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1.  - E r r o r  e s t i m a t e s .  

I n  a fo rego ing  p a p e r  (1), which  wil l  be  q u o t e d  h e n c e f o r w a r d  as (I), we 

p r e s e n t e d  a Mon te -Ca r lo  (MC) a p p r o a c h  to  t h e  p r o b l e m  of c a l c u l a t i n g  mul -  

t i p l e  p h a s e  space  in t eg ra l s .  W e  shal l  use  t h e  s a m e  n o t a t i o n  as in (.I). 

The  p r o p o s e d  c a l c u l a t i o n  can  be  done  o n l y  on a u t o m a t i c  c o m p u t e r s  a n d  

of course  on ly  w i th  a l i m i t e d  accu racy .  As a MC ca l cu l a t i on  is a s t a t i s t i c a l  

process ,  one m u s t  k n o w  h o w  a c c u r a t e  i ts  r e su l t  a c t u a l l y - - o r  b e t t e r :  p ro-  

b a b l y - - i s .  A u t o m a t i c  c o m p u t e r s  a l low one to  i nc lude  a check  of a c c u r a c y  

w i t h i n  t h e  p r o g r a m m e ,  so t h a t  t h e  m a c h i n e  s tops  or goes over  to  t h e  n e x t  

case  as soon as t h e  p r e s c r i b e d  a c c u r a c y  is r eached .  

W e  the re fo re  beg in  w i t h  an  e s t i m a t e  of t h e  er ror .  This  e r ror  e s t i m a t e  

app l ies  to  a s ingle  c a l c u l a t i o n  of a p a r t i c u l a r  ~,I(E, 0). A c t u a l l y ,  however ,  

one wil l  c a l cu l a t e  th is  f u n c t i o n  for  n = 3, 4, 5 ... a n d  also p e r h a p s  for  d i f fe ren t  

energies .  Since  we k n o w  t h a t  i t  is a s m o o t h  f u n c t i o n  w i th  one single m a x -  

i m u m  if we v a r y  e i t he r  n or  E (keep ing  t h e  o t h e r  f ixed),  we m a y  ge t  a b e t t e r  

(1) A Monte.Carlo method to calculate multiple phase space integrals (I). Equat ions 
of tha t  paper  are quoted as e.g. (I, 15), whereas equations of this paper  are referred 
to as e.g. (12), etc. 
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stat is t ical  accuracy for a whole table,  t han  we would have  for a single case. 
If ,  e.g. for fixed E, one calculates a table  for n =  3, 4, ..., n ' ,  then  the  accu- 
racy  of a number  f rom such a table  will be be t t e r  b y  a fac tor  of roughly  

1 / ~ / ~  3 provided the values in the  table  are smoothed out b y  using ,any 

method  of balancing the fluctuations. 

For  the es t imat ion of the individual  error We proceed as follows: 

Firs t  a certain num ber  No is fixed (No>>1) which is the  basic number  

of samples or the basic num ber  of contr ibut ions to the sum (I, 19). This n u m b e r  

should be chosen so s m a l l - - s a y  10 or 50 or 1 0 0 - - t h a t  one does not  expect  

t ha t  570 t e rms  make  a l ready a good approx ima t ion  to ~*. The process has 

then  to be repea ted  several  t imes and  its convergence watched.  Each  repe- 
t i t ion will add  again 570 contributions.  Thus, if the desired accuracy is reached 

with 2 sets of 570 contributions,  the  n u m b e r  of samples is 57= 2570. We in- 
t roduce the following abbrevia t ions :  

~*~)'~' O) (:1) ~o~.-- ~,. ~ ,  

[tNo 

= - (~ , ,  . . .  , ~ ' )  
i = ( # - - l ) N o  + 1 

) 2No 

(a) = Z s ,  = X 
H=I i =I 

i.e. the MC approx imat ion  to ~*(E, O) (2) 
with 57=--2570 cont r ibut ing  samples  (see 

(I, 19)). We wan t  this app rox ima t ion  to 

fulfil some condition of accuracy  to be 

specified later.  

i.e. the par t ia l  sum of the y?s f rom the 
# - th  set of 570 samples 

i.e. the to ta l  sum of y?s f rom the N=2No  
samples. 

Wi th  these definitions is follows f rom (I, 19) tha t ,  

A ( E  - - / ~ / ) n - - 1 ( 2 7 ~ ) n - - 1  

A = ( n _ l ) l ( n _ 3 ) ! N o  ; 
~*(E,  0) = l im ~z - -  ~.  

