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Summary. -— The theory of shot effect is examined on the basis of an
inhomogeneous Poisson process. The «Poisson» parameter A(f) charac-
terising the stochastic process is generalized in such a manner that A
itself becomes a random variable depending on the number and the
position of events on the time axis. It is found that the number density
of arrivals of electrons in the theory of shot effect has exactly the same
behaviour as the process under consideration. Such a process is strongly
non-Markovian and the calculation of moments and correlation functions
of the output turns out to be difficult. However it is shown that a
knowledge of the moments of and the correlation of events on the f-axis
is sufficient to determine these functions. The conjecture of Rowland
regarding the behaviour of the mean square of the cumulative response for
ghot effect is proved and in addition an explicit expression for the power
spectrum of the response is derived. Other physical phenomena which
can be explained on the basis of the stochastic model are cited.

1. — Introduetion.

The probability theory of shot effect () originally proposed by CAMPBELL (2)
and subsequently developed by R1cr(®) gives an adequate description of the
noise current when the system has attained statioparity. The generalization
to the nonstationary case has been made by MoYAL (4) who has discussed the

) W. Scumorrry Ann. Phys. (Leipzig), 57, 541 (1918).
2) N. CaMPBELL: Proc. Oamb. Phil. Soc., 15, 117 (1909).
) 8. 0. Rice: Bell. Sys. Tech. Journ., 23, 282 (1944),
) J. E. MovaL: Journ. Roy. Statist. Soc., B 11, 150 (1949).
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voltage fluctuations arising from shot noise. The basic idea in all these treat-
ments of shot noise has been the recognition of the experimentally observed
phenomenon that the shot effect consists of a series of pulses of current
(1 electron=1 pulse) and that one can only observe the response of the
circuit to the current pulses and not the pulses themselves. If @(¢) (as a fune-
tion of time) is the response to a single pulse at a time ¢ after the occurrence
of the pulse (at t= 0) we are interested in the cumulative response given by

(1.1) r(t) = 2 O —t)H(t—1,)
i

where ¢, is the time of occurrence of the i-th pulse.

For historical reasons, let us consider the voltage fluctuations in an anode
circuit. In particular if the anode ecircuit has an inductance L as well as & resist-
ance R and capacity C, the voltage V(¢) due to the arrival of an electron at
time ¢=0 is given by (see for example ROWLAND (%))

[ V(1) = ¥(—¢/0) [ (1 + R[2iwL) exp[— (R/L—iw)t] 4
(1.2) l + (1—R/2ioL) exp[— (R[L+iw)t]] >0,

where w is given by

I
=

t<0,

(1.3) o = (1)CL— R*4L2)E.

Defining the Fourier transform of V() as
(1.4) W) = (2n)~ fV(t) exp [ivt]d?,
0

we notice that the Fourier transform of the response function ¢(t) is nothing
but W(v)G(v) where G(v) is the amplification factor set for the frequency
v/,

Thus a study of r(f) or rather the probability distribution of r(¢) leads us
towards a good understanding of the physical phenomenon. Hence the earliest
attempts were directcd towards the calculation of the first two moments of

F

r(t). CAMPBELL (2) proved that in the case of a stationary system, the mean

(®) E. N. Rowraxp: Proc. Camb. Phil. Soc., 32, 580 (1936).
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A NOVEL APPROACH TO THE THEORY OF SHOT NOISE 981

and fluctuation about the mean of »(f) are given by ()

w

(1.5) e{r(t)} = lf@(t’)dt’,

0

(1.6) {e[r(t) — €r@}2} =2 f [P ar,

where A is the mean density of arrivals of electrons at the anode. CAMPBELL
assumed, as is reasonably to be expected, that the number of electron arrivals
at the anode 1s governed by a Poisson law which states that the probability
that there are # arrivals in a time interval (0, 1) is m{n, {} where

(1.7) 7(n, 1) = exp [— ALJ(At)"[n! .

