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Introduction.  

R e c e n t  expe r imen t s  (1) on s t range  par t ic les  h~ve g iven  some suppo r t  for 

the  poss ib i l i ty  t h a t  e l e m e n t a r y  par t ic les  of spin h igher  them 1 m a y  exist .  

I n  part icul ,~r the  observed  ~mgular cor re la t ion  b e t w e e n  the  p lanes  of p r o d u c t i o n  

a n d  decay of the  h y p e r o n  A a n d  E, a n d  the  an i so t ropy  of the  a n g u l a r  distr i-  

b u t i o n  of the  E decay produc ts ,  seem to ind ica t e  t h a t  the  spins of these  pa r t -  

icles are 30 or h igher  (2). 

(*) Part  of dissertation submitted in partial satisfaction of the requirements for 
the degree of Doctor of Philosophy from the University of California at Los Angeles. 

(*) Now a CERN Fellow, at Geneva. 
(1) ~V. D. WALKER and W. D. SnEHtARI): Phys. Rev., 101, 1810 (1956); ~V. B. 

FOWLER, n .  P. ~CIlUTT, A. ~-~1. TIIORNDYKE and W. L. ~VHITTEMORE: Phys. Rev., 91, 
1287 (1953); 93, 861 (1594); 98, 121 (1955); L. ~V. ALVAREZ, H. BaADNE~t. P. FALK- 
VAIRANT, I. D. GO'N, A. H. ROZENFELD, F. W. SOLMITZ and R. 1). TRIPe: UCRL 3583, 
University of California Radiation Laboratory, Berkeley 1956. 

(2) At tile time that  the present work is being prepared for publication, evidence 
for tile higher spin of the hyperons is weakening, see Proeeedi~ffs of the Rochester Col~- 
]ere~we of High E~ergy Physics, 1957 (to be published). 
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The theory  of higher spin fields proposed b y  I?IERZ (a), and FIERZ and 

PAULI (4) has  been  simplified b y  the  work of RARITA and SCRWINGE*r (5), 

GUPTA (6) and  MOLDAUER and  CASE (7). In  spite of these simplifications, 

however,  calculations are ve ry  lengthy,  as i l lus t ra ted b y  the calculation of 
the Compton  scat ter ing cross-section by  MATTHEWS (s). 

I t  is the  a im of this note  to present  a new simple formula t ion  of the Fierz- 
Paul i  theory,  and  to ana lyze  in some detail  the s t ruc ture  of this theory  for 
a rb i t r a ry  spin. 

All relat ivis t ic  theories of free fields are based on the principle of invar iance 
under  the  group of co-ordinate t ransformat ions  known as the  Lorentz  group (9). 

This principle requires t h a t  the  wave  funct ion fo rm a basis for a representa t ion  
of the Loren tz  group. The simplest  k ind of field is defined b y  an irreducible 

represen ta t ion  and is said to describe an e lementa ry  part icle,  which provides 

an exac t  and na tu ra l  definition of the la t te r  concept. 

The Loren tz  group possesses two invar iants  

p2 = p , p #  , 

p2S2 = ~ L ~ L  ~j2 

In  an irreducible representa t ion  these mus t  be mult iples  of the ident i ty .  

Define, therefore,  two numbers  m and s, such t h a t  

(a) p2 = _ m 2 , 

(b) S 2 = s(s ~- 1) ,  

(Definition of mass), 

(Definition of spin). 

I n  all the  cases of physical  in teres t  m is a posi t ive number  or zero, and 2s 
is a posi t ive integer  or zero. I n  these cases there  is only one representa t ion  of 
the  Lorentz  group for any  given set of values  of m and s (10), apa r t  f rom an 
ambigu i ty  in the choice of reflection operators  (11). In  the following the value 
m = 0 is excluded f rom consideration,  unless otherwise s tated.  

