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1. — Introduection.

In the region of primary (lab) energies of the order of 1 to 100 GeV, the
number of particles (mesons, heavy mesons, anti-nucleons, hyperons) created
in a collision is of the order of 1 to 10. Consequently, pure thermodynamieal
calculations fail and if one wishes to apply a theory like Fermi’s () one has
to calculate phase space integrals. We do not consider here the physical side
of the problem, i.e. the validity of this type of theory. We only try to solve
the mathematical problem of calculating the phase space integral, which has
not been achieved in a simple and reliable manner so far. The integral, for
n emerging particles with total energy ¥ and total momentum P, is given by (%)

(1) ouE, P) = (2nk )—“"““’fdpl . dp,d(P— 3 p.) O(E —2 Vi +mi)

This integral does not depend on the direction of P. In the center-of-mass
system (C.M.S.) we have P = 0. In what follows, we shall consider frequently

() E. FErMI: Progr. Theor. Phys., 5, 570 (1950).
(2) The phase space integral is of course a funection also of my, m,,..m,. As a
shorthand notation we write g,(%, P) instead of ¢, .m, (E, P).
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instead of (1) the unnormalized phase space integral o,(E, P)
(2) 0n(E, P) = (2ah)**~ 0. (B, P).

The main difficulty in all attempts to perform the integrations have been
the square roots v/p2+m?. The exact integration is possible only up to n =3,
for higher numbers of particles one has to integrate numerically. In principle
this can be done by repeated convolution since

@) o(B, P) = f dpuor. (E—Vpi +m2, P—p,)

and this is in fact the way Brock (®) has done the first few integrations. But
for larger numbers n the repeated numerical convolution becomes either very
inaccurate or prohibitively long. Several authors have tried approximations (4),
but in many cases it is difficult to estimate the error. In unfavourable ecir-
cumstances, the result can be wrong by a factor five, even if for other cases
the error is only some 109,. ,

We may hope that by keeping the square root (instead of approximating
it by either p; or p?/2m, as in most of the other calculations) but using a Monte-
Carlo method (M.C.) for the integration, we may achieve an accuracy of a
few percent, The method has the advantage that it gives in the course of
calculating o) (E, 0) automatically the energy spectra of each kind of particles.

Exact spectra and phase space densities should be useful in extracting from
future experiments a suitable representation of the matrix elements of inter-
action by simple functions of energy, numbers of particles, etec. These functions
(the «interaction volume » in the simplest case) may be considered as para-
meters of the theory whose order of magnitude and general behaviour can be
concluded from physical arguments but which still remain somewhat arbitrary.
‘We feel that such a theory is not very satisfactory, but it may, as a half-empirical
procedure, lead to good qualitative predictions about the reactions of elemen-
tary particles between 1100 GeV. Questions of this kind have turned out
to be interesting since accelerators are under construction, which will yield
protons of 25 and more GeV.

In all that follows, we treat the particles as if they were distinguishable
and consequently each one has a «label»: 1, 2, ..., n. In any application one
has then to correct g, by suitable factors (5).

(3 M. M. Brock: Phys. Rev., 101, 796 (1956).

(%) a) R. MILBURN: Rev. Mod. Phys., 27, 1 (1955); b) S. BELEN'K1J et al.: Usp. Fiz.
Nauk, 62, 1 (1957); ¢) G. E. A. FraLuo: Phys. Rev., 105, 328 (1957) and various other
papers quoted in a) and b).

(®) Y. YEIviN and A. DE-SHALIT: Nuovo Cimento, 1, 1146 (1956).
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2. — Preparation of g, (E, P) for the application of MC.

Firgt of all, we do as much analytical evaluation of the integral as possible
and apply MC only at the end.
We put
P =Dp:e;; le:| =1
dpi = p? dpz d.e,- = plz gin 62- d@l d(pz dp,
and have

(4)  olE;, P) =

zf...fdpl v dp,p.. plO(E — E\/pg + m‘j.)f...fé(P— S pie)de;...de,.
=1
0 0

1=1
all directions

In this way the whole integral is split into two parts.
The function
1 n
(5) WPy Py Pa) = (Z;z) f&(P — Y pie;) de, ... de,
has a very simple meaning: w,(P, p; ... p,) dP is the probability that for given
Py ... Pny but random directions e, ... e, the resultant vector > p,e; lies in the
neighbourhood dP of P. It is normalized such that

[+2]

(6) /wn(P, Py Pp) AP = 4an2w"(P, Pro..Pr)dP =1,

0

and it depends in fact only on |P|. We shall consequently refer to this func-
tion as the «random walk function». An explicit derivation of this result
and some further properties of the function w,(P, p, ... p,) are found in the
Appendix.