We observe that while (1.5) and (1.6) are true only for the stationary system,
results can be generalized with equal facility to the nonstationary case (when ¢
is finite) (see for example refs. (*) and (°)). However (1.5) and (1.6) do not
explain the shot effect completely when we take into account the limitations
due to space-charge effect. In fact HurLr and WILLIAMS (*) made intensive
measurements of the shot voltage soon after CAMPBELL proposed his formulas
and found that the measured shot voltage fell below even 40 percent of the
theoretical value. Meanwhile JOHNSON (!) who made some measurements of
shot voltage in space-charge limited tubes, pointed out that the expected
value of the shot voltage should be calculated as for temperature limited cur-
rents, by assuming an internal resistance of the valve. Based on these experi-
mental findings as well as the investigations of MoULLIN (°), RoWLAND ()
formulated the problem in a precise form. He assumed that electrons might
with specific probabilities, have lives of any length on the anode system
during which time each of them add (—e€/C)exp[— (¢ —t,)/RC] to the anode
potential of the valve whose anode to earth capacity is € and feed resistance, R.
In addition, there is an effective internal resistance p of the valve, defined by
assuming that a variation of the anode potential causes a variation 1/eg times

(*) Throughout this paper we shall use the symbol ¢ to denote the expectation
value of the quantity within the brackets.

(%) 8. K. SriN1vAsAN and P. M. Marusws: Proc, Nat. Inst. Sci. (India), 22 A,
369 (1956).
") A, W. Huir and N. H. Wirtriams: Phys. Rev., 25, 147 (1925).
8) J. B. JouNsoN: Phys. Rev., 26, 71 (1925).
%) E. B. MoULLINS: Proc. Roy. Soc., 147 A, 100 (1934).
)

(
(
(
(*) E. N. RowranDp: Proc. Camb. Phil. Soc., 33, 344 (1937).
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982 8. K. SRINIVASAN

as great, in the probable density of arrival of electrons. Thus the arrival of
each electron must decrease the probable density of further arrivals by an
amount (1/C9) exp[— (t—1,}/CR]. If N, is the density of arrivals at time
t=0, then N(¢) the arrival density at any time ¢ > 0, is given by

Nt)y=No— Y alt—1t), No— T alt—1t,)>0,
(1.8) : :
=0 otherwise,

where

(1.9) a(t—1t;) = (1/0p) exp[—(t —¢,)/OR.

With the modification of the density of arrivals as given by (1.8), it is
clear that the probability that there are n arrivals in the interval (0, ¢) is no
longer given by a simple Poisson law as (1.7). The calculations of Rowland
relating to the mean and mean square of the response were based on the
behaviour of N(¢) as given by (1.8). The expressions for the mean and msan,
square values of stationary r(#) in terms of an infinite series of integrals under
the exponential were, though not fomidable, sufficiently complicated. These
difficulties were in fact overcome by ROWLAND who obtained simple expres-
sions for the first two moments of stationary r(t). However, there were some
limitations (*) in the final results obtained by RowLAND. During the process
of integration Rowland ignored the possibility of N({) dropping down to neg-
ative values and there was no mechanism of achieving it in any refined form
of calculation of the integrals. In spite of all this, Rowland’s results can be
regarded as a decisive achievement in the theory of shot-effect for inclusion
of all the realistic features of shot noise. In fact it is precisely for this reason,
that a considerable part of the book of MouLLIN (%) is devoted to the presen-
tation and discussion of Rowlapd’s theory.

Twenty five years have passed since the first exciting theoretical attempts
t0 explain the shot noise and the publication of Moullin’s classical account (*?)
of voltage fluctuations. In spite of many new developments of probability
theory, this aspect of the problem has not been given any attention. Hven
in the work of MovAL (14) which explained many of the outstanding physical
phenomena from a fairly rigorous probability point of view, we find only some

(*) These do not include the criticism of J. M. WiTTaKER (') which has been
squarely met with by Rowland himself [see ref. (*2)].

(1) J. M. WairTARER: Proc. Camb. Phil. Soc., 34, 329 (1938).

(*2) E. N. Rowranp: Proc. Camb. Phil. Soc., 34, 329 (1938).

(*¥) E. B. MouLLiNg: Spontaneous Fluctuations of Voltage (Oxford, 1938).
(*% M. 8. Bawrrrerr: Stochastic Processes (Cambridge, 1955), p. 54.
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A NOVEL APPROACH TO THE THEORY OF SHOT NOISE 983

generalizations of Campbell’s theorem for the nonstationary case in terms of
a Poisson law given by (1.7). It is the object of the present contribution to
explain shot noise from the point of view of stochastic processes of continuouns
parametric systems.

