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Summary .  - -  In  this  paper  a proof is given of Kolmogorov 's  theorem 
on the existence of invar iant  tor i  in nearly integrable Hamil tonian systems. 
Tho scheme of proof is tha t  of Kolmogorov, the only difference being in the 
way canonical t ransformations near the ident i ty  are defined. Precisely, 
use is made of tile Lie method, which avoids any inversion and thus any 
use of the implicit-function theorem. This technical fact el iminates a 
spurious ingredient and simplifies the establishment of a central est imate.  

PAC8. 03.20. - Classical mechanics of discrete systems: general mathe-  
matical  aspects. 

1. - Introduction and formulation of  Kolmogorov's theorem. 

1"1. - T h e  ~ im of  ~,his p a p e r  is to  g ive  a p r o o f  of K o l m o g o r o v ' s  t h e o r e m  on t h e  

e x i s t e n c e  of i n v a r i a n t  t o r i  in  n e a r l y  int, e g r a b l e  H a m i l t o n i a n  s y s t e m s  (1.J~) w i t h  

(1) A. N. KOL~sOGOrtOV: Dokl. Akad. ~u $88R,  98, 527 (1954) (Math. Rev., 16, 
No. 924); English t ransla t ion in G. CASAXI and J.  FORD (Editors):  .Decture ~Votes i~ 
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mostly pedagogi(:al in tent ;  thus we consider the simple.~t ca.~e, namely that  
of ,~nalytie and nondegener:~tc lIamiltoni,%ns, but give, however, expli(.itly all 

relevant estinmtes. In  parlieular, in deMing whith canonical transfornm- 
tions nenr the id~,ntity we make use of the Lic method which avoids 
:tny inversion and t~hus any reference to the implicit-function theorem. This 

f~ct, which is u purely technical else, eliminates ~ spin'ions ir~gredienL ~nd 
simplifies the establishment of ~ central  estimate. Apar t  from this technie,~l 

fact, we follow here the original scheme of Kohnogorov,  which can be considered 
to be, e.~peci,dly from a pedagogical point of view, somehow simpler (although 
possibly less powerful) than  the scheme of Arnold. Moreover, the proof of 
convergence of the iteration scheme is given in ,~ ra ther  simple way which, 

in purticul,~r, makes use only of trivial geometric series. Thus it is hoped that  
the present versio~ will be u.~eful 'it least in expanding the familiarity with 
this iml)ortant theorem, which still seems bo be eonsidcced, especially among 

physicists, :~s an extremely difficult, one. 

1"2. - In the theory of pertttrb:ttions one is concerned with an l famil tonian 

H(p,  q) = H~ + HI(p,  q) , 

Physics, No. 93 (Berlin, 1979), p. 51. 
('-) V. I. ARNOLD: USp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surv., 18, 9 (1963); 
Usp. Mal. Nauk., 18, No. 6, 91; Russ. Math. Surv., 18, No. 6, 85 (1963). 
(2) V. I. ARNOLD and A. AVEZ: Probl~raes ergodiques de la mdcanique classique, 
(Paris, 1967). 
(4) J. MOSES: Proc~',.dings el the international Con]erence on Functional Analysis and 
Related Tapics (Tokyo, 1969), p. 60; Stable a ~  random motions irt dynamical 
systems (Princeton, 1973). 
(~) S. STERIUBERG: Celestial Mechanics (New York, N. Y., 1968), Part. 2. 
(*) E. A. GREBENNIKOV and Ju. A. RiABOV: New Qualitative Methods in Celestial 
Mecbanics (Moskow, 1971), ill Russian. 
(~) H. Ri)SSMa.'~N: Nachr. Akad. Wiss. Gall. Math. Phys. Kl., 67 (1970); l, {1972); 
Lecture Notes ia Pky.~ies, No. 38 (Berlin, 1975), p. 598; in SeIect~ Mathematics, Vol. 5 
(Heidelberg, Berlin, 1979); in G. Hr.LLEMAN (Editors): Ann. N. Y. Acad. Sci., 357, 90 
(1980); see also On the con.~truction el invariant tori of nearly integrablc Hamillonian 
systems with applieatio~ts, notes of lectures given at the Institut de Statistique, La- 
boratoire do Dynamique Stellaire, Uaiversit6 Pierre et Marie Curie, Paris. 
(s) R. BaRRAR: Celts. Mech., 2, 494 (1970). 
(~) E. ZE~r~DER: Co~nmun. Pure Appl. Math,  28, 9l (1975); 29, 49 (1976); scc also 
Stability Rind instability in celestial mechanics, lectures given at Ddpartment de PhFsique, 
L.~baratoire de Physique Thdorique, Ecole l'olytec.hnique Fdd5rale, Lausanne. 
(~o) A. I. NEICHST,t~T: J. Appl. Math. Mech., 45, 766 11981). 
(l~) G. Ga-LL~VOTrI: Mecca,ties elementare (Torino, 1980); The Eleme~ts o] 3[eclm~ics 
(Berlin, 1983); in J. FR6LmH (Editor): Progress in Physics (Boston, ]982); L. ('HI~:R- 
Cmh anti G. GALLaVOTTI: Nuovo Uimento B, 67, 277 (1982). 
(12) j .  POESCnEL: Commun. Pure Appl. Math., 35, 653 (1982); Celest. Mech., 28, 133 
(1982). 
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where  

p = (p~, . . . ,  p . )  e B c R ~ ~nd q ---- (q~, . . . ,  q . )  ~ T "  , 

B being an open b.tll of R" and  T" the  n-dimensiomd torus.  The var iables  p 
and  q a.re called the  act ions and  the  angles, respect ively.  The  funct ions on 
the  torus T" are na tura l ly  identified with the  funct ions defined on R" and  of 
period 2.u in q~, . . . , q , .  For  any  p a B  the  unpe r tu rbed  angular  frequencies 
a) := (co~, ..., co , ) - - (~Ho/~p~,  . . . ,  E H ~  ~H~ are defined. In  Kohnogo-  
roy ' s  t heorem the nondegeneracy  condit ion det(Sco~/~p,)-.~ 0 is assumed;  as 
is well known, t he  extension to degenera te  sys t ems  was accomplished by  
ARNOLD. 

