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S u m m a r y .  - -  In the study of complex phenomena involving n-mesons 
(e.g. simple and double photoproduction, radiative scattering, double 
production, etc.) one encounters singular integral equations linking the 
matrix elements and phase-shifts. We give here a general method of 
resolution of these equations which furnishes the following results: a) the 
simplest type is integrable by quadratures; b) the general type is reducible 
to a Fredholm equation. We give also the solution of a system of coupled 
integral equations and of the particular one which occurs in the double 
production problem. This last case may be integrated by quadratures. 

1 .  - I n t r o d u c t i o n .  

We wan t  to s t udy  singular integral  equations of the  following type  

~1.1) 

c o  

! fh*(x')~(~') fg ~s(x) = l(x) d- 7 ~ J x ' - - x - - i s  dx ' d -  (x 'x)q)(x ' )dx/ ,  
s 

where  h(x) has the  fo rm ei~sin d (real d) and  K ( x x ' )  is a regular  kernel.  

This t ype  of equat ion f requent ly  occurs in the stat ic theory  of Chew-Low- 

Wick (1,2) for instance when one studies processes ini t ia ted or ending b y  a 

=-nucleon system.  Such equations are thus fundamen ta l  in the  problems of 

,simple (1) and double photoproduct ion ,  rad ia t ive  scat ter ing (3), p roduc t ion  of 

(*) On leave of absence from CEA, Saelay, France. 
(1) G. F. Cm~w and F. E. Low: Phys. Rev., i0I ,  1579 (1956). 
(2) C. G. WICK: Rev. Mod. t)hys., 27, 339 (1955). 
(a) B. Bosco: 3[uovo Cime~to, 5, 1361 (1957). 
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mesons by  meson (4.6). However,  we suppose tha t  the interest  of such ~ 

problem is not  completely restr icted to the static approximation.  
Equa t ion  (1.1) is not  of Fredholm type  al though analogous in form and~ 

for instance, classical results such as Fredholm al ternat ive are not  applicable. 
Moreover, due to the kernel  singularity, these equations do not  lend  them-  
selves simply to approximat ion methods and numerical  integration.  This po in t  
does not  seem to have been clearly stressed in l i terature  and errors in t h e  
choice of approximat ion methods have been made concurrent ly  (ef. ref. (e)). 
As the mathemat ica l  problem seemingly will keep its importance,  we w an t  
to give to it  in this article a form upon which the classical methods of ap- 
proximat ion and the general theorems will be applicable. By  the way, we 
shall be able to show in par t icular  cases the existence of a solution and its 
non-uniqueness, and shall determine what  conditions of a physical  na ture  allow 

complete uniqueness. In  fact  the method  can be generalized to a quite wide 

var ie ty  of problems which we shall indicate. 
In  Sect. 2 we give the general solution of the simplest equat ion of type  (1.1). 

We s tudy the uniqueness problem when certain conditions of physical na ture  are 

imposed. Sect. 3 deals with the reduct ion of a quite general case to Fredholm's  
one; the problem of the equivalence between these two forms is not  t reated.  
Sect. 4 generalizes this reduct ion to systems of coupled integral  equations. 
Finally, we t rea t  in Sect. 5 a par t icular  system of coupled equations which 
is encountered in the problem of 7:-meson product ion b y  mesons (~.e). This 
last case is seen to reduce to simple quadratures,  just  as the problem of Sect. 2. 

2. - F u n d a m e n t a l  e q u a t i o n .  

The simplest equat ion of type  (1.1) is 

(2.1) 

c Jr 

1 f~*(x')v(x') 
~(x) = J(x)~ 4- ~ j x , _ x _ i e d x ' ,  

1 

here ](x) is a given funct ion which we suppose bounded between 1 and c~. 
h(x) is a given funct ion of the form exp [i~] sin (~, where ~(x) is bounded.  
Whe choose arbi trar i ly the determinat ion of ~ which tends to 0 at  infinity 