Introducing now the energies by

(7) a=Vpit+mi,  ple)=Vei—m:,
and defining
2 __ gp? .
(8) uile) = { 8‘58 " ﬁz w5 a(Py ey ) = wa(Py Py Pa)

we may write (4) in the center of mass system (CMS) as

o o

(9) 0X(E, 0) = (4n)" del...fdsnul(sl) v Un(€) 0. (0, €100 8,) (B — Y &4} .

1 My



A MONTE-CARLO METHOD TO CALCULATE MULTIPLE PHASE SPACE INTEGRALS - I
A further transformation from the total energies to the kinetic energies

gives

o =)

[
an | ox(E, 0);(4n)"[dt1... at, D(t, ... 1,) (T — 3 t.)

0 1]
Dty ... 1) = uy(ty + M) oo (B + My) - 0,(0, &+ My oon B Hmy) .

A last transformation gives the final form to which MC will be applied:

t, =T,
(12) t,— T, — T,
P
leads to
oX(E (470) dede Jd de(PTl,TZ Ty, )8(T—T,),

where now the §-function drops out by integrating over T,:

T T r
(13) 03B, 0) = (4n)"/dTlde2...de,,‘l@(Tl, Te T,y To—T, ).
0

3. — The MC approach.

649

We consider the following process: We choose independently and at random
n — 1 numbers between 0 and 7 in such a way that the probability density
for the single numbers is constant over the whole interval; we then order

them according to magnitude.

With N such ordered samples (T, T ... T ); (¢i=1... N) we have

(14) dede /dT,”Q)TI,T T,,..) =
Ty
T-n— 1 N

= lim = YO(T®, TP —T,..).

(n — 1)1 5w N /<
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To prove the truth of (14), we note that the probability that the ¢-th ordered (*)
sample fills just the cells AT,, AT,, ..., AT,_, is (see Fig. 1)

AT, AT, AT, (n —1)!
!Tl . T 1.“ T_l_ = T'n—li ATlATz.-. ATn_l

(n—1)
and N times this probability is the total number of ordered samples filling
these cells — they all lead to the same value of ¢. Hence (14) holds.

This is the principle — it remains to
write the formulae in a more convenient
form.

It should be mentioned that one may
hope for a fairly rapid convergence,
gince the sampling process has a ten-
dency to draw preferably samples with
T\~ Ty— T\~ ..~ T—T,, because for large # the points 7' cluster around
the value (i/n)T. Fortunately, it happens that the integrand has a maximum
for those values of the wvariables that nearly correspond to equipartition of
kinetic energies. Thus the samples tend automatically to pick out the most
important terms of the sum and to neglect the small ones. This is the main
advantage of MC applied to this problem as compared to a simple multidimen-
sional numerical integration. The problem of convergence will be treated in
the following paper.

A ar,.,
o 7 I T T

Fig. 1. — For the proof of (14).

4. — The computing programme.
From (14) we have with (13)

4m)n . 12 ; i i
(16) 0:(E, 0) = (ﬂ( ‘)17 7 lim Y O, 19— 1.,
S A {=1

where T ... T¢" i the i-th ordered sample. Going back to the variables ¢,
each ordered sample TV ... T yields a sample ... ¢, :

FRREERCM

{17) (e, &7 oy €)= (T4 my, T — T3 + My ooy T— T2+ my,)

and

o, rT—1,,.7T-7T, )=¢ Ve‘f—m%... sn\/sfl—mﬁ'vn(l), £185..0 &) -

(*) The ordering is responsible for the factor (n —1)!
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For v, we take the form (cf. A.9))

1
'Un(O, Ep e 87,) = — m’mi .
Y ! —1> 0. [Sg 20\/52—m2)](26 &2 —m2)"
Ver —m? \/sz m| &, 1 ‘ [ :
We have therefore
1 v 1
Q(Tl,Tf‘“TI,...I"*InVI) :Wév)—!'wn(gl...gn)

with
{18)  Puleg .. &) = — 618000 &y Z al onlsg 2 oNVet—mt mt }(2 gl.\/g;;n:z_)"ﬂ
With this definition

(L—M)"_ (2 )" ! @0 @)

(19) 0x(E, 0) = ® 1),( ji N_WNZ% e, e, o, 6.