Section 2 of the paper deals with the formulation of the stochastic process
governing the number of arrivals of electrons at the anode and its connection
with the response function, which is the main object of interest. In Sect. 3,
we shall discuss the probability frequency function and moments of the number
density of electron arrivals, We then use these results to obtain the correlation
of events on the time axis. The correlation and moments of the response
function are dealt with in the final Section of the paper.

2. — Formulation of the problem.

At the outset, we wish to observe that the stochastic process governing
the number of electron arrivals is of a more general nature and is capable of
explaining other types of phenomenon as well. Hence we shall formulate the
problem in general terms. Let us first consider a stochastic process of the
inhomogeneous Poisson type with the parameter A(?) characterizing the process
being nonnegative, continuous and bounded function of the parameter ¢ with
respect to which the process progresses. The probability that # events occur
between 0 and ¢ is given by

(2.1) P, 1) = exp[— AONART !,  A@) = f A ar'.

Such a type of Poisson process can be used to describe a number of physical
processes like electron emission in a counter and age-dependent birth and
death processes. In these processes, the parameter A(f) depends on ¢ only and
is independent of the number of events that have occurred prior to ¢ and the
position of the earlier events on the #-axis. Processes in which A(¢) depends
on the number of events that have occurred prior to ¢ have received some
attention (see BARTLETT (14)). However shot effect falls under the last category,
since an eleetron arriving at the anode between i, and ¢, df, diminishes the
probability of any further arrival at a later time ¢, by b exp[— a(t,—*%,)] where
a and b are some positive physical constants depending on the system. We ghall
assume that the process is switched on at ¢{= 0 when the probability of the
occurrence of an event in the infinitesimal interval (0, A) is 1,4 (4, being a
constant). Thus the first event happens between #, and ?, + df, with proba-
bility exp[— A,1]4, df, while the probability of occurrence of the second event
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984 8. K. SRINIVASAN
between #, and t,+ di, is given by

(2-2) Pz(tn tz) dta =

= exp [—f[lo —bexp[—a(t'—1,)]dt] - [A,— b exp[—a(t,—1,)]dE,](*) .

Let us denote the parameter characterising the process by A(#) in analogy
with the inhomogeneous Poisson process. The parameter A(t) is no longer a
deterministic function of ¢ but depends on the various random values of £
at which the events have occurred. A typical realized ;Value of A(¢) corre-
sponding to the events that have occurred at t,t,, ..., %, is given by

(2.3) AB(t)=A,—Db Sj exp[—a{t—1t,)].

i=1

The probability measure corresponding to the above realized value can be
calculated using (2.2).

For such a process, a number of questions can be raised. However, in view
of the complexity of the problem arising from the non-Markovian behaviour
of the process, we shall be content with the following:

i) the probability frequency function of 4 and
ii) the correlation of events occurring on the ¢-axis.

In Sect. 4, we shall indicate how we can obtain some significant information
regarding any process with the help of the moments of 1 and the correlation
of events.

Let n(4, t) (**) be the probability frequency function of i(t) so that z(4, 1) di
denotes the probability that A(f) has a value between 1 and A4-dA at t.
We proceed to obtain the Kolmogorov equation (see ref. (1)) satisfied by
7(A, t). Let us increase ¢ by 4 between t and ¢+ A either an event occurs
or it does not occur. In the latter case, A(f) increases deterministically during
the interval (f, t+ 4) as can be seen from (2.3), the rate of increase being
given by

(2.4) dAjdt = a(lg—A) .

(*) P,(t,, t,) is a conditional probability frequency function.

(**) Throughout this paper we shall use the symbol x to denote any probability
frequency function, the distinction between two different probability frequency functions
being apparent from the context.

(%) W. FELLER: An Introduction to Probability Theory and its Applications (New
York, 1957).
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A NOVEL APPROACH TO THE THEORY OF SHOT NOISE 985

If on the other hand an event occurs between ¢ and ¢ +4, 1 suddenly dimin-
ishes by b. Using these results, we obtain
(2.5) a(d, 1+ A)ydi= (1 — Ad)a[A— a(dy— A) 4, t]d[A— (A, — Ayad]+

4 (A4 b, ) (A+Db)AdA+ 0(4) .