I n  the  unpee turbed  case (H ~ - - 0 ) ,  the  equat ions of mot ion reduce  to 
" 0 ' ~  qO : - -  8 H ~  - -  0, ~ - -  cH / c ,p  - -  ~o(p) with solutions p ( t )  - pO, q(t)  - -  

~-  (o (p~  (mod2.'z). Tlms the  phasc  space B •  T" is foliated in(o toni {p} • T ", 
p e B, each of which is inv,~riant for the  corresponding Hami l ton i an  flow 
and  supports  quasi-periodic motions character ized b y  a f requency  ,~ ~ ~o(p). 
We recall  t h a t  2 is said to be nonresonant  if there  does not  e ~ s t  k e  Z ' ,  

k ~ 0, such t h a t  ~t.k - -  0, where  we denote  X.k ~ i 2~k~. 
t--I 

I n  Kohnogorov ' s  1~heorem the a t t en t ion  is res t r ic ted  to those tori which 
suppor t  quasi-periodic mot ions  ' w h h  appropr ia te  nonresonant  frequencies,  
namely  frequencies belonging to the  set  -Qv defined by  

(1.1) 

for a given posi t ive  y, where  [2 --- o~(B) is tile ima.ge of 11 by  t.he map  oJ ( ~  is 
a ssumed  to be bounded,  which can alw.~ys be obtabted  by  possibly reducing 

the  radius of the  ball  B ) .  H e r e ,  as above,  )..k = ~ ) . , k ,  and,  moreover ,  

!k[ - - m a x  [k~l; more general ly,  for v, w E  C", we will denote  v . w - - ~ v ~ w ~  

and !v[l - -  m~x I v~]; aml.logously, the  uorm :CI] of a ma t r ix  {C, j }  will be defined 

as for a n*-vector C e C ~', namely  by  ]iC:i = m a x  ]C,j i. I t  is a s imple classical 

result  (see, for example ,  ref. (2)) tha t ,  for any  tixed y, the  complemen t  of .(2 v 
in ~ is dense and  open and t hat~ its re lat ive Lebcsgue measure  tends ~o zero 
with y. Thus for a lmost  all frequencies ), E [2 one can find a posi t ive  7 such 
t ha t  2 e ~v.  Because of t he  relat ion .Q~, c ~Q~, if 7 < Y', it will be no restric-  
t ion to ~ake y < 1. One is led to the  d iophaut inc  condition defining f2v, b y  
the  problem of solving a. par t i a l  differential  equat ion of the  fo rm 

. 8 / v  
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where the  unknown funct ion 2'  and  the  given funct ion G are defined on the  
torus  T" and  G has vanish ing  average.  An analogous a r i thmet ica l  condition in 
a different bu t  s t rongly  rela.ted problem was first  in t roduced by  SrEOEL (~~). 

Le t  us fix some more  notat ions .  Being in te res ted  in the  analyt ic  case, 
we will have  to consider complex extensions of subsets  (:f R -~" and of real 
ana ly t ic  funct ions defined there .  Since we h 'we  fixed p * e  B and a pos i t ive  

~ 1 so small  t h a t  1;he real  closed ball of radius ~ cen t red  a t  p* is conta ined  
in B, a cen t ra l  role will be p layed  by  ~he subsets  Do,,. of C ~" defined by  

(1 .2 )  D o . , .  == { (p ,  q) e C~"; lip - * I p .. : : ~ ,  I l I m q l [ < ~ } ,  

where  I m q - - - - ( I m q , ,  . . . , h n q , ) .  For  wha t  concerns funct ions,  let  ~Q.,. be 
the  set  of all complex cont inuous functions defined on De.,. ,  ana ly t ic  in the  
inter ior  of Do . , ,  which h a v e  per iod 2~ in q~, ... ,  q, and arc  real  for real  vMues 
of the  v~riables.  I f  / e ~/~ ~., i ts norm is then  t aken  to bc  [] 'q,~. ---- sup I](x)l; 

m zEDo 1~* 

in the  case of funct ions ] = (],, . . . ,  1,) wi th  values in C' ,  we also write ] ~ .~/,,,. 
if / , e~ , / ,~ .  (i ----1, ..., n), and we set  [!/iio,,. = m a x  IIJ, IIQ.~*. In a g r e e m e n t  

, f; 

with  the  convent.ion made  above,  if C is a n X n  mal r ix  whose e lements  C ,  
belong to ~r we  set  IIC,,q,~. = m a x  liC,~',le,,.; thus,  iu par t icu lar ,  for any  ' Gt 

v e C" one has the  inequal i ty  ]ICv[IQ.~. ,;nl]Cl]o,,Hv 1. For  nota t ional  s impl ic i ty  

we also set  D o - - D o , o ,  Mo------ do,o, ]].]~ = ]]llo,o. Averaging over  angles will 
be denoted  b y  a ba r :  namely ,  if J c= ~o.~., t hen  we denote  

( 1 . 3 )  ] ( p * )  - 

2~ 9~ 

] , ... 

0 0 

Funct ions  ](p), ](q) of the  act ions only or of the  angles only will be t hough t  
of as defined in. Dq,~. b y  t r ivial  extension.  

L e t  us fin~flly r e m a r k  tha t ,  for the  given t t ami l ton ian  H ~ s/q,,. ,  one can 
assume ]]H]:o, . < .l; indeed this can always be ob ta ined  by  the  change of 
var iables  (p, q) ~ (up, q) with a sui table  posit~ive a, which leaves the  equat ions 
of mot ion in I-Iamiltonian form with a new ttanfiltonia.n H ' = -  a l l .  

1 " 3 . -  Kolmogorov ' s  t heo rem c~n then  be s t a t ed  in tlle following way:  

Theorem 1. Consider the  I I ami l ton ian  H(p, q)---He(p) H'(p,  q) defined 

in B X T" and,  a f t e r  having fixed p * e  B, denote  

( 1 . 4 )  
P~H ~ 

). = ~o(p*) = ~ ( p * ) ,  
O/) 

~e>, ~ , :H ~ 
c ~  :=  ~ (p*) - ~p, ~p, (p*) . 

(13) C. L. SIEGEL: A~n. Math., 43, 607 (1942). 
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Assume there  exist  posi t ive numbers  77 ~, d ~ 1 such t h a t  

(.1.5) i) ). e ~ y ,  

(1.6)  ii) H o, H '  e d e , , .  , 

(1.7) iii) dliv ~ < ilC*vJi <d-liiv][ for any  v ~ C" 

and,  moreover ,  I!H[:l.p. <1.  Then  there  exist  posi t ive  mmibers  E and  ~' with 
Q'<~ such tha t ,  if the  norm ][H 1 Io.o* of the  pe r tu rba t ion  H 1 satisfies 

(1.s) [n ' l l , . , .  < ~ ,  

one can cons t ruc t  a canonical  ana ly t ic  change of var iables  (p, q) = ~(P,  Q), 
,p: D~ , -~Do , , .  , ~ ~ ~ , ,  which brings the  t t ami l ton ian  H into the  fo rm 
H ' :  H o ~  given by  

(1.9) H'(} ' ,  Q) = (HoyJ)(P, Q) = a + ; t .P  4-/~(/>, Q); 

here  a e R  and  the  r emainder  R e x / d  is, as a funct ion  of P ,  of the  order  
]P]l t. I n  par t icular ,  one can t ake  

(1.10) E -~ c, Tl d * ~s(.+l~ 

where  

(1 .H)  c. \ 5 ~ /  \ 4 n + l / \ n + 1 ]  " 

The change of var iables  is near  t he  ident i ty ,  in the  sense t h a t  

i! ~ - -  ident i ty l ld-+  O, as I]H~i!~,,. -~ O.  

