion is obviously w0 and the  line shape can be calculated 
by  means of the  Weisskopf-Wigner theory.  According to  this theory ,  the  line 
width  is the  sum of the  inverses of the  lifetimes of the  initial  and the  final states. 
The inverse of the  l ifetime of a s ta te  is jus t  eq. (8.2), so t h a t  t he  line width  in 

the  case considered here  is 

(8.4) /+ = / ' ,  §  = ( 2 n -  1) r~0.  

Then,  the  line shape is given by  

(8.5) 1(~)oc (n - -  �89 YWo/[(~ - -  %)~ § (n 1~ .2 ,~1 

= (Erl~)l[(,o--,Oo) ~ + E~r~l~],  

where E is half the  sum of the  energies of the  final and the  initial states above 

the  ground state.  
In  SED,  the  exci ted s tates  have  a t ime  dependence  which is given b y  

eqs. (7.7) and (7.8). The line shape of the  emi t t ed  radia t ion can be obta ined 

f rom the  Four ier  t r ans form of eq. (7.4), which gives 

(8.6) x(~) oc (ro,ol2)/[(o~-- ~0) ~ + r%~/4] .  

I t  is seen tha t  this resul t  only agrees with the  QED resul t  (eq. (8.5)) for the  
q u a n t u m  exci ted s ta te  wi th  n = 1. The line width  calculated wi th  BED is 
smaller t h a n  the  QED predict ion for all o ther  exci ted states. The above cal- 
culat ion of the  line width  in SED may  be too naive because only the  systematic  
pa r t  of the  mot ion  (eq. (7.4)) has been considered, neglecting the  r andom par t ,  
which m a y  be incorrect .  In  order  to see whe ther  the  discrepancy between 
QED and SED is real, let  us calculate the  line width  in SED f rom ano the r  point  
of view. We consider, ins tead of the  spontaneous emission, a s i tuat ion of equi- 
l ibr ium between the  oscillator and the  radiat ion.  We assume t h a t  the  back- 
ground field has an addi t ional  amoun t  of radia t ion besides the  r andom one. 
Then,  the  spec t rum of the  electric field will be of the  form (compare wi th  

eq. (2.2)) 

(8.7) G~(o,) = (2~/3~o.)(I~I" § 

6 -  11 Nuo~o Cimento B.  
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where /(o)) is some function which we consider slowly varying (representing 
almost white light). From eqs. (8.7) and (5.3) we obtain instead of eq. (5.5) 

(8.8) e,(~o) = (~ 'H~m)( l~ l  ~ + 1(~o))/[(~ ~ -  o$~+ ~ ] .  

This shows tha t  the  interaction between the  oscillator and the radiation is in 
agreement with eq. (8.5) for any function/((o) which varies little in a frequency 
interval  of the order Y(')0. 

As a conclusion, there is a definite discrepancy between SED and QED 
in the prediction of the line width of the oscillator except for the first excited 
state. I t  is remarkable tha t ,  in this ease, the quantum prediction cannot be 
correct because for high enough excitation energy the line width would increase 
indefinitely according to eq. (8.5). However, it is well known tha t  for high n 
the quantum result must  approach the classical one, which is zero width if 
the damping is neglected or just eq. (8.6) if the damping is taken  into account. 
We have here an interesting case of inadequacy of the Weisskopf-Wigner theory 
(if not  of QED). 

9. - Discussion.  

We have studied in some detail  the  harmonic oscillator according to sto- 
chastic electrodynamics. The predictions of this theory agree rather  closely with 
those of quan tum electrodynamics. In view of this result, it  seems very im- 
probable t ha t  the agreement  is accidental. On the other hand,  there are de- 
finite differences in some predictions besides sharp differences in the interpre- 
ta t ion of some similar results. This means tha t  both theories are experimentally 
differentiable, a t  least in principle. Nevertheless, the most easily testable re- 
sults agree fairly well and, therefore, a crucial experiment seems difficult to 
perform. On the other hand,  the simple system studied in this paper - - the  
harmonic oscillator--is too singular to make clear whether stochastic electro- 
dynamics has a real possibility to become a subst i tute of quan tum theory. 
In  any  case, the convenience of fur ther  research on this line is strongly sup- 
ported. 

