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1 .  - I n t r o d u c t i o n .  

I n  the  region of p r i m a r y  (lab) energies of the  order  of 1 to  100 GeV, the  

n u m b e r  of part icles  (mesons, h e a v y  mesons,  ant i -nucleons,  hyperons)  c rea ted  

in a collision is of the  order  of 1 to  10. Consequent ly ,  pure  t h e r m o d y n a m i c a l  

ca lcula t ions  fail and  if one wishes to  app ly  a t heo ry  like Fe rmi ' s  (~) one has 
to  ca lcula te  phase  space integrals.  We  do n o t  consider  here the  phys ica l  side 

of the  p rob lem,  i.e. the  va l id i ty  of this t y p e  of theory .  We  only  t r y  to solve 

the  m a t h e m a t i c a l  p rob lem of ca lcu la t ing  the  phase  space integral ,  which  has  

n o t  been  achieved  in a simple a nd  reliable m a n n e r  so far. The  integral ,  fo r  

n emerg ing  par t ic les  wi th  to ta l  ene rgy  E and to ta l  m o m e n t u m  B, is given b y  (2) 

(1) 
n n 

~n( E,  P) = (2~]~) -(3n-3) dlOl.., d p n O ( P - -  ~ ) i )  ~(E - -  ~ ~/p,~-- m~)~2 . 
i = l  ~=1 

This in tegra l  does no t  depend  on the  di rect ion of P .  I n  the  cen te r -of -mass  
s y s t e m  (C.~.S.)  we have  P = 0. I n  w h a t  follows, we shall  consider  f r equen t ly  

(1) ]~. FERMI: Progr. Theor. Phys., 5, 570 (1950). 
(2) The phase space integral is of course a function also of m i, m 2, ... m~. 

shorthand notation we write on(E, P) instead of ~m~...m~(E, P). 
As a 
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instead of (1) the unnormalized phase space integral Q*(E, P) 

(2) e* (E, P) = (2~h)""-"" e. (E, P ) .  

The main difficulty in all a t t empts  to perform the integrations have been 
the  square roots ~/p~+m~. The exact  integration is possible only up to n = 3, 
for  higher numbers  of particles one has to integrate numerically. In  principle 

this can be done by  repeated convolution since 

(3) ~o*(E,/~) = fdpn~*_i  ( E - - V / ~  + m~, P- -p~)  

and this is in fact  the way  BLocK (a) has done the first few integrations. But  
for larger numbers  n the repeated numerical  convolution becomes either v e ry  
inaccurate  or prohibi t ively long. Several authors have tr ied approximations (4), 
bu t  in ma ny  cases it is difficult to est imate the error. In  unfavourable cir- 

cumstances,  the result  can be wrong by  a factor  five, even ff for other cases 
the error is only some 10%. 

We ma y  hope tha t  by  keeping the square root  (instead of approximating 
it  by  either p~ or p~/2m~ as in most  of the other  calculations) bu t  using a Monte- 
Carlo n~ethod (M.C.) for the integration, we m ay  achieve an accuracy of a 
few percent.  The me thod  has the advantage tha t  it  gives in the course of 
calculating Q* (E, 0) automatical ly the energy spectra of each kind of particles. 

Exa c t  spectra and phase space densities should be useful in extract ing from 
fu tu re  experiments a suitable representat ion of the mat r ix  elements of inter- 

act ion by  simple functions of energy, numbers of particles, etc. These functions 
(the (< interact ion volume ,> in the simplest case) may  be considered as pal 'a- 
meters  of the theory  whose order of magni tude and general behaviour  can be 
concluded from physical arguments bu t  which still remain somewhat arbitraxy. 
We feel tha t  such a theory  is not  ve ry  satisfactory, bu t  it  may, as a half-empirical 
procedure,  lead to good quali tat ive predictions about  the reactions of elemen- 
t a ry  particles between 1--100 GeV. Questions of this kind have turned out 
to be interesting since accelerators are under  construction, which will yield 

protons of 25 and more GeV. 
In all tha t  follows, we t rea t  the particles as if they  were distinguishable 

and consequently each one has a ((label ~): 1, 2, ..., n. In  any application one 

has then to correct  ~ by  suitable factors (5). 

