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S u m m a r y .  - -  The theory of shot effect is examined on the basis of an 
inhomogeaeous Poisson process. The (( Poisson ~) parameter  2(t) charac- 
terising the stochastic process is generalized in such a manner tha t  2 
itself becomes a random variable depending on the number and the 
posit ion of events on thd t ime axis. I t  is found tha t  the number density 
of arrivals of electrons in the theory of shot effect has exact ly the same 
behaviour as the process under consideration. Such a process is strongly 
non-Markovian and the calculation of moments and correlation functions 
of the output  turns out to be difficult. However i t  is shown tha t  a 
knowledge of the moments of and the correlation of events on the t-axis 
is sufficient to determine these functions. The conjecture of Rowland 
regarding the behaviour of the mean square of the cumulative response for 
shot effect is proved and in addit ion an explicit  expression for the power 
spectrum of the response is derived. Other physical  phenomena which 
can be explained on the basis of the stochastic model are cited. 

1 .  - I n t r o d u c t i o n .  

The  p r o b a b i l i t y  t h e o r y  of sho t  effect  (1) o r i g i n a l l y  p r o p o s e d  b y  CAMPBELL (5) 

a n d  s u b s e q u e n t l y  d e v e l o p e d  b y  RICE(3) g ives  a n  a d e q u a t e  d e s c r i p t i o n  of t he  

noise  c u r r e n t  when  t h e  s y s t e m  has  a t t a i n e d  s t a t i o n a r i t y .  The  g e n e r a l i z a t i o n  

to  t he  n o n s t a t i o n a . r y  case has  been  m a d e  b y  ~OYAL (4) who has  d i scussed  the  

(1) W. SCHOTTK~ r Ann. Phys. (Leipzig), 57, 541 (1918). 
(2) N. CAMPBELL: ,Proe. Ca~b. t)hil. Soe., 15, 117 (1909). 
(3) S. 0. RICE: Bell. Sys. Tech. Journ., 23, 282 (1944). 
(a) J. E. MOYAL: Journ. Roy. Statist. Soe., B l l ,  150 (1949). 
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voltage fluctuations arising from shot noise. The basic idea in all these t reat-  
ments  of shot noise has been the recognit ion of the exper imental ly  observed 

phenomenon tha t  the shot effect consists of a series of pulses of current  

(1 electron.----1 pulse) and tha t  one can only observe the response of the 
circuit to the current  pulses and not  the pulses themselves.  I f  @(t) (as a fmlc- 

t ion of t ime) is the response to a single pulse at  a t ime t af ter  the occurrence 
of the pulse (at t = 0) we are interested in the cumulat ive response given b y  

(1.1) r(t) = ~,  r  , 

where t~ is the t ime of occurrence of the i - th  pulse. 
For  historical  reasons, let us consider the voltage f luctuations ia an anode 

circuit. In  par t icular  if the anode circuit  has an inductance Z as well as a resist- 
ance R and capaci ty  C, the  voltage V(t) due to the arr ival  of an electron at 

t ime t = 0 is given by  (see for example I~OW~A~D (~)) 

(1.s) 

v ( t )  = ~ ( -  ~/c) [(1 + :r exp [ -  (n iL--  ion)t] + 

§ (1 - -  RI2i~oZ) exp [-- (RIL + i~)t]] 

= 0  

t > O ,  

t < O ~  

where ~ is given by  

(1.3) = ( ~ 1 r 1 6 3  R214L~) ~ �9 

Defining the Four ie r  t ransform of V(t) as 

(1.4) 
r  

WO,) = (2~)-~f V(t) cxp [i~t] dt , 
0 

we notice tha~ the Fourier  trap.sform of the response funct ion ~(t) is nothing 

bu t  W(v)G(~) where G(v) is the amplification factor  set for the f requency 

~12z. 
Thus a s tudy of r(t) or ra ther  the probabi l i ty  distribution, of r(t) leads us 

towards a good unders tanding of the physical  phenomen.on. Hel~Ce the earliest 
a t tempts  were directed towards the calculation of the first two moments  of 
r(t). CAm'BELL (2) proved tha t  is the case of a statio~.ary system, the mean 

(5) E. •. ROWLAND: Proc. Uamb. Phil. Soc., 32, 580 (1936). 
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and fluctuation about the mean of r(t) are given by (*) 

co 

(1.5) s{r(t)} ---- 2 fo ( t ' )d t ' ,  

0 

co 

(1.6) { s [ r ( t ) -  #{r(t)}] 2} = dt', 

0 

where ~ is the mean density of arrivals of electrons at  the anode. CAMPBELL 
assumed, as is reasonably to be exp6cted, tha t  the number  of electron arrivals 
at  the anode is governed by a Poisson law which states tha~ the probability 
tha t  there are n arrivals in a t ime interval  (0, t) is 3r(n, t) where 

(1.7) ~(n, t) ---- exp [-- ~t](~t)~/n! . 

