IL NUOVO CIMENTO Vor. 79 B, N. 2 11 Febbraio 1984

A Proof of Kolmogorov’s Theorem on Invariant Tori Using
Canonical Transformations Defined by the Lie Method.

G. BENETTIN

Dipartimento di Fisica dell’ Universita - Vie F. Marlo 8, Padova, Italia
Gruppo Nazionale di Struttura della Materia del O.N.R. - Unita di Padova, Italia

L. GALGANI
Dipartimento di Matematica dell’ Universita - Via Saldint 50, Milano, Italia

A. GIORGILLI
Dipartimento di Fisica dell’ Université - Via Celoria 16, Milano, Italia

J.-M. STRELCYN

Department de Mathématiques, Centre Scientifique et Polytéchnique
Université Paris-Nord - 93 Villelaneuse, France

(ricevuto il 7 Luglio 1983)

Summary. -— In this paper a proof is given of Kolmogorov’s theorem
on the existence of invariant tori in nearly integrable Hamiltonian systems.
The scheme of proof is that of Kolmogorov, the only difference being in the
way canonical transformations near the identity arc defined. Precisely,
use is made of the Lie method, which avoids any inversion and thus any
use of the implicit-function theorem. Thie technical fact eliminates a
spurious ingredient and simplifies the establishment of a central estimate.

PACS. 03.20. — Classical mechanics of discrete systems: general mathe-
matical aspects.

1. — Introduction and formulation of Kolmogorev’s theorem.

1'1. — The aim of this paper is to give a proof of Kolmogorov’s theorem on the
existence of invariant tori in nearly integrable Hamiltonian systems (2} with

(1) A. N. KoLMoGOROV: Dokl. Akad. Nauk SSSR, 98, 527 (1954) (Math. Eev., 16,
No. 924); English trapslation in G. CasaTi and J. Forp (Editors): Lecture Notes in
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a mostly pedagogical intent; thus we consider the simplest case, namely that
of analytic and nondegenerste Hamiltonians, but give, however, explicitly all
relevant estimates. In particular, in dealing whith canonical transforma-
tions near the identity we make use of the Lic method whbich avoids
any inversion and thus any rveference to the implicit-function theorem. This
fact, which is a purely technical one, eliminates & spurious ingredient and
simplifies the establishment of a central estimate. Apart from this technical
fact, we follow here the original scheme of Kolinogorov, which can be considered
to be, especially from a pedagogieal point of view, somehow simpler (altbhough
possibly less powerful) than the scheme of Arnold. Moreover, the proof of
convergence of the iteration scheme is given in a rather simple way which,
in particular, makes use only of triviual geometric series. Thus it is hoped that
the present version will be useful at least in expanding the familiarity with
thig important theorem, which still scems to be considered, espeeciully among
physicists, as an extremely diflicult. one.

1'2. — In the theory of perturbations one is concerned with an Hamiltonian

H{p, q) = H°(p) + H\p, 1),

Plysics, No. 93 (Berlin, 1979), p. 51.

(%) V. I. ArNoLD: Usp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surz., 18, 9 (1963);
Usp. Mat. Nauk., 18, No. 6, 91; Russ. Muath. Surc., 18, No. 6, 85 (1963).

(®) V. I. ArvoLp and A. AvVEz: Problémes ergodiques de ln mécanique classique,
(Paris, 1967).

(%) J. MoSER: Procedings of the International Conference on Functional Analysis and
Related Topics (Tokyo, 1969), p. 60; Stable and random motions in dynamical
systems (Princeton, 1973).

(°y S. STERNBERG: Celestial Mechanics (Now York, N, Y., 1968), Part. 2.
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boratoire do Dynawmique Stellaire, Université Pierre ot Marie Curie, Paris.
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where
p=(py,...,pa) EBCR* and ¢q=(q,..,q.)ET,

B being an open ball of R* and T* the n-dimensional torus. The variables p
and ¢ are called the actions and the angles, respectively. The functions on
the torus T7 are naturally identified with the functions defined on R and of
period 2z in ¢,,...,q.. For any p € B the unperturbed angular frequencies
® = (Wyy ..., W) = (CH/CPy, ..., cHCp,) = ¢H®Op are defined. In Kolmogo-
rov’s theorem the nondegeneracy condition del(Cw,/Sp,) = 0 is assumed; as
is well known, the extension to degeneratc systems was accomplished by
ARNOLD.

In the unperturbed case (H' ==0), the equations of motion reduce to
) = — cH%Cq = 0, § = cII%cp = w(p) with solutions p(t) = p° q(t) = ¢* +
+ w(p®t (mod2x). Thus the phase space BX T» is foliated into tori {p}x T,
p € B, each of which is invariant for the corresponding Hamiltonian flow
and supports quasi-periodic motions characterized by a frequency A = w(p).
We recall that 2 is said to be nonresonant if therc does not exist ke Z7,

n
k # 0, such that A-k = 0, where we denote A-k = > 2k,
=1
In Kolmogorov’s theorem the attention is restricted to those tori which

support. quasi-periodic motions “with appropriate nonresonant frequencies,
namely frequencies belonging to the set £2, defined by

