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CoNTENTS. — 1. Error estimates. — 2. Flow diagram. — 3. Practical
experiences. — 4. Estimates of computing time. — 5. Comparison with
the usual approximation.

1. — Error estimates.

In a foregoing paper (!), which will be quoted henceforward as (I), we
presented a Monte-Carlo (MC) approach to the problem of calculating mul-
tiple phase space integrals. We shall use the same notation as in (I).

The proposed calculation can be done only on automatic computers and
of course only with a limited accuracy. As a MC calculation is a statistical
process, one must know how accurate its result actually—or better: pro-
bably—is. Automatic computers allow one to include a check of accuracy
within the programme, so that the machine stops or goes over to the next
case as soon as the prescribed accuracy is reached. .

We therefore begin with an estimate of the error. This error estimate
applies to a single calculation of a particular o’ (H, 0). Actually, however,
one will calculate this function for » = 3, 4, 5... and also perhaps for different
energies. Since we know that it is a smooth funetion with one single max-
imum if we vary either » or E (keeping the other fixed), we may get a better

(1) A Monte-Carlo method to calculate multiple phase space integrals (1). Equations
of that paper are quoted as e.g. (I, 15), whereas equations of this paper are referred
to as e.g. (12), ete.
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statistical accuracy for a whole table, than we would have for a single case.
If, e.g. for fixed E, one calculates a table for n=3, 4, ..., »’, then the accu-
racy of a number from such a table will be better by a factor of roughly
1/¢/n"—3 provided the values in the table are smoothed out by using any
method of balancing the fluctuations.

For the estimation of the individual error we proceed as follows:

First a certain number N, is fixed (N,>>1) which is the basic number
of samples or the basic number of contributions to the sum (I, 19). This number
should be chosen so small—say 10 or 50 or 100—that one does not expect
that N, terms make already a good approximation to o¢*. The process has
then to be repeated several times and its convergence watched. Each repe-
tition will add again N, contributions. Thus, if the desired accuracy is reached
with 4 sets of N, contributions, the number of samples is N=/1N,. We in-
troduce the following abbreviations:

(1) 0,= 02 *(E, 0) i.e. the MC approximation to g (E, 0) (2)
with N =AN, contributing samples (see
(I, 19)). We want this approximation to
fulfil some condition of accuracy to be
specified later.

£, . . i.e. the partial sum of the y’s from the
5 — () (%)
@8, 2w’ p-th set of N, samples

i=(u—-DVy+1

i.e. the total sum of ¢’s from the N =1N,

’ ¥,
. o (7) (i)
(3) Z, =28, “‘Zl’/’(gl ) samples.

u=1
‘With these definitions is follows from (I, 19) that,

A ) (B~ M)y@2u)t . L B
W e=g 5 A= Thiesyy, #POTne=e

Consider first A as a fixed number and suppose that g, has been calculated.
To get an estimate of the accuracy we can use only the accumulated data
from the AN, samples and we therefore deal with a posteriori estimates only.

We can say what would be the mean error (more accurately its r.m.s.
value (3)) if we would calculate o, many times independently. In fact, we cal-
culate it only once and may have found a value which differs much more from
the exact value than just by one mean error. There is no way out of this si-

(2) We omit throughout the star and write simply g, and ¢ for convenience. The
quantities, however, correspond to p* as defined in (I).
(®) r.m.s. means: root mean square.
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tuation, because it is a logical consequence of the MC method, and common
to all sampling procedures. Even if we would really calculate many times
and take the mean value, then this mean value would simply be another single
(though more accurate) calculation of g, where now A’ is many times larger
than 2 was. We can then carry through the same reasoning for 1’, which we
gave above for 1, and we come to precisely the same result. Only the mean
error will be smaller.