We observe tha t  while (1.5) and (1.6) are true only for the stai4onary system, 
results can be generalized with equal faci l i ty to the nonsta t ionary  ease (when t 
is finite) (see for example refs. (4) and (~)). However (1.5) and (1.6) do not 
explain the shot effect completely when we take into account the l imitations 
due to space-charge effect. In  fact HvLI, and W~LLIAMS (7) made intensive 
measurements of the shot voltage soon after CAMPBELL proposed his formulae 
and found tha t  the measured shot voltage fell below even 40 percent of the 
theoretical value. Meanwhile J o ~ s o ~  (8) who made some measurements of 
shot voltage in space-charge l imited tubes, pointed out tha t  the expected 
value of the shot voltage should be calculated as for temperature l imited cur- 
rents, by  assuming an internal  resistance of the valve. Based on these experi- 
mental  findings as well as the investigations of MOVLLIN (9), I:~OWLAND (lo) 
formulated the problem in a precise form. He assumed tha t  electrons might 
with specific probabilities, have lives of any  length on the anode system 
during which t ime each of them add ( - -e /C)exp[- - ( t - - t~) /RC]  to the anode 
potential  of the valve whose anode to earth capacity is C and feed resistance, R. 
In  addition, there is an effective internal  resistance Q of the valve, defined by 
assuming tha~ a variat ion of the ~node potential  causes a variation l/e@ times 

(*) Throughout this paper we shall use the symbol s to denote the expectation 
value of the quantity withiu the brackets. 

(6) S. K. SRINIVASA~ and P. M. MA~H~WS: Pros. Nat. Inst. Sci. (India), 22 A, 
369 (1956). 

(~) A. W. HULL and N. H. WILLIAMS: Phys. Rev., 25, 147 (1925). 
(s) j .  B. JOHNSON: Phys. Rev., 26, 71 (1925). 
(9) E. B. MOULLINS: PROS. Roy. Sos., 147A, 100 (1934). 

(lo) E. N. ROWLAND: Pros. Cam& Phil. Sos., 33, 344 (1937). 
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as great,  in the probable densi ty  of arr ival  of electrons. Thus ~he arr ival  of 
each electron must  decrease the probable densi ty  of f a r the r  arrivals b y  an 

amount  (1/C~)exp[--(t--t~)/Ct~].  I f  No is the densi ty  of arrivals at t ime 
t = 0, then  N(t) the arr ival  dens i ty  at  any  t ime t > 0, is given by  

(1.s) 

where 

I 
N( t )~- -No- -~z t ( t - - t~ ) ,  N o - - ~ ( t - - t i ) > O ,  

i 

---- 0 otherwise,  

(~.9) ~(t-  t,) = ( ~ /r exp [ -  ( t -  t,)/c.~. 

With  the  modification of the  densi ty  of arrivals as given b y  (1.8), i t  is 
clear t ha t  the probabi l i ty  tha t  there are n arrivals in. the in terval  (0, t) is no 
longer given by  a simple Poisson law as (1.7). The calculations of Rowland 
relat ing to the mean and mean square of the response were based on the 
behaviour  of N(t) as given by  (1.8). The expressions for the mea~ and mean 
square values of s ta t ionary  r(t) in terms of air infinite series of integrals under  
the  exponent ia l  Were, though not  fomidable, sufficiently complicated. These 

difficulties were ia fact  overcome by  ROWLAND who obtained simple expres- 

sions for the first two moments  of s ta t ionary  r(t). However,  there were some 

l imitat ions (*) ilt the final results obta ined by  ROWLAND. During the process 
of i~.tegration Rowland ignored the possibil i ty of N(t) dropping down to neg- 
a t ive v~lues alld there was no mechanism of achieving it  in any  refined form 
of calculation of the integrals. In  spite of all this, ]~owland's results ca~ be 
regarded as a decisive achievement  in the theory  of shot-effect for inclusion 
of all the realistic features of shot noise. In  fact  it  is precisely for this reason, 
t ha t  a considerable par t  of the book of ~ou~LI~  (18) is devoted to the presen- 