(1.1) 2,={A€QcR |2kl >yiki™ Vke Z k +# 0}

for a given positive y, where £ = w(B) is the image of B by the map w (£ is
assumed to be bounded, which can always be obtained by possibly reducing

the radius of the ball B). Here, as above, 2-k = > J;k, and, moreover,

{=1
k| = < Mjx |k:|; more generally, for v, we C*, we will denote v-w = Zv W0,
=1
and 'v|| = max [v,]; C| of a matrix {C,,;} will be defined
: 2 L
as for a n2-vector € € C¥, namely by [C; = max |C,;. It is a simple classical
13

vesult (see, for example, ref. (?)) that, for any fixed y, the comnplement of 2,
in £ is dense and open and that its relative Lebesgue measure tends to zero
with y. Thus for almost all frequencies 2 € £2 one can find a positive y such
that 7 e 2,. Because of the relation £2,. c £y, if y < ¢’, it will be no restric-
tion to take y << 1. One is led to the diophantine condition defining £2,, by
the problein of solving a partial differential equation of the form

oF

=G
Py (2,

>k
t

O)
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where the unknown function I” and the given function G are defined on the
torus T* and G has vanishing average. An analogous arithmetical condition in
3 different but strongly related problem wasg first introduced by SIEGEL (13).
Let us fix some more notations. Being interested in the analytic ecase,
we will have to consider complex extensions of subsets of R2* and of real
analytic functions defined there. Since we have fixed p* € B and a positive
o < 1 so small that the real closed ball of radius p centred at p* is contained
in B, a central role will be played by the subsets Dy, . of C?* defined by

(1-2) Do == {(Py g) € € |p—p*| <o, |Tmg| g},

where Im¢q = (Img,, ..., Img,). For what concerns functions, let «7,,. be
the set of all complex continuous functions defined on Dy ,., analytic in the
interior of Dy ,., which have period 2z in g¢,, ..., ¢, and are real for real values
of the variables. If f € &7, ;., its norm is then taken to be |f g0 = xeslpo}:. |f(@}];
in the caso of functions f = (f,, ..., f») with values in C», we also write f € o7, .
if fieAdype (i =1,...,n), and we set [fi,,. = max [filo,pe. In agreement
with the convention made above, if C is a nX#n matrix whose elements C,;
belong to o7, ,., we set [Clg .. = max [Cisleses thus, in particular, for any
v € C* one has the inequality |Cv[g e <% |Clqpe[v]. For notational simplicity
we also set Dy = Dgoy o = oo, |fle = |flleo. Averaging over angles will
be denoted by a bar: namely, if fc «/,,., then we denote

) ] 2n an
(1.3) f(p*) = 2 f---ff(p*, q) dg, ... d¢. .

Functions f(p), f(g) of the actions only or of the angles only will be thought
of as defined in D, . by trivial extension.

Let us finally remark that, for the given Hamiltonian H € &/, ,., Ono can
assume | [, ,. < 1; indeed this can always be obtained by the change of
variables (p, q) — (xp, g) with a suitable positive &, which leaves the equations
of motion in Hamiltonian form with a new Hamiltoniun H'= «H.

1'3. — Kolmogorov’s theorem can then be stated in the following way:

Theorem 1. Consider the ITamiltonian H(p, q) = H%p) -- Hp, q) defined
in Bx T* and, after having fixed p* € B3, denote

oIl° Y c2H®
(1.4) ;_Zw(,,*)zoalpl. (P%),  Ch== %‘Ij (%) = s (D*

(1¥) C. L. S1EGEL: Ann. Maih., 43, 607 (1942).
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Assume there exist positive numbers y, g, d <1 such that

(1.3) i) jeldy,
(1.6) i) B, H'e g5
(1.7  iii) djv] < jC*v) <d1jv| for any »e C»

and, moreover, [H[,,. <1. Then there exist positive numbers E and ¢’ with
o'<<p such that, if the norm [H*|,,. of the perturbation H* satisfies

(]-'8) []]1"0'”. < My

one can construct a canonical analytic change of variables (p, ¢) = w(P, @),
w. Do = Dy ey p G &y, which brings the Hamiltonian H into the form
H' = Hoy given by

(1.9) H'(P, Q) = (Hoy)(P,Q) = a + - P + R(P, Q);

here @ € R and the remainder E € &/, is, as a function of P, of the order
|PJ2. In particular, one can take

(1.10) E=c, },4 a8 gﬂ(n-{-l) ,
where
1 \srt? 1 ¢ n+1
(1.11) cn= = 2 V(£ )
52 dn 4+ 1) \n41

The change of variables is near the identity, in the sense that
lp —identity}, -0, as [|H,,0—>0.

1’4, - Let ug now add some comments on the interpretation of Kolmcgo-
rov’s theorem. In classical perturbation theory one attempted at construcling
a eanonical change of variables with the aim of eliminating the angles @ in
the new Hamiltonian H’; in such a way the phase space would turn out to
be foliated into invariant tori P == const, which is possible only for the excep-
tional class of integrable systems. As one sces, in the method of Kolmogorov
one looks instead, in correspondence with any good frequency A (i.e. any
/. € £, for some p), for a related change of variables which eliminates the
angles Q only at first order in P. In such a way, one renounces to have the
general solution P(t) = P, Q(t) = Q°+ w(P®)t (mod2x) corresponding to all

14 -~ Il Nuovo Cimenio B.
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initial data (P, @°) € D, but one gots, however, for any good frequency 2,
the particular solutions P(t) = P, Q(t) = @ + At (mod 2x) for all initial data
(P Q°), with Po:={, Q°c T*; this is immediately seen by writing down the
equations of motion for H’, namely P = —0R/2Q, @ = 2 + eR/cp and using
the fact that R(P,Q) is of order |P[®. Thus with the Hamitonian in the
new form II', adapted to tho chosen frequency A, one is not guaranteed
to have a foliation into invariant tori, but one just sees by inspection
the invariance of one torus supporting gquasi-periodic motions with angular
frequency A. In terms of the original variables (p, ¢) canonically conjugated
to (P, @) by the mapping v, this torus is described by the parametric equa-
tions (p, ¢) = v(0,9), @€ T, and is invariant for the Hamiltonian flow
induced by H. This torus is a small perturbation of the torus p = p*, ¢ T,
which is invariant for the Hamiltonian H° supporting quasi-periodic motions
with the same angular frequency.