Proceeding to the limit as 4 —0 we obtain

~ =Dk ) —ath—2) "D 4 (4 bimlit b1,

on(4, 1)

(2.6) p

{(2.6) is true only if 1> 0. When A<< 0 if is easy to see that a(4,1?)
satisfies the equation

Or(4, 1)
ot

om(A, 1)

a7 TA+DEA+b ).

2.7) = am(d, t) — a{Ay—A)

However, in such a case A cannot be a probability magnitude (*). This dif-
ficulby can be overcome by defining A’ by

A= for A>0,
(2.8)
[ = ( otherwise .

We observe that it is A’ that has probability significance and in any problem
we have to deal with only the moment of A'. It is indeed difficult to solve for
7(A, 1) explicitly from (2.5). However, it is possible to obtain the moments
of A'. Defining

(2.9) p(n,t) =|=(d, ) A dA,

we obtain

(2.10) ap(aq/;’ ‘ = —nap(n, t) + nadypn—1,1t) + i (’ﬂ) pn—i+1,8)(—b),

with the conditions
(2.11) p(0,t) =1, p(n, 0) = Z':)L .

(*) From (2.3) it is clear that there is a nonzero probability of A taking a value
in the range (— b, 0). The author is very much thankful to Dr. K. J. Srivasrava,

for a discussion regarding this point.

63 — Il Nuovo Cimenlo.
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986 8. K. SRINIVASAN

The first few moments can be explicitly calculated:
(212)  p(1,1) = adf(a+ b) 4 bl, exp[— (a+ b)t]/(a+b) .

(2.13)  p(2, 8) = b22,{20, — a—2b) exp[—2(a+ b)t]/2(a + b)2
+ b2y(2a2y + b?) exp[— (a+ b)t]/(a -+ b)* + aly(2ay + b?)j2(a + D)2,

2.14)  p(3,8) = {A— (aky + b%) (2aly -+ b2) (3D + a)/2(a 4 b)* —
— B224(20 — a— 2b)aldy + b2)/2(a 4 b)® + b3Ag/2(a + D)2 +
+ bialdy/3{a+ b)¥} exp[—3{a + b)i] + 3b20,(24,— & —2D) -
(ady -+ b%) exp[—2(a + B)11/2(a+ D)3 + (Bblglad + b) (2ady -+ b%)/2(a + b)>—

b3k, a aly(ale + b%) (2ak + b?)

0 h2(a+ by expl—(a+ D)1} — 5T 2(a + b)®

The moments have a simple form if we proceed to the limit as ¢ tends to

infinity. Defining p(1), p(2), p(3) as the limit of p(1,2), p(2, 1) and p(3, 1) res-
pectively, we find

(2.15)  p(1)=al/(a+b),

(2.16) p(2)=[pQ)]*+ b*p(1)/2(a+ ),

(2.17)  p(3)=[p(V)F° + b2[p(1)]*/2(a+ b) — ab?p(1)[3(a+ b) + b*p(2)/(a+ b) .
In the special case =0, we find

(2.18) p(n, 1) =p(n) = 4y,

(2.18) is consistent with the faet that the parameter A is no longer random
and that the value of 1 at any time should be equal to its initial value A,.

3. — Correlation of events on the ¢-axis.

So far we have dealt with the probability distribution and the moments
of the «Poisson » parameter A(t). However in order to give an adequate des-
cription. of the process we need the correlation of events on the i-axis. The
correlation of events is fully described by the product density functions of
RAMAKRISHNAN (%) (see also ref. (1)), Let fu(f1, 1y ...,%,) be the product

() A. RAMARRISHNAN: Proc. Camb. Phil. Soc., 46, 595 (1950).
(*") 8. K. SrinivasaN and K. 8. 8. IYErR: Nuove Oimenio, 33, 273 (1964).
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A NOVEL APPROACH TO THE THEORY OF SHOT NOISE 987

density of events of degree m in ¢-space. Then f,(t,, s, ..., tn) df; df, ... diy,
represents the joint probability that an event occurs between ?, and f,- di,
an event between {, and ¢, di,,... and an event between ¢, and f,+ di.
irrespective of the number of events occuring elsewhere. If we denote by n(f)
the number of'events that have occurred between 0 and ¢ the m-th moment

of n(t) is given by (see ref. (%))