ta t ion  and discussion of ]~owland's theory.  
Twenty  five years have passed since the first exci t ing theoret ical  a t t empts  

to explain, the shot noise and the publicat ion of ~oul l in ' s  c]assical account (~3) 

of voltage fiuctuations. In  spite of many  new developments of probabi l i ty  

theory,  this aspect of the problem has not  been given any  attention.. Even  

in the work of KoYAL (14) which explained many  of the outs tanding physical 

phenomena from a fair ly rigorous probabi l i ty  point  of view, we find only some 

(*) These do not include the criticism of J. M. WmTTAKnR (11) which has been 
squarely met wi~h by Rowland himself [see ref. (12)]. 

(11) J. M. XcVItlTTAKEI%: Pror Camb. Phil. Soc., 34, 329 (1938). 
(12) E. N. ROWLAND: PrOC. Camb. Phil. Soc., 34, 329 (1938). 
(13) E. B. MOULLINS: Spontaneous .Fluctuations o] Voltage (Oxford, 1938). 
(14) M. S. BAaTLn~T: Stochastic Processes (Cambridge, 1955), p. 54. 
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generalizations of Campbell's theorem for the nonstationary case in terms of 
a Poisson law given by (1.7). I t  is the object of the present contribution to 
explain shot noise from the point of view of stochastic processes of continuous 
parametric systems. 

Section 2 of the paper deals with the formulation of the stochastic process 
governing the number of arrivals of electrons at the ~.ode and its connection 
with the response hmction, which is the main object of interest. In Sect. 3, 
we shall discuss the probability frequency function and moments of the number 
density of electron arrivals. We then use these results to obtain the correlation 
of events on the time axis. The correlation and moments of the response 
function are dealt with in the final Section of the paper. 

2. - Formulation of the problem. 

At the outset, we wish to observe that  the stochastic process governing 
the number of electron arrivals is of a more general nature and is capable of 
explaining other types of phenomenon as well. Hence we shall formulate the 
problem in general terms. Let us first consider a stochastic process of the 
inhomogeneous Poisson type with the parameter ~(t) characterizing the process 
being nonnegative, continuous and bounded function of the parameter t with 
respect to which the process progresses. The probability that n eve~nts occur 
between 0 and t is given by 

t 

P(n, t) = exp [--A(t)][A(t)J~/n!, A(t) =~X(t') dt'. (2.1) 

0 

Such a type of Poisson process can be used to describe a number of physieal 
processes like electron emission in a counter and age-dependent birth and 
death processes. In these processes~ the parameter ~(t) depends on t only and 
is independent of the number of events that have occurred prior to t and the 
position of the earlier events on the t-axis. Processes in which ~(t) depends 
on the number of events that  have occurred prior to t have received some 
attention (see BARTLETT (~4)). However shot effect falls under the last category, 
since an electron ~rriving at the ~node between, t~ and t~ + dtj diminishes the 
probability of any further arrival at a later time t2 by b exp [--a(t~--t~)] where 
a and b arc some positive physical constants depending on. the system. We sh~ll 
assume that the process is switched on at t-= 0 when the probability of the 
occurrence of an event in the infinitesimal interval (0, A) is ~0d (Ao being a 
constant). Thus the first event h~ppens between t~ and t~+ dt~ with proba- 
bility exp [-- ~ot~]~o dr, while the probability of occurrence of the second event 
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between t2 and t~-~ dt2 is given by  

(~.2) P2(t .  t~) dt~ = 

t~ 

tt 

b exp [-- a(t2-- tl)] dt~](*) . 

Le t  us denote the parameter  chargcterising the process by  4(t) in gnalogy 
wi th  the inhomogeneous Poisson process. The parameter  2(t) is no longer a 
deterministic function of t but  depends on the various random values of t 

m 

at which the events have occurred. A typical  realized jvalue of 2(t) corre- 
sponding to the events tha t  have occurred at  tl, t2, . . . , t~ is given by  

(2.3) 4a(t) : 40 --  b ~ exp [ ~  a(t- - t~)] .  

The probabil i ty measure corresponding to the above realized value can be 
calculated using (2.2). 