(supposing this choice possible) and ~ (1 )=  kz. ~ tends to zero at  least as 

quickly as x -1 when x tends to infinity. ~(x) is the unknown function. In  

order to solve (2.1) we shall use a me thod  which is a generalization of the  

(~) J. FUKUDA and J. S. KOVACS: Phys. Rev., 104, 1784 (1956). 
(5) L. S. RODBERG: Phys. Rev., 106, 1090 (1957). 
(8) R. OMNgS: Nuovo Cimento, 6, 780 (1957). 
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me thod  in t roduced b y  N. I.  MVSX_TIELIS~Vn~I (7) for the  solution of I t f lbe r t  

p rob lem in elasticity,  the  essential  difference being t h a t  here the  kernel  con -  

rains h(x) and is not  a simple Cauchy kernel.  We shall have  to in t roduce 
functions of a var iable  z defined in a complex plane cut  along the  in te rva l  
(1, oc) and  shall call G(x+) (resp. G(x-- ) )  the  l imit  of a funct ion G(z) when 

z tends to x upon (resp. under)  the  cut. I n  the following, the  cut  will be  

called L. 
Le t  us define the funct ion 

f dx,, ~(z) = ~ x ' - -  z 
L 

(2.2) 

which implies 

(2.3a) 

(2.3b) 

1 lh*(x'!v(x ') 
:~ j x ' - -  x - -  is dx'---- 2iF(x ~- ) , 

L 

~ ~ - - I  ~(x) h,~, [F(x + ) " F(x- - ) ] .  

Equa t ion  (2.1) takes  now the form 

(2.~) exp [--  2i(~]F(x ~-) - -  F ( x - - )  = ](x)h*(x),  

where we have  used 1 -  2 i h * =  exp [ - -2i~] .  Le t  us now pu t  

(2.5) F(z) = O ( z ) 9 ( z ) ,  

where the  funct ion ~Q(z) is defined b y  the condition 

(2.6) exp [ - -2 i (~]~Q(x-~) -  tg(x--)  = O. 

This last  equat ion admits  a solution (which is found b y  taking the logar i thm 

of (2.6)) 
~9(z) = exp [u(z)] 

with 

if we define 

(2.7) 

= de,  
L 

co 

l ~ f  ~($) d~ 

1 

(7) MUSKHELISI~VlLI: Trud. Tbil. Mat. Inst., 10, 1 (1941), cited in S. G. MIKHLIN: 
Integral Equations (London, 1957), p. 126 ft. 
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we have 

,(2.8) 9(x  + ) = exp [q + iS]; X2(x--) = exp [q ' - - iS] .  

Equat ion (2.4) may  now be transformed ~ in a relation for ~5(z) which is 

,of the t t f lbert  type  

,(2.9) qS(x ~- ) - -  q~(x--) = ](x)h*(x)~-~(x - )  = ](x) sin S(x) exp [-- ~(x)]', 

which has a solution 

1 fJ(~) sin 3(~) exp [-- ~(~)] de: 
,(2.1o/ qS(z) = ~ ~ - -  z 

L 

.one may  now derive ~(x) by (2.1) or (2.3b) which give evidently the same result 

<2.11) q~(x) = [/(x) cos S(x)~ + x-1 exp [q(x)]. 

co 

l 

exp [i S(x)]. 

I t  is an easy task to verify tha t  every step of this method is correct, provided 
the  writ ten integrals converge and tha t  (2.11) is t ru ly  a solution of (2.1). 

I t  is important  to point out tha t  (2.11) is not  the only solution of (2.1) 
~or one may  add to it  any solution of the homogeneous equation 

<2.12) 
1 fh*(x')q~(x') 

%(x) = ~j  x'-- x ~ e  dx',  
L 

;such a solution of (2.12) may  y e t  be defined by (2.3) and a relation analogous 

to (2.5) 

<2.13) Fo(Z) = r 

where ~o(Z) must  now verify 

<2.1~) r + ) --  r = o .  