.~-+ co 

Consider first 2 as a fixed number  and suppose t ha t  ~x has been calculated. 

To get  an es t imate  of the accuracy we can use only the accumula ted  da ta  
f rom the 2No samples and we therefore deal with a posteriori est imates  only. 

We can say wha t  would be the mean  error (more accurate ly  its r.m.s. 

value (3)) if we would calculate ~ m a n y  t imes independently.  In  fact ,  we cal- 

culate it only once and  m a y  have  found a value which differs much  more  f rom 

the exact  value than  just  b y  one mean  error. There is no way  out  of this si- 

(2) We omit throughout the star and write simply 0~ and ~ for convenience. The 
quantities, however, correspond to ~* as defined in (I). 

(a) r.m.s, means: root mean square. 
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tuat ion,  because it  is a logical consequence of the MC method,  and common  
to all sampling procedures.  Even  if we would real ly calculate m a n y  t imes 
and take the mean  value, then  this mean  value would s imply be another  single 
(though more  accurate)  calculation of ~,  where now ~' is m a n y  t imes larger 

than  2 was. We can then car ry  through the same reasoning for 2', which we 

gave  above for ~, and we come to precisely the same result. Only the mean  

error will be smaller. 
Le t  us consider a typica l  situation. I f  ~ has been calculated, then this is 

the mean  value of )~ contr ibutions S ,  (all independent  of each other),  and each 

one of these comes f rom 2{0 samples. We m a y  here forget  abou t  the la t te r  

fact ,  because No influences only the magni tude  of the fluctuations of the S,,. 

We shall consider therefore the S ,  as r andom variables.  We draw a his togram, 

which shows this s i tuat ion:  

-5= = i  

is the mean  value and it  is supposed tha t  

l im Ox _ 

a-,o~ A A "  

Actual ly  we do not  know this l imit  and the only quanti t ies which are a t  

our disposal are those which we can ex t rac t  f rom the above pictm'e. 
For  the following we need two different mean  values:  

i) The mean  value over  the ~ contr ibut ions which have  so far been 
calculated. This mean  value can be inferred numerical ly  f rom the actual  da ta ;  
i t  will be denoted b y  a bar. 

ii) We m a y  imagine the above actual  case to be one of a large ensemble~ 
i.e. we m a y  imagine ~ to be calculated L times in the same way  (statistically 

independent)  and all the L his tograms drawn. They will yield L values ~ )  
(l = 1 ... L). The second kind of mean  value is then over  the L-ensemble�9 Here  

we take  the l imit  L --~ oo and write ( ~. 

The contr ibutions S ,  have  f rom now on a second label I such t ha t  "~(~) ~. is 

the # - th  contr ibut ion to the l-th histogram. Le t  F be any  funct ion of S, 

then i) and ii) m e a n  

(5) 

i) 

ii) hm 1 ~ F/S~Z) ~ 

)~ always finite 
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Whereas  ~ " '  still depends on l, ( F )  is clearly independent  of ,u. Of course 

lira ~a)__= (~(~,) = ( F ) ,  

bu t  we are just  interested in the deviations for finite ~. 

We proceed now to es t imate  the error of ~z as a function of 2. 

lira o~. ~ (9~) ~ ~o ---- A ( S )  we have  

A ~ ~. A ~ 

With  

Since all contributions are stat ist ically independent ,  we find with (5) 

A s ~ A 2 ~ A s 

W e  now de ne and h a v e  

(6) 
e e v~  ( s )  

In  the following discussion we shall assume tha t  the distr ibution of S~, 
around S is more or less a Gaussian distr ibution.  We use this assumpt ion  only 

for es t imates  of orders of magni tude.  I f  No is large enough, the  fluctuations 
of the S~, will be small and in the neighbourhood of (S} the Gauss distr ibution 

will be a good approximat ion.  This has the advan tage  t ha t  we can calculate 

some quanti t ies explicitly. Though the results do not  hold strictly,  they  re- 

present  at  least  god4 estimates.  

I f  (AS ~) (and hence 6Q = ~//(3Q~}) were known, we could s ta te  confidence 

limits for e, s tar t ing f rom the calculated 9;.. Assuming a near ly  Gaussian distri- 

but ion  for S~, it is well-known tha t  

the probabi l i ty  tha t  1 ~ - - ~ ] ~ 6 ~ ,  is ~ 6 8 %  

~ ~ ~ ] q - - q z [ ~ 2 - 6 ~ ,  is ~ 95% 

~ ~ ~ I Q - - ~ ] ~ 3 " 6 0 ,  is ~ 9 9 . 9 5 ~  o. 