In such a way, having fixed a poritive y < 1, to any p* e B with a good
frequeney A = w(p*) € £2y (and also satisfying the two further conditions of theo-
rem 1), one can associate a torus which is invariant for the original Hamil-
tonian H supporting quasi-periodic motions with frequency A. Now, as in
virtue of the nondegeneracy condition the mapping w:B > Q = w(B) is a
diffecomorphism, one has that the set of points {p* € B; w(p*) ¢ 2} has a
Lebesgue measure which tends to zero as y — 0. This remark suggests that
the 2n-dimensional Lebesgue measure of the set of tori whose existence is
guaranteed by Kolmogorov’s theorem is positive and that the measure of its
complement in BX T tends to zero as ihe size of the perturbation tends to
zero. Actually this fact, which was already stated in the original paper of
Kolmogorov, was proved by ARNOLD (see also (°) for a recent improvement
and (12)) using a variant of Kolmogorov’s method, but will not be proved in
the present paper.

2. — Reformulation of the theorem.

2'1. — The proof of the theorem starts with a trivial rearrangement of the
Hamiltonian which reduces it to the forin actually considered by KoLMOGOROY.
Indeed, after a translation of p* te the origin, by a Taylor expansion in p
one can write the Hamiltonian H in the form

(2.1) H(p,q) =a - Alg) +[2+ B@)]p+ % 2 Ould)p.p;+~ Rip, @),

£,3

where a € R is 4 constant which is uniquely defined by the condition 4 = 0,
while 4, B,, C;;, Re o/, and R is, as a function of p, of the order |p|3.
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One has clearly
a = H(0) + H'(0) = H(0),
A(g) = H0,¢q) — H*0) = H(0, q) —a,

oH1 oH
202 . —_ — == e —_—
(2.2) Bi(g) 90 0,9 = 55, (O Q— A,
Culg) = é_p_‘—ap, 0,9 .

This Hamiltonian H has then already the wanted form (1.9) of theorem 1,
apart from the disturbing term A(q) + B(g)-p, which thus constitutes the
actual perturbation in the problem at hand and will be eliminated in the fol-
lowing by a sequence of canonical transformations.

2'2. — One is thus interested in giving estimates on A4, B = {B,} and
C = {C,;}. To this end we will make use of the familiar Cauchy’s inequality,
which will also be used repeatedly in the future sections. This inequality
will be used in our framework in two forms: given fe &/,, a positive d << ¢
and nonnegative integers k;, !, (¢ = 1,...,n), then one hasg

it bl e PR RIS
(2.3) E OpE .. P g . g flp, @) !< W‘Tm [fle

for all points (p, q) € Dy_s, and

Qlrttkn k

opkt ... opkr

k!

!
(2.4) f(0, ¢} <@—+ [fle

tor all points (0, ¢) with |Im(g)| -¢. The proof can be given exactly along
the same lines as in the case of a polydisk (see, for example, ref. (3¢)).
It is easily seen that one has

(2.5) max(|4jie, |Blie) < 2E/e
and that there exists a positive number m < 1 such that one has
(2.6) mlv) < [Cv! , |Cvle<m|v] for all ve C%

precisely one can take

(2.7) m=d2.

(1) B. A. Fucus: Introduction {o the Theory of Analytic Functions of Several Complex
Variables, T'ranslations of mathematical monographs, Vol. 8. (Providence, R. 1., 1963).
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For what concerns (2.5), let ns remark that one has
NS 1 1 1
(2.8) lAle<2fH e, "B"o<5 [H e

the first one following immediately from the very definition (2.2) of 4, while
the second one follows from Cauchy’s inequality (2.4) applied to

1

op.

|B .= max sup
¢ |l1mai<e

(0, q)i .

Inequality (2.5) then follows from p-1 and from (1.8), which reads now
|HY - E.

Coming now to (2.6) and (2.7), let us remark that, by definitions (2.2) of
C and (1.4) of C*, one has

Qs
(2.9) Clg)— C*= {m;; (0, Q)} ’

8o that from Cauchy’s inequality (2.4) with our definition of the norms one
deduces

(2.10) ma—mwh<§umhww

By |H!}, < E and the estimates (1.10) and (1.11) for E one has then surely
also

(2.11) I(C — oMol (@2) 0],

which guarantees

(2.12) [C*v] — (O — C*¥) o[ >(d[2)]v] >0,

as is scen by using ||,

< ...Jle and (1.7). TUsing now the identity
(2.13) C=C*+ (C— 0%,

or also € = C*+ (C — C*), by (2.12) one gets

(2.14) 1Cv > |l C*s| — [(C— C*yof| > @/2) o] ,

namely the first of (2.6) with m = d/2. Analogously, from (2.13) one gets

(2.15) [Cole <[ C* 3] + |(C — C*)ole,
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or with (1.7) and (2.11)
(2.16) 100l <(d + dj2) o] < 2d-|o] .