(a) M. M. BLOCK: Phys. Rev., 101, 796 (1956). 
(4) a) R. MILBURN: Rev. Mod. Phys., 27, 1 (1955); b)S. BELEN'KIJ et al.: Usp. Fiz. 

_Nauk, 62, I (1957); c) G. E. A. FIALHO: Phys. Rev., 105, 328 (1957) and various other 
papers quoted in a) and b). 

(5) y .  Y]~IVlN and A. DE-SRALIT: Nuovo Cimento, 1, 1146 (1956). 
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2. - Preparation of ~i~ (E, P) for the application of MC. 

Firs t  of all, we do as much  analyt ical  evaluat ion of the integral  as possible 
and apply  MC only a t  the end. 

We pu t  

p~ = p~e~ ; I ~  I = 1 

2 2 dp i  ~ p~ dpi  dei  = Pi sin 0~ dOi dq~i dpi  

and have  

(4/ 0(E:, i ' )  = 

v o  r  

. . . .  p~... dp~p;.., p: O(E -- 2 ~/~ 
0 0 

i ) + m ... P - -  p~ei del  ... de~ .  
j j ,=1 

a l l  d i r e c t i o n s  

In  this way  the whole integral  is split  into two parts .  
The funct ion 

(5) p,e,)de,...de, 

has a ve ry  simple meaning:  wn(P,  Pl ... P . ) d P  is the probabi l i ty  t h a t  for g iven 

Pl ... P . ,  bu t  r a n d o m  directions el ... e .  the resu l tan t  vec tor  ~ p ,  ei lies in the  

neighbourhood d P  of P.  I t  is normalized such t ha t  

co 

(6) fwo(P,  o)dP = 4 f ,wo(p, = 1, 
0 

and it  depends in fact  only on ]/)I.  We shall consequently refer to this func- 
t ion as the (( r andom  walk funct ion ~). An explicit der ivat ion of this result  

and some fur ther  propert ies  of the funct ion w~(P,  p~ ... p~) are found in the  

Appendix.  

In t roduc ing  now the energies by  

2 (7) e~ = "V/p 2 § m 2 , p~(e~) = Ve~ - -  m,  , 

and defining 

(8) ui(e) = [ e % / ~ - -  m~ e > m i  . v n ( P ,  e l  . . .  en)  : w n ( P ,  P l  . . .  p n )  
0 s ~ m ~  ~ 

we m a y  write (4) in the center  of mass  sys tem (CMS) as 

m l  m n  
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A fu r the r  t r a n s f o r m a t i o n  f r o m  the  to ta l  energies to the  kinet ic  energies 

(10) h = ei - -  mi ; ~ m~ = M ; E - -  M = T 

gives 

(11) 

co co 

I o o 
qb(t~.., t~) = u,(tx + ml )  ... u~(t .  + m=) .v~(O, t~ + m l ,  . . .  tn + m . )  . 

A last  t r an s fo rm a t i on  gives the  final f o r m  to  which  MC will be appl ied :  

(12) 

leads to  

t2 = T~- TI 

t~ = T~--T~_~ 

co ~ co co 

~*n(E, O) ~ (4~T~)C~f dT l f  dT2...jdTn_lf dTn~(T1, T 2-  T 1 ,  . . . )  ( ~ ( T - -  ~'Tn) ~. 

o ~'t T~-2 Y.-, 

where  now the  &func t ion  drops ou t  b y  in tegra t ing  over  T~: 

(13) 
T T 

0 TI Tn--a 
, T 2 - - T 1 ,  ... T ~ - - T .  1). 

3. - The MC approach.  

We  consider  the  fol lowing process:  We choose i ndependen t ly  and a t  r a n d o m  

n -  1 number s  be tween  0 and  T in such a w a y  t h a t  the  p robab i l i ty  dens i ty  

for  the  single n u m b e r s  is c o n s t a n t  over  the  whole  in te rva l ;  we then  o rde r  

t h e m  accord ing  to  magni tude .  

