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Summary. — In the study of complex phenomena involving m-mesons
(e.g. simple and double photoproduction, radiative scattering, double
production, efc.) one encounters singular integral equations linking the
matrix elements and phase-shifts. We give here a general method of
resolution of these equations which furnishes the following results: a) the
simplest type is integrable by quadratures; b) the general type is reducible
to a Fredholm equation. We give also the solution of a system of coupled
integral equations and of the particular one which occurs in the double
production problem. This last case may be integrated by quadratures.

1. - Introduction.

We want to study singular integral equations of the following type

T8 —T—
1

(1.1) o) = o) + % [ awr i [wagtenras,

where (x) has the form e*’sin § (real §) and K(xx') is a regular kernel.
This type of equation frequently occurs in the static theory of Chew-Low-

Wick (12) for instance when one studies processes initiated or ending by a

m-nucleon system. Such equations are thus fundamental in the problems of

simple (*) and double photoproduction, radiative scattering (*), production of
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ON THE SOLUTION OF CERTAIN SINGULAR INTEGRAL EQUATIONS ETC. 317

mesons by meson (*¢). However, we suppose that the interest of such a
problem is not completely restricted to the static approximation.

‘Equation (1.1) is not of Fredholm type although analogous in form and,
for instance, classical results such as Fredholm alternative are not applicable.
Moreover, due to the kernel singularity, these equations do not lend them-
selves simply to approximation methods and numerical integration. This point
does not seem to have been clearly stressed in literature and errors in the
choice of approximation methods have been made concurrently (cf. ref. (%)).
As the mathematical problem seemingly will keep its importance, we want
to give to it in this article a form upon which the classical methods of ap-
proximation and the general theorems will be applicable. By the way, we
shall be able to show in particular cases the existence of a solution and its
non-uniqueness, and shall determine what conditions of a physical nature allow
complete uniqueness. In fact the method can be generalized to a quite wide
variety of problems which we shall indicate.

In Sect. 2-we give the general solution of the simplest equation of type (1.1).
‘We study the uniqueness problem when certain conditions of physical nature are
imposed. Sect. 3 deals with the reduction of a quite general case to Fredholm’s
one; the problem of the equivalence between these two forms is not treated.
Sect. 4 generalizes this reduction to systems of coupled integral equations.
Finally, we treat in Sect. 5 a particular system of coupled equations which
is encountered in the problem of w-meson production by mesons (*+¢). This
last case is seen to reduce to simple quadratures, just as the problem of Sect. 2.

2. - Fundamental equation.

The simplest equation of type (1.1) is

h*
(2.1) 7o) = flo) + f V) o,

— 1€

here f(x) is a given function which we suppose bounded between 1 and oco.
h(z) is a given function of the form exp [id]sin J, where J(x) is bounded.
Whe choose arbitrarily the determination of ¢ which tends to 0 at infinity
(supposing this choice possible) and d(1)=kn. ¢ tends to zero at least as
quickly as 2! when « tends to infinity. ¢(z) is the unknown function. In
order to solve (2.1) we shall use a method which is a generalization of the

() J. Furupa and J. 8. Kovacs: Phys. Rev., 104, 1784 (1956).
(%) L. S. RopBERG: Phys. Rev., 106, 1090 (1957).
(®) R. OMxEs: Nuovo Cimento, 6, 780 (1957).
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318 R. OMNES

method introduced by N. I. MUSKHELISHVILI () for the solution of Hilbert
problem in elasticity, the essenfial difference being that here the kernel con-
tains h(z) and is not a simple Cauchy kernel. We shall have to introduce
functions of a variable z defined in a complex plane cut along the interval
(1, cc) and shall call G(z+) (resp. G(x —)) the limit of a function G(¢) when
z tends to # upon (resp. under) the cut. In the following, the cut will be
called L. E
Let us define the function

(2.2) F(z) = 2m h*(ji; )dw’,
which implies '

(2.30) }z f %‘féﬁ% Ao’ = 2iF(x +),
(2.3) p(0) = i [Tl +) = Fla—)]
Fquation (2.1) takes now the form

(2.4) exp [— 2i8]Flo+) — Flo—) = {(#)h*(@),

where we have used 1 — 2ih* = exp [— 2id]. Let us now put
(2.5) F(z) = 9()2(2)

where the function £2(z) is defined by the condition

(2.6) exp [— 2i01Q2(x+) —zx—) =0.