2'3. - It is then immediate to deduce theorem 1 from the following

Theorem 2. For given positive numbers y, p, m < 1, consider the Hamil-
tonian H(p, q) = H%p, q) + H(p, q) defined in the domain D, by

(2.17) Hp,q)=a—+2p+ 3> Culg)pips+ R(p, @),
[ %)
(2.18) Hip, q) = Alg) + 3 Bdq) p:
f

with |HJo<1; here a€R, A€, 4, B,, Oy, Re o, and A =0, while R
is, as a function of p, of the order |p|%. For the matrix C(q) = {C(¢)}, assume

(2.19) mlo) < |Coll, 1Cv]e < m|v| for any ve C*.
Then there exist positive numbers ¢ and p’ with ¢'<p such that, if
(2.20) max ([ 4e, |Ble) < e,

one can construct a canonical analytical change of variables ¢!D,. —D,,
@ € &, which brings the Hamiltonian H into the form

(2.21) H'(P,Q) = (Hop)(P,Q) = o'+ A-P + R'(P,Q),

where @’ € R, while the function R'e &/, is, as a function of P, of the order
|P{2. The change of variables is near the identity, in the sense that
lp — identity | — 0 as [|H![— 0.

In particular, one can take

meo Q 8nt6
2.22 = = { =
(2.22) ¢ 26/12(13) ’
where
Ul
(2.23) A = 2(4n 4 1) i
(2.24) ¢ = 24nt1 ('ril)n+1 .
é

The scheme of proof of theorem 2 is as follows. One performs a sequence
of canonical analytical changes of variables such that the disturbing term H!
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of the Hamiltonian H al step & decreases with %, its norm | H,[l,, being essen-
tially of the order of |H,_,[% , while the other parameters g, and m, are kept
controlled. The convergence of the scheme with |H, —>0, g, — 0, >0
and my—m, >0, as ¥ - co, is then established. The iterative lemma and
the proof of convergence are given in sect. 4 and 5, respectively, while two
auxiliary lemmas (giving suitable estimates in connection with canonical
changes of variables defined by the Lic method and in connection with the use
of the diophantine conditicn 2 € {2, in solving a differential equation of the

form E A(oF{9¢;) = @ with G = 0) will be recalled in the next section.
¥

3. — Canonical transformations and small denominators, lemma.

3’1. For a given function y(p, q), y € «,, let ;{; be defined by

)

dy

oy
2 A * —_— [
(3.1) e = max (" 3¢

cp

+
e
and Iot {-, -} denote the Poisson bracket

of cg of og

8.2 1.9 = 3z, 50, 24,00

Then, for y, fe o7, and any positive 4 < g, the inequalities

(3.3) 162 Moo <2023 18) 111
(3.4) ”{ 1 {2 f} }Hg—a Z4n(2n H- 1)(%;/‘5)2”1i:9

are deduced from Cauchy’s inequality and from an enumeration of terms in
Poisson brackets.

We come now to the definition of canonical transformations, or changes
of variables, near the identity by means of the Lie meihod, which hag, with
respect to the standard method, the advantages of avoiding any use of the
implicit-function theorem and of providing the relevant estimates in a simple
way. In such a method a canonical transformation (p, ¢) = ¢(P, Q) is defined
through the solution at time one of a system of canonical differential equations
with Hamiltonian (here called «generating function ») y; then the functions f
defined in phase space change correspondingly by fi #f = fop and it is
well known that one has formally f = f + {1, f} + ${x% {x, } } + -..; indeed
this is nothing but Taylor’s expansion of f, using df/dt = {y, f}, i.e.

% (p0), ¢()) = {x, £} (p(1), 2(®)) -
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The existence of such a canonical transformation ¢ and operator  and the
relevant estimates are then afforded by the following

Lemma 1. Take an analytic function y(p, ¢) defined in Dy, whose derivalives
belong to 7, for a given positive g, and consider the corresponding system of
canonical differential equations

. Oy . Oy
(3'5) D= aq’ q_ap'
With ;;; defined by (3.1), for a positive J < p assume
(3.6) 1< 2.
Then for all initial data (P, @) D,_, the solution (p, q) of (3.5) at # = 1 exists
in D,, thus defining a canonical transformation ¢:Dgs — Dy, ¢ € &Zy0s. The
operator % :sf, — Ay with
(3.7) Uf = fop

is then well defined and one has the estimates

(3.8) |p-identity | o-a << 13
and

1%fle-o < IIfle
(3.9) 1% — fle-s<4n 2E Y],

(2 — 1 — (1 Blowo= 16n(20 + 1) (%) 1l

Proof. First of all, using Cauechy’s inequality (2.3), one guarantees that
in the subdomain D _,;, the second members of system (3.5) have finite deriva-
tives, so that the Lipschitz constant K of the system is finite in D,_,, (precisely
one has K < 4ny;/d). Moreover, as max(lpl, |§}) <y, < 6/2, if one takes
initial data (P, Q) in D,_,, the standard existence and uniqueness theorem
guarantees that the corresponding solutions (p(t), ¢(1)) with (p(0), g(0)) =
= (P, Q) exist in D,_,, for any ¢ with 0 <¢<1. Thus, for any such ¢, one has
a mapping ¢*.D, , - D,_,,C D, with ¢*(P, Q) = (p(?), q(¢)) and, in particular,
the mapping ¢ = ¢! iz also defined. By the standard existence theorem such
a mapping is analytie; furthermore, the periodicity in ¢, ..., g, is immediately
checked. Finally, the mapping ¢ is well known to be canonical, being the
¢ time-one solution » of a canonical system.
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Let us now come to the estimates (3.8) and (3.9). Estimate (3.8) is
an immediate consequence of the mean-value theorem, according to which,
for any ¢ in 0 <?<1, one has |p*— identity | < x:, while the first of (3.9) is
trivial. The second and the third ones follow from Taylor’s formula for f of
first and second order, respectively, namely

d d dz ]
w1 =G =, w—-F=35 ~3wn

i

with 0 < ¢/, "< 1. Remarking that, as recalled above, one hag ¢(P, Q) e D
if 0<t<l and (P,Q)€ D, ,, one has then to estimate H{x, f}
€% (xs 5 }|,-ore- Estimates (3.9) then follow by (3.3) and (3.4).