This last relation shows tha t  ~50(z ) is an analytic function in the whole 
complex plane except eventually at  the points I and ~ where it may  have 
singularities. I f  we exclude essential singularities, the general solution of (2.1) 
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appears  as 

qJ(x) = of(x) + L(x) exp [e(x) + ih (x) ] ,  

(2.15) P(x) 
L(x) (x-- 1},,' 

where P(x)  and  n are a rb i t r a ry  polynomia l  and integer.  General ly  a solut ion 

will be complete ly  de termined b y  its a sympto t i c  behav iour  in the  neigh- 

bourhood of 1 and co for this behav iour  b y  (2.11) and (2.15) de termines  n 
and  P(x). Par t icu lar ly ,  for 

a) k = 0 or 5(1) = O, 

b) k - - - - - - 1  or 5(1) = - - z ;  iS(s) + z ] ~ J  / ~ > 1 ,  

(2.11) is the  only solution of (2.1) regular  in the neighbourhood of 1 and  which  

tends to 0 a t  infinity (see appendix).  These cases are precisely the  more  in- 

teres t ing in pract ical  use since, in the context  of Chew and Low model,  case a) 

m a y  be adop ted  for the small  phase-shif ts  and  case b) for 58 wi th  fl = 3. L e t  

us recall  here t h a t  we have  t aken  the de te rmina t ion  of 25 which is 0 a t  infinity. 

The choice k = - -  1 is equivalent  to suppose only one resonance for the  (~3 ~) 
pion-nucleon state.  Le t  us stress t h a t  hypotheses  a) and  b) s implify happ i l y  
the  calculations bu t  are absolute ly  not  essential  to the  success of this approach.  

If ,  effectively, a) and b) are not  verified b y  5, i t  is an  easy t a sk  to de te rmine  
the  singularities of the  integrals  appear ing  in (2.7) and (2.11) using the first 
t e rms  of the  Taylor  expansion of 5 near  1, and  to choose in a unique fashio~ 

an integer  n and  a po lynomia l  P(x) in (2.15) in order to have  a regular  solution 
in the  neighbourhood of 1 and c~. We shall consider this solution as the  in- 

teres t ing one a l though we do not  wan t  to enter  here in the  difficult p rob l em 
of the  choice of physical  criteria for a solution (see ref. (s-10)). 

Le t  us now r e m a r k  tha t ,  for ](x) real, the phase  of ~(x) is (~ which is inti- 
m a t e l y  connected with a theorem b y  FUBINI~ ~I-A1VfBU and WATAGm~ (11). 

Final ly,  in the  more  general  case where h has not  the fo rm e~sin  5 our  

me thod  is ye t  applicable in principle, the  essential  condit ion being now t h a t  

[1 - -  2ih*[ mus t  not  be  zero on L. One m a y  ye t  write 1 - -  2ih* = exp [ - -  2iy], 
where y is now complex. The m e t hod  used b y  MUSKttELISHVILI (~) in the  re- 

solution of Hi lber t ' s  p rob lem is appa ren t ly  ~ par t icular  case (*). 

(s) •. CASTILLEJO, R. H. DALITZ and F. J. DYsoN: Phys. Rev., 101,453 (1956). 
(9) F. J. DYsoN: Phys. Rev., 106, 157 (1957). 

(lo) R. HAAG: NUOVO Cimento, 5, 203 (1957). 
(11) S. FV]3INI, Y. NAMer and V. WATAG•IN: to be published. 
(*) s added in proo]: This general ease was known to MusxnELISHVlLI and 

treated in his book "Singular Integral Equations ", Groningen, 1953; this was kindly 
pointed out to us by J. LAscoux. 
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3. - Equat ion  reducible to Fredholm's  type. 

Le t  us consider the  equat ion 

(3.1) 

co f[ h,(x,) ] 
q~(x) = ](x) + ~ J [ x ' - -  x - -  i i  + X ( x ' x )  ~(x') dx ' ,  

1 

where the  kernel  K(xx') is regular.  Including fKq~ in the  inhomogeneous part~ 

one finds a solution analogous to (2.11) where ](x) is now replaced b y  

](x) -+- l f K(x'x)cf(x')dx', 

if we suppose q(x) bounded  and continuous and  t h a t  K(xx') verifies K(xx') ~ 0 
when x - +  c% and is submi t t ed  to a Lipshitz condition, one m a y  inver t  the  

order of in tegrat ions  in 

(3.2) 

P ~j ~ .K(x'x)~(x') dx', 

2(~) = sin 5($) exp [ - -  e(~)] , 

which leads to 

(3.3) v(x) = +  JN(x'x)v(x')dx', 
1 

where 

(3. ~) [~(x)-----[ j(x) cOs(~(x)-j[-lex r / x \TP  ~](~)~(~) 1 

1 

(3.5) 

Here  we shall no t  t r y  to determine in detail  wha t  are necessary conditions 

for K and h in order t h a t  e q u a t i o n  (3.3) be of F redho lm type :  we think it  to  

be  a m a t t e r  of interest  only in each par t icu lar  case. The solution we have  

obta ined  mus t  evident ly  be regular  a t  i and  c~ and  one m a y  repea t  here t he  
a rguments  given in the  preceding section. 
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4.  - The case of a system of coupled integral  equations.  