1"4. - Le t  us m)w add some commen t s  on the  in te rpre ta t ion  of Kolmcgo-  
roves theorem.  I n  classical pe r tu rba t ion  theory one a t t e m p t e d  a t  cons t ruc t ing  
a canonical  change of var iables  with the  a im of e l iminat ing the  angles Q in 
the  new Hami l ton ian  H ' ;  in such a way the  phase  space would tu rn  out to 
be foliat,ed into invar ian t  tor i  P --  const ,  which is possible only for the  excep- 
t ional  class of in tegrable  systems.  As one sees, in the  me thod  of Kohnogorov  
one looks inste~d~ in correspondence with any  good f requency ), (i.e. any  
). ~ f2~ for some 7), for ~ re la ted  change of var iables  which el iminates  the  
angles Q only a t  first order  in D. In  such a way, one renounces to have  the  
general  solution P(t) -~ p 0  Q(t) ~ Qo _~ co(1:,o)t (mod2~)  corresponding to all 

14 - I I  N a c r e  Cim~nto B.  
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initial data  (po, QO) ~ Dq., but  one gels, however,  for any  good f requency  2, 
the par t icular  solutions P(t) ~-- po, Q(t) ~ Q ~ 2t (mod2g) for all initial da ta  
(/~, Qo), with / ~ - 0 ,  Q~ T"; this is immediate ly  seen by writ ing down the  
equations of motion for H', namely /5 ~ - -~R/~Q,  Q ~ ). + &R/~p and using 
the fact  t ha t  R(P ,  Q) i~. of order  I[PI] z. Thus with the  H~mi ton ian  in the  
new form H ' ,  adap ted  to the  chosen f requency 2, one is not  guaran teed  
to have a foliation into invar iant  tort, bu t  one jus t  ~ees by  inspection 
the  invariance of one torus support ing quasi-periodic motions with angular  
f requency  2. In  terms of the  original variables (p, q) canonically conjugated 
to (P, Q) by the mapping yJ, this torus is described by  the  paramet r ic  equa- 
tion~ (p, q ) ~  yJ(O,Q), Q e T ~, and is invar iant  for  the  Hami l ton ian  flow 
induced by  H. Thi~ t~rus is a small pe r tu rba t ion  of the  torus p = p*, q E T ", 
which is invariant  for the  Hamil tonian H 0, support ing quasi-periodic motions 
with the  same angtflar frequency.  

In  such a way, having fixed a posit ive y < 1, to ~ny p * e B  with a good 
f requency )~ ~- w(p*) e Y2v (and also satislying the two /urther conditions o] theo- 
rem 1), one can associate ~ t oms  which i~ invar iant  for the original Hamil- 
tonian H suppol%ing quasi-periodic motions with f requency ~. :Now, as in 
v i r tue  of the nondegeneracy condition the  mapping r co(B) is a 
diffeomorphism, one has t h a t  the  ~et of points {p* e B;  co(p*)Ctgv} has a 
Lebesgue measure which tends to zero as Y --~ 0. This remark  suggests tha.t 
the  2n-dimensional Lcbesgue measure of the  set of tort whose existence is 
guaranteed  by  Kolmogorov's  theorem is positive and tha t  the  measure of its 
complement  in B •  T ~ tends  to zero as the  size of the  per turba t ion  tends  to 
zero. Actual ly this fact,  which was ah'eady s ta ted in the  original paper  of 
Kolmogmov,  was proved  by  A~NOLD (see also (~o) for a recent  improvement  
and (~)) using a var ian t  of Kohnogorov 's  method,  but  will not  be proved  in 
thc  present  paper.  

2.  - R e f o r m u l a t i o n  o f  the  t h e o r e m .  

2"1. - The proof of the  t, heorem starts  with a tr ivial  rear rangement  of the  
t tami l touian  which reduces it  to the form actually considered by  KOL~O~0ROV. 
Indeed,  af ter  a t ranslat ion of p* to the  origin, by u Taylor  expansion in p 
one can write the  Hamil tonian H in the  form 

(2.1) H(p,  q) = a -~- A(q) 4- [). ~- B(q)J.p + ~ ~ C , (q )p ,p~-  R(p, q) ,  

where a e R is a constant  which is uniquely defined by the  condition ~ ---- 0, 
while A, B, ,  C,,  R E d s  and 1~ is, as a funct ion of p, of the  order  lip[j3. 
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One has clearly 

a = Ho(O) + i i ' ( 0 )  = • ( 0 ) ,  

A(q) = ~ ' (0 ,  q ) -  ~7,(o) = H(o, q) - -  a ,  

8H1 (0, q) ~H (2.2) B,(q) = ep--~ ---- ~ (0, q ) - -  :t , ,  

- -  ( 0 ,  q ) .  Co(q) - -  8p, ~P4 

This Hamil tonian H has then  already the  wanted  form (1.9) of theorem 1, 
a p~rt  f rom the  disturbing te rm A(q) + B(q) .p ,  which thus  const i tutes  the  
actual  pertm'bat ion in the  problem at  hand and will be elinfinated in the fol- 
lowing by  a sequence of canonical  t ransformations.  

2'2. - One is thus interes ted in giving est imates on A, B----{B~} and 
C -- {Cu}. To this end we will make use of the  familiar Cauchy's inequali ty,  
which will also be used repeatedly  in the  fu ture  sections. This inequal i ty  
will be used in our f ramework in two forms:  given ] e ~r a positive (~ < 
and nonnegat ive int;egers kt, l, (i--~ 1, ..., n), then one has 

( 2 . 3 )  [ ~k,+.. +k~+z,+...+s, k,  ! . . .  k ,  ! l, ! . . .  I ,  ! 
i@~' ... @ 2  ~qi' ... ~.q':/(v,  q)]<.~ ~,+  .~. . , ,+. . . , .  I:/1'.~ 

for all points (p, q)eD~_e,  and 

~.r,+. +~,  k~ ! . . .  k~ ! 
(2.4) b p~, :.. @ 2  I(o, q) < ~ , ~ + ~  I:11!~ 

for all points (0, q) with IlIm(q)l! :;Q. The proof cart be given exact ly  along 
the  same lines as in the  case of a po lyd i sk  (see, for example,  ref. (u)). 

I t  is easily seen tha t  one has 

( 2 . 5 )  m~x(l[Aiio , hBli~) < 2E/q 

and tha t  there  exists a positive number  m < 1 such t h a t  one has 

(2.6) mllvll < 1:By',, IlCvll,.<m-'llvll for an v e C=; 

precisely one can take  

(2.7) m -~ d /2 .  

(a4) B. A. Fuel,s: Introduction to the Theory of Analytic F~tnctions o/ Several Complex 
Variables, Translations o] mathematical monographs, Vol. 8. (Providence, R. I., 1963). 
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For what concerns (2.5), let us remark  tha t  one has 

"(2.8) IIaHo<2fn'l l~,  IIBII0<~ H n ' l , ,  

the first one following immediately from the very definition (2.2) of A, while 
the  second one folJows from Cauchy's inequali ty (2.4) applied to 

]/~ll, = max ~up @ ,  (0, q) . 

Inequal i ty  (2.5) then follows from Q,~I and from (1.8), which reads now 

Coming now to (2.6) ~nd (2.7)~ let us remark tha t ,  by  definitions (2.2) of 
C and (.1.4) of C*, one has 

(2.9) C ( q ) -  C* ~--- / ~2H~ } 
Lop, ~p, (o, q) , 

so tha t  from C~uehy's inequahty  (2.4) with our definition of the  norms one 
deduces 

(2..10) I f (C-  c * ) ~ i l ~ < ~  IIB'~ Ilvl. 