Then, in order to obtain a given probabi l i ty  t ha t  the relat ive error is 

smMler than  a given (small) number ,  we only have  to choose the corresponding 

2 large enough. Unfor tuna te ly  nei ther  (AS s} nor ( S )  are actual ly  known. 

We may,  however,  wi thout  great  error replace in (6) ( S )  b y  S(~), because 60/0 
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will be changed only by  an amount  of the second order. So we redefine 

There are now many  ways to estimate (AS 2) from the sample of +~ elements S , ,  

e.g. using the largest occuring deviation or the r.m.s, deviation from the mean 

value. These methods, of which Student 's  test is the most adequate, have 

several practical drawbacks, the main one being that  after each addition of 

a new set of samples the mean value changes and all deviations have to be 

cah,ulated anew. 

These disadvantages may  be avoided in the following way:  We use the 

quant i ty  ~(;~ which we define as follows: 

(8) 

That  means: After each step of the calculation we take the mean value S(~') 

and find the absolute value of the deviation of the last contribution S from 
P 

this mean value. The average of all these absolute values is our ~(~). The 

The advantage is tha t  the mean values S(,~ are calculated anyway,  because 

they yield the o ,  and ,~, is just  calculated as the last contribution. The 

absolute value of only this one difference is taken, added to the corresponding 

quantities of the foregoing steps and the mean is taken;  neither are new dif- 

ferences calculated, nor are square roots involved. Since S(') tends to (S} 

as # =* 0% it is easy to show that  

(9) lira d~ '~') = (IA,4 [ ) .  
~--> co 

But, since we do not intend to use large 2, we must  relate tile new quant i ty  

to . ' :ASI} or (AS"} also for finite ~. 

For this purpose we use the assumption of a Gauss distribution, since this 

allows explicit calculations. We shall calculate the expectation value of ~ o )  

and express it by  (AS"} under tile assumption that  tile distribution of S 
11 

about  /S)  follows ~ Gauss law 

(lo) A~' = s - -  ~ ' )  

and 

+ca 
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Then the expecta t ion value (5 i i )  is defined as 

(12) 

§ 

-co 

We need for the following a simple consequence of (11): As is well known,  

the mean value of a sum of r andom variables  follows again a Gauss distri- 

bution,  if the r andom variables themselves  follow such a distribution. The 
r.m.s, deviat ion of the mean value of S(") f rom <S> is then, as shown in the 

der ivat ion of (6) 

(13) ( ( S ( . )  <8>)~> ~ : :  (A,,S2 > = _i (AS~>. 

The probabi l i ty  t ha t  ~("> lies be tween x and x~-dx, is therefore according to 

(11) and (13) given b y  

ax [ ] 
(14) W,,(x)dx : /2~.(1/n)(AS~ ) exp 2(:l/n)(AS~ ] . 

We determine now the probabi l i ty  distr ibution of the difference 

(15) % =- - -  

in (8). We mus t  take care of the fact ,  t ha t  S(#> is not  independent  of S 

write therefore 

a:!d 

s , , )  ' 

where now S(" :) is independent  of S ;  We put  S ( / ' - I ) - - S p - - :  ~]/ .  The pro- 

babi l i ty  t ha t  y ~ Yt, ~ Y ~-dy, is then obviously 

vv(y ) dy = d y f  W,,_ :(y § 8,,)w(S,,) dS, 
-co  

and with (14) and (11): 

1 I ] 

The distr ibution of a is then according to tlle general formula  

V{](x)} d](x) == v(x) dx 
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given b y  

{ - ] 1 exp - -  
(17) V,,(a) = V'((~ - -  1)/t, ) 2:<AS~> ((~ --1)/,u)2<AS"> 

This is again a Gauss distr ibution with, as a glance on (11) shows: 

/.t 

A simple calculation shows now tha t  for a Gauss distr ibution abon t  zero 

(19) 

This gives 

< / x l >  = w x x = 

o 

a>-- 
~ z  V # 

which we insert  now in the expecta t ion value of (8), namely  

with the result  

(20) 

o r  

( 2 1 )  

I*=2 

= / ,=2  p '  /~ 

This can now be introduced into (7). Of course, we find ourselves here before 

the same difficulty as with (7). W h a t  we actual ly  know is not  \~-/~-~~ bu t  

only tha t  par t icular  ~ a )  which we can calculate using the actual ly  computed  S, .  