This last equation admits a solution (which is found by taking the logarithm
of (2.6))
0(z) = exp [u(?)]

with

1 74(0)

- ;zf —z @,
it we define

1[0

(*) MuskueLisaviLi: Trud. Thil. Mat. Inst., 10, 1 (1941), cited in S. G. MIKHLIN:
Integral Equations (London, 1957), p. 126 ff.
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we have

(2.8) Q@+ ) =expo+1]; Q@—) = exp [¢— id].

Equation (2.4) may now be transformed in a relation for ®(z) which is
of the Hilbert type ‘

2.9) D+ )— P@—) = f(@)h*@) Q- (z—) = f(2) sin 6(z) exp [— o(@)],

which has a solution

1 [ sin 3) exp [ o0)] g,
27t {—z .

(2.10) D(2) =

one may now derive g(z) by (2.1) or (2.3b) which give evidently the same result

211)  glo) = [f(w) cos 6(@) + }Zexp [o()]-

.Pff(é) sin 5(5)_611) [— o] d¢} exp [id(2)] .

i

It is an easy task to verify that every step of this method is correct, provided
the written integrals converge and that (2.11) is truly a solution of (2.1).

It is important to point out that (2.11) is not the only solution of (2.1)
for one may add to it any solution of the homogeneous equation

1 (W@ (e’
(2.12) o) = 5 [P aar,

such a solution of (2.12) may yet be defined by (2.3) and a relation analogous
to (2.5)

(2.13) Fy(z) = Dy(2)2(2)
where @,(2) must now verify
{2.14) Dx+)—Dyx—) =0.
This last relation shows that @,(z) is an analytic function in the whole

complex plane except eventually at the points 1 and co where it may have
singularities. If we exclude essential singularities, the general solution of (2.1)
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appears as
¢'(2) = @(x) + L(z) exp [o(x) + i6(x)],
(2.15) P
L(z) = w1

where P(x) and n are arbitrary polynomial and integer. Generally a solution
will be completely determined by its asymptotic behaviour in the neigh-
bourhood of 1 and oo for this behaviour by (2.11) and (2.15) determines n
and P(x). Particularly, for

a) E=0 or o1) =0,
b) k=—1 or d1)=—m; I5(8)‘+7I|~8ﬂ p>1,

(2.11) is the only solution of (2.1) regular in the neighbourhood of 1 and which
tends to 0 at infinity (see appendix). These cases are precisely the more in-
teresting in practical use since, in the context of Chew and Low model, case a)
may be adopted for the small phase-shifts and case b) for d, with § = 2. Let
us recall here that we have taken the determination of 26 which is 0 at infinity.
The choice k= —1 is equivalent to suppose only one resonance for the (3 3)
pion-nucleon state. Let us stress that hypotheses @) and b) simplify happily
the calculations but are absolutely not essential to the success of this approach.
If, effectively, a) and b) are not verified by 4, it is an easy task to determine
the singularities of the integrals appearing in (2.7) and (2.11) using the first
terms of the Taylor expansion of J near 1, and to choose in a unique fashion
an integer n and a polynomial P(x) in (2.15) in order to have a regular solution
in the neighbourhood of 1 and oo. We shall congider this solution ag the in-
teresting one although we do not want to enter here in the difficult problem
of the choice of physical criteria for a solution (see ref. (*10)).

Let us now remark that, for f(x) real, the phase of ¢(2) is  which is inti-
mately connected with a theorem by FuUBINI, NAMBU and WATAGHIN (1).

Finally, in the more general case where & has not the form ¢*sin 6 our
method is yet applicable in principle, the essential condition being now that
{1 — 2ik* | must not be zero on L. One may yet write 1 — 2¢h* = exp [— 2iy],
where y is now complex. The method used by MUSKHELISHVILI (*) in the re-
solution of Hilbert’s problem is apparently a particular case (*).