W i t h  N such ordered  samples (T(/), T~ ') ... T~i) 1) ; (i = 1 ... N) we have  

(14) 
T T T 

0 T I Tn-2 

T ~-1 . I ~ (o 
- -  , h m  x ~  ~ I1  I (2  i ) -  ( n - -  1) _ ( , Ti", . . . )-  , N-+co j.u i = i 
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To prove  the t ru th  of (14), we note  t ha t  the probabi l i ty  t ha t  the i - th  ordered (*) 

sample  fills jus t  the cells ATe,  ATe, ..., AT,~_~ is (see Fig. 1) 

AT1 AT~ ATn_~ ( n - - l ) '  
( n - - l ) !  T T "'" T -- T._~ " AT~AT2.. .AT~_~ 

.and N t imes this p robabi l i ty  is the to ta l  n u m b e r  of ordered samples  filling 

these c e l l s -  they  all lead to the same value of ~. Hence  (14) holds. 

This is the p r i n c i p l e -  i t  remains  to 

write the formulae  in a more convenient  
at, aT~ ar~ m.., lorm. 

::: :::::: ::: : 

r, r a r a r.., r I t  should be ment ioned  t h a t  one m a y  

Fig. 1. - For the proof of (14). hope for a fair ly rapid  convergence, 
since the sampling process has a ten- 

4ency to draw preferably  samples with 
T~ ~ T2--  T~ ~ ... ~ T - -  T._~ because for large n the points T/) cluster around 

the  value ( i /n)T.  For tuna te ly ,  i t  happens t ha t  the in tegrand has a m a x i m u m  

~or those values of the variables  t ha t  near ly  correspond to equipar t i t ion of 
kinetic energies. Thus the samples tend  au tomat ica l ly  to pick out  the mos t  

i m p o r t a n t  t e rms  of the sum and to neglect the small ones. This is the main  

advan tage  of MC applied to this problem as compared  to a simple mul t id imen-  

sional numerical  integration.  The problem of convergence will be t rea ted  in 

the following paper.  

4. - The comput ing  programme.  

F r o m  (14) we have  with (13) 

(dz) ~ 
(16) e : ( E ,  0) - 

(n - -  1 )! 

N 1 ~i) Ti)~ ' 
2 "-~. l im V ~  ~b(T~, . - - T ( ? . . . ) ,  

where ~IT(" ... _._~T ") is the i - th ordered sample. Going back to the variables  G, 
(z) (t). each ordered sample T (') T ") yields a sample s~ ... G �9 

--I .... ~--i 

(17) 

and  

' , ' (t) (~(/)' ~'~), "" ,  ~ii )) ~-  ~(T(1) ,- ml ,  T~(i) _ TI(,) + m2, ..., T - -  T~__ 1 ~- mn) 

r  , ~ ' s  ~ ' 1 ,  " '"  T - -  T n 1) "- ~1 ~ - -  )n~ . . .  ~ n V / ~  - -  i n  2 " V n ( 0  , ~1~2 . . .  ~ n ) "  

(*) The ordering is responsible for the factor ( , n -  1)! 
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F o r  v~ we take  the form (cf. A.9)) 

1 
Vn(0, ~1 "'' ~n) - -  

(n -- 3)! 7e "2 ~+: 

We have  therefore 

1 
r  T~-- T~, ... I ' - -  T~_~) = ~,(~, ... s,) 

2n+1 ~ ~ n ~ n  3)! 
wi th  

( i8) 

Wi th  this definition 

,(19) e*(E, 0) = 

~n(~l ,., ~ n ) =  --~1"~2 "*" ~n [a~...0":-,, (~n[Sg ( ~  0 ~ i V ~ ) l (  ~ (~i~Y//~--m~)n-3] 

( E - -  M) ~-i .(2z)"-i , .  I ~ , (i) " 
�9 ..~ ~n ) "  

( n - - l ) . ( ' r t - - o ) .  ~ v - ~ , i f l  

(D (~) (i) The samples ~: , ~2 .-. s~ are constructed according to (17) and a t  the same 
t ime  one calculates the corresponding set of sqt~are roots ~/~i2--m~. 

5 .  - The  s p e c t r u m .  