A P P ~ I ~ D I X  A 

Calculation of  integrals.  

oo 

A(T/~) - - f  [1 w(i--- cos+(eoT)] d o ~  ~eo2 ) 

0 

oo 

~ f  [1 -- x(lC~ +(Tx/'~)]dxx 2 ) 



T H E  H A R M O N I C  O S C I L L A T O R  I N  S T O C H A S T I C  F ~ L E C T R O D Y N A M I C S  ~ 

We are in te res ted  only in the  behaviour  of this  in tegra l  for Tlv-+ oo and 
T[v--> O. We wri te  

•/i ~ ; [1 - cos (Txlv)] dx A = A~ + A~ A1 = [1-- cos (Txlv)]dx As - -  

' x(1 + x s) ' x(1 + x~) 

For  TIt  << 1, i t  is possible to  app rox ima te  cos (Txl v) b y  1 - -  T~xsl2r ~ in A1 
and to  neglect  un i t y  compared  wi th  x 2 in A~. Then,  i t  follows t h a t  

c o  

A ~ x(1 + x~) - + x 3 ~ ~ log ~ ,  T i t - +  0 .  

For  T/v>> 1, i t  is possible to  neglect  x s compared  wi th  un i ty  in A1 and 
cos (Tx[v) in As, so t ha t  we have  

V~[1--cos(Tx/v)]dx ; dx T 
A~" x + x ( l + x  s ) - v l 0 g  , 

o V~--/~ 

T/v ~ oo , 

co oo 

__ ( T o ~ o  c0s (eoT) dw (Txcos(a~oTx) dx 
B( or, 7 ) = j  T �9 

0 0 

This in tegral  is convergent  for  all 7 >> 0 and  all moT. I n  pract ice  7 << 1, so 
tha t  we calculate the  in tegra l  in powers of 7 up to  first order.  The zeroth  
order  gives 

Bo(~OoT) =~ limB(cooT, 7) = (st /2)  c o s  ( c o o T ) .  

The first-order cont r ibu t ion  can be calculated as 

BI(O) o T)  ~ lira y-~B(oao T, ~) - -  Bo(tOo T) = 

oo 

=_f4x cos ( ~ o T ) -  (x + 1)' cos (~Oo T) 
4(x ~ -  1) ~ 

0 

1 
dx--  ~ cos (o~0 T) ,  

where the  following iden t i ty  was used:  

j 4 ( x -  ~)= + r = = j  ~ ( ~  ~ + + o(r) .  
--co 0 



8 4  E .  SANTOS 

The r ema in ing  in tegra t ion  is s t r a igh t fo rward  and  we obta in  

B(cooT, y) = (~/2) cos (coo/")-  

- -  (7/2)[1 § coot cos (eg0 T) sinh (cooT) --  coot sin (cooT) cosh (cooT)] + o(7). 

The in tegra l  B(O, 7) can be calcula ted as the  l imi t  of B(cooT: 7) for T---~O, 
which gives 

B(O, 7) = (~-- 7)/2 -~ 0(7), 
o o  cm 

( ~cooco a cos (oT) dx ( yx 3 cos (coo Yx) dx 
C(cooT, y) ~]  (co.V cogi ~ § T2co ~ j (Ti-5_])~ + r~x ~ . 

o o 

This in tegra l  can be easily eva lua ted  b y  t ak ing  the  second de r iva t ive  of 
B(v~oT, y) with  respect  to T. Hence,  i t  follows t h a t  

C((,.)oT, 7) = (~/2) cos (o)oT) - -  (y/2)[1 § 2 cos (~oT) cosh (ooT) + 2 sin (coot)" 

�9 sinh (cooT) --  cooT sin (ooT) cosh (cooT) + o o T  cos (cooT) sinh (cooT)] + o@). 