For  such a process, a number of questions can be raised. However, in view 
of the complexity of the problem arising from the non-~arkovian  behaviour 
of the process, we shall be content wi th  the following: 

i) the probabil i ty frequency function of 4 and 

ii) the correlation of events occurring on the t-axis. 

Lu Sect. 4, we shall indicate how we can obtain some significant information 
regarding any process wi th  the help of the moments  of 4 and the correlation 

of events. 
Let  ~(4, t) (**) be the probabil i ty frequency function of 4(t) so tha t  z(2, t) d4 

denotes the probabil i ty tha t  2(t) has a value between 2 and 2q-d4  at t. 
We proceed to obtain the Kolmogorov equation (see ref. (15)) satisfied by  
~(4, t). Le t  us increase t by  A between t and t + A either an event  occurs 
or it  does not  occur. In  the lat ter  case, 4(t) increases deterministically during 
the interval  (t, t-~ A) as can be seen from (2.3)~ the rate of increase being 

given by  

(2A) d~/dt : a(~o --  4).  

(*) P2(tl, t~) is a conditional probability frequency function. 
(*') Throughout this paper we shall use the symbol ~ to denote any probability 

frequency function, the distinetio~ between two different probability frequency functions 
being apparent from the context. 

(i5) W. F]~LL~R: An Introduction to Probability Theory and its Applications (New 
York, 1957). 
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I f  on the other  hand  an event  occurs between t and t ~-A, ,1 suddenly dimin- 

ishes b y  b. Using these results, we obtain 

(2.5) ~(2, t +  A ) d 2 =  (1 - -2A)x[ ,1 - -a ( ,1o - - , 1 )A ,  t ]d[ ,1 - - ( ,1o- -2 )aA]+ 

+ ~(,1 + b, t)(,1 + b)A d,1 + O(A).  

Proceeding to the l imit  as A ---> 0 we obtain 

(2.6) 
~:~(Z, t) 

~t --  (a-- ,1)~( ,1 ,  t ) - -a( ,1o-- ,1)  - -  
Su(,1, t) 

+ (,1+ b)z(,1 + b, t ) ,  

(2.6) is t rue only if ,1> 0. When ,1< 0 it  is easy to see tha t  ~(,1, t) 
satisfies the equat ion 

~ (  ,1, t) ~ (  ,1, t) 
(2.7) ~t - a~(,1, t) - -  a(,1o--,t)  ~ c ~  + (,1 + b)z(,1 + b, t ) .  

However ,  in such a case ,1 cannot  be a probabi l i ty  magni tude (*). This dif- 
ficulty can be overcome by  defining ,1' by  

(2.s) 
,1' = ,1 for ,1 > 0, 

[ = O otherwise .  

We observe tha t  it is ~' t ha t  has probabi l i ty  significance and in any  problem 
we have to  deal wi th  only the moment  of ,1'. I t  is indeed difficult to solve for 
z(,1, t) expl ic i t ly  f rom (2.5). However,  it  is possible to obtain the moments  
of ,~'. Defining 

(2.9) 

we obtain 

(2.10) 

co 

p(n,  t) =-f7~(,1, t) ,1' d,1, 

--b 

~t 

with the conditions 

(2.11) p(O, t) = 1, pen, O) = )~'~ . 

(*) From (2.3) it is clear that there is a nonzero probability of 2 taking a value 
in the range (--b, 0). The author is very much thankful to Dr. K. J. S•IVASTAVA, 
for a discussion regarding this point. 

6 3  - I1 Nuovo Cimenlo. 
a-z  
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The first few moments  can be explici t ly calculated: 

(2.12) p(1, t) ~- a~o/(a ~- b) ~- b~o exp [--  (a ~- b) t]/(a-~ b) .  

(2.13) p(2, t) : b~2o(2~o--a--2b) e x p [ - - 2 ( a +  b)t]/2(a~- b)2~ - 

~- b~o(2a2 o -~ b 2) exp [ - - (a  + b)t]/(a ~- b) 2 -~ aZo(2a~o ~- b2)/2(a ~- b) 2 , 

