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Summary. — By representing each occurrence of a closed quantum
system by an operator which factors into a tensor product of a retarded
and an advanced solution to the time-dependent Schrédinger equation,
a local and objective description is obtained for each of the remote parts
of an Einstein-Podolsky-Rosen-type situation.

Quantum theory and experiment agree in all the diverse situations for
which the relevant physical interactions are known and the mathematical
problems solvable. Certain difficulties still persist in the interpretation of single
quantum systems (!). One of these is the global nature of quantum states,
providing no local description for each of certain remote pairs of systems of
the type suggested by EINSTEIN, PODOLSKY and ROBEN (2). Another one is
that the applicability of quantum physics to all systems seems to require that
there be either just one conscious observer in the Universe (3), or else a eon-
stant splitting of the Universe into many coexisting but noninteracting ones (*).
Both these difficulties arise in the following thought experiment, of which
this paper gives a local and objective interpretation, i.e. one in which all
the effects of any external perturbation of an otherwise closed system propa-
gate continuously in space-time, and in which human consciousness plays
no greater role than it does in macroscopic physics.

() M. JamMER: The Philosophy of Quantum Mechanics (New York, N.Y., 1974).
() A. EinstEIN, B. PopoLskY and N. RosSeN: Phys. Rev., 47, 777 (1935).

(®) E. P. WIGNER: Amer. Journ. Phys., 31, 6 (1963).

(*) H. Everert III: Rev. Mod. Phys., 29, 454 (1957).
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A hydrogen atom with total-spin zero is ionized and its proton and electron
are isolated in sealed boxes. This is done with negligible spin interactions, and
the boxes are then taken far apart. Later on the electron box is opened by a
quantum system F (e.g., Wigner's friend) and the z-component of the electron
spin is measured and recorded. Entirely within the relativistic present of this
interaction between the electron and the system F, a person W (e.g. Wigner)
opens the proton box, measures the z-component of proton spin and finds
it, say, positive. Then W visits ¥, looks at the record of F's previous measure-
ment of the z-component of the electron spin and finds also it, say, positive.

Standard quantum physics gives not only a consistent account of W’s
perceptions in this one situation, but also the relative frequency, }, for W’s two
obserwations to recur in a large number of similar situations. In this standard
interpretation, W’s perception of the result of the proton measurement changes
the state of the total system from an eigenstate of total spin with eigenvalue 0
to a simultaneous eigenstate of the z-components of both proton and electron
spin with eigenvalues plus and minus 4, respectively. This interpretation
provides no account, consistent with the assumption that quantum physics
applies to F, for any perceptions F may have of the electron spin measure-
ment before F’s record is observed by W (3). In contrast, W has no privileged
role in the reinterpretation suggested in this paper.

1. — Definitions and postulates.

« Systems », « quantities » and «runs» are three basic terms which, logi-
cally, we leave undefined. Intuitively, a system is a set of possibilities, typically
characterized by certain translational and rotational degrees of freedom, for
a small isolated part of the physical universe. A quantity is an observable
which can be measured at any time, on each occurrence of a system and to
arbitrary accuracy by operationally defined procedures. A run is the develop-
ment over space-time of just one occurrence of some closed system; although ac-
tual runs are subject to nncontrolled external perturbations, these presumably
can be made arbitrarily small over long times so as to approximate idealized runs.

Our basic physical assumption is that each run is fully determined by a
combination of initial and final conditions, though not quite by initial or final
conditions alone, because of the quantum uncertainty relations which apply
to both (°). Now we make four mathematical postulates to make this precise,
limiting ourselves for simplicity to the Sehrodinger picture for the time develop-
ment of systems whose Hamiltonian is constant.

Postulate 1. For each system, there is a Hilbert space 5.

(®) A. EinstEIN, R. ToLmMaN and B. PopoLSKY: Phys. Rev., 37, 780 (1931).
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Postulate 2. For each quantity of a system, there is a self-adjoint operator
on at least a dense subspace in 5; among these there is the Hamiltonian H
of the system, which represents its total energy.