Another  advan tage  of this MC method  for solving the phuse space problem 

is t ha t  b y  the ve ry  na ture  of the computa t ion  process one gets easily wi thout  
I u r t he r  culculations the energy spec t rum for each kind of particle considered, 

more  accurate ly:  t ha t  pa r t  of the spec t rum which is determined by  phase space 

considerations.  
We consider here the (unnormalized) spec t rum of the r - th  purticle, which 

because of the assumed individual i ty means a quite definite one. F r o m  (3) 
we see tha t  in the C.M.S. ( P =  0) the quan t i ty  

(20) dpr" ~p .~ ,_ , (E- -  r~--,,~, 

is proport ional  to the number  of particles (( r >> with m o m e n t u m  between p~ 

and p~+ dp~. 

The function '~) 9n (E, 0, s,), defined as follows: 

{21) 

allows then  a similar interpretat ion.  
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Now f rom (9) 
oo co r co 

f / f f  $ 
(22) e , _ l ( E - - e ~ , p ~ ) = ( d z ) - -  de,..  de,_ ds~+~., de~. 

~nl mr-- 1 mr§ mn 

" U l ( ~ I )  "*" ~t(~r--l( '~r--1)Ur+l(~r§ U n ( ~ n ) " V n - - l ( P r ,  ~1 ,  " " ,  ~r 1,  ~ r t l ,  " " ,  ~ n ) "  

"(5(E--~r-- 2 ~i) . 
~ r  

Fur the rmore  with s, =%/p~ g-m~ f rom (A.7) 

(23) Vn-l(pr, e,... er-,, er+, ... sn) = Vn(0, e, ... en) �9 

Since also 5 ( E - -  e , - -  ~ e,) --  5 ( E - -  ~ e,), we see tha t  the differential spec t rum 
�9 S&r i 

of part icle (~ r )), namely  (~) e, (E, 0, e~) is obta ined f rom (9) if de~ is t aken  outside 

I p }  , . 

f - 3 ~  

Fig. 2. - Typical form of a MC 
spectrum. 

the integrals, i.e., if the in tegrat ion 

over  e~ is omit ted.  F r o m  this follows 
then the a lmost  obvious way  to calculate 

( r )  q~ (E, O, ~,). 
For  each kind (( r ~ of part icle a set 

of Z storages is provided and the to ta l  

energy E is divided into Z intervals  

Ae = E / Z ,  each cell corresponding to  

one storage. 
At  the same t ime as the samples  

") ... e~ ) are prepared,  one looks in each 
sample for the value of S(r ~) and determines in which of the cells Ae it  lies. 
Then one adds into the  corresponding storage the number  ~n (s~) ..- s~ )) (see (19)). 

After  complet ion of this distr ibution of ~ 's  (which takes place of course 
during the calculation of ~*(E, 0)) into the cells, the  whole distr ibution is 
mult ipl ied b y  

1 ( E - -  M)"-*(2z) n 1 

N ( n - - l ) [  ( n - - 3 ) !  

and  the result  is ~,~(r)~_, 0, e~), the spec t rum for the particle (( r ~). Indeed:  this 

dis t r ibut ion means nothing more than  the omission of the in tegrat ion over  

ds~ and represents  the in tegrand as a funct ion of s,. 

The accuracy will of course be smaller than  for ~:(E, 0) itself, because of 

the  subdivision of the  to ta l  s tat is t ical  information,  bu t  one obtains wi thou t  
addi t ional  work a t  least  a rough idea of the spectra.  

I n  a following paper  we shall give details of the actual  per formance  of such 

a calculat ion including est imates  of errors and a flow d iagram for an electronic 

computor .  A brief repor t  concerning our experiences in pract ical  calculat ions 
will be added. 
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A P P E 1 N D I X  

The random walk  function.  

Given a set of n vectors  with fixed lengths p~ ... p~ bu t  r a n d o m  directions 
n 

e I o o ,  e n �9 W h a t  is the  probabi l i ty  w,,(P, p~...'p~)dP, t ha t  the resul tant  ~p~ei 
lies in the neighbourhoo4 4 P  of P?  ~=~ 

Firs t  we make  two simplifying remarks :  

1) Since each e~ has a r andom  direction, the same holds for the resul- 
t an t .  w(P, pl . . .  p . )  can only depend on [PI .  We  write therefore  w. (P, p~.p.) .  