The samples ¢”, & ...e% are constructed according to (17) and at the same

n

time one calculates the corresponding set of square roots \/ﬁ““’ me.

5. — The spectrum.

Another advantage of this MC method for solving the phase space problem
is that by the very nature of the computation process one gets easily without
further calculations the energy spectrum for each kind of particle considered,
more accurately: that part of the spectrum which is determined by phase space
considerations.

We consider here the (unnormalized) spectrum of the r-th particle, which
because of the assumed individuality means a quite definite one. From (3)
we see that in the C.M.S. (P = 0) the quantity

(20) dp. - 4api- oy (B — Vi + mi, p,)
i8 proportiohal to the number of particles «r» with momentum between p,

and p,+dp,.
The function ¢’ (E, 0, ¢,), defined as follows:

(21) 0(B, 0, &) = dme, Ve2 —m2-g? (B — e, Ver—m3)

allows then a similar interpretation.
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Now from (9)

(22) op (B —e¢,, p,) = (4%)”‘1fd£1...J ds,_lfdsrﬂ...fden'

Myt m
Uy (E1) oe Yoy (Erm1) Ur i1 (Eria) oor Wn(€n) Vn i (Pry €1y vny B 15 Erpry veey En)°
(B —e— &) .
rET

Furthermore with &, =v/p? + m2 from (A.7)

(23) Vpe1 Dy €1 vvs ryy Epiy ver €q) = U (0, &1 ... &)

Since also 6(E—e,— Y &)= 6(F — > &), we see that the differential spectrum
of particle «r», namel; o (B, 0, &) is obtained from (9) if de, is taken outside
the integrals, i.e., if the integration
over g, is omitted. From this follows
then the almost obvious way to calculate
0. (B, 0, ¢,).
For each kind «r» of particle a set
of Z storages is provided and the total
e energy F is divided into Z intervals
~~ Ae=E/Z, each cell corresponding to
one storage.

At the same time as the samples
& ... &) are prepared, one looks in each
sample for the value of & and determines in which of the cells Ae it lies.
Then one adds into the corresponding storage the number y, (s\” ... &) (see (19)).

After completion of this distribution of y’s (which takes place of course
during the calculation of p*(E, 0)) into the cclls, the whole distribution is
multiplied by

ir
TR NAVY:

Fig. 2. — Typical form of a MC
spectrum.

}—(E_ M)nd(zﬂ)n 1
N (n—1)!(n—3)!

and the result is ¢,’(&, 0, ¢,), the spectrum for the particle «7» Indeed: this
distribution means nothing more than the omission of the integration over
de, and represents the integrand as a funection of e,.

The accuracy will of course be smaller than for .(E, 0) itself, because of
the subdivision of the total statistical information, but one obtains without
additional work at least a rough idea of the spectra.

In a following paper we shall give details of the actual performance of such
a calculation including estimates of errors and a flow diagram for an electronic
computor. A brief report concerning our experiences in practical calculations
will be added.
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APPENDIX

The random walk funetion.

Given a set of n vectors with fixed lengths p,... p, but random directions

e, ...e,. What is the probability w,(P, p,... p,)dP, that the resultant > p.e;
lies in the neighbourhood dP of P? =1
First we make two simplifying remarks:

1) Since each e; has a random direction, the same holds for the resul-
tant. w(P, p,... p,) can only depend on |P{. We write therefore w, (P, p,.P.).

2) The order in which the vectors are added is irrelevant, w, must be
symmetrie in p,...p,. Even more: the probability density for » vectors
Pi---p. to have a resultant P must be the same as for the n—+1 vectors
P, p,... p. to have the resultant zero. Hence

mel(Oy Pree- Dy P) = wn(P7 P1-~-Pn)

and since the left hand side is symmetric in p, this must be true also. P
for the r.h.s.