0—9d/2

‘ile—o/z and

3°2. In the course of the proof of theorem 2 a fundamental role is played
by the possibility of solving a differential equation of the form ¥ A,(cF/cq;,) = G

]
for functions F and G defined on the torus T* if 1 is a «good frequeucy ».

Lemma 2. Consider the equation

oF
(3.10) s Z"&i =@,

13

where # and G are functions defined on the torus T7, and assume A = (4,, ...
ey A,) € 2, for some y > 0 and G € o7, for some positive p with G = 0. Then,
for any positive 4 < g, e¢q. (3.10) admits a unique solution F € &/, s with
F = 0, and one has the estimates

‘ g

(3.11) 1Flle-s < Sow 1G1e,
. oF o

(3.12) 22 los < T 1Glle 5

where ¢ = ¢(n) is defined as in (2.24).

This is a well-established rcsult. First of all, a formal solution in terms
of Fourier coefficients f, and ¢, (0 = k e Z*) of F and G, respectively, is im-
mediately obtained, by f, = — igy(A-k)-? if onc has g, = 0, i.e. G = 0. The
convergence is then easily established, as the ccefficients g, decay exponentially
with % in virtue of the analyticity of @, while |A-%[~* grows at most as a power
by the diophantine condition (1.1) imposed on /. The details of the proof are
deferred to the appendix. Optimal estimates were given more recently by
RUssMANN (5) with -2 and 6D in (3.11)-(3.12) replaced by 6 and
g+, respectively, and ¢ replaced by og = 24*t2n!(2*— 1)1
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4. — The iterative lemma.

4’1, — As anticipated in the introduction, one applies now a sequence of
canonical transformations in order to eliminate the disturbing term H! in
the original Hamiltonian H considered in theorem 2. To this end we will
repeatedly apply the following

Lemma 3. For given positive numbers y, o, m, e <1 and g, < g, My < M
consider the Hamiltonian H(p, q) == H%p, q) -- HXp, ¢) defined in D, by

H(p,q) =a+ Ap-+4%>Cul@)p:p;-+ Rlp,q),
(4.1) 1,3

H'(p,q) = Alg) -+ ZBi(q)p;

with |H|, < 1, where a€ R, A€ 2y, A, B;, Oy, Re sy A =0 and R is
of order 'p'%. Assume, {furthermore,

(4.2) m' | < |Cof, Cvle<mlo| for any ve C*,
4.3) max(|Aje, Blle) <eé.

For any positive § so small that g — 30 >> g, let the quantity 7 be defined
by

£

(4.4) n=d 2o,

T=4n+4 3,

where A = A(n, ) is the constant defined by (2.23), namely
2

(4.5) A=2(4n+1)2;‘7,

and assume that & is so small that
(4.6) m—nyfoi>m, .

Then one can find an analytical cancenical change of variables, ¢:D,_,; — De,
® € o, 55y such that the transformed Hamiltonian H' = %Il = Hog can be
decomposed in a way analogous to H with corresponding primed quantities
a'y A’y B’y ' and K, but with the same 1, and satisfies analogous conditions
with posiiive parameters o', m', ¢'<< 1 given by

¢ =0—30>g,,
(4.7) m = m—ny;0,>m,,

!

¢ =n%o,
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with, moreover, |H'|s»<1. One has, furthermore, for any fe <,
(4.8) Uf— f] <]
: | — o< Il -

4’2, ~ Proof. a) If one performs a canonical change of variables with
« generating function» y in the sense of lemma 1, one obtains in place of H
the new Hamiltonian H' = %H and one can make a decomposition H' =
= H'" + H'* in a way analogous to the decomposition H = H°® 4 H!; pre-
cisely, using again the symbol (p, g) instead of (P, @) for a point of the new
domain, one has

Ho=a'+ Ap+ 33 0,q)pip;+ R'(p,q), H?'=A'(q) ~B'(g)p,

4
where

e = H0),

A'(g) = H'(0,9) —a',
(4.9) Bl(g) = aa%’ (0, 9) — A,

and R’ is of order !pj3. In the spirit of perturbation theory, one thinks that
both H' and the generating function y are of first order and one chooses y
in order to eliminate the undesired terms of the same order in the new Hamil-
tonian H’. To this end one first writes the identity

(4.10) H'= «H = H + H'+ {g, HY + [{¢, H'} + ¥H — H — {3, H}],

where in the expression [...] are isolated the terms that have to be considered
of second order, in agreement with the estimate given in the third of (3.9).
Then one tries to choose y in such a way that the first-order terms in H',
namely H* -- {y, H%, do not contribute to H'!; this is obtained by imposing
H' 4 {y, H} = ¢ - O(|p]?), where ¢ is a constant.

b) Following KoLM0GOROV, we show that this condition is met by a
generating function y of the form

(4.11) r=§&¢+ X(@+ 2 Ydq)p«,
4

where the constant & € R* and the functions X(g), ¥ ,(g) (of period 2z in ¢,, ..., g,)
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have to be suitably determined. A straightforward ecaleculation gives, by
recalling the definitions (2.17)-(2.18) of H® and H3,

(112)  Hi {p B} = — S &+ Alg —si =

q

+,§[ {0 — 3 Culg (s‘h) El‘ay’]m*o(m")

gy

Thus it is sufficient to impose
cX
(4.13) > ;.,g— = A(q),
f 4

X
(4.14) s z,——- = B0~ 3 0ul0) (ss n Z—g) =ty ey

By the small denominators, lemma 2, eq. (4.13) in the unknown X' can be
solved, as A = 0. Then onc has to determine the nnknown constant £ in
such a way that the mean value of the r.h.s. of (4.14) vanish. This leads to
a linear equation for &, which in compact notation can be written as

(4.15) Ct=B— (0=,

and such an equation can be solved by (4.2), which guarantees det C = 0.
Equation (4.14) in the unknown Y can then be solved too.