As pointed out  a t  the beginning, this is a logical consequence of the fact  t ha t  

we do not  know the distr ibution,  bu t  only a finite number  of drawn samples. 

We could now continue the a rgument  and proceed to calculate the distr ibution 

of ~ ( a ) a r o u n d  its expec t a t i on  value ( ~ a ) } .  We would then end up with 

essentially the same situation. 



666 F. CERULUS a n d  R. IIAGEI)ORN 

In fact the situation is not so bad;  if we now replace 

by  the calculated value 

then for not too small ~ the actual 5~ (~'> lies near its expectation value. The 

error in the error estimate, which we thereby introduce, is therefore only of 

higher order. Even if we would estimate the error wrongly by a factor 2 or 

so (which is very improbable), this would not  cause any serious trouble. We 

shall therefore adopt  the following convention for the estimate of the error: 

- -  I " - - . ' = s  = ~ z ~ . < ~ Z o ;  ) ~ ) . o  >>l o 

Here z, is a given small number  fixing the accuracy. 20 >~1 means 20 greater 
tha t  at  least 5. This is necessary, since otherwise the mean value over the 

actual deviations does not mean very much. Note tha t  for 2 - -  1 the expres- 

sions would not be defined since numerator  and denominator become zero. 

The sum in the denominator,  

I/"-1 
t 2 f f  

can be calculated for ,~ = 5, 6, ..., 20, or so, and be stored in the computer. 

Then no square roots are necessary during the programme and the check of 

the ac(.uracy by means of (22) becomes extremely simple in an automatic  

calculation. 

If, (tepcnding on the construction of the computer,  it is simpler to take 

~ square than to take the absolute value of a given number,  then one can use 

instead of (22) the following formula, which is derived in essentially the same way: 

f t  - 2 /s 

with the same zo as above. The factor ~/~/2 and tile roots in the denominator  

have disappeared. The sum in the denominator  can here be calculated for 
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each check by  the recurrence formula,  since the sum for , ~ -  1 is a l ready 
there f rom the foregoing check. 

I t  s h o u l d ' b e  noted again t ha t  if 

- - Z 2 ,  

this means tha t  the probabi l i ty  tha t  the actual  error is < zz is ~ 68% and 

so on (see discussion following eq. {6)). Even  tha t  is only t rue for large 2, 

since we replaced (~(a)} b y  the calculated ~()).  To be sure, one can always 

ehe(.k a few results b y  Student ' s  test  and make  Zo smaller if necessary. 

I n  the following flow diagram (22) and (23) are considered separately.  

2 .  - F l o w  d i a g r a m .  

The following flow diagram has been developed in collaboration with mem-  

bers of the (( I n s t i t u t  fiir prakt isehe Mathemat ik  ~ Teehnische Hochsehule,  

Darms tad t ,  Germany.  

I t  m a y  therefore show some features which are due to the par t icular  pro- 

pert ies  of the IBM 650 computer  tha t  was used for the calculation. Still, i t  

is felt tha t  this flow diagram will remain  essentially the same for any  type  of 
computer .  Therefore it was considered useful to reproouce it here, since it 

involves sore litt le tricks. 
A few comments :  

~) I n p u t  da ta  

T, ~o, n, A, Ae are defined in (I). 
2o and zo are defined here by  eqs. (22) and (23). 

ml. . .  mn are the masses of the particles. 
The most  convenient  values for 2o and 5To and reasonable values for :o 

depend on the to ta l  energy and on the number  and masses of the particles. 

2o should a t  least  be of the order of 5. The smaller we choose No, the 
larger 2 becomes and tim be t te r  one can observe the convergence: see 

discussion under  h). 

b) Ins t ruct ions  before (2) 

W~ gives the spectrum. 
(A/2)W~, will be the o(,:'(E, 0, s~) As (of (I), Fig. 2) in the k-th cell. In  this 

p rog ramme each part icle gets its own spect rum,  whether  there are iden- 

tical particles or not. I f  there are equal particles, one takes in the end 

the mean value of their  spectra thus gaining stat ist ical  aceur~tcy. I t  is 
convenient  to normalize the spectra  of the different kind~ of masses and 
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o o  c o  

b~ 
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to pr int  out  direct ly the normalized spectra together  with the mean energies. 
Since the kinetic energies are as readily available in the computer  as the 
total  energies are, one may express the spectra as functions of either vari- 
able. (See discussion under  g)). 
2, Z~, D, d are quantities used during the calculation and the error estimate. 