This expression does not  have  a finite l imi t  for T->O, so t h a t  the  in tegra l  
C(0, 7) mus t  be  ewdua ted  direct ly.  We use the  iden t i ty  

oo r 

( 7x 3dx ( 7 dx ,~ 1 
C(O, 7) = j ( x  2 . "  ~)T~ 72x6 --J 4(x - -  1) 2 --  73 _L, _2 - -  -2 a r c t g  (r/2) . 

0 o 

Now, sub t rac t ing  the  in tegrals  before pe r fo rming  the  in tegra t ion  we have  

c(o, 7)= f T(4x3- 2x-1)dx f ,dx 7 
4 ( x ~ -  1)2 + x + ~,2x~ + 2 -  4 § o(y) ,  

o ~ / ~  

where ~ was neglected compared  wi th  ]Ix in the  first in tegra l  and  un i t y  was 
neglected compared  wi th  x in the  second. Also, an  in tegra l  g iv ing a t e i m  of 
order y~ was not  included. The r ema in ing  in tegra t ions  are s t ra igh t fo rward  
and  we obta in  

C(O, 7) = (7r-- y)/2 + F l o g  7 + 0(7) . 

A P P E N D I X  B 

Ground state o f  the oscillator in quantum electrodynamics.  

The H a m i l t o n i a n  of an oscillator in nonre la t iv i s t ic  QED is 

t (A.1) H = ~ oob~.~bk.~ § (p--  eA)~/2mo § �89 ~ 
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where  mo is t he  ba re  mass,  e t he  charge  and  meo~ the  force cons tan t  of the  
oscillator, and  we t ake  ~----c = 1. The vec tor  po ten t i a l  A is wr i t t en ,  in the  
electric dipole app rox ima t ion ,  

(A.2) A .= ~,~V~/V(o(bl,,~ -]- b~,a) r 

where  b~,a (bk,a) is the  crea t ion  (destruct ion) opera tor  of photons  wi th  mo-  
m e n t u m  k and  polar iza t ion  2, Ea be ing  the  polar iza t ion  vector  of these pho- 
tons;  (o is the  angu la r  f r equency  of the  photons  (equal  to Ikl in our units)  
and  V is the  normal iza t ion  volume.  The ba re  mass  can  be re la ted  to  the  
observable  mass  b y  means  of (~) 

(A.3) m[mo ---- 1 + ft(~r /x(a) = 4~[3~m -4- o(a) ,  

where  ~ is a cut-off in h igh  frequencies .  The  u n p e r t u r b e d  t t a m i l t o n i a n  is 

(AA) 

The pe r tu rb ing  H a m i l t o n i a n  is bes t  wr i t t en  b y  in t roducing  the  ladder  oper- 
a tors  a, a t of the  oscillator in the  fo rm 

(A.5) r = (a + + a)/V2~m~o, p = iVr--mmo/2(a +- a). 

Hence,  the  p e r t u r b i n g  H a m i l t o n i a n  is 

(A.6) H1 = - -  (fW)o/4)(a t -  a) ~ -  (1 +/~)  ~ / ~ p  .A/m A- (1 ~-/x) o~A2[2m. 

Let  us calcula te  t he  correct ion to  the  g round-s ta te  energy  of the  oscillator 
up  to first order  in ~. This correct ion has a f i rs t-order  con t r ibu t ion  in //1 
plus a second-order  con t rbu t ion  f rom the  t e r m  p .A ,  which is of order one- 
half  in ~. The ene rgy  correct ion resul ts  

(A.7) AE~ : ~<OIp~/2mlO> + (a/m~) ~ I<01p'Aln> ]~/(Eo - E.) .  
r 

I n  order  to give cont r ibut ions ,  the  s ta tes  In? mus t  be  one-photon s tates  wi th  
the  oscillator in the  first exci ted  s ta te .  The  t e r m  in A 2 was neglected because 
it  cont r ibu tes  the  same cons tan t  energy  to  a free par t ic le  and  to a n y  s ta te  
of the  oscillator,  k s t r a igh t fo rward  calcula t ion gives 

(A.8) AE: = ((ze)~/~m) log (m/COo). 