By [IH~I!~ ~ E  and the  estimates (1.10) and (1..11) for E one has then  surely 
also 

(2.11) II (c  - c*) v I1~ < (a12)I!v I I ,  

which guarantees 

(2..12) I:C*v] - ] ( c -  c*)~ I1 > (a/z):l~ll ~ o ,  

as is seen by using J[.-~.[] < :J...l'-~ and (1.7). Using now the ident i ty  

(2.13) C -~ C* ~ (C --  C*), 

or also C .... C* ~- (C--C*)~ by (2.12) one gets 

(2.~ 4) I;Vv I; > J li c *  ~ II - ll(C - c * )  v Ill > (d/2)ll v II, 

namely t, he first of (2.6) with m .-d/2 .  Analogously, f rom (2.13) one gets 

(2.15) ljcvlt~ < IlC*~ll § II(C - c*)vl !~,  
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or with (1.7) and  (2.11) 

(2.16) l l~vl l~<(~-~+ d!2)'v, < 2d-~llvll I 

2 " 3 . -  I t  is t h e n  immed ia t e  to deduce t heo rem i f rom the  following 

Theorem 2. Fo r  g iven posi t ive  numbers  y, Q, m < 1, consider the  t t ami l -  
tonian  11(p~ q) ~ He(p, q) ~-11~(p, q) defined in the  donmin De by  

(2.17) 

(2.18) 

11O(p, q) : a -- )..p ~- �89 ~_, C,j(q)p,p,~- R(p, q) ,  

11~(p, q )=  A(q) + N' B,(q)p, 

with ]1//11o<1; here  a e R ,  ]t~oQ:,, A,  B~, 6'~j, R ~ ; ~ o  and  A -----0, while R 
is, as a funct ion of p, of the  order  ilpl] ~. :For t he  m a t r i x  C(q) = {C,(q)}, assume 

(2.19) mllvll < IlCvll, :lCv:l~ < m-~l!vll for a n y  v e C " .  

Then the re  exist  posi t ive numbers  s and  ~' wi th  o ' < ~  such that~ if 

(2.20) max(llAJIe, IIBII~) < ~,  

one can cons t ruc t  a canonical  analy t ica l  change of var iables  ~o:DQ,--+Dr, 
~0 e ~r which brings t he  t t ami l ton ian  11 into the  fo rm 

(2.21) t t ' ( t ' ,  Q) : (11o~)(P, Q) : a' --{- ~ .P  + R'(P, Q), 

where a '  e R, while the  funct ion R ' E  dQ, is, as a funct ion of P, of the  order 
I]PII ~. The  change of var iables  is near  the  ident i ty ,  in the  sense t h a t  

I1 - identitYl]~ o as [)H,t)o o. 
In  par t icular ,  one can t a k e  

(2.22) 

where  

(2.23) 

(2.24) 

m.o ( 
= 2 6 A 2 U 3 1  , 

{711 
A = 2(an + 1)' ~ ,  

= 2,.+, ( n - ~ )  "+' . 

The  scheme of proof  of theorem 2 is as follows. One per forms  a sequence 
of canonical  analy t ica l  changes of var iables  such t ha t  t he  d is turbing t e r m  H 1 
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' 1 of the t t~mil tonian H at step k decreases with k, its norm i H~llq~ being essen- 
tially of Lhe order of H t '~ while the other parameters Q~ and m~ are kept. 
controlled. The convergence of the scheme with H ~' kie~-~0~ ~ } ~ - + ~ > 0  
and m~-> m~ > 0, as k--> c% is then established. The i terat ive lemma and 
the proof of convergence are given in sect. 4 and 5, respectively, while two 
~uxiliary lemmas (giving suitable estimates in connection with ca.nonical 
changes of variables defined by the Lie method ~nd in connection with the  use 
of the diophantine condition ). e ~2v in solving a differential equation of the 
form ~ ~.(~E/Oq~) - G with (~ ---- 0) will be recalled ia  Lhe next  section. 

3. - Canonlcal transformations and small  denominators,  lemma. 

3"1. For  a given funct ion )~(p, q), Z e .~%, let ;/~ be defined by 

(3.1} z ; =  max ~ , ~ . 

and let. {. ,  .} denote the Poisson bracket  

{3.~) {1, 9} = ~ ~ ;  ~q, -~q,  ~p,  �9 

Then, for 7., / e  d ~  and any  positive 5 < o, the inequalities 

(3.3) 

(3.4) 
I1{~., I}!1.-, - �9 .... 2 n ( z . / ~ )  Illl!.o, 

$ 2 i: II{ z, {z, I} }11o-. ::~,~(~,~ + ~)(z./~) !11,: 

are deduced from Cauchy~s inequali ty and from an enumcra'Aon of terms in 
Poisson brackel s. 

We come now to the  definition of canonical t ransformations,  or changes 
of variables, near the ident i ty  by means of the Lie method, which has, with 
respect to the s tandard method,  the advantages of avoiding any  use of the  
implicit-function theorem and of providing the relevant estimates in a simple 
way. In such a method a canonical t rausformaiion (p, q) = q(/}, Q) is defined 
through the solution at  t ime one of a system of canonical differential equations 
with Hamiltonian (here called ~ generat ing function ~>) X; then the  functions ] 
defined in phase space change correspondingly by ] F-~ ~'] = ]o9~ and it  is 
well known tha t  one has formally ~ ]  --= / -~- {Z, ]} + �89 { Z, {X,/} } + - . .  ; i n d e c d  
this is no~hing but  Taylor 's expansion of /, using d]/dt  = {Z, ]}, i.e. 

d~ (p(t), q(t)) = {Z, f} (p(t), q( t ) ) .  
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The existence of such a canonical transformation ~ and operator ~ and the 
relevant estimates are then afforded by the foUowing 

Zemma 1. Take an analytic function :~(p, q) defined in Dr whose derivatives 
belong to ~r for a given positive 0, and consider the corresponding system of 
canonical differential equations 

(3.5) p =  ez 4 - e z  
8q ' ~p " 

With Z: defined by (3.1), for a positive ~ < ~ assume 

(3.6) Z : < 8 / 2 .  

Then for all initial data (P, Q) DQ_~ the solution (p, q) of (3.5) at t : 1 exists 
in Do, thus defining a canonical transformation w:Da-~ -*Do, T e ~q-a. The 
operator ~:~Q--~ ~r with 

(3.7) '~11:1o~ 

is then well defined and one has the estimates 

(3.8) 
and 

(3.9) 

II ~0-identitT II < 

I1 /11o-  < II111o, 

$ 

ll z/- llo-o<4n lllllo, 

Iiq, l--/--{Z,/}~o-o<i6n('2n + 1) ( :~) '  t!fl[.. 