Let us consider a typical situation. If g, has been calculated, then this is
the mean value of A contributions S, (all independent of each other), and each
one of these comes from N, samples. We may here forget about the latter
fact, because N, influences only the magnitude of the fluctuations of the §
We shall consider therefore the S, as random variables. We draw a histogram,
which shows this situation:

A
& _ g _123”

Actually we do not know this limit and the only quantities which are at
our disposal are those which we can extract from the above picture.
For the following we need two different mean values:

i) The mean value over the A contributions which have go far been
calculated. This mean value can be inferred numerically from the actual data;
it will be denoted by a bar.

ii) We may imagine the above actual case to be one of a large ensemble,
i.e. 'we may imagine g, to be calculated I times in the same way (statistically
independent) and all the L histograms drawn. They will yield L values g
({=1...L). The second kind of mean value is then over the L-ensemble. Here
we take the limit I — co and write { >.

The contributions S, have from now on a second label I such that SP is
the p-th contribution to the I-th histogram. Let F be any function of S,
then i) and ii) mean

o 2
{ i) 7o’ — % > F(SY) ; J always finite
(3) 2 .
[ i) =182 S Ry
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Whereas FO gtill depends on I, (F) is clearly independent of u. Of course

lim Wd) _ <fv(l>> — (P,

i—0
but we are just interested in the deviations for finite A.

We proceed now to estimate the error of o, as a function of A. With
lim g, = (01> = 0 = A¢S, we have

Az 2 A2 4
(Ql- 9)2 :—F (z SII-—Q/A)Z = —FZASV ASM 3 ASM = S/t — 8.
Vit

=1
Since all contributions are statistically independent, we find with (5)

ﬁ s = A sy

A2
—z'—z =1 z‘

A A2
2 <(AS’“)£> - ”AT

=1

{or—0)*) =
We now define (69),.3\/'«'@7—1;)2; and have

(6) gé@b.zzygigz;:aﬁ$ _ 1 \/ZZEES
¢ 0 Vi S

In the following discussion we shall assume that the distribution of §,
around S is more or less a Gaussian distribution. We use this assumption only
for estimates of orders of magnitude. If N, is large enough, the fluctuations
of the S, will be small and in the neighbourhood of ¢(S) the Gauss distribution
will be a good approximation. This has the advantage that we can calculate
some quantities explicitly. Though the results do not hold strictly, they re-
present at least good estimates.

If <AS82) (and hence dp :\/ZA é72'>) were known, we could state confidence
limits for g, starting from the calculated ¢,. Assuming a nearly Gaussian distri-
bution for §, it is well-known that

the probability that |¢— g,;<de, is &~ 689

» » y  lo—o,l<2-00, is ~ 959
» » » lo—o0,/<3-dp, is ~ 99.959%, .

Then, in order to obtain a given probability that the relative error is
smaller than a given (small) number, we only have to choose the corresponding
A large enough. Unfortunately neither (AS2) nor (8> are actually known.
We may, however, without great error replace in (6) (S» by S, because dg/o
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will be changed only by an amount of the second order. So we redefine

- (6); _ 1 \/<ASa
0 Vi ®P

There are now many ways to estimate (AS2> from the sample of A elements S ”,
¢.g. using the largest occuring deviation or the r.m.s. deviation from the mean
value. These methods, of which Student’s test is the most adequate, have
several practical drawbacks, the main one being that after each addition of
a new set of samples the mean value changes and all deviations have to be
calculated anew.

These disadvantages may be avoided in the following way: We use the
quantity 68" which we define as follows:

—h

1 &z 12 (,n
®) 557 — z( zs)_s ~33 15

/z 2\/“11

That means: After each step of the calculation we take the mean value S%
and find the absolute value of the deviation of the last contribution §, from
this mean value. The average of all these absolute values is our §8”. The
The advantage is that the mean values §“ are calculated anyway, because
they yield the g,, and S, is just calculated as the last contribution. The
absolute value of only this one difference is taken, added to the corresponding
quantities of the foregoing steps and the mean is taken; neither are new dif-
ferences calculated, nor are square roots involved. Since S tends to (8>
as u — oc, it is easy to show that

) lim 68" = (JAS]> .