The  f irst-order correct ion in ~ to  the  g round-s ta te  vec tor  of the  oscillator is 

(A.9) I~1) = ~ In> <nlH1]0>/(Eo-- E.) + 

+(~/~) Y In> <sip'Aft> <tlp-AIo)/(~o- E,)(Eo-- ~.). 
l,n#O 
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With this correction,  the  g round-s ta te  vector  is not  normal ized  bu t  it has 
the  norm 

( i . t 0 )  (<01 + <~/)11)(10) ~-I~/1i/~ ) = 1 -  (c~wo/xm)[1- log (.Q/~,)]. 

Now, we calculate  the  f irst-order correct ion to the  expec ta t ion  value of 
Hoso ~ Ho- -  H,~d, which is 

(A.11) A<Ho~r : (%vl]Hoso]V~} = (~/m 2) ~Oo](n[p'A[O}[2/(E(, - E~) ~ : 
nr 

= (~o~/=rn) log (1 + f2/~0) - -  (~o~/nm) f)/(o,o -F ~2). 

After  this, we calculate the  f irst-order correct ion to the  expec ta t ion  value of 
the  opera tor  M defined by  

:]I = m~oore/2-- p212m = O)o(a +2 4- a2)/2 , (A.12) 

which is 

(A.]3) A ( M )  = (0tMIv,> = ,%(0/a  z) ~ In) [l~(nlp2/2m]O>]/(Eo - E.)  -~ 
1,n#O 

+ (~/m2)<nlp .Al l )  <lip .A[O)/[(Eo-- E~)(Eo-- E,)]  : ( ~ / ~ m )  log (1 + ~/~o) �9 

By addi t ion and sub t rac t ion  of eqs. (A.11) and  (A.13) it  is easy to ob ta in  the  
first-order correct ions to <p~} and  (r2}, which are given in eqs. (6.5) and (6.7). 

APPEI~DIX C 

Motion of  coherent  states of  the quantum oscillator. 

The exci ted states of the  oscillator which are e igenstates  of the  unpe r tu rbed  
Hami l ton i an  can be represented  by  Inl%n3}, where the  three  (integer) quan-  
t u m  numbers  are associated to the  three  Cartes ian co-ordinates.  The proba-  
bi l i ty  per  uni t  t ime  for spontaneous  emission of rad ia t ion  f rom these states 
can be calculated b y  means  of the  golden rule. This gives 

(A.14) F =  (4(o~/3) ~ I(/Irlnln2n3}l 2 = (2~09~/3m)(nl -F n2 -~- n3) 
! 

(as in the  preceding  Appendix ,  we use uni ts  such t ha t  ]~ = c = 1). 
I t  is a l i t t le  more  difficult to calculate  the  spontaneous  emission f rom states 

which are not  e igenstates  of the  unpe r tu rbed  Hami l ton i an .  For  a general  
s ta te  of the  oscillator, the  emission of rad ia t ion  mus t  be calculated b y  means  
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of t ime-dependent  pe r tu rba t ion  theory .  This gives, in first order, 

(A.15) 

t 

-- ( , -  
Q 

where  l~i(t)> represents  the  s ta te  of bo th  the  oscillator and  the  rad ia t ion  field 
in the  in te rac t ion  representa t ion .  The vec tor  1~(0)> represents  a general  s ta te  
of the  oscillator and  the  vacuum of the  field. Af te r  a t ime  t, much  larger 
t h a n  eo~ 1 bu t  short  enough for  pe r tu rba t i on  theo ry  being valid~ the  amount  
of rad ia t ion  emi t t ed  is 

(A.16) <~r(t)lH~l~x(t)> = ( 2 ~ / 3 m )  t <T(0)la*-al~(0)> = rt~o~E, 

where E is the  mean  energy  of the  oscillator above the  ground state.  This 
formula,  which can be der ived f rom eq. (A.15) b y  s t ra ight forward  calculation, 
is a general izat ion of the  previous one. 