2.14) p(3, t) : {2~-- (a~o ~- b ~) (2a~o -~ b 2) (3b -~ a)/2(a ~- b) 3 - -  

- -  b~2o(2~o - a - -  2b)a2o ~- b2)/2(a -~ b) 2 -~ b4~o/2(a -~ b) ~ 4- 

4z b3a~o/3(a 4z b) '~} exp [--  3(a -~ b) t] ~- 3 b ~ o ( 2 h - -  a - -  2b)- 

�9 (a~o ~- b 2) exp [-- 2 (a ~- b)t]/2(a -~ b) 3 ~- (3b20(a~o ~- b 2) (2a~o -~ b~)/2 (a Jr b) ~ - -  

b3~o a a~o(a~o ~- b ~) (2a2o ~- b ~) 
- -  b'~o/2(a ~- b) 2} exp [--  (a ~- b) t] -~ 

3(a Jr b) ~ 2(a ~- b) ~ 

The moments  have a simple form if we proceed to the l imit  as t tends to  
i~finity. Defining p(1), p(2), p(3) as the l imit  of p(1, t), p(2, t) and p(3, t) res- 

pectively,  we find 

(2.15) p(1)---- a~o/(a-F b) , 

(2.16) p ( 2 ) =  [p (1 ) ]~  - b~p(1)/2(a - b),  

(2.17) p(3) --~ [p(1)] ~ § b2[p(1)J2/2(a-t- b) - -  ab~p(1)/3(a--F b) + b2p(2)/(a-F b).  

In  the special case b-----O, we find 

(2.18) p(n, t) = p(n) -= 2~ , 

(2.18) is consistent with the fact  t ha t  the  pa ramete r  2 is no longer random 
and tha t  the value of 2 a t  any  t ime should be equal  to  its ini t ial  value 2~. 

3. - Correlation of events on the t-axis.  

So far we have dealt wi th  the probabi l i ty  dis tr ibut ion and the moments  
of the (( Poisson ~ paramete r  ~(t). However  in order to give an adequate  des- 
cription of the process we lteed the correlation of events  on the t-axis. The 
correlation of events is fully described by  the product  densi ty  hmct ions  of 
I~A~AKRIS~A~ (le) (see also ref. (17)). Le t  ]~(tl, t~, ...,t,~) be the product  

(16) A. RAMAKRISHNAN: Proc. Camb. Phil�9 Soc., 46, 595 (1950). 
(17) S. K. SRINIVASAN and K. S. S. IYER: ~uovo Cimento, 33, 273 (1964). 
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density of events of degree m in t-space. Then ],~(tl, t2, . . . ,  t,~)dt~dt~ ... dt,~ 
represents the joint probabil i ty tha t  an event occurs between t~ and t~+ dtx 
an event between t2 and t2+ dt2, ... and an event between t~ and t ~ +  dt~ 
irrespective of the number  of events occuring elsewhere. I f  we denote by  n(t) 
the number  of events tha t  have occurred between 0 and t the m-th moment  
of n(t) is givell by  (see ref. (~)) 

(3.1) 
t t t 

s{[n(t)] '~} = ~1C~ dt dt~ :.. dt~]~(t~, t2, . . . ,  t~), 

0 0 0 

where C ~ are known co-efficients tha t  have nothing to do with any  particular 
process. Thus the moments  of n(t) can be obtained from the above correlations 
of events. In  this Section we shall be concerned with  the explicit evaluation 
of the correlations of the first few orders. 

We note tha t  in order to obtain ]~(t) a knowledge of 7t(~, t) is necessary. 
Using elementary probabili ty argumentz, we find 

(3.2) ]l(t) dt = f ~ ( 2 ,  t) ~ d ~ d t .  
0 

Thus we have 

(3.3) ]~(t) = p(1, t ) .  

The mean number  of events tha t  have occurred between 0 and t is given by  

co 

(3.~) ~{~(t)} =f11(t) at =  Xot/(  § b) - -  b20(1 - -  exp [-- (a + b)t])/(a -t- b) 2 �9 
0 

To obtain the mean square of events, we must  obtain ]2(tj, tz). In  view of the 
non-Markovian nature  of the process, it  is convenient to introduce the function 
7t(22, t2 ]~ ,  t,) where zr(~, t2 [g~, t~) d~2 represents the probabili ty tha t  2(t) has 
a value between 42 and 42 Jr d22 at  t2 given tha t  2(t) had ~ v~lue 21 at  tl ~nd 
a v~lue 2o initially. Then it is easy to find 

(3.5) ]2(tl, t2) : f f T~(21~ tl) 21d21 �9 ~(2~, t~ 1 2 1 -  b, tl) 42 442 = 

: f s { 2( t~)121--  b, tl} 21~( 2~ , tl) d21 

).1 

w~ 
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where s ( A ( t ~ ) [ , ~ b ,  t~} represents the conditional moments  of 2 at  t~ given 
tha t  Z had a value 2 ~  b at t~. Once we obtain this conditional moment,  
we can calculate ]2(t~, t2) explicitly. 