But, since we do not intend to use large A, we must relate the new quantity
A8 or <AS%> also for finite 2.

For this purpose we use the assumption of a Gauss distribution, since this
allows explicit calculations. We shall calculate the expectation value of §8%
and express it by ¢AS*, under the assumption that the distribution of S,
about 78> follows a Gauss law

(10) AN =8N,
and

+ ©

; ju*(S)dS =1.

— @

. , AS?
11 wS) = —— — exp|—-
() () V2rcASE eXp[ 2¢A8%)|
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Then the expectation value (5ii) is defined as

+ ©

(12) (P :fF(S) w(8)ds .

— @

We need for the following a simple consequence of (11): As is well known,
the mean value of a sum of random variables follows again a Gauss distri-
bution, if the random variables themselves follow such a distribution. The
r.m.s. deviation of the mean value of §* from <(S) is then, as shown in the
derivation of (6)

o 1
(13) (8™ = (D) = (D82 = — (A

The probability that §" lies between x and z--dz, is therefore according to
(11) and (13) given by

(14) W, (z)dr = - ———————exD [—

[z —(8))? }
Vom - (1/n)<ASE

2(1/n)(AS|
We determine now the probability distribution of the difference
(15) o,=8“—8,

in (8). We must take care of the fact, that 8 is not independent of S” and
write therefore

—(;1)

= 8 S

—1 -
( + Su) — Su :Ki T (S(/ 1)

u —8.),

“tl»—a

where now §*°" is independent of S, We put S* " —§, ==y . The pro-
bability that y <y, <y-+dy, is then obviously

+ @

71’,4(']/)(117 = dyfu/,u--l(y + S,u)/w(s/t)dsu

and with (14) and (11):

1 Y?
16 4 = - e e e
1) ) Vil — 1)) 20(AS  (ullu—1)) 2¢A8%),

ex

The distribution of ¢, is then according to the general formula

V{f(x)}df(x) = o(x)dr
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given by

1 o?
17 Vi) = e S A—
4o ") V((uw —1)/u) 27(AS2 P (D) 2cAse

This is again a Gauss distribution with, as a glance on (11) shows:
—1
(18) (opy === (AS?) .
,u

A simple calculation shows now that for a Gauss distribution abont zero

o«

19) ety =szw<w)dx: ‘/g\/@;>_

This gives
(R 8,p = V ‘/;77_1 VIASE

which we insert now in the expectation value of (8), namely

1 2

(5S >—iz_ _S#p,

with the result ‘
/9

2 38° =1/ 2VAsS w—
(20) R = | 2V 5 zV
or

_ — <z | S(M___SH‘|>
(21) V<As>_|/”f a8 ) ,,~'/_ T

St § |

112 u=2

This can now be introduced into (7). Of course, we find ourselves here Lefore
the same difficulty as with (7). What we actually know is not (§S8'*>, but
only that particular 8 which we can calculate using the actually computed S e
As pointed out at the beginning, this is a logical consequence of the fact that
we do not know the distribution, but only a finite number of drawn samples.
We could now continue the argument and proceed to calculate the distribution
of 8% around its expectation value (38*>. We would then end up with
essentially the same situation.
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In fact the situation is not so bad; if we now replace

<6‘S(A)>
by the calculated value

8‘3(1)

then for not too small A the actual §8 lies near its expectation value. The
error in the error estimate, which we thereby introduce, is therefore only of
higher order. Even if we would estimate the error wrongly by a factor 2 or
80 (which is very improballe), this would not cause any serious trouble. We
shall therefore adopt the following convention for the estimate of the crror:

_ 5"
) (0o _ L /422 - .
(22) ’Q*'* /éz —71_) - ‘/lu T Z}.<207 )‘>AO >1.