2) The order in which the vectors  are added is i rrelevant ,  w~ mus t  be 
s y m m e t r i c  in p~...pn. Even  more:  the probabi l i ty  densi ty  for n vectors  
p~...p, to have  a resu l tan t  P mus t  be the same as for the n ~ - i  vectors 
P, p~...pn to have  the resul tan t  zero. Hence 

Wnffl (0 ,  P l  ... Pn, P) ~" wn(P, p~ ... Pn) 

and since the left  hand  side is symmet r ic  in p, this mus t  be t rue  also. P 
for  the r.h.s. 

We now derive Eq. (5). 
The required probabi l i ty  is obviously propor t ional  to the number  of pos- 

sible realizations~ viz. 

( i . 1 )  Wn(P, Pl--. Pn) : K n i t ( P - -  ~Pie i )  d e l - . ,  d e n ,  
J 

where  we have  imposed the condition b y  means o f  a (%function and integrate  
thus over  all possible ways of choosing directions, which give the wanted  
length  of the  resul tant .  Ks is a normalizing factor  to be de termined later. 

In t roduc ing  a Fourier  representa t ion  for the  b-function 

(1)? 
(A.2) 6(P--~p,e,) = ~ exp[i),(P--~p~ei)]dX, 

we find 

Kn l "  
wn(p, pl. . .  pn) = I dx de, .. den exp [ i X ( P - -  Z (2 )3j 

o r  

(A.3) w'(P'PI'"Pn)~-- (27~)djK'ldXexp[ iXP] "1-I1=1 [fdeexp[--ipjXe]] . 

With  polar  co-ordinates de = 2~ s in040 one has 

fde  --  47i sin pj~ e x p  [ -  ip~Xe] 
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Since the product  does no longer depend on the direction of ~ we m a y  in tegra te  
exp [i~P] also over  all directions of X with the same result  and find 

co 

(A.~) Wn(_p, pl ... p .)  = (2~) ~ (4~).+ 2 d2 

0 

Po  

4~r f w.(P, 
o 

Since 

sin P2  sin p~2 sin p .2  
P2  p12 .... p .2  

The normal izat ion requires 

Po 

(A.5) eo~c~lim fw~(P, p~... p.).4~P~dP = 1. 
o 

( I t  is necessary to consider this limit, because we have  reversed the order of  
integrat ion and the reby  obta ined a singular f u n c t i o n . ) W e  obtain 

Po co 

4 n (~ ,P~ . . .Pn)P  2 d P -  (o~)~ d2 p ~  ... p.~- [ ~ ~ �9 
o 0 

Now the second t e rm  in the b racke t  makes  the integral  vanish for Po--~ c~ 
whereas the first one gives 

Kn(4Y~) n+2 :~.lj'd2sin~Posin2pl sin 2p,, 
p,...p~)P~dP = (2~) 3 "2 ~ - - 2p~ "'" 2p~ 

- c o  

we find 

1 sin 2Po 
l im --  6(2) 

4Y~/~t,,~(P, Pl . . .  p~)P~dP = (4z~) - .K~ = 1 .  

o 

Hence the  normalized r andom walk funct ion is 

(A.6) 

1 /'. _ . s i n P 2 s i n  
- -  J X  ~ d)t P 2  p12 

27~ 2 plX 
u 

sin p.)~ 
"'" p .2  

We observe at  once the complete s y m m e t r y  not  only with respect  to  
Pl ... Pn bu t  also with respect  to P, Pl ... P., which all m a y  be arb i t rar i ly  per-  
muted.  A simple consequence is the impor t an t  equat ion 

(A.7) w~(O, 191 .. .  Pn)  : W n - l ( P J ,  191 "'" P ~ - I ,  P ~ + I  " "  Pn)  ; j : 1 . . .  n .  

which we found al ready a t  the beginning f rom general a rguments .  
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We now evalua te  ( A . 6 ) f o r  P----0 (which, because of (A.7), is no re- 
striction). Wr i t t en  wi th  exponentials  and the  2-integration going f rom --c<> 
to c% (A.6) gives 

1 1 
w.(O, p~ ... p .)  = 

4zc~ Pl ... P.  