Besides calculating the  amoun t  of radia t ion  per  un i t  t ime,  i t  is in teres t ing 
to  follow more  closely the  t ime  evolut ion of the  q u an tu m  states in QED.  
In  order  to do this, we der ive in the  following an expression for the  t ime  
dependence of the  expecta t ion  value of any  operator  act ing only on the  degrees 
of f reedom of the  oscillator (i.e. commut ing  wi th  the  creat ion and dest ruct ion 
operators of photons).  Le t  us consider t h a t  the  oscillator is in a s ta te  I~(0)> 
at  t ime  t = 0, the  s ta te  at  t ime  t will be  

(A.17) 

t t t' 

I~r = [1-- ,fd,'~(, ')--fd,'~(, ')fdt~R~(,~)]  I~(O)>. 
0 l) l) 

I t  is necessary to  use second-order pe r t u rba t i o n  t h eo ry  to  ob ta in  the  s ta te  
vec tor  I~z(t)>, correc t  up to  first order  in ~. This is because the  t e rm  p . A  
is of order  one-half  in ~. In  eq. (A.17), however ,  i t  was enough to  have  tWI(t)> 
calculated up to  first order  in pe r tu rba t ion  theo ry  because second order does 
no t  con t r ibu te  to  one-photon states and the  two-photon  states give a contr ibu-  
t ion  of second order  in ~. I f  M is any  t ime- independen t  opera tor  (not neces- 
sar i ly an observable) which acts only  on the  degrees of f reedom of the  oscil- 
la tor  we have  

(A.18) 

+ (o~ , t /3 ,n )<~(o )1 (2 , ,  + . . ~ a -  , , * . , , . ~ -  M, ,  +-, ,)1~(o)> . 

This equat ion  can be obta ined  f rom eq. (A.17) b y  a s t ra ight forward  al though 
lenghty  calculation. I t  is to  be no ted  t h a t  the  equat ion  is not  val id for too 
short  t ime  intervals  because the  following replacement  has being made  in 
der iv ing i t :  

(A.19) 11 --  exp [i(co --  o)o) t] I[(co --  ~oo) ~ ~ g(~(o~-- ~o0). 
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This p reven ts  us f rom der iv ing  an equa t ion  like eq. (A.18) d i rec t ly  f rom the 
Heisenberg  equa t ion  of mot ion .  

We are now r e a d y  to s tudy  the  evolut ion of the coherent  s ta tes  of the  
oscillator according to QED.  The coherent  s ta tes  (~) are e igensta tes  of the  
ladder  opera tor  a defined in eq. (A.5). As the  spec t rum is uondegenera te ,  
each coherent  s ta te  can be label led by  its e igenvalue.  I n  one dimension,  the  
e igenvalue can be any  complex number ,  and the  following rela t ions hold: 

(A .20)  alz> = z]z> , Iz> = e x p  [ -  lz l~/2] ~ (z ~/q-nT)[n>. 
n = 0  

To s tudy  the  change in energy  wi th  t ime,  we pu t  the  oscillator t I a m i l t o n i a n  
(see just  before  eq. (A.11)) ins tead  of M in eq. (A.18) and  we ob ta in  

(A.21) <Hosc>t - <~s(t)lHossl~z(t)> = (1 --  2 o ~ t / 3 r a ) E  ~ E exp [-- 2 o ~ E t l 3 m ] ,  

where E is the  energy  above  the  ground state.  This means  t ha t  the  energy 
decreases exponent ia l ly .  ~ow,  we choose M to be  a power  of a componen t  a~ 
of the  ladder  operator ,  and  we have  

(A.22) <T~(t)la~]Ts(t) > = z " ( 1 -  nTt) ~_ z "~ exp [-- n~t] . 