(See below). 

c) Between 
Here the 

has been 
(pseudo-) 
called T'  

d) Between 

(3) and (4) 
random numbers are produced. In  the present  flow diagram it 
assumed tha t  there is a subroutine available which produces 
random numbers of three digits between 0 and 999. They are 

and are mapped on the interval  0 ~ T, ~ T. 

(4) and (8) 
Here  the n - - 1  random numbers 0 ~ T~ ~ T are reordered according to 
magni tude  and the variables which determine ~ (I, 18)) are prepared. 

F - - - ~  "e2"s3 ... e~ is an abbreviat ion only. 

~) Between (8) and (9) (or (14) respectively):  
I t  is checked if perhaps one pC is larger than  the sum of the other p's. 

I f  tha t  is the case all the calculations up to (14) are unnecessary, since 
according to (I, A.10) they  yield zero. I t  is doubtful  whether  this check 
gives a gain in computing time, as the probabi l i ty  for (~ yes ~> is (�89 
(n particles). Thus it  saves only in a very  few cases a long, useless cal- 
culation, but  on the other  hand it  takes itself a t ime proport ional  to ~. 

]) Between (9) and (12) 
the function ~p is calculated. 

~ .  is the square bracket  of (I, 18). 

-= o,V - (i, 18). 
i 

That  part ,  which begins at  (11) and feeds itself back into (10) calculates 
the sum ! .  following exact ly  the example given in (I, Appendix). I t  is 
meant  ra ther  symbolically, since most  computers do not  have an operation 

which checks whether  a number  is even. There are many  ways of replacing 
this by  an operation which is much faster and implies essentially the same. 

g) Between (12) and (15): 
The spectra are calculated for each particle separately according to (I). 

Wkr is a storage matr ix,  which contains (for r fixed) the spectrum of par- 
ticle with number  r. See discussion under  b). 
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h) Between (15) and the end. 

The accuracy is checked. S contains now the sum of the ~ 's  coming f r o m  

No samples and X~ is the sum of ~ such S. I t  seems desirable t ha t  the 
machine prints  out S~ and ( 1 / ~ ) ~  which allows one to draw his tograms 

such as shown in Fig. 1. This visuM control often gives a much  be t t e r  

insight th~n a r.m.s, value or similar quantities.  Since the convergence 

of the MC approach seems to depend on the energy, number  of particles,  etc. ,  

it is advisable to have  this ex t ra  check here. In  order to have  a summary  
of the actual  si tuation, also z~. (or z~ respectively) (see here (22) and (23)) 

are pr in ted  out. D and d are numera to r  and denominator  respect ively  
in (22) and (23) of this paper.  

Finally,  one m a y  have  chosen the desired accuracy so high, i.e. zo so sm~ll, 
t ha t  i t  would never  be reached in a reasonable comput ing  t ime. There-  

fore the  possibili ty is provided for finishing the calculation and printiuo" 

out the present  results, even if z~ is not  ~ zo. 

I f  the square of the relat ive error is es t imated  b y  using the squared dif- 

ferences to the mean  value, the flow diagram is changed only be tween  

( 1 6 ) - - . . . - - ( 1 7 )  as follows: 

- !  . c l - ~ c l  f l~176176 - 

Plow diagram. 

Since here the quadrat ic  error is es t imated,  z o has here to be the square 

of the Zo in the other  method.  

In  the other me thod  ~r - -  1)/]  and ~r can be calculated for tim in- 

terest ing ~-values and stored as a small table.  Then the  lengthy square roots  

are e l iminated f rom the program.  

3. - P r a c t i c a l  e x p e r i e n c e s .  

At present  a p r o g r a m m e  is running for nucleon nucleon collisions a t  25 GeV 

p r imary  (laboratory) energy. The cases 2N+~:  and 2N+2~:  could be checked 
with the formulae  given b y  BLOCK (4) and showed good agreement .  As the 

phase space integral  can be solved rigorously for massless particles,  we used 

(4) M. M. BLOCK: Phys. Rev., 101, 796 (1956). 
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a few such cases for various other  checks. All cases in which a check was 
possible showed tha t  the actual  error was of the order of the predicted one 
and in fact  in most  cases it  was even smaller  (compare the predictions in the 

t ex t  be tween Eq. (6) and (7)). 
We shall now give one typica l  example  in some detail  and summarize  the  

others in a table.  