(8) L. CastireJo, R. H. Darirz and F. J. DysoN: Phys. Rev., 101, 453 (1956).
() F. J. DysoN: Phys. Rev., 108, 157 (1957).
10y R. Haag: Nuovo Cimento, 5, 203 (1957).
1) 8, FuBiNI, Y. NamBUu and V. WaragHIN: to be published.

(*) Note added in proof: This general case was known to MUSKHELISHVILI and
treated in his book  Singular Integral Equations”, Groningen, 1953; this was kindly
pointed out to us by J. Lascoux.

{
(
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8. — Equation reducible to Fredholm’s type.

Let us consider the equation

3.1) pl@) = flo) + f [m_w_w K(w’x)}qp(w’)dw',

where the kernel K(xz') is regular. Including qu) in the inhomogeneous part,
one finds a solution analogous to (2.11) where f(x) is now replaced by

) + %fK(w’w)cp(w’)dw’,

if we suppose ¢(2) bounded and continuous and that K(xa') verifies K(xz') — 0
when # — oo, and is submitted to a Lipshitz condition, one may invert the

order of integrations in
J —a f Kz Nda',

(3.2)
) = sin 8() exp [— 0(2)]
which leads to
5.3) e =)+ [N a,
where
B4) o) = @) cos b(a) + * exp o) f‘ ) ’ch plid(a)],

1 -

(9]

(3.5) N@z'z) = [K(m’w) cos d(x) + exp [Q(ac)]Pj%E);‘i£ dZi exp [id()] .

Here we shall not try to determine in detail what are necessary conditions
for K and & in order that equation.(3.3) be of Fredholm type: we think it to
be a matter of interest only in each particular case. The solution we have
obtained must evidently be regular at 1 and oo and one may repeat here the
arguments given in the preceding section.
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4. — The case of a system of coupled integral equations.

Let us consider the system

WY e =) + - f Lv W) LS Bwopie)| o,

3

by the method of the Sect. 3, this may be put eventually in Fredholm form by

*.2) @i@) = pi(w) + ;—i Z_fNu(w’x)%(w’) da',
‘where
{4.3) /1, = |f; cos + - eXp Lo:}P f ( dx ] exp [¢6,(»)],

N(@'x) = [K(2'2) cos d,(2') + Ui,- x'e ] exp [ 6:(x)],

dg .

(4.4) Uo(') — exp [ 0:(@)]P Kwéw jé)ii(é )

5. — Equations for the production of mesons by mesons.

‘When one studies the reaction nucleon+n — nucleon+2x by the methods
of Chew-Low-Wick, one obtains equations of the following type for reduced
matrix elements (*)

@ @' m,)

1
G1) pana) = fiama) + - [ 1P gy

8

+ zAz‘jOu(xlwz) ’ (i=1,..,8),

i=t

‘where A,; are real numbers and

1 1
! ; ! , ?
X — T — 1€ X — By — 1€

52 o) = fqo;*‘(w'mlwz)hj(w')

(*) These equations reproduce equations (5.1) of reference (°) where we have put,
in order to save writing ¢; = 7T/,; and we have taken into account relation T, = (—)*'7,,
‘which follows by time-reversal invariance.

1250



ON THE SOLUTION OF CERTAIN SINGULAR INTEGRAL EQUATIONS ETC. 323
equation (5.1) is in fact a particular case of (2.1) and its solution is given by
(5.8) ' @(ww,20,) = (P(il)(wm1932) +(P(1:2)(?W/'1w2) )
where

(6.4)  gPlane) = |f(owm) cos 8a) +  explode)]

» f&w dg} exp [10,(@)] ,

(5.5) ) (P(f)(mmlwz) = z A Cyly)us(x)
6 o) = [cos 0) + % exp [o@)P | 5L dc] expli 8,(0)]

if we define the operations D,[y(ws.m,)] which transforms a function ¢ of
{%, &, %;) in a function of x, and 2, only by

1 1
r— 2, — i @'—wy—ie

!
do',

(5.7) Diy] = f P* (@' wy2,)hs(2') [

»(5-8) D;[p;] = Ci(w.2,)
and apply it to (5.4), we obtain

(5.9) Oi(w,2,) = D,[9P] + > 4,07 D [w,] .