/LZ

Here z, i3 a given small number fixing the accuracy. 1,31 means A, greater
that at least 5. This is necessary, since otherwise the mean value over the
actual deviations does not mean very much. Note that for 4 =1 the expres-
sions would not be defined since numerator and denominator become zero.
The sum in the denominator,

)

can be calculated for 4 =5, 6, ..., 20, or so, and be stored in the computer.
Then no square roots are necessary during the programme and the check of
the accuracy by means of (22) becomes extremely simple in an automatic
calculation.

If, depending on the construction of the computer, it is simpler to take
@ square than to take the absolute value of a given number, then one can use
instead of (22) the following formula, which is derived in essentially the same way:

;1'2

d 1 =
(23) ( 0) = 7(-(4)) /"2\—7"] = z§<23 : },} }-(1>> 1 ’

with the same 2, as above. The factor v/z/2 and the roots in the denominator
have disappeared. The sum in the denominator can here be calculated for
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each check by the recurrence formula, since the sum for 42— 1 is already
there from the foregoing check.
It shouldfbe noted again that if

(00):
4

:Z};?

this means that the probability that the actual error is <z, is ~ 689, and
so on (see discussion following eq. (6)). Hven that is only true for large 4,
since we replaced (68> by the calculated 58”. To be sure, one can always
check a few results by Student’s test and make z, smaller if necessary.

In the following flow diagram (22) and (23) are considered separately.

2. — Flow diagram.

The following flow diagram has been developed in collaboration with mem-
bers of the «Institut fiir praktische Mathematik » Technische Hochschule,
Darmstadt, Germany.

It may therefore show some features which are due to the particular pro-
perties of the IBM 650 computer that was used for the calculation. Still, it
is felt that this flow diagram will remain essentially the same for any type of
computer. Therefore it was considered useful to reproduce it here, since it
involves som little tricks.

A few comments:

«) Input data
T, Ny, n, A, Ae are defined in (I).
2o and z, are defined here by eqs. (22) and (23).
my ... m, are the masses of the particles.
The most convenient values for A, and N, and reasonable values for z,
depend on the total energy and on the number and masses of the particles.
/o should at least be of the order of 5. The smaller we choose N, the
larger 1 becomes and the better one can observe the convergence: see
discussion under h).

b) Instructions before (2)
W,, gives the spectrum.
(A|N)W,, will be the o"(E, 0, &,) Ae (of (I), Fig. 2) in the k-th cell. In this
programme each particle gets its own spectrum, whether there are iden-
tical particles or not. If there are equal particles, one takes in the end
the mean value of their spectra thus gaining statistical accuracy. It ig
convenient to normalize the spectra of the different kinds of masses and
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to print out directly the normalized spectra together with the mean energies.
Since the kinetic energies are as readily available in the computer as the
total energies are, one may express the spectra as functions of either vari-
able. (See discussion under g)).

2, £,, D, d are quantities used during the calculation and the error estimate.
(See below).

Between (3) and (4)

Here the random numbers are produced. In the present flow diagram it
has been assumed that there is a subroutine available which produces
(pseudo-) random numbers of three digits between 0 and 999. They are
called 7' and are mapped on the interval 0 <7, <T.

Between (4) and (8)

Here the n — 1 random numbers 0 < T, < T are reordered according to
magnitude and the variables which determine y (I, 18)) are prepared.
F=¢ € &..¢, i8 an abbreviation only.

Between (8) and (9) (or (14) respectively):

It is checked if perhaps one p, is larger than the sum of the other p’s.
If that is the case all the calculations up to (14) are unnecessary, since
according to (I, A.10) they yield zero. It is doubtful whether this check
gives a gain in computing time, as the probability for «yes» is ()"
(n particles). Thus it saves only in a very few cases a long, useless cal-
culation, but on the other hand it takes itself a time proportional to =.

Between (9) and (12)
the function y is calculated.

2 is the square bracket of (I, 18).

Z,=2 a,»\/e? —m?, (I, 18)..