(3.1) s} =Y O’i”fdtlfdtz .’..fdt, fultas By veer 1) 5

where (7 are known co-efficients that have nothing to do with any particular
process. Thus the moments of () can be obtained from the above correlations
of events. In this Section we ghall be concerned with the explicit evaluation
of the correlations of the first few orders.

We note that in order to obtain f,(f) a knowledge of n(4, f) is necessary.
Using elementary probability arguments, we find

o©

(3.2) fu(t) &t = | m(4, 1) AdAd1 .

Thus we have

(3.3) L) =p(1, 7).

The mean number of events that have occurred between 0 and ¢ is given by
) clntt) = [A(0)at = ahti(a-+ b)— Vit — exp[— (0 + D)+ D)
L)

To obtain the mean square of events, we must obtain f.(4,, £;). In view of the
non-Markovian nature of the process, it is convenient to introduce the function
(%, 1| 41y 1;) Where @(2,, 8|2, 1) A4, represents the probability that A(f) has
a value between 1, and A, dJ, at £, given that A(¢) had a value £, at ¢, and
a value 4, initially. Then it is easy to find

(3.5) faltay 12) :f J‘W(Au A (Mfﬁ(ﬂz; 4 1 M—b, tl) Ay Ay =
A2

:fs{l(tz) ‘ My — b, tl} Mm(Ays 1) di, y
A1
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where &{A(f,)|A,—b, t,} represents the conditional moments of A at ¢, given
that 2 had a value 4,—b at #,. Once we obtain this conditional moment,
we can calculate f,(i,,¢,) explicitly.

Using an argument similar to these in Sect. 2 we find that m(4,, {,| 4, &)
satisfies the equation

8t A ta| Ay 1)
o,

O7t( Ay bs] gy t)

‘l; (0&-—)»2)7'5(12, tzuu t1) + (b + As) 7"6()-2’{" ba tzMn tl) ’

(3.6) =—a(h— )

with the initial condition
(3.7) (g 1| 2s, ) = 0(A—4y) .

(3.6) is very similar to (2.6) and hence cannot be solved explicitly. However
we can obtain the conditional moments of A and those are precisely the
quantities that will be needed for the calculation of the correlation functions.
Defining

(3.8) p(ny by Ay, 1) = e{[AE)]" [ Ay 8}

we obtain

ap('"'y 123 { 11 y t1)

(3.9) -

= —""Wp(”ﬂu ty | Ay tl) + nalop(n—— 1, 85| Ay tl) +

+ i (?)P("—@+ 17t2|2'17t1) (- b)2

=1
The first few moments can be explicitly calculated. They are given by
(3.10) p(1, 8y Ay, 1) = ady[1— exp[— (o + b)(t,—t)]]/(a+ b) +
+ Ay exp[—(a+b) (t.—t)],
(3.11) P2y 2] Ay 1) = ady(2a4, 4 b?)[2(a+ D)+

+ [2} — (2ad, + b%) (24, — akyf(a+ b)) [2(a+ b)] exp[—2(a -+ b)t,—1,) +
+ (2a4, + bz)(}u‘alo/(a‘k b)) exp[—(a-+b)(t,—1,)]/(a+b) .

Thus from (3.10) and (3.5), we obtain

(3.12) foltsy 1) = (2, ;) exp[— (a+ D) (. —t) ]+ p(1, 1) -
[ady (L —exp[—(a+ b) (t,—t)]/ ((a+ b) — b exp[— (a+ b) (f. —1,)]] .
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In an exactly similar way, we can obtain f,(¢,, ¢,, ¢,) using eqs. (3.10) and (3.11).
fa(tis 82y 25) 18 given by