Postulate 3. For each run of a system and time ¢, there is an operator o(t)
on 5 which is

a) idempotent, p%(t) = p(t);

b) of rank one, i.e. the set of all g(t) y, for we#, is a one-dimensional
subspace in J#, which may depend on ¢;

¢) a differentiable function of ¢, satisfying
itho'(t) = Ho(t) — o(t) H ,

where o' is the time derivative of p and 2x#% is Planck’s constant.
Postulate 4. The value x of a quantity X is uniquely determined at time ¢
by the initial conditions of a run if and only if

Xo(t) = wo(?) .

The value x of a quantity X is uniquely determined at time ¢ by the final
conditions of a run if and only if

o(t) X = zo(?) .

The only values uniquely determined in a run are those determined by
initial conditions, final conditions or both.

2. — Theorems.

Theorem 1. For each run of a physical system there are two time-dependent
state vectors w(?) and @(f) of #° with the properties

a) (@(t), p(t)) =1,
b) ihy'(¢) = Hy(?) and g’ (t) = He(t),
¢) Xy(l) = zyp(t),

if and only if the value x of the quantity X is uniquely determined at time ¢
by initial conditions, and

d) Xo(t) = 2g(t),

if and only if the value 2 of the quantity X is uniquely determined at time
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t by final conditions. If both initial and final conditions determine a value
of a quantity at some time, then they must determine the same values.

Proof. For any rank-one operator g, there are nonzero vectors y and ¢
for which o = (¢, {)y for all vectors { of ). These y and ¢ are unique to
within reciprocal complex factors, and g is indempotent if and only if (p, ») =1,
thus proving part a) of the theorem. Part b) follows from postulate 3¢), and, for
part ¢), use postulate 3d) and the fact that X = X', Xy = xyp, Xo = yp and
(@, )~ 0 implies x=1y.

In other words, for each run of a system there are two solutions to the time-
dependent Schrodinger equation, i.e. a retarded solution ¢(f) determined by
initial conditions and an advanced solution ¢(t) determined by final conditions.
The postulate that g is idempeotent ensures that these two state vectors are
not orthogonal at any time and so they do not determine conflicting values
for any quantity. However, since we do not postulate that o is self-adjoint,
the state vectors y and ¢ may be linearly independent, and in this case there
are some self-adjoint operators for which just p or ¢ is an eigenstate but not
both. In this sense, y and ¢ specify complementary but not contradictory
aspeets of a run.

In an Einstein-Podolsky-Rosen situation, the retarded state g, of a com-
posite system is not a tensor product p, ® y» of any two states p, and y; of
its remote parts A and B. Nevertheless, the advanced state g, may still be
a tensor product g, ®¢@s of advanced states ¢, and ¢p of each part. In this
formulation of quantum physics, but not in the standard one, there are then
retarded as well as advanced states for each one of the remote parts which
determine the same values for all local quantities as the composite states do.

Theorem 2. For each vector ¢, of a Hilbert space 5, g5 of a Hilbert space
3, and g, of the tensor product space #, ® 5%, there are unique vectors
w4 of 5%, and y, of #% satisfying

(Fay Xaps) = (994 s, (X4 15) 'PAB)
and

(?78, Y, WB) = ((PA ®<PB» 1. ® sz) 'i’Aa)

for all operators X, on 5, and Y on 55, where 1, and 1, are the identity
operators on M, and J;, respectively. These 1y, and y; are also uniquely de-
termined by

(CA, 'PA) = (&4 ®(P51 1/)48)

and
(CB, 1/)5) = (‘PA ®CB; 1PAB)

for all vectors &, of 5%, and {; of 4.
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Proof. Use the identities

(‘PA; X, Ya) = (X:‘Pu 1/’A) = (X:¢A®(p81 WAB) =
= ((X: ® 13)(974 ®99B), 'PAB) = (‘PA ®<Pa, (XA ® 1s) V)Aa) .

3. — Wigner’s friend in an EPR situation.

To apply this formalism to the thought experiment sketched in the intro-
duction, let »#,, »#, and #; be two-dimensional Hilbert spaces representing
the spin states of the proton, the spin states of the electron and the two ortho-
gonal states used by F to record the result of the electron spin measurement.