Using an argument  similar to these ia Sect. 2 we find that  ~r(22, t~ 12~, t~) 
satisfies the equation 

(3.6) e~(;~,  t~ I;~, t~) = _ ~ ( ~ o -  ;~2) ~ ( ~ '  t~ I;~, t~) + 
~t2 ~,;t2 

with the initial condition 

(3.7) 

(3.6) is very  similar to (2.6) arrd hence caarrot be solved explicitly. However  
we can obtain  the conditio13.al moments  of ~ and those are precisely the 
quar~tities tha t  will be needed for the calculation of the correlation functions. 
Defining 

p(n, t~ l;-~, t~) = s{[2(t~)]~ 1~1, t~}, 

(3.9) ~p(~,t~l;~, t~) ~t2 = - ~ p ( ~ l ,  t~ I~, tl) + ~ a ; @ ( ~ -  1, t~ j;,~, t~) + 

+ i p (n- - ,+~, t~ l~l , t~) ( - -b)~ .  

The first few moments  cart be explicit ly calculated. They are given by  

(3.10) p(1, t2 l;tl, t~) = a 2 o [ 1 -  e x p [ - - ( a §  b)(t2--t~)]]/(a§ b )+  

§ 2~ exp [-- (a § b)(t2 --t~)], 

(3.11) p(2, t2 l;t~, tt) = a).o(2a~o + b2)/2(a + b) 2 + 

Jr [Z~ - -  (2a2o -~ b ~) (22~ - -  a2o/(a § b))/2(a -t- b)] exp [- -  2(a ~- b)t2 - -  tl) -[- 

+ (2a2o ~- b ~) ( ~  - -  a~o/(a § b)) exp [-- (a -{- b) (t~ - -  t~)]/(a § b).  

Thus from (3.10) and (3.5), we obtain 

(3.12) ]2(t~, t.2) -~ p(2, t,) e x p [ - -  (a + b)(t2--tz)]~- p(1, t~). 

�9 [a~ o (1 --  exp [- -  (4 -~ b)(t2 - -  t~)]/((a -~ b) - -  b exp [- -  (a -b b) (t2 - -  t~)]]. 

=(~2, tl I~1, tl) = ~ ( ~ -  ~ ) .  

(3.s) 

we obtain 
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I n  an exac t ly  s imilar  way,  we can ob ta in  ]~(t~, t~, t3) us ing eqs. (3.10) and  (3.11). 

]~(t~, t~, t3) is g iven b y  

(3 .13)  ]~(t~, t2, t3) - -~/)(3,  t l )  e x p  [ ~  (a  ~- b) (t3 - -  t~ + t~ - -  t~).] + p ( 2 ,  t~) .  

�9 [p (1, t3 - -  t2) exp [--  (a + b)(t 2 - -  tj)] - -  2b exp [ ~  (a ~- b)(t 3 - -  t~ -4- t2 - -  tl)] + 

+ (2a2o + b ~) e x p [ - - ( a ~ -  b ) ( t ~ -  t~)]{1--exp [ - - ( a +  b)(t2--t~)]}/(a-~ b ) -  

- -  (b -~ ~to) exp [--  (a -~ b) (t3 - -  t~)]] ~. p(1, t~) [{-- (b Jr ~to)p(1 , ta - -  t2) -~- 

+ (b 2 -  ~ )  e x p V - - ( a +  b)(t3--t~)]} e x p [ - -  (a-~ b)(t~--tl)] ~- 

+ p(1, t3 --t2)p(1, t ~ -  t~) - -  (b § ~o)(2a/~o § b ~) exp [--  (a -~ b)(t~ - -  t~)]. 

�9 {1 - -  e x p [ - -  (a+  b)(t~--t~)]}/(a+ b) -~ p(2, t~ --t~) exp[-- (a-~-  b) (t~--t2)] ~- 

& (b -~ ~to) 2 exp [--  (a -F b) (t 3 ~ t,)] - -  (b -~ ~to) p(1, t~ - -  tl) exp [--  (a + b) (t 3 - -  t2)]] �9 

The mean  squure number  of events  is g iven b y  

(3.1~) 
t t 2 

The fac tor  2 appears  in the  r i g h t - h a n d  side of (3.14) since tl and  t 2 run  over 
the  ent ire  domain  0 to t ~nd ]~(t~, t2) as given b y  (3.12) is defmed only  for t2 > tl. 