Example: We took the following da ta :  

n = 3 ;  ml=m2=m3=O; E =  T =  0.9916 (5) ; N0----10; , ~ - - 3 7 .  

The to ta l  number  of samples was therefore 370. The prescribed accuracy  

zo was taken  to be zero, so t ha t  the machine continued to calculate, unti l  ig 

was stopped. I t  seems most  convenient  to 

gTamsrepresentas ineVerythingFig. 1 andin2.the form of histo- ~ ~ I ~  = ~  

Fig. 2 shows the contr ibut ions S~, each -~='~'~ 
coming f rom N o =  10 samples. We have  ~ . . . . . . .  , . . . .  , . . . .  ,~ 

4fawn in the mean  value S(~)= (1/2)Z~ s ,o ,s a 
( 2 =  37) and the es t imated  error limits as 

Fig. 1. 
well as the exact  value, which in this case 
lies inside the es t imated  limits. 

Fig. 3 shows (1/#)~,  for # =: 2, 3, ..., 37 again together  with the exact  value. 
Here  the 3{C value approaches the exact  one f rom above. In  other cases i t  

came f rom below and in still others it oscillated. 

30 

10 

$ t, (art#raru units) 

& 
, , , , i , , , , i ,  

5 10 
, J i i , i , r i , , , , i , , i i I , i i , i i I 

15 20 25 30 35 A 

m e a n  va~e1~ z~ .3 ~n 

exoct value from 
/ /ana/ySca l  calcu~ion 

estimated error: 7.7 % 
actual error : 6.2% 

Fig. 2. 

(a) Units are ~ = c = 1; the  energy unit is the nucleonic-mass: M =  1. 



6 7 2  i,'. CERULUS D~nd R. HAGJEI)ORN 

]~'ig. 4 shows the estimated error in percent. One sees here tha t  it takes 

some time before this a posteriori error estimate begins to have a meaning. 

In  the beginning it fluctuates very much and only for ~ greater than about  

25 

2O 

15 'iI 
0 

•a')Lr -,u - t ,  (crbltrary units) 

, , , i ,  , t  i i ,  i i  , i  i , , , i  . . . .  i i i  

~o )s 2o 25 " 3 ' o  . . . .  ~i 

Fig. 3. 

exact volue 

15 does it become reasonably smooth. This shows tha t  in this case ko := 15 

~-ould have been reasonable (ko is tha t  number  of sets of No samples, beyond 

which the machine would take the error estimate seriously, compare it ~ i t h  

( ~ ) t  L in percent 

10 

0 5 lO 15 20 25 ]0 ]5 k 

Fig. 4. 

the prescribed error Zo and stop as soon as the estimate is less than that).  

Of course, k0 is roughly inversely proportional to No and here we took N o 

small on purpose, so as to obtain an illustrative example. For  comparison a 

curve const/~/F - has been drawn in. The constant  was adjusted such tha t  this 

curve passed through (5Q/Q)(37). 
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Fig.  5 shows the  MC spec t rum ,qs `q histogr,qm toge the r  with the  ex,qct 
an,qlytical expression (full curve),  which w`qs norm,qlized to the  same "~re~. 
It, is in teres t ing  to comp,qre this 

with no t  only  the  histogr`qm, bu t  

with the  fldl infornmtion ,  whi('h 

one could obt`qin f rom i t :  the  2( 

do t t ed  curve  shows `q fit b y  ,q 

polynomi:f i ,  the  coefficients of ~ 

which were c`qlcul`qted b y  t~ le,qst 

squ,qres me thod .  I n  this c,qlcul`qtion ~o 

the  norm`qliz,qtion w~s ,qccountcd 
s for  b y  `q supplement tu 'y  condit ion.  

I t  is this d o t t e d  curve  which one 

would  consider  ,qs the  calculuted 

spec t rum `qnd it seems to come 

out  quite  well. I t  should  be no ted  

th,qt it would  come ou t  even be t t e r  

if the  spec t rum were smooth  `qt the  uppe r  end. 

Z (~-I AE (arbdrory unds) 

, f  onalyhcal curve 

~ ,  ........... I klnehc enerov 
,5 10 15 20 

e max:O/,96'/~/ 

Fig. 5. 

A s  o n e  sees  f r o m  t h e  an,q- 

lytic,ql curve,  it h'~s there  the  ch,qr,qcter of ,q s tep funct ion,  which m,~kes it ,q 

b i t  difficult for  the  interpol,qtion polynomi,ql to r eproduce  it v e r y  well. Fo r  

p,qrticles wi th  m`qss `qnd for h igher  p,qrticle number s  no th ing  like th`qt will 
happen .  