I n  par t icular ,  this  shows tha t  the  coherent  s ta tes  r ema in  eigenstates  of the  
ladder  operator ,  i .e.  they  r em a i n  coherent  states.  I n  fact ,  f rom eqs. (A.21) 
and  (A.22) it  follows t h a t  

(A.23) <Ti(t) [a* "a/Ti(t)> = l<T)(t)]alTs(t)> ]~, 

which proves  t h a t  rTs(t)> is an e igens ta te  of a. 
The evolut ion of the  coherent  s ta tes  can be seen more  in tu i t ive ly  going 

f rom the s ta te  vector  in the in te rac t ion  represen ta t ion  to the  Schr6dinger 
s ta te  vector  b y  the  usual  re la t ion  

ITs(t)} = exp [iHot] ITs(t)} . 

This is g iven  by  

(A.24) <Ts(t)lalkgs(t) } =~ ( a }  t = z exp [-- i~oot-- y t  ] . 

We r e m e m b e r  t h a t  the  wave  func t ion  of a coherent  s ta te  can be represented  
b y  a m i n i m u m  unce r t a in ty  wave packe t  whose centre  is g iven b y  

(A.25) Xo = ~ / 2 I m ~ 0  ~ e  z ,  po = V ~ o  I m  z .  

This shows the  ana logy  be tween  the  mot ion  of the  coherent  s ta tes  and  eq. (7.7). 
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�9 R I A S S U N T O  (*) 

L ' e l e t t rod inamica  classiea, ins ieme con l ' ipotes i  di esistenza di una  radiazionc univer-  
sale di fondo,  invar ian te  r i spet to  a t ras formazioni  di Loren tz  (e le t t rodinamica  stocastica),  

s t a t a  p ropos ta  come possibile a l t e rna t iva  a l l ' e l e t t rod inamica  quant is t ica .  Si o t tengono 
seeondo ques ta  teor ia  le equazioni  s tocast iehe del mo to  di una  par t ice l la  car iea e si con- 
f ron tano  con quelle del moto  browniano.  Si considera  uno svi luppo delle equazioni  in 
funzione delle po tenze  della cos tan te  di s t r u t t u r a  fine ~r Si s tudia  l 'osei l la tore  a rmonieo  
e si t r ova  ehe esso esegue un moto  armonieo  semplice  n o t e v o l m e n t e  s tabi le  in fase. 
L ' a m p i e z z a  var ia  l en t amen te  ed a easo. Si calcolano i va lor i  med i  del l 'energia  c inet ica  
e de l l ' energia  potenzia lc  e si t r o v a  t h e  essi eoncordano mol to  bene  con i r i su l t a t i  del- 
l ' e l e t t rod inamica  quant i s t i ca  fino al p r imo ordine in cr Si d imos t ra  l ' es is tenza  di  s t a t i  
ecci ta t i  t h e  r isul tano mol to  simili  agli  s t a t i  eoerent i  dell 'oscilla~ore quant is t ieo .  I1 risul- 
t a to  del  ealeolo del  r appor to  di emissione spontanea  coincide con quello forni to  dal- 
l ' e l e t t rod inamiea  quant is t iea ,  m a  le ampiezze  delle l inee non eoineidono.  Si forniscono 
a rgoment i  che d imos t rano  ehe le ampiezze  quant i s t i che  delle linee, calcola te  secondo 
la teor ia  di Weisskopf-Wigner ,  non possono esserc eor re t t e  nel  easo dcl l 'osci l latore.  
$i ot~ienc inoltre,  secondo l ' e l e t t rod inamica  qua  ntis$ica, un 'espress ione generalo del- 
l ' evoluzione  del va lore  a t teso  di qualsiasi  osservabile  dell 'osci l latorc.  