Proo]. First of all, using Cauchy's inequality (2.3), one guarantees that  
in the subdomain  Dq_~/2 tile second members of system (3.5) have finite deriva- 
tives, so that  the Lipschitz constant K of the system is finite in Dq_~/2 (precisely 
one has K <  4nx*q/O ). Moreover, as max(I]/i!l, 1141i) <~Z~< 6/2, if one takes 
initial data (P, Q) in Dq_~, the standard existence and valiqueness theorem 
guarantees that  the corresponding solutions (p(t), q(t)) with (p(0), q(0))--~ 
= (P, Q) exist in Dq..6/~ for any t with 0 < t ~ l .  Thus, for any such t, one has 
a mapping ~t :Dq_~ --> DQ_~/~ r D e with cf'(P, Q) = (p(t), q(t)) and, in particular, 
the  mapping ~ = ~ is also defined. By the standard existence theorem such 
a mapping is analytic; furthermore, the periodicity in q~, ..., q, is immediately 
checked. Finally, the mapping ~0 is well known to be canonical, being the 
, time-one solut ion,  of a canonical system. 
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L e t  us now come to the  es t imates  (3.8) and (3.9). E s t i m a t e  (3.8) is 
an immedia te  consequence of the  mean-va lue  theorem,  according to which, 
for a n y  t in 0 < t < l ,  one has ]~0'-- identity]q, ~:Z:, while the  first of (3.9) is 
tr ivial .  The second and  the  th i rd  ones follow from Taylor ' s  formula  for ] of 
first and second order,  respect ively,  nam e l y  

={z'l}l'''at d ! = ]  _ ]  {z, {z, 1}}1,. dt 2 dff :t" 2 

with 0 < t', t "<  1. R e m a r k i n g  tha t ,  as recalled above,  one has T(P, Q) E Dq_x, 
if 0 < t < l  and ( P , Q ) ~ D Q _ ~ ,  one has  then  to  e s t ima te  II{Z,/}II~x~ an4  

I]{;~, {;6/}}[[Q-~/2. Es t ima te s  (3.9) t hen  follow by  (3.3) and  (3.4). 

3"2. In  the  course of the  proof  of t heo rem 2 a f u n d a m e n t a l  role is p layed  
by the  possibil i ty of solving a different i 'd  equat ion of the  fo rm ~ 2dSF/~q , )  : G 

for functions F and  G defined on the  torus 7" if 2 is a ((good f requency  ,>. 

Z e m m a  2. Consider the  equat ion  

~F 
(3.10) ~ ~,x--  = 6I 

where  Ir ~ and G are funct ions defined on the  torus T", and  assmne  2 ---- (21, ... 
. . . ,  2,) ~ ~2~ for some y > 0 and  G e zCe for some posi t ive ~ with G = 0. Then,  
for any  posi t ive  5 <  9, eq. (3.10) admi ts  a unique solution F e ~/o-~ with 
P = 0, and one has the  es t imates  

(3j1) !I-FII   < IlOI , 

(3j2) < r I1 11 , 

wheJe a = a(n) is defined as in (2.24). 
This is a well-established result .  F i r s t  of all, a fo rmal  solution in t e rms  

of Four ier  eoeff.cients ]~ and  g~ (0 =/= k e Z ' )  of F and  G, respect ively,  is im- 
media te ly  obtained,  by  ],. = -  ig~(~.k)  -1 if one has go = 0, i.e. G = O. The 
convergence is t hen  easily established,  as t he  coefficients g~ decay exponent ia l ly  
with k in v i r tue  of the  ana ly t ic i ty  of G, while ]2-k[ -1 grows a t  m e s t  as a power  
by  the  d iophaut ine  condition (1.1) imposed on ).. The  detai ls  of the  proof are 
deferred to the  appendix.  Opt imal  es t imates  were g iven more  recent ly  b y  
Rtiss~th.~-(*) with b -2. and  (~-(2,+t~ in {3.11)-(3..12) replaced b y  (~-" and  
5-t"+~), respect ively,  and a replaced by  a a = 24"+~n!(2 ~ -  1) -1. 
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4.  - T h e  i t era t ive  l e m m a .  

4 " 1 . -  As an t ic ipa ted  in the  introduct ion,  one applies now a sequence of 
canonic 'd  t r ans fo rmat ions  in order  lo e l iminate  the  d is turbing t e r m  H ~ in 
the  original Hami l ton i~n  H considered in theorem 2. To this  end we will 
r epea ted ly  apply  the  following 

Lemma 3. :For ,given pos i t ive  numbers  y, o, m, e < 1 and  o.  < 0, m .  < m 
consider t.he Hami l ton ian  H(p, q ) - - H ~  q) H~(p, q) defined in Do by 

ttO(p, q) --  a + ,t.p .f- �89 ~ C, (q)p ,p , - f -  R(p,  q) ,  
(4 . ] )  ~'J 

B' (p ,  q) = A(q) ~- ~ B,(q)p,  

with ] ! H ! ] o < l ,  where  a e R ,  ~e~2~,, A, B~, C;~, l~e ,~ '~ ,  A = 0  and R is 

of order ':P'i'- Assume,  fu r thermore ,  

(4.2) m',vll < [](~v] , ,Cv.:e< m4.1v][ for any v e C" ,  

(4.3) max( l l  A ilo, ,Bile) < e .  

For  any  posi t ive  h so small Chat O - -  3,5 "> C~,, let  the  quan t i ty  ~7 be detined 
by 

(4.4) rl - A ~" m '~d~' z = 4 n + 3 ,  

where A ---- A(n,  7) is the  cons t 'mt  defined by  (2.23), na.mely 

(4..~) A = '_,(an + l ) ~ - ~ ,  
7" 

and  assume t h a t  ~: is so small  t h a t  

(4.6) m --  n~ilQ2. > m.  . 

Then one can find an analyt ical  canonical  cha.nge of variables,  ~o:De_ao --> De, 
~0 ~ de_3~ , such t h a t  the  t r ans formed  Hami l ton ian  H '  --: q /H = H o ~  can be 
decomposed in a way analogous to / /  with corresponding pr imed quant i t ies  
a ' ,  A' ,  B ' ,  C' ~nd R' ,  bu t  with the  s,n.me ~, and  satisfies analogous condit ions 
wi th  posi t ive  p a r a m e t e I s  0', m' ,  e ' <  1 given by  

(4.7) 

Q' -= 0 - - 3 ~ >  ~ . ,  

n "* 

e '  = ~ '2 !Q, ,  ' 
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with,  moreover ,  HH'][~. <1 .  One has,  fm ' the rmore ,  for any  ] e zCQ 

(4.8) I I ~ 1 -  IHo, <~  II111~ �9 

4"2. - Proof. a) I f  one pe r fo rms  a canonical  change of var iables  wi th  
, genera t ing  f u n c t i o n ,  Z in the  sense of l e m m a  1, one obtains  in place of H 
the  new Hami l ton i an  H ' =  r and  one can m a k e  a decomposi t ion H'----  
= 8 '~ q - H  '~ in a way analogous to the  decomposi t ion H = 8 ~ q - H ~ ;  pre-  
cisely, using again t he  symbol  (p, q) ins tead  of (P, Q) for a po in t  of the  new 
domain ,  one has  

H 'o-- a'-[- ),.p + ~e ~_, C~(q)P,P,  ~ R'(p ,  q) ,  

where  

H ' ~ =  A'(q) ~, B ' (q ) .p  , 

(4.9) 

a' = / / ' ( 0 ) ,  

A'(q) H'(O, q) - -  a' 

OH' (0, q) - -  2~, B~(q) = ~p-- 

~2H' 
c;,(q) = ~p~-~p-. (o, q) 

and R '  is of order  '!pill I n  t he  spirit  of pe r tu rba t ion  theory,  one thinks  t h a t  
bo th  H ~ and  the  genera t ing  funct ion Z are  of first order  and  one chooses Z 
in order to el iminate the  undesired t e rms  of the  same order in the  new Hamil -  
tonian H ' .  To this end one first writes the  iden t i ty  