�9 (A~"  f d~ (exp [ip~ ;~] - -  exp [ - -  ip,~]) (e~p [ ip.~]  - -  exp [ - -  ip.~])  

Since the in tegrand does in fact  eontain no singularity,  we could shift the 
pa th  b y  - - i v  into the  lower half  plane. E v a h m t i n g  the produc t  and closing- 
then  the p a t h  in the upper  or lower half  plane according to where the integrand. 
vanishes,  we find for the integral  

cO - -  i T  

- c o - i v  

a~ . . .  a .  exp [i~ ]~ a~p~] = 
i 

27~i d n-3 [ 
- - (n--3) !  ~-----3 ~ 0.1~ O'n exp [i)" ~(~iPil}~:i:i>O "" 

Here  every a takes the two values + 1  and - - 1  and the  sum is over  all 2" 
sign combinat ions,  except  those for which ~ a,p,  < 0. (Because for these 
the pa th  is closed in the lower half  plane with residual zero). The differentiation 
gives finally 

(A.8) w,~(O, Pl ... P , )  = - -  (• _ 3)! 2n+1:~ Pl Pn (la ... 6 n ( ~  (~iPi) n-a . 
i JEfTiloi ~ 0  

For  pract ical  calculation Of the sum over  a we r emark  t ha t  to every  sign 
combinat ion t h e r e  exists the inverse one and one of t hem gives ~ a~pi > 0. 

i 

We need therefore sum only over  one half of all sign combinat ions provided 
t h a t  we reverse all signs if ~ a~p~ < O. We m a y  therefore fix a ~ -  + i and  

i 

v a r y  all the rest. This gives jus t  one half  of the  possible sign combina t ions  
al . . .  a ,  and no two of t hem are the inverse of each other. Thus the whole 
class [al = + 1] is inverse to the whole class [a l - - - - - -1]  and we shall now 
sum only over  the fo rmer  one. I f  for a certain combinat ion a~ ... a .  (al = + 1) 
one finds ~ a~p~< 0, one has to change all signs ai--> a~------ a~ and to add 

. . . . . .  n\x.~ ~t'~l " 

Tha t  means:  I f  ~ c r i p i < O  , we have  to subt rac t  a~ . . . a ,  ( ~ a , p i )  ~-3 instead of 
adding it. This is expressed s imply  by  writ ing 

(n - - 3 ) !  2"+1~ 
(A.9) w,(0, Pl. . .P,)  --  

p , . . . p .  5 ~ , . . . ~ s g ( Y ~ , P , ) ( S ~ , P , )  ~-~ , 

G I =  + 1  
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+ 1  for  x > 0  
s g x  = 

- - 1  for  x ~ 0  

is t h e  s ign f u n c t i o n  (*). 
A n  e v i d e n t  consequence  of t h e  m e a n i n g  of t h e  r a n d o m  w a l k  f u n c t i o n  is 

t h a t  i t  m u s t  v a n i s h  i d e n t i c a l l y  as soon as  a n y  p j  is l a r g e r  t h a n  t h e  s u m  of 
a l l  t h e  o t h e r s :  

(A.10) w~(0, p~ ... p~) - -  0 if 2p~ -- f p, 
i = l  

(for a n y  j = 1 ... n). 

As th is  is n o t  obv ious  in  t h e  p r e s e n t  f o r m  (A.9) of t h e  func t ion ,  we p r o v e  
i t  e x p l i e i t e l y :  

Because  of t h e  s y m m e t r y  one m a y  t a k e  j = 1 .  The  s q u a r e  b r a c k e t  of 
(A.9)  m u s t  van i sh .  

i) W e  obse rve  t h a t  if 2plUmps,  one has  

sg (5, ~,p,) :-  + ~ .  

ii) W e  e x p a n d  t h e  p o w e r  in  w r i t i n g  ( ~ '  m e a n s  i r 1) 

il G 2 2) ~2 G i Z ~ . . o ~ ( p l + Z ' o , p 0 o - ~ = Z o , . . ~ Z [ p l (  p ...( ~p~)~ 
G G ~.i k =n-- 3 

i 1 ~ - ---- ~ P l  P2" "'" p~n ~ ~2ffi2+l ~ "  + 1 ~ 3  " '"  o'nin+l " 
~i~ =n--3 

n 

iii) F r o m  ~ i k =  n - - 3  fo l lows t h a t  n o t  a l l  ik~= 0. 
k = l  

one  has  ( ~ "  m e a n s :  a~ +~ o m i t t e d )  