¢) The existence of the wanted generating function y is thus ascertained
and one remains with the problem of specific estimates. By a twofold appli-
cation of lemma 2, one obtains by easy calculations the following

Main estimate. Equations (4.13)-(4.15) in the unknowns &, X(g) and ¥(¢),
which define by (4.11) the generating function y, can be seolved with X,
Y,e #Z,, § = — 20 for any positive 6 < p/2, and, for the quantity x; defined
by (3.1), one gets

£
(4.]6) xz (4’)?/ +l) ’W
or equivalently

1
4.1 4
(#17) ) 2(4n + 1)

The details are deferred to the end of the present section.

Remarking now that eondition (4.6) evidently implies 5 < 1, from (4.17)
oue gets 2’3 < d/2, so that lemma 1 can be applied and x generates a canonical
transformation with domain D,., where o' = g — ¢ = ¢ — 34.
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d) We come now to estimates (4.7)-(4.8) and |H'|e-<1. The inequa-
lity |H'|o +|H|e-<1 is just the first of (3.9). Let us then come to &'
For what concerns A4’, by definition (4.9), using cxpression (4.10) for H’
and recalling that, in virtue of the choice of y, only the last term contri-
butes to A’, one gets i!A’_'Q,<2”{7, HY + %H — H—{/, H}|l . Using now
(3.3) and the third of (3.9), together with 1|H1|' Hn A1), [Hiz<1
o =¢g— 4, and (4.17), one gets

*

(%, B} + %H — 1T — {g, H}||y <2n(n + 1)e + L6n(2n + 1) (f; )2<

o ¢
_2_

<(n +1) 6—%+16nun+ )(%)<

n 3
<[1 [P S 29
<[16n(2n + 1) +1][2(4n i 1)] <n*2,
where (4.17) was used together with

on(n 4 1) < (41 + 1) - 2::“6‘ and  16n(2n 4+ 1) 4+ 1< 2(dn 4+ 1)1,

Thus one has 4|, <n* Concerning B’, for the same reason, from (4.9) and
(4.10) and recalling (dH%cp,)(0, q) -= A,, using Cauchy’s inequality (2.4) one

has

' 1 b n?
|B ”9’<E”{2’7 H'Y} + %H — H — {y, H}|'9 < 20’ < 208"

In conclusion, one has max(|A'|e, | B'|

g,) < ¢ with o'= ¢ — 34 and

(4.18) &' = 9o .

For what concerns inequality (4.8), from the second of (3.9), with g in
place of g, one has

(4.19) et —fle < Ze 11

from which (4.8) follows by using (4.17) and ||f[}6< ||/|]§.
Let us finally come to the estimate for m’. To this end, we recall first that,
by the definition of € and C’', one has

a2

Cile) = Oul@) = = (WH — 110, 9).
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Thus, from Cauchy’s inequality (2.4) and (4.8), one gets

(4.20) 1Gl— Cusly < 2]%H — H||0'<Z?—: ,
which gives

(4.21) [(C'— C)ve = (nyfod) |v] .

Thus from (4.2) and (4.21), using also || <]...}e:, one has

[Col — (C'— C)v] > (m —nyled) o] >0
in virtue of condition (4.6) and, moreover, from the identity ¢'= C -} (0'— (),

(4.22) IC"v! > (m — anfed)|vi .

Furthermore, one has [C'¢],
10v]er <[ Cv]o <<m*|v s

o+ I(C'—C)vi,, or, with (4.21) and

(4.23) 10 0 < (m + nyfel) o] .

Thus with the trivial inequality a-! + b<< (a—b)"! for 0 <b<a<1 one
obtains

(4.24) 1€ 0]le-< (m — mp/el)2 o],

so that the estimate for m’ is proven.

¢) To conclude the proof, we give now the main estimate (4.16). First,
by lemma 2 applied to eq. (4.13) with A}, << ¢, one finds

age

o o€ oX
(4.25) [Xfle—o < ” H<;}-5,T+i .

}_,62; ’ gq_

Coming to eq. (4.15) we first establish

o€
(4.26) “B 0— _6< W’
making use of
, X |eX
1B e-0 <&, “ €= m =
oq (il o—-6

and of o/(ymé*+) > 1. Thus, by |...|<|...]¢s, from (4.15) and [&|<
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<m-1|C¢|, i.e. the definition of m, one gets

age
(4.27) 1€] <2

Coming then to eq. {4.14}, iz order to estimate the r.k.s. we remark that

| <
e

so that, by (4.26), (4.27) with m < 1, one has

cX
B—‘C‘,\_ _]i
1 Ho-ﬁ"‘ e,

13_0—8;5—05
cq

(4.28) B=Cqy —* pms §entl "

0X ” 408
-0

A direct application of lemma 2 then gives

o%c
e zo<4 yrme ot

ofe cY
1 ¥ ose <t |]

yim® Sent1? _aE

As a consequence, recalling definition (3.1) of ZE (with g = p —24), by
definition (4.11) of y which gives

3y
op

cX

C
Sq

oY
dq

:ilY}]37 Ry
e

Q

+n ”

oy
cq

<&+
Q

e

and using 4, y, 8, m <1 with 367" < 1, one gets

(4.29) preldn 1) —2°
B N : 4 72 mS fen+2

The main estimate has thus been checked and the proof of lemma 3 completed.