Let  us consider the system 

co 

~J [ x ~  f [h~ i (x l )~ i ( x  t) - -  ] 
' ( ~ , 1 )  ~)i(X) = ]i(X) Jr- -~- ~ ~ij(XrX)Cf;(X f) d x ' ,  

1 

b y  the method  of the Sect. 3, this may  be pu t  eventual ly  in Fredholm form b y  

, (x '  x)q~j(x') dx', 
T 

,(4.2) 

"where 

(4.3) 

(4.4) 

J I, q'xX: 1 #~(x) = , cos 5i + ~ exp [p~] ~( )2~_ ) dx' exp [ i0 , (x)] ,  

/ Nif(XtX) = [K,(x'x) cos 6~(x') + U~j(x'x)] exp [ i~dx)] ,  

ex ~ ~(x)~P f ~ . ( x ' ~ ) 2 d ~ )  V.(x 'x)= P Le J J 

5.  - Equat ions  for the production of mesons  by mesons .  

When one studies the reaction n u c l e o n + ~  -~ nucleon-~2~ b y  the methods 
of  Chew-Low-Wick, one obtains equations of the following type  for reduced 
:matrix elements (*) 

co 

1 ['h$i(x')~i(X'XlX2) 
t5.1) q~i(xx~x2) = ]~(xxlx2) + ~ j  x ~ - x ~  ~ dx' ~- 

1 
8 

+ ~ A , G ~ ( x l x 2 ) ,  (i = 1, . . . ,  S)i 

"where A~ are real  numbers  and 

(5.2) r = *(x 'x lx2)hj (x ' )  x ' - -  x l  - -  is  + x ' - -  x~ - -  is ' 

(*) These equations reproduce equations (5.1) of reference (s) where we have put, 
in order to save writing ~i = Ts~ and we have taken into account relation Ts~ = (--)2STsL 
~which follows by time-reversal invariance. 
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equation (5.1) is in fact a partieulur case of (2.1) ~nd its solution is given by 

~(xx, x~) = ~>(xx~x~) + q~(~(XX~X~) , (5.3) 

where 

,(5.4) ~'2(xxlx~) = []~(xxlx~) cos ai(x) + x-1 exp [e,(z)]. 

co 

" j ~ t ) ;  ]i(~xlx2)~i(~) d~/�9 exp [i ~(x)] 
1 

l 

.(5.5) q~i2)(xxlx2) = ~ A,Cj(xlx~)ui(x) , 
J 

~f we define the operations Di[~f(XXlX2)] which transforms a function ~ of 
(x, x~, x2) in ~ function of x~ and x2 only by 

(5.7) Di[y~] : *(x%x2)h~(x') - ~ x ' - - x 2 - - i e  dx', 

(5.s) D~[~] = C~(x~x~) 

und apply it to (5.4), we obtain 

(5 .9)  Ci(xix2) : ~Di[~i 1)] + ~ A,C*D~[u~]. 

In  (5.9) D~[~'~ ~)] and D~[u~] may be explieitely calculated and one may easily 
solve (5.9) for the Cr and bring them in (5.3-6). I t  is seen that the solution 
so obtained involves only quadratures, which is indeed an unexpected simple 
result. 

6 .  - C o n c l u s i o n s .  

We have given a method for the resolution of integral equations which 
present themselves in quantum field theory and, in particular, in the model 
of Chew-Low and Wick. Following the difficulties involved in the considered 
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problem, one is led to an explicit  solution b y  quadratm'es or to non-singular  
integral  equations. The method  may  be generalized to a quite wide lot  of 
other  eases. An explicit  and suggesting example is given by  the equst ions for  
product ion of mesons. 

* $ *  

The au thor  is happy  to thank  Professor C. J.  ]3AKKEI% for his hospi ta l i ty  
at  CEI%N and Professor B. ~ERI%ETTI :[or his constant  interest.  