Since spin interactions are assumed to be negligible during the ionization of
the hydrogen atom and the storage of the proton and of the electron, a retarded
spin vector for the proton-electron system is y, =1 —1*1| of #, ®@H#. F’s
measurement of the z-component of the electron spin determines the electron
advanced spin vector ¢, =4, W’s measurement of the z-component of proton
spin determines the proton advanced spin vector ¢, =1 + |, and W’s ob-
servation of F’s record determines its advaneced vector gy = 4. Then these data
and theorem 2 uniquely determine the retarded spin vectors of both proton
and electron, y, = and y,=4—|. The interaction between electron and
system F determines F’s retarded vector y.=1— |, as in the standard inter-
pretation of quantum physics.

The retarded and advanced vectors for the proton and the electron de-
termine the runs of these parts of the composite system, and these runs are
represented by the rank-one, idempotent, but not self-adjoint operators
e,=3(1—0,)140,) on #, and p,=3}(1—o0,)(1+0,) on . Since the
proton-electron advanced vector is the tensor product ¢, =414 4 |} of the
advanced vectors ¢, =% + | and ¢,=1, the operator on ¥ ®# repre-
senting the composite proton-electron run is similarly determined.

4, — Conclusions.

This formulation of quantum physics hag the following features in common
with macroscopic theories:

1) In the formalism there is a representation for each run of a system,
independent of any person’s knowledge of it.

2) Each noninteracting component of a composite system, as in an EPR
situation, has its own representation with an independent time development,
in addition to the representation of the composite run.
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3) Our postulates concern only those values of quantities which are
uniquely determined in a single run. Single measurements can refute asser-
tions about these; measurements on ensembles are necessary to refute statistical
assertions. The statistical features of an ensemble can be derived by con-
sidering it as a large composite system, as has been done by HARTLE in the
standard formulation of quantum physics ().

4) Interactions between a physical system and a conscious being are
not considered essentially different from other interactions among physical
systems.

In this formulation of quantum physics, effects of interactions with a pre-
viously closed system « propagate backward in time », not changing the value
of any quantity which had been determined by the initial conditions of this
run, but rather determining additional quantities. These effects have current
significance only if «echoed » forward by a previously established coherence
of the EPR type between this run and another with which it once interacted.
Then additional quantities may be determined in some current but distant run.
This approach is akin to the space-time view of electromagnetism and quan-
tum physics of Stiickelberg (?), Wheeler (®)), Feynman (*) and de Beaure-
gard (). However, here we use a tensor product of advanced and retarded
waves instead of a superposition of them. One consequence of this aspect of
the formalism is that symmetry under space-time inversion is maintained for
measurement processes (11). Another is that Bell’s theorem excluding a local
resolution of the EPR paradox is not applicable, since it assumes all effects
to propagate forward in time (2).

In the example considered, F’s record shows the value of a quantity de-
termined by final and not initial conditions. Since F may be a person aware
of making this record, we conclude that, even though we assume that our
perceptions are fully determined by the values of physical quantities, they
are not fully determined by our pasts.
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® RIASSUNTO (")

Rappresentando ogni verificarsi di un sistema quantico chiuso mediante un operatore
che si scompone in un prodotto tensoriale di una soluzione ritardata e di una avanzata
dell’equazione di Schriodinger dipendente dal tempo, si otticne una descrizione locale
e obiettiva per ciascuna delle parti remote di una situazione del tipo di quella di Einstein-
Podolsky-Rosen.

(*) Traduzione a cura della Redazione.

KBanToBas ¢QH3HKA H3IOMPOBAHNKX CHCTEM.

Pesome (*). — IlpencTasnss KaXaoe CYLIECTBOBAHUE 3aMKHYTOM KBAHTOBOM CHCTEMEI C
MOMOIULIO ONepaTopa, KOTOPBLf pacmajaeTcs Ha TEH30PHOE IPOM3BEICHHE 3ama3jibl-
BAIOLIETO M ONepexaroulero pemenult ypassenns llpeaunrepa, 3aBUCAIIETO OT BPEMEHH,
NOJyYaeTCs JIOKaJbHOe M OOBEKTHBHOE OIMCAHHE JIA KaXI0M M3 OTHaNCHHBIX dYacTei
ansa cuTyauuu tuna fuwreina-IToxonscxoro-Posena.

(") Hepesedeno pedaryueit.