5. — Conclusion of the proof.

5'1. - One has now to apply repeatedly the iterative lemima 3 in order to
eliminate the perturbation H(p, q) = A(q) + B(g)-p. Thus, starting from
given positive numbers g, m, ¢ << 1, which we denote now by g,, m,, &, by
assigning a sequence {8,}>, one can define recursively .y, M1, &1 DY rela-
tions analogous to (4.7), which we write now in the form

Pry1 = Ox— 367: ’

5.1 & = /E(—gk ’
(O. ) k41— 0. mgé: ?

My = My— (nfo}) ELH ’
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where definition (4.4) of n wag used and, moreover, in the relation between
m' and m, n was expressed through ¢. One has, however, to satisfy the

two consistency conditions g, > e, Mpiy > My (K = 0,1,...), Where g, < g
and m, << m, are arbitrary positive numbers. In virtue of

— >3 and m, = my— (n/QZ) 3
ko =0

these consistency conditions are satisfied if one guarantees

(5.2) 3 2 0 << 00— 0x »
k=0
(5.3) (nfehy 3 e < me—m, .
k=0

We notice, however, that the relation connecting e, with m,, é, and &
can also be read as defining &, if ¢,,, is given; precisely one has

A” sk

(5.4) = =
O« mk é“=+1

Notice that m, is defined in terms of & and m, by the last of (8.1). Thus one
can think of defining arbitrarily the sequence {e.}, instead of the sequence
{6.}. Making also the position

(5.5) Ex = Cio E=0,1,2,..(c=1),

one has thus to define a sequence of positive numbers ¢, with ¢, = 1 so that
the two geries

(5.6) E Sy = Z (ck/ x+1)1/2f= 8,

(5.7) Etk— Z i =

k=0
converge. Then the two consistency conditions (5.2) and (5.3) determine &;
indeed (5.3) gives

3
(g — M)
(5.8) £l g—‘—;—”’;’?' x 9

while (5.2), by using m; > m,, gives

e 0‘_m= Qo— O« *
(J.g) Eq< ( 3s ) .
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A rough estimate for g is obtained as follows. Choose ¢, = 27°%; this
gives s, = 2-27% and t, = 27, 50 that s = 4 and ¢t = 1/(2°— 1)< 1. For
the two up to now arbitrary numbers p, and m, make the simple choice
0x = 0o/13 and m; = m3/2. This ensures that the r.h.s. of (5.8) is larger than
that of (5.9), so that we conclude that the two consistency eonditions (5.2)
and {5.3) are satisfied if onv assumes, for example,

< 2oma (00}
(0.10) 80<26A2(]3) .

5'2. — We finally come to the convergence of the sequence of canonieal
transformations, thus giving the

Proof of theorem 2. Starting from the Hamiltonian H, = H defined in D,
with [|H[|, <1, characterized by positive parameters p, 0,5, M <1, consider
the quantity &, satisfying (5.10) and assume max(|dle,, [Ble,) < &. Then
one can apply recursively the iterative lemima 3, defining at each step k>1
a canonical transformation g,:De, — D, with the corresponding operator
Ui. Ao, — Ao ; furthermore, from (4.7) and (4.8) one has the estimate

(5.11) ”%kf"f[iok < M1 )fle,
with 7,_,= gtez, so that, in particular, the series Y #, is known to be conver-
k=1

gent. We can now define the composite eanonical trausformation ¢.:D, — Do
by ¢, = @,0...0¢, and the corresponding composite operator ”2,‘:.&/9. -> &Lo, s
defined by @,f = fog,, or equivalently by &, = Uy 1y U = identity.
Clearly, in order to prove the convergence of the sequence {@} of canonical
transformations restricted to D, , it is sufficient to prove the convergence
of the corresponding sequence {#,} of operators for every fe &, . This in
turn is seen by remarking that, from (5.11) and the first of (3.9), one has

= % @af) — X

W Zrs— ) fle <l @i tl,, <nilfle,

t22% k+1

and so also, for any I>1,

. B ~ I o k+i—1
(5.12) ey — %k)ﬂ,ek“ UI|9‘> z % -
o=k
® A
Thus, as the series > 7, converges, one deduces that the sequence #,f con-
=1

verges uniformly, for any fe &7, ; by Weierstrass’ theorexn one has then

lim %, f = Uofe Ay;

k=
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furthermore one immediately gets the estimate

(5.13) 1% o f — fllow = (2 b 0)[fle, »

where ¢ is the constant defined by (5.7). In particular, for the Hamiltonian
H, = li_{g H, onc has H_ = H! -+ HY, where by construction HY(p, ¢) =
= A,(q) + B,(q)'p := 0. Finally the mapping ¢, = 11_{2 ¢, turns out to be
canonical again in virtue of Weierstrass’ theorem, as a uniform limit of ean-
onical mappings.

APPENDIX

Proof of lemma 2.