That part, which beging at (11) and feeds itself back into (10) calculates
the sum Y following exactly the example given in (I, Appendix). It is
meant rather symbolically, since most computers do not have an operation
which checks whether a number is even. There are many ways of replacing
this by an operation which is much faster and implies essentially the same.

Between (12) and (15):

The spectra are calculated for each particle separately according to (I).
W., is a storage matrix, which contains (for r fixed) the spectrum of par-
ticle with number ». See discussion under b).
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Between (15) and the end.

The accuracy is checked. S contains now the sum of the ¢’s coming from
N, samples and X is the sum of A such §. It seems desirable that the
machine prints out 8, and (1/1) X, which allows one to draw histograms
such as shown in Fig. 1. This visual control often gives a much better
insight than a r.m.s. value or similar quantities. Since the convergence
of the MC approach seems to depend on the energy, number of particles, ete.,
it is advisable to have this extra check here. In order to have a summary
of the actual situation, also z, (or 2] respectively) (see here (22) and (23))
are printed out. D and d are numerator and denominator respectively
in (22) and (23) of this paper.

Finally, one may have chosen the desired accuracy so high, i.e. z, 80 small,
that it would never be reached in a reasonable computing time. There-
fore the possibility is provided for finishing the calculation and printing
out the present results, even if z, is not < z,.

If the square of the relative error is estimated by using the squared dif-

ferences to the mean value, the flow diagram is changed only between
(16) —...— (17) as follows:

1 2 A,.D
(?ZA'S)"D"D (ZA)Z ] -7
%‘- «d»>d print out 2

Flow diagram.

Since here the quadratic error is estimated, z, has here to be the square

of the 2z, in the other method.

In the other method v/ (T;T)/i and \/;dﬁ can be calculated for the in-

teresting A-values and stored as a small table. Then the lengthy square roots
are eliminated from the program.

3. — Practical experiences.

At present a programme is running for nucleon nucleon collisions at 25 GeV

primary (laboratory) energy. The cases 2N+n and 2N 427 could be checked
with the formulae given by BrLock (*) and showed good agreement. As the
phase space integral can be solved rigorously for massless particles, we used

(*) M. M. BrLock: Phys. Rev., 101, 796 (1956).
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a few such cases for various other checks. All cases in which a check wasg
possible showed that the actual error was of the order of the predicted one
and in fact in most cages it was even smaller (compare the predictions in the
text between Eq. (6) and (7)).

We shall now give one typical example in some detail and summarize the
others in a table.

Example: We took the following data:

n=3; Mm=my=my=0; E=T=09916 (5); Ny,=10; 1==37.

The total number of samples was therefore 370. The prescribed accuracy
z, was taken to be zero, so that the machine continued to calculate, until it
was stopped. It seems most convenient to
represent everything in the form of histo-
grams as in Fig. 1 and 2.

Fig. 2 shows the contributions §,, each
coming from N,=10 samples. We have
drawn in the mean value S%=(1/1)2,
(A=37) and the estimated error limits as
well as the exact value, which in this case
lies inside the estimated limits.

Fig. 3 shows (1/u)X, for u =2, 3, ..., 37 again together with the exact value.
Here the MC value approaches the exact one from above. In other cases it
came from below and in still otherg it oscillated.

S, tarbitrary units)

30 M
: 1
25' ,—]—L mean vahe%zrsm
}.
200 M exact value from
[ M onalytical calculotion
157” N7 I limated error
o il J‘
10 estmated error:7.7%
L —LL actual error :6.2%

(*) Units are % = ¢ = 1; the energy unit is the nucleonicimass: M=1.
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Fig. 4 shows the estimated error in percent. One sees here that it takes
some time before this @ posteriori error estimate begins to have a meaning.
In the beginning it fluctuates very much and only for A greater than about

3 mﬁ;—l I, (abieary units)
25f
Pl
15;, exact vale
E
10[
5C
L
L- TENPRTEI NaY L b PR NP ET O | ‘/L—
0 5 10 15 20 % 30 KRS

Fig. 3.