An in te res t ing  fea ture  t h a t  emerges f rom (3.12) is the  existence of the  l imi t  
of ]2(tl, t2) where bo th  t~ and  t2 t e n d  to in f in i ty  in such a m a n n e r  t h a t  t 2 -  t~ 
remains  a cons tan t  T. Thus we huve 

(3.15) lira ]2(t~, t2) = [a]~o/(a ~- b)] 2 -  a~ob(2a-~ b) e x p [ - - ( a +  b)TJ/2(a~- b) 2 . 

A similar  expression for ]3(tl, t2, t~) can. be ob ta ined  under  the  l imit  when  each 
of the  variables tl, t~, t3 t e n d  t.o in f in i ty  in such a w a y  thu t  t~ - -  tl and  ta - -  t2 
r ema in  cons tants .  

4. - Moments and correlations of the cumulat ive  response. 

As has been expla ined  in Sect. 1, if 9~(t) is the  response to a single pulse, 
then  90(t) is g iven b y  

co  

~(t) = (2zc)-~l W(x ) 6 (x) exp [itx] 
t l P  

(zI.1) d x .  
_ r  
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On the basis of (4.1) and (1.8), l~owland made the pioneer  calculations for the 
mean  square response. Kowever  the possibil i ty of N(t)~ the densi ty of arrivals, 
t ak ing  negat ive values could not  be circumvented,  ttOWLA~D (~o) first proved 
tha t  

and in a subsequent note  has pointed  out t ha t  (4.2) is incorrect  and should 
be replaced b y  

[I 1111 (4.3) l im J2(t~, t2) = N ~ - -  (2N/2 0 + R) exp - -  z ~- ~ . 

This was a conjecture based on the exper iments  of ~ O ~ L I ~ .  (4.3) is identical  
wi th  (3.15) if we notice tha t  a and b are to be replaced b y  1/C~ and 1/CR, 
respectively.  Thus the results of the previous Section fill up the gap antici- 
pa t ed  b y  l~owland and provide a rigorous proof of his results. Moreover the 
me thod  of approach explained in Sect. 2 and 3 wherein we have averaged 
over ensembles making use of the fact  tha t  probabi l i ty  magni tudes  can never  

be negat ive removes once for all doubts regarding the correctness of the 
formula  (4.3). 

The results of the previous Section enable us to obtain the correlation of 
the response funct ion at  two different t imes af ter  the system has ~t ta ined 
s ta t ionar i ty .  Towards this end, we notice tha t  if N(t) represents the number  
of pulses up to t ime t, then  the cumulat ive response is given by  

t 

0 

where ~(t) is given by  (4.1). The correlat ion of r(t) is g iven  by  (see for example 
ref. (17)) 

(~.5) 
t I t2 

0 0 

d N ( ~ ) }  ~(t~ - -  ,~) ~(t~--  v~). 

The in tegrand in (4.5) can be expressed in te rms of the product  densities of 
the pulses if we take into account  the degeneracy arising from the overlapping 
of the intervals  4% and  d~2. Thus we can use the general formula for the 
correlation obta ined by  SRI~IVASA~ and VAST:DEVAh ~ (is) for the t r ea tmen t  

(is) S. K. SRI~IVASAN a~d R. V&SUD~V&~: (to be published). 
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of Barkhausen noise 

(4.6) 

IPln ( f i t  s ) 

e{r(tl)r(t~)} = f Jt(T~) q:(t~-- v~) q~(t~-- ~1) d~l + 
0 

tt t~ 

@ f f q ) ( ~ l - - T 1 ) q ) ( t ~ - - T 2 ) f 2 ( T 1 ,  T2) dT ldT~ .  
o o 

We are interested in the l imit ing form of the r ight  hand side of (4.6) when tl 
and t~ tend to infinity while t2 --  tt remains fixed and is equal to C. I t  is shown 
in Appendix B of ref. (~s) tha t  the Fourier  t ransform of the left-hand side of 
(r which is only a function of the single argument  ] t ~ -  tl] can be expressed 
in terms of the Fourier  t ransform of ~(t) and of the l imit ing form of ]~(t~, t2) 
(see (4.3)) which is again a function of the single argument  t~--t~. Thus r (@ 
the  power spectrum of the response (*) (which is noth ing but  the Fourier 
t ransform of the correlation) is given by  

(4.7) r(o)) = (2z~)-�89 + b)I~(o))1~+ 2z(a20/a + b)~_R1R(o)) I~c(o))1 ~ 

where R(co) is the Fourier  t ransform of J2(tl, t2). 