In (5.9) D,[¢] and D,[«;] may be explicitely calculated and one may easily
solve (5.9) for the C; and bring them in (5.3-6). It is seen that the solution
80 obtained involves only quadratures, which is indeed an unexpected simple

result.

6. — Conclusions.

We have given a method for the resolution of integral equations which
present themselves in quantum field theory and, in particular, in the model
of Chew-Low and Wick. Following the difficulties involved in the considered

=
0
5]
—



324 R. OMNES

problem, one is led to an explicit solution by guadratures or to non-singular
integral equations. The method may be generalized to a quite wide lot of
other cases. An explicit and suggesting example is given by the equations for
production of mesons.

L
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APPENDIX

In this appendix, we want to study the convergence of integrals appearing
in equations (2.8) and (2.11). In this respect, let us consider

o«

(A1) I(x) = P E(C—)dc.

Here we have replaced the limit 1 by 0 in order to simplify developments
and F({) is a bounded and derivable function such that

(A.2) F(C)=§+0(}), (> 2Z,a>0,
(A.3) F(¢) =k + BE + o, {~0,8>0.

Let us study I(z) for # near to 0 and infinitely great.

a) © great.
Let us put
(A4) =L+ LI, :f&dc,
—m
Iz :Pfﬂc—)dcn
{—u

z

for  >»> Z1, is of order const/z 4 O(1/x). If we define & = n + o (0 <a'<C 1)
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it comes

_ n (_)n—p-l—l
(A8 L=A3 iy L)

_|__

nl 1/C
+ f@ SR A

By the boundedness of the derivative the last integral is O(2—!) and the pre-
ceding one is bounded by Axz—"log (x — Z)Z~* log Z. The results of Table I
-follow.

"Tasrr 1.
i, @ Cases Order of I(x) Oxder of exp [I(x)]
oo o« > 1 ' x1 . 1
=1 xtlogx
o<l ? ?
0 k+#0 —klogx Xk
k= 1 1

b) « near o 0.

The method is analogous, one uses (A.3) and separates the parts of I due
to k, to % and 0(%), which gives, term-by-term

I(z) = — Eklog x + const + O(x),

from which results of Table I follow.
In Table I, we give the asymptotic values of I(x) and exp[I(x)]. Table IT

TasLe II.
L, w Cases Order of ¢ | Order of ¢ | Order of » Order of J

| oo «a>1 L= 1 Lo ' 1
a=1 1 1
a<l1 ? ?
0 E£0 p<—k 1 x* Eh+x ?

| B=—k 1 Tk log »
l B>—k 1 Tk 1
j k=0 z 1 1
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is a direct application of the results of Table I to 6(¢) and »(£) = f({) sin 6(0)-
-exp [— p(£)] where f({) is bounded, and finally of J,, = P»({)dl/({ — x).

One sees, as indicated in the text, that if §> —k, the integral of (2.11)
converges and if ¥ < 0 exp[p(x)] is everywhere bounded.

RIASSUNTO (*)

Nello studio dei fenomeni complessi interessanti i mesoni = (ad es. fotoproduzione
semplice e doppia, scattering radiativo, produzione doppia, ecc) si incontrano equa-
zioni integrali che eollegano gli elementi di matrice coi spostamenti di fase. Diamo
qui un metodo generale per la soluzione di queste equazioni che conduce ai seguenti
risultati: a@) il tipo pitt semplice & integrabile per quadrature; b) il tipo generale &
riducibile a una equazione di Fredholm. Diamo anche la soluzione di un sistema di
equazioni integrali accoppiate e di quella particolare equazione che interviene. nel pro-
blema della produzione doppia. Quest’ultimo caso pud essere integrato per quadrature.

(*) Traduzione a cura della Redazione.
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