15 does it become reasonably smooth. This shows that in this case A, ==15
would have been reasonable (1, is that number of sets of N, samples, beyond
which the machine would take the error estimate seriously, compare it with

(%Q )‘u in percent

FIU TP S R VA B T S RO S SR B SO S PP W B Pl

0 5 0 15 20 25 30 B A

Fig. 4.

the prescribed error z, and stop as soon as the estimate is less than that).
Of course, A, is roughly inversely proportional to N, and here we took N,
small on purpose, so as to obtain an illustrative example. For comparison a
curve const/v/u has been drawn in. The constant was adjusted such that this
curve passed through (d0/0) -
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Fig. 5 shows the MC spectrum as a histogram together with the exact
analytical expression (full curve), which was normalized to the same area.
It is interesting to compare this
with not only the histogram, but 2 (61 & larbitrary unds)
with the full information, which
one could obtain from it: the 20f
dotted curve shows a fit by a
polynomial, the coefficients of 5r - analytical curve
which were calculated by a least / . least squares fit
squares method. In this calculation or )
the normalization was accounted
for by a supplementary condition.
It is this dotted curve which one
would consider as the calculated
spectrum and it seems to come
out quite well. It should be noted
that it would come out even better
if the spectrum were smooth at the upper end. As one sees from the ana-
lytical curve, it has there the character of a step funetion, which makes it a
bit difficult for the interpolation polynomial to reproduce it very well. TFor
particles with mass and for higher particle numbers nothing like that will
happen.

T

kinelic enerqy

PSS Lt

05

20
A £max=0496-M

Fig. 5.

Further results for checking the method: Before application, the method
was checked in a few further cases for which exact values were known. The
aleulations were done with only a few samples in the first two examples.
The results are given in Table I.

Tasre 1.
s . Error
. CM kinetic
Particles energy o Oonct :
predicted actual
6 particles 0.9916 1.29-10-¢ 1.65-10-8 +23 9 + 27.99,
m =0
6 particles 5.57 5.1 -104 5.4 -10¢ + 23.5% + 5.99
m=0
3 partieles 0.9916 15.72 14.67 + 7.6% — 7.29
my =My =1
my = 0.15

43 - Supplemenio al Nuove Cimento.
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4, - Estimates of computing time,

As already mentioned, the caleculations were performed on a IBM 650
computer. Our computing times could be translated into those for other com-
puters by a suitable factor which may be inferred from well known data on
such machines,.

Fig. 6 shows the computing time for 50 samples as a funetion of the total
number of particles, n. The dotted part of the eurve is an extrapolation based
on estimates. It is seen that this function increases rapidly. Tt should be
noted that:

i) No attempt has been made in our case to achieve ¢ optimal program-
ming »,

ii) there are computers available, which are much faster than the IBM 650.

A
b n/50 somples e
(18M 650) e
/’ ’/
/’I’ 2 t,/
0+ 10 .
/ /
ll' ’/’
e &
S bl
/I' ’/
0P Vi 10F ’p”o
o
eshimated \/,v,/
s
100 B |0° L
0 F 0l
&
a number of particles 2 number of particles
10 —to 4 1 ' 10 TS | N - "l
5 0 5 n 5 10 n 15
Fig. 6. TFig. 7.

Both facts together lead to the guess that on the fastest computers this time
can be reduced by a factor of about 100.

We have relatively less experience of the number of samples needed for
a certain accuracy, since only a few cases were carried through until a high
accuracy was achieved. Fig. 4, however, shows that the accuracy goes roughly
with 14/1.