5. - Conc luding  remarks .  

Final ly  we wish to make a few general remarks on the applicability of the 
stochastic process described in Sect. 2 to other physical situations. An impor- 
t an t  phenomenon which can be described by such a stochastic process is the 
Barkhausen noise, l~eeently interest has been evinced in the correlation and 
power spectrum of Barkhausen noise. The work of I~AZZE~I (1,)deserves 
special mention in this connection. In  the following paper by  S~IXlVAS~tN 
and VASUDEVA~r (is), the model of 3gazzetti is improved on the basis of the 
present non-~arkovian  process. Another example of a stochastic process of 
this  type is provided by  the photon correlations in the recent experiments 
of H A ~ V ~ u  and Twlss (~0). In  the t rea tment  of photon correlations 
it is assumed tha t  electron emission is essentially a Poisson process, the Poissoa 
parameter being governed by some probabil i ty distribution flmetion (see for 

(*) We use the same symbol ~o to denote the function as well as its Fourier transform. 
(19) p .  MAZZE~TI: 2gUOVO Cimento, 25, 1322 (1962); 31, 88 (1964). 
(~o) R. HANBURu and R. Q. Twlss: Phil. Mug., 45, 663 (1954); Proc. 

l~oy. Soc. (London), 242A, 300 (1957); 243 A, 291 (1957). 
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example ~V~ANDEL (21), ~/[ANDEL, WOLF and SUDARSHAN (22)). There is ample 

scope for improving the usual formula for in tens i ty  correlations on the basis 

of the results obtained in this paper. L~stly some models of one-dimensional 

fluid b inary  mixtures  (see for example ref. (~3)) can be dealt with on the basis 

of the presents results. Since the interparticle potent ial  is of the exponential  

type,  the process will very  well fit in with our mode of description. However  

in this case~ the problem is more difficult since we have to obtain higher-order 

conditional correlation functions.  Nevertheless the present formulat ion can 

be used to obtain the second-order correlation funct ion and other results based 

on it. 

I n  conclusion, the author  would like to record his indebtedness to Pro- 

fessor A. I~AIVIAKRIStINAN and Drs. R. YASUDEVA~ and N. R. ]~ANGANATHAN 
for many  st imulat ing and helpful discussions. 

(21) L. MAWD~L: Proc. Phys.  Soc., 72, 1037 (1958). 
(22) L. MAN])]~L, E. C. G. SU~)ARSH,(~ and E. WOLF: Proc. Phys.  Soc., 84, 435 (1964). 
(2a) R. KIKUCHI: Journ.  Chem. Phys. ,  23, 2327 (1955). 

R I A S S U N T O  (*) 

Si esamina la teoria dell'effetto shot sulla base di ua processo di Poisson inomo- 
geneo. Si generalizza il parametro di Poisson A(t), ehe caratterizza il processo stocastieo, 
in modo ehe 2 diventi ann variabile easuale dipendente dal numero e dalla posizione 
degli eventi sull'asse dei tempi. Si trova che nella teoria dell'effetto shot la densit~ 
del numero degh arrivi di elettroni ha esattamente lo stesso eomportameato del proeesso 
in esame. Talc proeesso 6 fortemente non markoviano e il ealeolo dei momenti e della 
funzioni di correlazione risulta diflleile. Si mostra, tuttavia, e h e l a  eonoscenza /[ei 
momenti e della correlazione degli eventi mfll'asse dei tempi ~ sufficiente a determinate 
le funzioni eereate. Si dimostra esatta la congettura di Rowland riguardante il compor- 
tamento gel valor quadratico medio della risposta eumulativa per reffetto shot e si 
deriva inoltre un'espressione esplieita per lo spettro di potenza della risposta. Si citano 
altri fenomerd fisici che si posso~o spiegare sulla base del modello stoeastieo. 

(*) Traduzione a cura della Redazione. 