Further results ]or checking the method: Before  ,qpplic,qtion, the  m e t h o d  

w,qs checked in ,q few fu r t he r  c,qses for  which ex,qct v,qlues were known.  The 

c`qlcuh~tions were done  wi th  on ly  `q few s,qmples in the  first two ex,qmples. 
The  results  are g iven in Table  I .  

T A B L E  I .  

Particles 

6 particles 
m =  0 

6 particles 
m = O  

3 particles 
7n, 1 = m 2 = 1 
m 3 = 0 . 1 5  

CM kinetic 
energy 

0.9916 

5.57 

0.9916 

~k 

1.29" l0 -6 

5.1 �9 104 

15.72 

~exact 

1.65.10 -s 

5.4 �9 104 

14.67 

E r r o r  

predicted actual 

• 23 % -t- 27.9% 

i 23.5% d- 5.9% 

• 7.6% - 7.2% 

4 3  - Supplemento  al Nuovo Cimento. 
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4. - Estimates of computing time. 

As a l ready  ment ioned ,  the  calculat ions  were pe r fo rmed  on "~ I B M  (;50 

computer .  Our  c o m p u t i n g  t imes (,ould be t r ans la t ed  into those for o ther  com- 

pu te rs  b y  a sui table fa( ' ior  which m a y  be inferred f rom well k n o w n  d,~ta on 
such machines .  

Fig.  6 shows the  c o m p u t i n g  t ime for  50 samples as a func t ion  of the  to ta l  

n m n b e r  of part icles,  n. The do t t ed  p a r t  of the curve  is an ex t r apo la t ion  based  

on est inmtes.  I t  is seen t h a t  this func t ion  increases rapidly .  I t  should  be 
no ted  t h a t :  

i) No  a t t e m p t  has been made  in our  ease to ~whieve (~ op t imal  p rogram-  

ruing ,>, 

ii) there  are compute r s  available,  which are m u c h  fi~ster t h a n  the  I B M  650. 

lO ~ 

10 

i 0  ~ 

10 

�9 lO -;I 

, h/50 somples 

( iBM 650) 
,/ / 

/ 
I t  

/~ 

. i  f "  

/ 
/ J  

eshmoted .--,)s/'" 
I 

10 

10 ~ 

10' 

number of parf'ir 

5 I0 15 n 5 

/ 
i -~ 

/ / 

/ 
/ , / s  

/ . J "  
/ 

J 

number of parhcles 
, . , i ~ . . , i _ 

10 n 15 - 

Fig. 6. Fig. 7. 

Both facts together lead to the guess that on the fastest computers this time 

can be reduced by a factor of about 100. 
We have relatively less experience of the number of samples needed for 

a certain accuracy, since only a few cases were carried through until a high 

accuracy was achieved. Fig. 4, however, shows that the accuracy goes roughly 

with 1/~/~.  
In the following Fig. 7 we show the number of samples versus the number n 

of particles which gives an accuracy below ~ 8 %. Some of the points were 
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found by ex t rapo la t ing  the t r end  of the error by  means of eons t /v / ]  ~ as shown 
in Fig. 4. Tile points  pa r t l y  represent  mean  values over several different cal- 
culations. The s t ra ight  line is d rawn  ten ta t ive ly .  The present  informat ion 
does not allow a be t te r  determina-  

/ 
/ lion. (For ~ 5 the error has ob- t(h) f a r . f %  accuracy / 

viously been underes t imated) .  ,sM 6s0~ / 

I t  seems tha t  in eases where the / 
/ kinetic energy T is small comp~red / 

to the to ta l  mass, the convergence 
does not depend very  much on the ~0' / 

I 
/ 

number  of particles.  In  contras t  if T ,, 
is larger than  M, the number  of ne- / 

(.essary samples incxeases rapidly with ~o' / / '  

the number  of particles. This can / 4  

be made plausible by  a discussion / of the formulae for y~ (I, 18). Taking ~0' 

two different samples and lookiog a t  

wha t  effect the differences of the / 

samples have on ~o, it is found tha t  ~0 ~0' > 

is more sensitive for differences of J 
samples when T >> M than  when the , , , , t ~  at Dart,c~s 

m a s s  is large, since in the la t te r  s ~0 ~s 

case the masses determine the value Fig. 8. 