(*) Traduzione a eura della Redazlone. 

l"apMommeaon~ ocm~.qaTop n CTOX~i'Ilqe~KOI~ ~ J l e K T p O ~ e .  

PC~mMe (*). - -  KaK BO3MO~(ltalt an~,TepaaTnaa KBaHTOBO~ 3HeKTpOn3~UaMHKe, npe~na-  
raeTc~ KnaccH,~ecKaa 3JmKTpo~HaMrIKa C rItIIOTe3O~ yrmnepcanbr~oro, ,lIopeHTt~-nmm- 
prmHrr~oro, qbononoro Hany~ern~ (CToxacTff~ecKaa 3 n e x T p o ~ a M n x a ) .  B COOTBeTCTBHII C 
aTO~ Teop~e~ BBIBO]I~ITCJt CTOXaCT/4qeclffle ypasHermg ~nrt~erma 3apa~rermoi~ ~acTm~i. 
~)TH ypaBHem4~ cpaBHrmamTc~ c ypaBnermaM~ ~poyHoBCKOFO ~BH)KeHI4~I. PaccMaTpa- 
BaeTcs pa3~o~erme 3THX ypaBHerIr~ He cTeneHaM HOCTOmtHOi~ TOHKO~ cTpyKTypBI ct. 
I/IccYte/lyeTca rapMoma~ecio~ OClI~IJIYIIITOp C TeM pe3yYlt,TaTOM, ~ITO OClIHJIJ/~ITOp coBeprnaeT 
HpOCTOe rapMoma~ecKoe ~lBn~en~e, oqerm yCTOffIqHBoe He r AMH~II4Ty~a ~3Mel~leTc~t 
Me~J~en~o H xaoThmecrm BBlXI~CYI~ItOTC~I cpe~rme n e n m m n ~  raue~n~ec~o~ ~ r~oTert- 
Lr~aJIbHO~ 3Heprrm. YIo~y~aeTc~ ~[OBOJIBHO xopomee  co raacae  c pe3yzIBTaTaMH IO~aH- 
TOBOI~ ~ e K T p O ~ a M m ~  BIIJ/OTIa ~O HepBorO HOp~Ka He ~. l-[oKa3BiBaeTc~l CylIIeCTBO- 
Barite Bo35y~em~b~x COCTOam~, ~oxopb~e OKa3blBalOTC~l xoreperrrrmr~n~ c o c T o m m a v ~  
KBaItTOBOFO OCJ~J~J~aTopa. nbtq~4cyieriHa~ HIITeHCHBHOCTB CnOHTartnoro H3ay~em~a cor~a-  
cyeTC~ C pe3yJIbTaTOM KBaHTOBO~ 3yieKTpo~r~arcmra4, HO nmpHHa J~Hm~H He cor:~acyeTc~. 
l-[pHaoIIgT~t apryMertTBL ~OTOpbIe tio~a3BmaroT, ~ITO ~aHTOBa~t, u m p a a a  aa rma ,  s ~ i ~ -  
eaerma~ cornacno  Teopn34 Ba~cc~onqba-Brtr~epa, He MO)IgeT 6blTb HpaBHJIbrtO~ B cny~ae 
O C I ~ t ~ T o p a .  Taiore B~,mo~rtTCg o6mee B~,Ipa~e~tHe ]IH~ 3 B o J i i O ~  o~ff~aeMo~ Be3IH- 
m m ~  ~z~a ztIOSO~ Ha6am)IaeMo~ o c t t ~ n a T o p a  ~ r, aan~ro~o~ 3aerTpO~HHa/Vl~Ke. 

(*) l'[epeaec)eno pec)alcque~. 