(3.13)  filtys tsy ts) = p(3, t) exp[—(a+ b) (la—t, + 1t — )]+ p(2, 1) -
[p(, t;—1,) exp[— (@ + b) (¢, —t;)]— 2b exp[— (a4 b) (s — t, + 1, —1t,)] +
+ (2@l + b?) exp[— (a =+ b) (t; — t,) {1 —exp [— (a + b) (t,—1,)]} /(a + b) —
—(b+ A,) exp[—(a+ b) (¢, —t,)]] -+ p(1, 8) [{— (b + ) p(1, 8, — 1) +
+ (02— A3) exp[— (@ + b) (t, —1t;)]} exp[— (& + b) (t,—4,)] +
+p, t,—1)p(1, ta—t) — (b + 4;) (20, + %) exp[— (@ D) (8, —1,)]
{1 —exp[—(a+ b)(l.— 1)} /(a+ b) + p(2, ta—1) exp[— (a+ b) (t, —1,)] +
+ b+ A,)* exp[— (a+ B) (t,—1)] — (b + A) p(L, t,—t) exp[— (a4 b) (t, — &)]] -

The mean square number of events is given by

(3.14) e{[n(t)]?} = e{n(t)} + Zfdt1 oty t) Aty .

t

The factor 2 appears in the right-hand side of (3.14) since ¢, and ¢, run over
the entire domain 0 to ¢ and f,(¢,, {;) as given by (3.12) is defined only for #,>#,.

An interesting feature that emerges from (3.12) is the existence of the limit
of f,(¢,,t,) where both ¢, and ¢, tend to infinity in such a manner that ¢, — 4,
remains a constant r. Thus we have

(3.15)  lim fy(4y, &) =[ady/(a+ b)]* — adyb(2a - b) exp[— (a + b)7]/2(a + b)*.

A similar expression for f,(t,, f,, t;) can be obtained under the limit when each
of the variables ¢, t,, {; tend to infinity in such a way that t, — ¢, and t; — ¢,
remain constants.

4. — Moments and correlations of the cumulative response,

As has been explained in Sect. 1, if ¢(¢) is the response to a single pulse,
then ¢(t) is given by

(4.1) () = (27)~ fW x) exp [ita] da .
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On the basis of (4.1) and (1.8), Rowland made the pioneer calculations for the
mean square response. However the possibility of N(#), the density of arrivals,
taking negative values could not be circumvented. RowLAND (%) first proved
that

(4.2) lim  fullst) = N*—(N/Co)exp [* [T (bsz - g@)”

v bt
and in a subsequent note has pointed out that (4.2) is incorrect and should
be replaced by

(4.3) lim f,(t,, ;) = N> — (2N/29 + B) exp l:_ [T (al73 + -01_9)]} ‘

This was a conjecture based on the experiments of MourLLIN. (4.3)is identical
with (3.15) if we notice that ¢ and b are to be replaced by 1/Cp and 1/CR,
respectively. Thus the results of the previous Section fill up the gap antici-
pated by Rowland and provide a rigorous proof of his results. Moreover the
method of approach explained in Sect. 2 and 38 wherein we have averaged
over ensembles making use of the fact that probability magnitudes can never
be mnegative removes once for all doubts regarding the correctness of the
formula (4.3).

The results of the previous Section enable us to obtain the correlation of
the response function at two different times after the system has atfained
stationarity. Towards this end, we notice that if N(f) represents the number
of pulses up to time ¢, then the cumulative response is given by

(4.4) (0 =[a¥ (@) e — 1),

where @(¢) is given by (4.1). The correlation of r(t) is given by (see for example
ref. (17)

1y 1y

(.5) (b)) = f f (AN (52) AN (2} gty — 72) glta— 1) -

090

The integrand in (4.5) can be expressed in terms of the product densities of
the pulses if we take into account the degeneracy arising from the overlapping
of the intervals dr, and dz,. Thus we ¢an use the general formula for the
correlation obtained by SRINIVASAN and VASUDEVAN (18) for the treatment

(%) 8. K. SrinivasaN and R. VASUDEVAN: (to be published).
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of Barkhausen noise

win (¢,8,)

(4.6) e{r(t)r(t,)} = f filzy) @(t,— 7)) p(t,—7,) d7y +
+ [ fotte— gt — e o0, m e

(U]