(4.10) H' - ~ H  = 8 ~  + H~ + {z, Ro} + [{z, m }  + ~ -  n - {z, ~ } ] ,  

where in the  expression [...] are isolated the  t e rms  t h a t  have  to  be considered 
of second order,  in ag reement  wi th  the  e s t ima te  given in the  th i rd  of (3.9). 
Then  one tr ies to choose g in such a way t h a t  the  f irst-order t e rms  in H' ,  
namely  H 1 "-  {Z,//o}, do not  con t r ibu te  to H ' I ;  this  is obta ined by  imposing 
H '  ~- {;~, H ~ = c - -  0(l!p!!*), where c is a constant .  

b) Following KOLbIOGOR0V, We show t h a t  this condit ion is met  by  a 
genera t ing  funct ion Z of the  form 

(4.11) Z = ~'q -}- X(q) -4- ~, :Y,(q)p, , 
t 

where the  cons tan t  ~ e R" and  the  funct ions X(q),  :Y~(q) (of per iod 2rt in ql, . . . ,  q.) 
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have to be suitably determined.  A s t ra ightforward calculation gives, b y  
recalling the  definitions (2.17)-(2.18) of H ~ and H ~, 

(4.12) H ' 4 -  {Z ,H ~ = - - ~ , 2 , 4 - a ( q ) - - ~ 2 ,  , ~q-~ + 

~X ~ Y,] 

Thus it  is sufficient to impose 

. ~ X  
(4.13) ~ Z, ~-~ : A(q) ,  

. ~Y,. ( 
(4.14) Z - ~ q , ]  , i = i ,  . . . ,  n . 

By the smalJ denominators ,  lemma 2, eq. (4.13) in the  unknown X '  can be 
solved, as A = 0. Then one has to de termine  the  unknown constant  ~ in 
such a way tha t  the  mean value of the r.h.s, of (4.14) vanish. This leads to 
a linear equat ion for ~, which in compact  notat ion can be wri t ten  as 

~X 

and such an equat ion can bc solved by (4.2), which guaran |ees  det  C ~ 0. 
:Equation (4.14) in the unknown l 7 can then be solved too. 

c) The existence of the wanted generat ing funct ion Z is thus ascertained 
and one remains with the  problem of specific estimates.  By a twofold appli- 
cation of lemma 2, one obtains by easy calculations the following 

Main estimate. Equat ions (4.13)-(4.15) in the unknowns }, X(q) and Yj(q), 
which define by (4.11) the  generat ing function Z, can be solved with X, 
Y~e ~ ,  5 = - -  2(~ for any posit ive b < @/2, and, for the  quant i ty  Z; defined 
by  (3.1), one gets 

0 .2 8 

(4.16) Z~,<(4n + 1) 7~ m, 5,,+ , 

or equivalent ly 

(4.1.7) Z~< 1 
7 2(4n -}- 1) ~/" 

The details are deferred to the  end of the present  section. 
Remarking now tha t  condition (4.6) evident ly  implies ~ < 1, from (4.17) 

one gets Z~ < 0/2, so tha t  lemma 1 can be applied and Z generates  a canonical 
t ransformat ion with domain D~,, where ~ ' ~  6 - - 6  ~ ~ -  3& 
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d) We come now to est imates (4.7)-(4.8) and ][H'][Q,<I. The inequa- 
l i ty ]]H'[o, :/[[H[]q<I is just  the first of (3.9). Le t  us then  come to #. 
For  wha~ concerns A' ,  by definition (4.9), using expression (4.10) for H '  
and rec~flling tha i ,  in vir tue of the choice of Z, only the last term contri- 
butes to A', one gets i!A' o,<2]]{Z,m} +  H- r-fz, n}l]o,. Using now 
(3.3) and the thb'd of (3.9), together  with llml',~<Kn+l)~, I:Ri~<l, 
9' ---- 6 - -  3, :~nd (4.17), one gets 

�9 

a ~ e X~ q._ 16n(2n q-- 1) K < ( 4 n + l ) y  ~m 35" 3 

< [ 1 6 n ( 2 n q - 1 )  q -1 ]  2(4 -1)  <~ '12 ,  

where (4.17) was used together with 

0-2 

~n(n+ 3)<  (4~ + 1)-~m'~7 and 16n(2n q- 1) -}- I ~ 2(4n q- 1 )2. 

t 1 2 Thus one has [A [~,~ . Concerning B',  for the same reason, from (4.9) and 
(4.10) and recalling (~cHo/~:p,)(O, q) :=  2~, using Cauchy's inequality (2.4) one 
has 

~7 ~ ~.. ilB'l[.o'< i[{z,H'} + ~ - - ~ - - { Z ,  Rki!o. < ~ < 2~," 

In conclusion, one has max(iA'][o,, [B'[i~,) < ~' with 0 ' ----o--33 and 

(4.18) s ' =  ~/*/~, . 

For what  concerns inequali ty (4.8), from the  second of (3.9), with ~ in 
place of Q, one has 

(4.19) il~] - I I Io '  < llllI~, 

from which (4.8) follows by using (4.17) and [[]~$ < H/[16. 
Le t  us finally come to the  es t imate  for m'. To this end, we recall first tha t ,  

by  thc definition of C and C', one has 

•9 2 

G,(q) - -  Gdq) - ~p, ~p, [~zE-- lr](0, q). 
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ThtL% from Cauchy's inequali ty (2.4) and (4.8), one gets 

I l C ' , -  c,,~o, < 2 I~.H - HI Io ,<~,  (4.20) 

which gives 

(4.21.) 

(4.22) 

Fur thermore ,  one has 

!ICv',l~, < II Cvll~ < m-'l',v:!, 

(4.23) 
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iiC'v:;Q, < (m -t- nv /e~ ) - ' [ v l l  . 

Thus with the trivial inequal i ty a - * _ b < ( a - - b )  -~ for 0 < b < a < ]  one 
obtains 

( 4 . 2 4 )  I IC"vll~.< ( m  - nv/e,~)-':]'~ll, 

so tha t  the es t imatc  for m' is proven. 

e) To conclude the proof, we give now the main est imate (4.]6). Firsl~ 
by lemma 2 applied to eq. (4.13) with ]A!io< ~, one finds 

fie 
(~t .~5)  I lX I1.~-,, < ~ ,  

Coming to eq. (4.15) we first establish 

(4.26) IB --  G ~X 

making use of 

1 8 X  as 
- ~  ~_~<76T.+1 �9 

< 2 7m ~''+-----~o ' 

lIB i l ,- ,  <~,  

and of a/(ym~ ~'+1) > 11. Thus, 

< II -a- 11o-, 
by I!.ZII < II...;I,-~, from (4.15) and Ilf,I < 

I[ ( c ' -  c) ,, II ~, < (n,#e:)!j v II �9 

Thus from (4.2) and (4.21), using a.lso II.-:.ll < :1 . . . 1~  ,, one has 

IIC~v~ - ' , l (C ' -  C)vll > ( m -  n,~/d)Hvll > o 

in virtue of condition (4.6) a nd~ moreover, from the ident i ty  C ' =  C -{-- (C'--  C), 