Ags we are here interested in functions of the angles ¢ only, in the defini-
tions of D, and &7, the actions p will be now considered as paramecters and
completely disregarded. Moreover, in addition to our standard norm [k} =
= max |k:], we will also introduce the norm k] = z |k;|. We recall first two

elemcntary properties concerning analytic functlons on the torus T*, and an
elementary inequality, precisely we prove what follows:

i) if Pe .o, B(q) = 2 f.exp[ik-q]l, then for every ke Z" one has
keZ™

(A1) [fel < [ F]le exp [— [%le];

ii) suppose that for some positive constants € and ¢ with p<1 and
every ke Z" one has |f,|<C exp[— [klo], and consider the “function Flg) =
= Z fr exp [¢k-¢]; then for any positive § < p one has F e o/, s and

(A.2) P05
iii) for any K, s, 0 > 0 one has the inequality
(A.3) e <(:—6)' exp [K0].
Proof. i) By definition one has

1 .
-fF(ql, veey §5) €XP [— zz’: k,q,] dg, ... dq, .

fk= (2—7Z)"
1‘

15 = Il Nuovo Cimento B.
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As F e o/, one can suitably shift the integration paths and write

1 A .
= L e T = e D) | L
Tl\

where, by convention, we may assume

= 0. One has then

)
o]
i< 1Pl exp | (S 161) ] s, flexp[-—ﬂ» 1] A, .. g, =~ [Pl exp [ Jkle) .

ii) Let [Imgq] <o — 6, where Im¢q = (Img,, ..., Img,). Then one has

|Fios= sup| 3 fr explik-q] <
<Ck§.e>m [— [klo] exp [|k](¢ — 8)] = C,Ezi.exp [— ko] <

(kyy oka)EZ™ =1

k1220,000,k00
1 4\n
P on —
¢ (1—exp[—61)"<0(6) ’

becaunse 1/(1 —exp [— 8]) < 2/8, for any positive §< 1, as is immediately
seen by comparing 1 — 4/2 and exp [— S].

iii) The considered inequality is equivalent to Kd/s<exp [Kd/s —1],
i.e. to r<exp [ — 1], which is evidently true even for any real z.

‘We come then to the

< 02" Y exp [— 53 k,] = O2* (go exp [— ak])" =

Proof of the lemma. In terms of the Fourier coeficients f, and g, of F and @,
respectively, one formally satisfies eq. (3.10) by

(A'4) sz__;.%(’k’ O;ékeZ",

where, by the condition 4 € £,, all denominators are, in particular, nonvanighing.
By G e o/, property i) and A€ £,, one has then

(A.B) sl <y | G|e [k|* exp [— |k]e],

where the inequality ||4]<!k| has been used. From inequality (A.3) with
K = |k| and s = =, for any positive § this gives

il <r160e (55) exp (= ke — 801 = G oxp = [¢l(e — O],

o= p1al ()

where
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Now, for any §<<p, one can make use of property ii) (with ¢ — d in place of o)
and one obtains for F(q) = Y fyexp [ik-q] that F € o/,_,5 and that
o#xe2"

4n\* .
Fle-wsy () 160e-

Thus (3.11) is proved by taking /2 in place of J, because o > (16nje)".
Let us finally prove (3.12). The Fourier coeflicients of 0F/[cq, are of the
form hy, = k;g./(A-k)7, j = 1,...,n, s0o that as for (A.5) one gets

e, | <yt [ Gl || exp [— |k]o] .
By iii) with K = |k,| and s = » 4 1, this gives

1\nt1
< (S5 ) ™ 161 exp 1= lelte-an,

so that one obtains
cF

4 fn + 1\
. (——) 16 le.

9—26< y(san'f-l e

By taking again §/2 in place of J, one thus gets (3.12) with

n L 1\ttt
=98t | ]

® RIASSUNTO

Nel presente lavoro si dimostra il teorema di Kolmogorov sull’esistenza di tori invarianti
in sistemi Hamiltoniani quasi integrabili. 8i usa lo schema di dimostrazione di Kol-
mogorov, con la sola variante del modo in cui si definiscono le trasformazioni canoniche
prossime all’identitad. Si usa infatti il metodo di Lie, che elimina la necessitd d'inver-
sioni e quindi dell’'impiego del teorema delle funzioni implicite. Questo fatto tecnico
evita un ingrediente spurio e semplifica il modo in cui si otticne una delle stime principali.

JlokasareabcTBo Teopembl KOIMOropoBa Ba MHBAPHAHTHBIX TOPAX, HCIOAL3YH
KAHOHHYecKHe Npeo0pa3oBaHug, onpejesieHHble ¢ HOMOWBIC Merona JIH,

Pearome (*). — B 3roit pabore mpennaraercs 10Ka3aTenbCTBO TeopeMsl KonmMoroposa o
CYL0eCTBOBAHAM HHBADUAHTHEIX TOPOB B KBA3H-HHTEI'PUPYEMbIX [ aMHITBTOHOBBIX CHCTEMAX.
Hcnone3yeTca cxeMa [OKa3aTeNlbCTBa, npeqioxcHHas KoiaMoroposbiM, €IWHCTBCHHOE
OTJIMYHE COCTOMT B Crocofe, KOTOPHIM ONpenesifioTCA KaHOHHYECKMe mpeobpa3oBaHus.
B ato#t pabore ucoonbiyercs MeTon JIH, KOTOpPbLi HCKIIOY2ET HEOOXOOHMOCTh MHBCPCHH
U, CIEeN0BATEIBHO, UCIONBL30BaHHE TEOPEMBI AJiA HEABHON GYHKIMK. OTOT TEXHHUCCKUN
pMEM MCKJTIOYAeT JIOKHbI HHIPAEHEHT W yOpomlaeT OOJYy4YEHWE IJIaBHOU OLICHKH.

(*) [epesedero pedaryueil.