We now derive Eq. (5).
The required probability is obviously proportional to the number of pos-
sible realizations, viz.

(A1) Wa(P,y Py Pu) = K,,fé(P— Epiei) de, ... de, ,

where we have imposed the condition by means of a d-function and integrate

thus over all possible ways of choosing directions, which give the wanted

length of the resultant. K, is a normalizing factor to be determined later.
Introducing a Fourier representation for the §-function

(A.2) OP—3 pe) = (%) /nexp (AP — S pre)]dA,
we find
Wo(Py Pyove Pn) = (;ft')'sjd)\ de, .. de, exp [iA(P — Y pe,)]
or
(A.3) WPy Py Po) = (_Z—If;;:fdl exp [{AP] Jlf[l Ude exp [— ip,Ae]| .

‘With polar co-ordinates de = 2z 8in6df one has

jde exp|[— ip;Ae] = }E;n_lp]l .
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Since the product does no longer depend on the direction of A we may integrate
exp[iAP] also over all directions of A with the same result and find

sin P4 sin p, A sinp.d

(Ad)  wu(P, py... Pr) :(2 ) yrrf A2dA i Py
The normalization requires U

2,
{A.B) lim [w,(P, py... pn) - 4nP?dP =1.

Py—>xo
0

(It is necessary to consider this limit, because we have reversed the order of
integration and thereby obtained a singular function.) We obtain

Py @

K, (4m)»+? sin p,A sin pnl sin P, A P,

2 _— e —

4nfw,,(P, Pr... pa)P2AP Sy f& da o T - ° cos P2 .
0

0

Now the second term in the bracket makes the integral vanish for P, — oo
whereas the first one gives

Py

4nfwn(P, Proe PR)P2AP =

K,(4m)*2 n 1jdl sin AP, sin Ap,  sin Ap,

J (27)?* 2= A o Apa
Since . ?
AT
we find
4nfw,,(P, Pyee. Po)P2AP = (7)™ K, =1.

0

Hence the normalized random walk function is

1
(A.6) wo(P, Py Pu) = (47‘6)/ P — sz J del . de, =

2q _smPl gin p,A  sin p,A
2 Pl pih T opd T

[1]

We observe at once the complete symmetry not only with respect to
P, ... p, but also with respect to P, p,...p,, which all may be arbitrarily per-
muted. A simple consequence is the important equation

(A7) Wa(0y P1 v Pu) = Waei(Dsy Preve i1y Pitr -+ D) 3 j=1..n.

which we found already at the beginning from general arguments.
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We now evaluate (A.6) for P =0 (which, because of (A.7), is no re-
striction). Written with exponentials and the A-integration going from — oo
to oo, (A.6) gives

1 1
W, (0y Py.c. Pp) = 7 P
1\ [dA . . . .
%) |7 (exp [ip, A] — exp [— ip,A)) ... (exp [ipnd] — exp[— ip.A]) -
— ~ {7

Since the integrand does in fact contain no singularity, we could shift the
path by — it into the lower half plane. Evaluating the product and closing
then the path in the upper or lower half plane according to where the integrand.
vanishes, we find for the integral

di .
fﬁ;é > 0y... 0, eXp[id z op] =
o o  dns ,
= = {; 0y ... 0, €Xp [i4 2 Gipi]}f:i:i>° .

Here every ¢ takes the two values +1 and — 1 and the sum is over all 2~
sign combinations, except those for which Y o,p, < 0. (Because for these
the path i8 closed in the lower half plane with residual zero). The differentiation
gives finally

1 1
(n—3)! 2% p,..p,

{A.8) w, (0, py... Pn) = —

Z Cy... an(g o) n-—ajl

) Zo;p; >0

For practical calculation of the sum over ¢ we remark that to every sign
combination there exists the inverse one and one of them gives E ag;p: > 0.