IIC'v",  > ( ,~ - ~v/Q~.)llv',i  �9 

[[C'vil,<lICvllQ,-~ j i (C ' - -C)v i l , ,  or, with (4 .21)and  
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< m - ' l [ ~ l !  , i.e. the  definition of m, one gets 

G8 
(4.27) ll~ll <~ 

y m  ~ ~ ,~+~ �9 

Coming then  to eq. (4.14], in order  to es t imate  the r.h.s, we remark  tha t  

I, o~ ~,1~, ~-II- ~~ I~ . . + o ~  
so tha t ,  by  (4.26), (4.27) with m ,~  1, one has 

,428, ]l ~ -~~  I ~ - ~  - e~ . - . < 4  ~ m - s - ~ i  �9 

A direct  application of lenmla 2 then  gives 

II~II,_,~<4 ~'~ I ~'y ,_~<4p ~'~ ~,2 m s ~,.+I, ~ m s 54.+~ ' 

As a consequence,  recalling definition (3.1) of Z; (with ~-~  Q- -26) ,  by  
definition (4.11) of X which gives 

1~1 ,,~,,, {~, I ~  i~,1 ~, 
and using ~, y, ~, m < 1 with 3a -* ~ 1, one gets 

O'z~ 
(4.29) Z~<(4n + 1) 7 , m ,  6 , . ,  ' . 

The main es t imate  has thus been checked and the proof of ]emma 3 completed.  

5. - Conclusion of the proof. 

5"1. - One has now to apply repeatedly  the  i terat ive lemma 3 in order to 
el iminate the  per turba t ion  H I ( p ,  q) ---- A(q)  --k B ( q ) . p .  Thus,  s tar t ing from 
given positis'e numbers  ~, m, E < 1, which we denote  now b y  eo, too, ~0, by  

r  assigning ~ sequence {3k}k~ one can define recttrsivcly Q~+I, m~+~, ~.~ by rela- 
t ions analogous to (4.7), which we write now in the  form 

(5.1) 

~,+1 = ~ k - -  3 6 , ,  

~ ~:+1 - -  m s  ,: , e, \ ~64 

m.§ = m,- (riM,)~L,, 
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where definition (4.4) of ~ was used and, moreover ,  in the  rel.ttion between 
m' and m, ~ was expressed through d. One has, however,  to satisfy the  
two consistency conditions ~,+~ > 0 , ,  m**~ > m .  (k = 0, 1, ...), where ~. < ~ 
and m.  < m o  are a rb i t r a ry  posit ive numbers.  In  v i r tue  of 

0| ~ o - - ~  3~, and  m| mo-- (n/Qt,) ~ -u* __ = == ~lt+l 
/e,=o k,,,o 

these  consistency conditions are  satisfied if one guarantees  

(5.2) 3 ~ ~ <  ~o-- ~*,  
k--O 

(5.3) 
/r 

We notice,  however,  t t iat  the  relat ion connect ing e,+l with m,~ 5, and  t ,  
can also b~ read  as defining 6, if e,+~ is given; precisely one has 

A ~ e~ 
(5A) ~ '=  q,m~ ~+," 

~oLice tha t  m~ is defined in terms of e~ and m0 by  the  last  of (5.1). Thus  one 
can th ink  of defining arbi t rar i ly  the  sequence {e~}, instead of the  sequence 
{5~}. Makhag also She position 

(5.5) e~-= e~eo, k = 0r 19 21 ... (Co--= 1) , 

one has thus to define ~ sequence of 
the  two series 

posit ive numbers  v~ with eo = 1 so t h a t  

~ / -2  :-- xl]2V (5.6)  s ~ =  t%1%+1) ---- s ,  
k,.-0 k..,o 

k--O k--O 

converge. Then  the two consistency conditions (5.2} and (5.3) determine eo; 
indeed (5.3) gives 

e~(mo-- m,)~ 
(5.8) ~o<: t, n2 , 

while (5.2), by  using m ~ >  rn. ,  gives 

(5.9) 
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A rough es t ima te  for eo is obta ined  as follows. Choose c~ : 2-~'~; this 
gives Sk --- 2"2 -~ and ta = 2 -'t~+~, so t h a t  s = 4 and  t = 1 / (2" - -  1) < 1. Fo r  
the two up to now a rb i t r a ry  numbers  0, and m ,  make  the  s imple choice 
0, = 00/13 xnd m" = m~o/2. This ens~zre~ tha t  the r.h.s, of (5.8) is larger  than  * 

t ha t  of (5.9)~ so thai; we conclude t h a t  the  ~,wo consis tency conditions (5.2) 
~nd (5.3) are  su~;isfied if ore} assumes,  for example ,  

_ eomg l e A "  
(~.]0) ~~ ~6-;i; ~]~) " 

5"2. - We finally come to the  convergence  of the  sequence of canonical  
t rans format ions ,  thus  giving the  

Prop /  o/ theorem 2. Sta r t ing  f rom the  Hami l ton ian  He : H defined in De, 
with IIHo/l~,.-.-], characler ized by  posi t ive p a r a m e t e r s  y~ ~ ,  me "< 1, consider 
the  quan t i ty  ~:o sat isfying (5.10) and  assume lnaX(IA]i.%, ][B][~.)< Co. Then  
one can apply  recurs ively  the  i te ra t ive  lemm'~ 3, defining at each step k > l  
a canonica.1 tr ,~nsformation q~:Do~--> Dq~_,, with the  corresponding opera tor  
q /~ : Jo , - -*  . ~ . , ;  fu r the rmore ,  f rmn (4.7) and  (4.8) one has the  es t ima te  

(5.11) I I ~ d  - t[:~, < *7~-1,lf I~_, 

with ~/~_,-~. ~, so that ,  in part icular,  the series ~?k i.,: known to be conver- 
k = l  

gent. We e~n now detine 1;he composite ca,nonical transformation ~k :D~ --* Do~ 
by ~ = ~Lo...oq~ "rod the corresponding eomposit.e operator ~ ' a / o .  -> aa/0k , 
defined by ~ : to93k, or equivalent ly by ~ : q / , , o ~ _ ~ ,  ~ - - - i d e n l A t y .  
Clearly, in order  Lo p rove  t im convergence of the  sequence {~} of ca~nonical 
t ransformat ions  res t r ic ted to De , i t  is sufficient to p rove  the  convergence 
of the  corresponding sequmm(, {~k} of opera tors  for every  / e  ago,. This in 
turn  is seen by r e m a r k i n g  tha t ,  f rom (5.1.1) and the  first of (3.9), one has  

and  so also, for any  / > 1 ,  

k+l--1 

(5.12) I ( ~  , -  ~z~.)/llo,, ~:: :]liloo ~: ~, .  

Thus,  as the  series ~ converges,  one deduces t h a t  the  sequence ~%] con- 
k--1 

verges uniformly,  for any  / e  ~Jo.; by  Wcierstras.~' t heorem one has then  
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fu r the rmore  one immedia te ly  gets the  est imate 
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(5.13) l i~ .  ! - III~ < (e.~ ?o 0 li/ilo,, 

where t is the  constant  defined by  (5.7). In  par t icular ,  for the  gamf l ton ian  
H| --~ lim ~ , H ,  one has H~ = H~ -~- / /~ ,  where by  construct ion H ~ ( p ,  q) ~- k---*~a 

-~ A~(q)  ~ B ~ ( q ) ' p  := O. Final ly  the  mapping qS~ = ~im q~ turns  out  to be 

canonical again in vir tue of Weierstrass ~ theorem,  as a uniform limit of can- 
onical mappings.  