L e t  i s -  0. Then  

5 `  = ~.v ~,,~.~,,o,,+12 . . . .  < o + 1 )  = ~ , ,  _ 5 , ,  = 0 q . e . a .  
a aj=• a 

The  e v a l u a t i o n  of (A.9) seems v e r y  e a s y  on an  e l ec t ron ic  c o m p u t e r ,  if one 

(*) Ambiguit ies arise if accidentally a certain ~(~iPi = 0. In  fact this gives a dif- 
ficulty only for n = 3, since in tha t  case w(0, PlP2Pa) is a discontinuous f u n c t i o n  
because of the  tr iangle inequali ty.  As a pure convention we put  sg(0) = -  1. For  
n > 3 one has in such a case (5` (~iP~)n-3 = 0, which settles the  question. In  the pro- 
gramme of an electronic computor,  however, this does not  help the  machine to know 
what  to do with  the  sg(0), so we shall adopt  the  same definition for all n. 
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pro( ' eeds  in  t h e  f o l l o w i n g  w a y :  

a) O n e  c a l c u l a t e s  ~ p ~ ,  w h i c h  c o r r e s p o n d s  to  

O" 1 ~ :  G, :  = . . .  ~ (Yn ~ ] �9 

b) O n e  v a r i e s  t h e  s igns  i n  such  a w a y  t h a t  i n  t h e  o rde r  a2a3.., a,  each  
a keeps  i t s  s ign  as l o n g  as pos s ib l e  (see e x a m p l e ) :  

~," a,., ... an IJ % Corresponds to 

,4, 

,4, 

§ ,4, 

,4, 

~ 3  0"4 ~ 5  
i 

i ! 
4, : + ,4, t 

I 

Pl'4" P2"4" P3-~ P4"4" P~ 

- -  2p5 

- -  2p4 
I 

i 

§ 2p5 

- -  2pa 

, 4 ,  - -  - ; 

,4, - -  ,4, 

- -  ,4, 

, 4 ,  ----  

,4, 

,4, 

+ 

- -  2p5 

-4- 2p4 

- -  ,4, ,4, ,4, 2P5 

4, - -  - -  -4- ,4, - -  2p.~ 

. . . . . .  2p5 

- -  2p4 

4, 2p,~ 

4,  2p~ 

2p5 

_ _  _ _  L 

,4, - -4- 

- -  - -  , 4 ,  

4, - -  ,4, 

-4- 

-~- 2p4 

§ 2p~ + ,4, 

.4 

e$ 
bs  

=. 

T h e  e x a m p l e  shows  t h a t  f r o m  c o m b i n a t i o n  to  c o m b i n a t i o n  t h e r e  is a l w a y s  
o n l y  one  a d d i t i o n  to  do a n d  t h e  s ign  of a l "a~ . . ,  a~ a l t e r n a t e s  s y s t e m a t i c a l l y  
Bes ides  t h e  a d d i t i o n s ,  t h e  m a c h i n e  has  to  do t h e  ( n - - 3 ) r d  p o w e r  a n d  to  ob-  

42 - N u p p l e m e n t o  a l  N u o v o  ( ' i m e n t o .  
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serve the  sign of ~ aiPi. The to ta l  number  of addi t ions  goes therefore  rough ly  
wi th  2 ~'-1 and af te r  each addi t ion  (i.e. for each ~ aipl) the  power is to be 
calculated,  t h a t  is 2 ~-1 t imes a ( n - - 3 ) r d  power. We are unl ikely  to have  to  
calcula te  cases where n is bigger  than  12, the  normal  s i tua t ion  will  have  ~ 
running  from 3 to 10 (only mesons produced)  and f rom 3 to 5 or 6 (heavier  
par t ic les  produced).  Fo r  n = 12 one has thus ~ 2 050 addi t ions  and 2050 t i-  
mes a 9- th  power. Cases wi th  n ~ 7 may  be most  interest ing.  This o'ives 

150 addi t ions  and 150 t imes a 4-th power. 
Since this  number  of operat ions has to be carr ied out  for each sample of 

p~... p~, the  calculat ion of w.(0~ pl . . .  p~) contr ibutes  a grea t  deal  to the t o t a l  
comput ing  t ime.  