We need therefore sum only over one half of all sign combinations provided
that we reverse all signs if Z 0;p:<<0. We may therefore fix o=+ 1 and

vary all the rest. This gives just one half of the possible sign combinations
G;...0, and no two of them are the inverse of each other. Thus the whole
class [0, =+ 1] i8 inverse to the whole class [, =—1] and we shall now
sum only over the former one. If for a certain combination o,...0, (6, =+ 1)
one finds ) ¢;p;<<0, one has to change all signs ¢; >0, =—o0; and to add

0104 v 0p(2 0, D)™ = (=) 0y 00 ()3 (D 03p) "2 = — 01 0 (D, 0ip2) "0

That means: If Y 6;p;<0, we have to subtract o,... 0, (3 o:p;)"® instead of
adding it. This is expressed simply by writing

1

(A.9) wal0, py...0.) = T —3)emig

1
S 610,88 (3 0p:) (3 o) "2 5
Pr..-Pa Gy:-Op,

ay=+1
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‘where

sx_]—}—l for >0
g T1l—1 forx<0

is the sign funetion (*).

An evident consequence of the meaning of the random walk function is
that it must vanish identically as soon as any p, is larger than the sum of
all the others:

{A.10) Wo(0, Py pa) =0 if 2p,— > p (for any j=1...n).

As this is not obvious in the present form (A.9) of the function, we prove
it explicitely:

Because of the symmetry one may take j =1. The square bracket of
(A.9) must vanish.

i) We observe that if 2p, > p,, one has

g (2 op) =+1

ii) We expand the power in writing (3' means i 1)

D 0o Oa(Pr + D OP)TE =D s Gn D [PE(0D2)5 o (0uP0)] =

a o Dip=n-3

= > PuPy..Pin > gitlahtl. L gintl,
g

Tip=n—3

iii}) From Z@k—n—S follows that not all 4,2 0. Let 4;=0. Then

one has (3" means ot omitted)

S=Y0 (3ot ot) =3 — 3 =0, g.e.d.

G O'j:nj:l [

The evaluation of (A.9) seems very easy on an electronic computer, if one

(*) Ambiguities arise if accidentally a certain Eaip,. = 0. In fact this gives a dif-
ficulty only for » = 3, since in that case w(0, pyp,p;) is a discontinuous function .
because of the triangle inequality. As a pure convention we put sg(0) = — 1. For
# > 3 one has in such a case 2 a;p; )" ~3 = 0, which settles the question. In the pro-
gramme of an electronic computor, however, this does not help the machine to know
what to do with the sg(0), so we shall adopt the same definition for all n.
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proceeds in the following way:
n
a) One calculates Y p,, which corresponds to
i=1

0= 0y = . =0, =1.

b) One varies the gigns in such a way that in the order o.0;... g, each
o keeps its sign as long as possible (see example):

‘ ~ S ——
\
| 017 Oy w0 Oy 1’ 7, 0y 0y oG Corresponds to
\ 1 A A e
- 1 + , + : + + I P+ Pt Pst Pat D5
' | :
| i \ o
— =+ ? + ¢+ - — 2p;
+ + } + \ - - —2p,
- + l + | - + ! S
o { C_ : - g
7_*1- + | - + | 2p, A
| ; i
4 i i —_ ! J— ' 2 A
M L S W P %
R (5
SRS N — : IE
+ h - =] 4 S 14
: o «
e
S B e I
- — - I
= \{ - — — + + 2p;
b - \ T - |
+ | - + - + + 2p, i
| - ‘
- H - + ! - - - 2p; ‘ |
| |
-t - + 2p, 1.
,,,,,, S — ! i —— ‘
- \‘ — I+ |
[ 1

The example shows that from combination to combination there is always
only one addition to do and the sign of o0,:0;... 0, alternates systematically
Begsides the additions, the machine has to do the (n — 3)rd power and to ob-

42 - Supplemento ¢l Nuovo (imento.
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serve the sign of 3 o;p,. The total number of additions goes therefore roughly
with 27-1 and after each addition (i.e. for each Y o,p;) the power is to be
caleulated, that is 2! times a (n — 3)rd power. We are unlikely to have to
calculate cases where n is bigger than 12, the normal situation will have =
running from 3 to 10 (only megons produced) and from 3 to 5 or 6 (heavier
particles produced). For n =12 one has thus ~ 2050 additions and 2050 ti-
mes a 9-th power. C(ases with n» =7 may be most interesting. This gives
~ 150 additions and 150 times a 4-th power.

Since this number of operations has to be carried out for each sample of
Py ..- Doy, the calculation of w,(0, p,... p,) contributes a great deal to the total
computing time.