of ~o more than  the kinetic energies 
do. Sensi t ivi ty  with respect  to differences between samples  means slow con- 
vergence. I t  seems t h a t  Fig. 6 shows a pessimistic est imate,  since it is drawn 

using mos t ly  results  wi th  cases where T was larger than  M. 
The tota l  comput ing  t ime necessary for reaching an accuracy  of abou t  8 % 

is then given b y  the p roduc t  of the curves of Figs. 6 and 7. The result  is 

shown in Fig. 8. 
This figure should not  be taken  too seriously because: 

i) i t  is based pa r t l y  on ve ry  rough est imates,  

ii) in mos t  applicat ions for higher numbers  of created part icles less ac- 

curacy is necessary, since the to ta l  phase space volume is already so 

small  t ha t  it contr ibutes  very  li t t le to everyth ing which one normal ly  

calculates, as for instance the mean  number  of created particles, total  

spectra,  mean  kinetic energies, etc. 

Assuming tha t  oi)tim~fl p rogr~mming on a fas ter  computer  le.~ds to perhaps 
a reduction by  a factor  100, then the me thod  is expected  to break  down for  

13 particles if 8 %  accur.~ey is demanded  throughout .  If,  however,  the higher 

part icle  numbers  arc not  ve ry  impor tan t ,  so tha t  (20--30) % accuracy is enough,  
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then one may use the method up to 14 or perh~ps 15 p~trtMes. At energies 

where e.g. in a nucleon-nucleon collision 13 mesons are produced with non- 

v~mishing prob~bility, the whole Fermi theory becomes rather doubtful  on 

one lnmd and pure thermodyn~mieal  ~ppro~chcs begin to yield reasonable 

results on the other ha.rid. Thus the MC method seems to cover essentially 

the most interesting region. 

5 .  - C o m p a r i s o n  w i t h  t h e  u s u a l  a p p r o x i m a t i o n .  

The usual procedure for e~fleulating a plmse sp~ce integral for, s~y, N nu- 

cleons und n mesons has been to consider the nucleons ~s very heavy and tim 

mesons as p~rticles wi thout  m a s s .  Then one puts 

p for mesons 

P~ for ml('leons m + 2,n~ 

and one can now cMcula.te ex~ctly on either assumption the integral 

(2~) ~;(E, t,) - - (  o(E- Z EJ ~(P-- E,v,) dr, ... de 
J t t 

by introducing the Fourier representations of the two 0-functions. The total 

(~* is then given by the convolution 

1 

~ -  i P - v  ) * ~,)d~dv ~,,..,(E, I ' )  - -  ~ ,..,,,( ~, i e.,.(~, , 

c,, M o n t e  Car~o . 

V upprox~ mated 

N.N- -N .~ l . n r t  ' 

number  of me,~on,~ 

Fig. 9. 

which in turn is quite involved but  e~m be 

ca.leulated by vm'ious t~pproxinmtions, e.g. 

the method of steepest descent or the 

use of t,~bulated fun(,tions. As far ~s we 

know, only BELEN'KIJ ct al. (6) lmve (.on- 

sidered the convolution (26), whereas other 

authors t~wit.ly assume t,h~d, ca, oh system of 

mesons :rod nucleons, separately tins totM 

momentum zero. This wouhl be a fMr 

~pproxim~tion only for the c~se theft a,ny 

of these systems (.ontains many  parti(~les. 

Since this is not  true, the result of such 

(,~fieuhLtions will be even worse tlmn with 

(6) S. BELEN'KIJ el al.: Usp. Fiz. Nattk, 62, 1 (1957). 
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tile use of (26). As an il lustration, Fig. 9 shows tile factor  between 9* calculated 
using (24) - (26)and  ~* calculated by  our method.  We took 25 GeV pr imary  
energy. 

This paper  owes its existence to the very  p leasant  and fruitful collaboration 

with the (~ In s t i t u t  ffir prakt ischc Mathemat ik  ~) of the Technische tIochschule 

Darms tad t ,  Germany.  I t s  Director,  Professor A. WALTHER~ showed much 

interest  and offered us every help and to one of us hospi ta l i ty  a t  the Ins t i tu te .  

Our special thanks  are due to dipl. math .  G. HUND and dipl. math .  D. STEPHAJ~" 
for m a n y  discussions, p rogramming  und running the calculations. 

We also t hank  Professor FERRETTI (CER57) for criticism and s t imulat ing 
discussions. 