We are interested in the limiting form of the right hand side of (4.6) when ¢,
and ¢, tend to infinity while ¢, — ¢, remains fixed and is equal to C. It is shown
in Appendix B of ref. (**) that the Fourier transform of the left-hand side of
(4.6) which is only a function of the single argument |, —{,| can be expressed
in terms of the Fourier transform of @(¢) and of the limiting form of f,(¢,, ¢,)
(see (4.3)) which is again a funection of the single argument £,—¢,. Thus 7 ()
the power spectrum. of the response (*) (which is nothing but the Fourier
transform of the correlation) is given by

(4.7) r(w) = (27)Haly/(a+ b) |@(o) [* 4 27(ads/a -+ B)2RIR () | p(w) 2

where R(w) is the Fourier transform of f,(i,, t,).

5. — Concluding remarks.

Finallyrwe wish to make a few general remarks on the applicability of the
stochastic process described in Sect. 2 to other physical situations. An impor-
tant phenomenon which can be described by such a stochastic process is the
Barkhausen noise. Recently interest has been evinced in the correlation and
power spectrum of Barkhausen noise. The work of MAZzETTI (1°) deserves
special mention. in this connection. In the following paper by SRINIVASAN
and VASUDEVAN (%), the model of Mazzetti is improved on the basis of the
present non-Markovian process. Another example of a stochastic process of
this type is provided by the photon correlations in the recent experiments
of HANBURY-BROWN and Twiss (20). In the treatment of photon correlations
it is assumed that electron emission is essentially a Poisson process, the Poisson
parameter being governed by some probability distribution function (see for

(*) We use the same symbol ¢ to denote the function as well as its Fourier transform.
(1) P. MazzerTi: Nuovo Cimento, 25, 1322 (1962); 31, 88 (1964).

(2°) R. HanBUrY-BrOWN and R. Q. Twiss: Phil. Mag., 45, 663 (1954); Proc.
Roy. Soec. (London), 242 A, 300 (1957); 243 A, 291 (1957).
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example MANDEL (?!), MANDEL, WOLF and SUDARSHAN (22)). There is ample
scope for improving the usual formula for intensity correlations on the basis
of the results obtained in this paper. Lastly some models of one-dimensional
fluid binary mixtures (see for example ref. (%)) can be dealt with on the basis
of the presents results. Since the interparticle potential is of the exponential
type, the process will very well fit in with our mode of description. However
in this case, the problem is more difficult since we have to obtain higher-order
conditional correlation functions. Nevertheless the present formulation can
be used to obtain the second-order correlation funetion and other results based
on it.

% % ok

In conclusion, the author would like to record his indebtedness to Pro-
fessor A. RAMAKRISHNAN and Drs. R. VAsUDEVAN and N. R. RANGANATHAN
for many stimulating and helpful discussions.
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(2') L. MaxpEeL: Proc. Phys. Soc., 72, 1037 (1958).
(22) L. MaxpEL, E. C. G. SUDARSHAN and E. WoLr : Proc. Phys. Soc., 84, 435 (1964).
() R. Kikucnar: Jouwrn. Chem. Phys., 23, 2327 (1955).

RIASSUNTO (0

Si esamina la teoria dell’effetto shot sulla base di un processo di Poisson inomo-
geneo. Si generalizza il parametro di Poisson A(f), che caratterizza il processo stocastico,
in modo che % diventi una variabile casuale dipendente dal numero e dalla posizione
degli eventi sull’asse dei tempi. Si trova che nella teoria dell’effetto shot la densitd
del numero degli arrivi di elettroni ha esattamente lo stesso comportamento del processo
in esame. Tale processo & fortemente non markoviano e il calcolo dei momenti e delle
funzioni di correlazione risulta difficile. 8i mostra, tuttavia, che la conoscenza dei
momenti e della correlazione degli eventi sull’asse dei tempi & sufficiente a determinare
le funzioni cercate. Si dimostra esatta la congettura di Rowland riguardante il compor-
tamento del valor quadratico medio della risposta cumulativa per l'effetto shot e si
deriva inoltre un’espressione esplicita per lo spettro di potenza della risposta. Si citano
altri fenomeni fisici che si possono spiegare sulla base del modello stocastico.

*) Traduzione a cura della Redazione.
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