In the following Fig. 7 we show the number of samples versus the number »
of particles which gives an accuracy below ~ 89%. Some of the points were
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tound by extrapolating the trend of the error by means of const/+/4 as shown
in Fig. 4. The points partly represent mean values over several different cal-
culations. The straight line is drawn tentatively. The present information
does not allow a better determina-

tion. (For n =15 the error has ob- #(h) for 8% accuracy /
viously been underestimated). (IBM 650) /

It seems that in cases where the /
kinetic energy T is small compared /
to the total mass, the convergence /
does not depend very much on the o’ /
number of particles. In contrast if T /
is larger than M, the number of ne- /
cessary samples increases rapidly with | /
the number of particles. This can
be made plausible by a discussion
of the formulae for y (I, 18). Taking
two difterent samples and looking at
what effect the dilferencés of the
samples have on 4, it is found that p °
is more sensitive for differences of
samples when 7'>»> M than when the . . number of particles
mass is large, since in the lalter 5 10 5o
case the masses determine the value Fig. 8.
of 9 more than the kinetic energies
do. Sensitivity with respect to differences between samples means slow con-
vergence. It seems {hat Fig. 6 shows a pessimistic estimate, since it is drawn
using mostly rvesults with cases where 1' was larger than M.

The total computing time necessary for reaching an accuracy of about 89,
is then given by the product of the curves of Figs. 6 and 7. The result is
shown in Fig. 8.

This figure should not be taken too seriously because:

i) it iy based partly on very rough estimates,

ii) in most applications for higher numbers of created particles less ac-
curacy is necessary, since the total phase space volume is already so
small that it contributes very little to everything which one normally
alculates, as for instance the mean number of created particles, total
spectra, mean kinetic energies, ete.

Assuming that optimal programming on a faster computer leads to perhaps
a reduction by a factor 100, then the method is expected to break down for
13 particles if 89, accuracy is demanded throughout. If, however, the higher
particle numbers are not very important, so that (20 -30) 9%, accuracy is enough,
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then one may use the method up to 14 or perhaps 15 particles. At energies
where e.g. in a nucleon-nucleon collision 13 mesons are produced with non-
vanishing probability, the whole Fermi theory becomes rather doubtful on
one hand and pure thermodynamical approaches begin to yield reasonable
results on the other hand. Thus the MC method seems to cover essentially
the most interesting region.

5. — Comparison with the usual approximation.

The usual procedure for calculating a phase space integral for, say, N nu-
cleons and » mesons has been to consider the nucleons as very heavy and the
mesons as particles without mass. Then one puts

I P for mesons

(24) BE=Vpym~

B

] m + —— for nucleons
m

and one can now calculate exactly on either assumption the integral
(25) or (B, P) == f NE—FE)(P—3p)dp,..dp

by introducing the Fourier representations of the two d-functions. The total

p* is then given by the convolution

(26) GEE, 1) = [ (B e, |P—p1) e}, p)aedp,

“ Monte Carlg which in turn is quite involved but can be
¢ approxumated calculated by various approximations, e.g.

NeN-=N+N+nn the method of steepest descent or the

5 @ o use of tabulated funetions. As far as we
o know, only BELEN'KIJ ¢t al. (®) have con-
sidered the convolution (26), whereas other

} authors tacitly assume that cach system of
2+ mesons and nucleons, separately has total

momentum zero. This would be a fair
approximation only for the case that any
5 of these systems contains many particles.
Sinee this is not frue, the result of such
calculations will be even worse than with

anumber of mesons

| 1 i .

e N R

ot

Pig. 9.

(%) S. BELEN'KW et al.: Usp. Fiz. Nauk, 62, 1 (1957).
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the use of (26). As an illustration, Fig. 9 shows the factor between p* calculated
using (24)-(26) and e* calculated by our method. We took 25 GeV primary
energy.

* % %

This paper owes its existence to the very pleasant and fruitful collaboration
with the « Institut far praktische Mathematik » of the Technische Hochschule
Darmstadt, Germany. Its Director, Professor A. WALTHER, showed much
interest and offered us every help and to one of us hospitality at the Institute.
Our special thanks are due to dipl. math. G. HunND and -dipl. math. D. STEPHAN
for many discussions, programming and running the calculations.

We also thank Professor FErRRETTI (CERN) for criticism and stimulating
discussions.