APPENDIX 

In  this appendix,  we want  to s tudy the convergence of integrals appearing 
in equations (2.8) and (2.11). In  this respect,  let  us consider 

(a.1) 

co 

= P (:)  d : .  
j ~ - - x  
o 

Here  we have replaced the limit 1 by  0 in order to simplify developments  
and /~(~) is a bounded and derivable funct ion such tha t  

(A.2) F(~)  = $~ + 0 , ~ > Z,  ~ > 0, 

(A.3) ~ (~ )  = k + B ~  p + 0 (~  z) , ~ ~ 0, ~ > 0 ,  

Let  us s tudy  I(x) for x near  to 0 and infinitely great. 

a) x great. 

Let  us pu t  

(A.4) 
z 

I = I1 + I5 I1 = f ~ ( ~ )  d~ ~ - - X  

o 

co 

z 

for x >> ZI1 is of order const/x + O(1/x). If  we define ~ ---- n + s (0 < s  1) 
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it comes 
~ (-)"-~+1 

(A.5) 12 = A _ xn-~+~Z ~+~'-~(p + s  1) + 
c~ 

+ (--)"+~ x" ~"( x) 
z, 

p (O(1/~)  d~ . 
d ~ 4 -  J $ - x  

7, 

:By t h e  b o u n d e d n e s s  of t h e  d e r i v a t i v e  t h e  l a s t  i n t e g r a l  is 0 @  -1) a n d  t h e  p r e -  
c e d i n g  one  is b o u n d e d  b y  A x  -n log  ( x -  Z ) Z  -~' log  Z. T h e  r e su l t s  of T a b l e  I 
fo l low.  

TABLE I. 

~, X Cases Order of I(x) Order of exp [/(x)] 

oo ~ > 1  x -1 1 
= 1 x -1 log x 1 

~ < 1  ? ? 

0 k :/: 0 - -  k log x x -~ 
k = O  1 1 

b )  x near to O. 

T h e  m e t h o d  is ana logous ,  one  uses  (A.3) a n d  s e p a r a t e s  t h e  p a r t s  of I due  
to  k, to  f a n d  0 ( ~ ) ,  w h i c h  gives ,  t e r m - b y - t e r m  

I ( x )  = - -  k log  x + cons t  + O(x) , 

f r o m  w h i c h  r e su l t s  of T a b l e  I fol low. 
I n  T a b l e  I ,  we  g ive  t h e  a s y m p t o t i c  v a l u e s  of I ( x )  a n d  e x p  [ I (x) ] .  T a b l e  I I  

TABLE I I .  

Cases 

~ z > l  
~ = 1  
~ < 1  

k#O 

k = 0  

f i <  - - k  
f i=--~ 

Order of 

1 

1 
1 

Order of e Q 

1 

1 
? 

X-k 

X k 

X k 

1 

Order of v 

~+~ 

Order of J 

? 

log x 
1 
1 
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is a direct  appl ica t ion of the results  of Table  I to ~(~) and v(~) ---- ](~) sin ~(~)- 
�9 exp [ - -  ~(~)] where  ](~) is bounded,  and  finally of J +  ---- PSv(~)d~/(~ - -  x). 

One sees, as ind ica ted  in the text ,  t h a t  if fi ~ -  k~ t h e ' i n t e g r a l  of (2.11) 
converges and  if k ~ 0 exp [Q(x)] is everywhere  bounded.  

R I A S S U N T O  (*) 

Nello studio dei s complessi interessanti i mesoni :: (ad es. fotoproduzione 
semplice e doppia, scattering radiativo, produzione doppia, eee) si ineontrano equa- 
zioni integrali che collegano gli elementi di matrice col spostamenti di fase. Diam(~ 
qui un metodo generale per la soluzione di queste equazioni ehe conduce ai seguenti 
risultati: a) il tipo pifi sempliee ~ integrabfle per quadrature; b) il tipo generale 
riducibfle a una equazione di Fredholm. Diamo anche la soluzione di un sistema di 
equazioni integrali aceoppiate e di quella particolare equazione che interviene nel pro- 
blema della produzione doppia. Quest'ultimo easo pus essere integrato per quadrature. 

(*) T r a d u z i o n e  a cura della Redazione.  