APPENDIX 

Proof of  lemma 2. 

As we are here interested in functions of the  angles q only, in the deiini- 
t ions of Dq and dQ the actions p will be now considered as parameters  and 
completely disregarded. Moreover, in addit ion to our s tandard norm []k!] = 
= max [k,I, we will also introduce the  norm [k[---- ~ [k d. We recall first two 

i i 

elementary  propert ies concerning analyt ic  functions on the  torus T", and an 
e lementary  inequali ty,  precisely we prove what  follows: 

i) if F ~ . ~ q ,  F ( q ) =  ~ : / ~ e x p [ i k . q ] ,  t hen  for every  k e Z  ~ one has 

(A.1) Is < liFll~ exp [-- I~"le]; 

ii) suppose t ha t  for some positive constants C and ~2 with 0 ~1  and 
every  k ~ Z" one has ]f~] < C  exp [--]k]a],  and consider the  function 2~(q)= 
-~ ~ f,  exp [ik.q]; then for any positive 8 < ~ one has F e d e - t  and 

k r  

iii) for  ~ny K, s, 3 > 0 one has the  inequali ty 

(8). 
(A.3) .K '<  ~ exp [KS] .  

_Proof. i) B y  definition one has 

1 

7-n 

15 - I !  Nuovo C, tmento 13. 
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As F e ~r one can suitably shift the integration paths and write 

] fF(q_ilr k. , ~  [_ikl(q~_i kg )] 1~ - (2a)" ~ l q ' " " q " - i T ~ l ~  exp ~ ] 0  dq,.. ,  dq , ,  
T" 

0 
where, by conve~tion, we may  assume ~-~ = 0. One has then  

] 

p* 

ii) Let  [ I m q l l < o - -  ~, where Imq---- ( I raqi , . . . ,  Imq. ) .  Then one has 

sup < 

< c  y. e~,p [ -  Ikl~] e~p [Ikl(~ - 6 ) ]  = c y. e~p [ -  IklS] < 
1:~2 's keZ~ 

C2 ~ ~ exp 5 kj = C2" exp[ - -Sk]  = 

kl~Os...,kn~'O 

= (/9- (1 --  exp [-- 5])- < C , 

because 1 / ( 1 -  e rp  [--6])-< 2/6, for any  positive 5 < 1, as is immediately 
seen by comparing 1 -  6/2 and exp [--d] .  

iii) The considered inequality is equivalent to KJ)<cxp[KS/s- -1] ,  
i.e. to x < e x p  Ix - -1 ] ,  which is evidently true even for any  real x. 

We come then to the 

Proof of the lemma. In  terms of the Fourier coefficients fk an4 g~ of _~ and G, 
respectively, one formally satisfies eq. (3.10) by 

(A.4) ]~-- )..k ' 

wherc, by the condition 2 e -Qv, all denominators are, in particular, nonvanishing. 
By G a-~1~, property i) and 2 e-Qv, one has then 

( A . 5 )  I/k] < y-~]IGJI_~ Ikl" exp [-- Ik[~], 

where the inequality ][ktJ <Ikl has been used. From inequality (A.3) with 
K - ~  Ikl and s = n, for any  positive 5 this gives 

where 

(~,) n 

Ihl <r- ' l lal]~ ~ exp [ -  Ikl(t~-- (~)] = C exp [-- I~l(e - 6)], 

c = r - ' l ] G l l :  �9 
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NOW, for  a n y  ~ < ~, one can  m a k e  use  of p r o p e r t y  ii) (wi th  ~ - -  ~ in  p l a c e  of o) 
a n d  one o b t a i n s  for  / V ( q ) _ - - ~ ] ,  exp  [ik.q] t h a t  F e ~/~_~ a n d  t h a t  

1 4 n \ "  

Thus  (3.11) is p r o v e d  b y  t.%king ~/2 in p l a c e  of 0, b e c a u s e  a > (16n/e)". 
Le~ us f inz l ly  p r o v e  (3.12). T h e  F o u r i e r  coef i ic ients  of ~F/~q~ are of t h e  

fo rm h r . ~  k~gJ() , .k)  -~, ~ = ~, ..., n, so t h a t  as  for  (A.5) one  ge t s  

B y  iii) w i t h  K----]k,] a n d  s == n q - 1 ,  t h i s  g ives  

(. 
i I,h.. ,<~-~ e~ / IIOll~ cxp [ -  tkl(e" ~)], 

so t h a t  one  o b t a i n s  

4 -  

0_ 

B y  t a k i n g  a ~ a i n  6/2 in p l a c e  of ~, one t h u s  ge t s  (3.12) w i th  

�9 R I A S S U N T O  

Nel prosonte lavoro si d imostra  il teorema di Kolmogorov sull 'esistenza di tor i  invarianti  
in sistomi 1-familtoaiani quasi intcgrabil i .  Si usa Io schema di dimostrazionc di Kol- 
mogorov, con la sola var iante  del modo in eui si definiscono le trasformazioni canoniche 
prossimo all 'identitY. Si usa infat t i  il metodo di Lie, ehe climina la necessits d ' invcr-  
sioni o quindi doIl'impiogo del teoroma delle funzioni implicite.  Questo fa t to  tecnico 
evita an iagrodiente spurio e somplifiea il modo in cui si ott iene una delle s t ime principali .  

~]~OI~I3aTeJIbCTBO TeOpeMhl KOJ~Moroposa Ha m m a p s a n T m ~ x  Topax,  gCHO,]b3y~ 

K a a o m ~ e c K ~ c  apeo6pa3oBaHn~,  oHpe~e~enm,  le c h o m e r o o m  MeTO~Ia JIH. 

Pe3mMe (*). - -  B 3TO~ pa6oTe n p e ~ a r a e T c ~  ~oKa3aTen~TnO TeOpeM~I KonMoropoBa o 
cymeCTBOBalIIIH HHBapHaHTHLIX TOpOB B I~a3H-HHTC~'pHpyeMbIX FaMHYIIJTOHOBBIX CHCTCMaX. 
Hcrionh3yeTcfl cxeMa lloKa3aTenbcTaa, npe~rIO~CH~da~ KOHMOFOpOBbtM, e~2HHC'rBCHHOe 
OTHHqHe cocrorr r  B cHoco6e, XOTOpbIM onpe~eaamTC~ KaHO~eCKHe I]peo6pa3oBaH~. 
B 3TO~ pa6oTe riCHOYlb3yeTclI MeTOjI Jill, KOTOpbl~ HClCJIIOqagT HeO6XO/IJaMOCTb mmepcn~ 
H, Cae2tOBaTe~qbHO, HCnOIIb3OBah~e TeOpCMbI ~UIJI I~e$1BHOI~ ~yHKHHI4. ~TOT TeXHHqC~KI4~ 
npaeM llcKamqaeT ~o~rmn~ mtrp:ieHenT H yupomaeT noayqemae FJIaBHOI~ OI~CRKH. 

(*) HepeeedeHo pe,gamlue(t. 