I n  the first three  sections conditions (a) and  (b) are fo rmula ted  in t e rms  

of conditions on the wave  function,  in the case of no external  forces. A (, spin 

(3) M. I?IERZ and W. PAULI: Proc. Roy. Sot., A173, 211 (1939). 
(5) W. RARITA and J. SCHWI~G~,R: Phys. Rev., 60, 61 (1941). 
(6) S. N. GUFTA: Phys. Rev., 95, 1334 (1954). �9 
(7) p. A. MOLDAUER and K. M. CASE: Phys. Rev., 102, 279 (1956). 
(s) j .  MATTHEWS: Phys. Rev., 102, 270 (1956). 
(9) The short term (( Lorentz group,  is used for the (~ Extended inhomogeneous 

Lorentz group )), which includes translations and reflections. 
(lo) E. P. WIGNEI%: Ann. o] Math., 40, 149 (1939). 
(11) L. L. FOLDY: Phys. Rev., 102, 568 (1956). 

27 - Supplemento al Nuovo Cimento. 
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project ion operator  ~> is introduced,  which great ly simplifies the t r ea tmen t  of 
the subsidiary conditions. In  Sect. 4-9 the Fierz-Paul i  theory  for electro- 
magnetic  in teract ion of particles of a rb i t rary  spin is analysed, with the aid 
of the spin project ion operator.  

In  the last sections polarizat ion operators are in t roduced and applied to 
the calculations of angular distr ibution of hyperon  decay products .  

1 .  - T h e  f r e e  f i e l d s .  

The simplest irreducible representa t ion of the Lorentz  group is t h a t  for 
which s = 0. The wave funct ion is a single funct ion of p, and satisfies the  
condition (a) 

(L1) (p~ + m~)~(p) = 0 .  

This is recognized as the Klein-Gordon equation. 
Four  flmctions ~,(p), which t ransform like the components  of a vector~ 

provide the basis for a reducible representat ion.  Designating this represen- 

ta t ion by  D, we have in fact  

D = D ( 1 ) |  D ( 0 ) ,  

where D(s) is the irreducible representa t ion corresponding to the spin value s. 
Irreducible representat ions corresponding to any other  integral  spin va lue  

m a y  be formed by  taking direct products  of D with itself and expanding the 
products  in Clebsch-Gordon series. For  example 

D Q D =- D(2) |  3D(1)O 2D(0) .  

The quant i ty  tha t  transforms according to D ' = D @ D @ ... | D is the tensor  

of rank  s. The irreducible representat ion D(s) is (2s+1)  dimensional. The  

wave equation (1) applies to each component  of the wave function, while con- 

dition (b) requires tha t  the projections of ~ on the spaces of representa t ions  
of lower spin values vanish. When s = 2, this condition m ay  be wri t ten  

(1.2) 

where q ~  is a tensor of rank 2. Equat ions (2) are equivalent  to Eq.  (6), and  
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are  r e f e r r ed  to  ~s subs id ia ry  condi t ions  (~). S imi la r ly  the  gene ra l  i n t eg ra l  

spin field is def ined b y  the  fol lowing set  of equa t ions :  

2 (1.3a) (p2 + m )~i,+"/,o = 0 ,  

(1.3b) (P...:,,...l,j... ~-- ~.../,~...f ..... 

(1.3e) ~ 

(1.3d) g~'"'-q~/~,,~ i,~ ~ 0 , 

where  s is the  spin. 

I f  the  spin is s = n -~- �89 n in teger ,  the  w a v e  func t ion  is a t ensor  of r~mk n, 

each  c o m p o n e n t  of wh ich  is a D i r a c  four  spinor.  

E q u a t i o n  (3a) is r ep l aced  b y  the  D i r a c  equa t i on  (~3) 

(1.3a*) ( p  ~ -  im)q : ,~ ,  ++, = 0 ,  

and  Eq .  (3d) b y  the  subs id i a ry  condi t ion  

(1.3d*) 7f , ,q;  +,,. ,,,~ = O . 

E q u a t i o n  (3a) is a consequence  of (3a*), ~nd the  on ly  ~ddi t iona l  i n f o r m a t i o n  

con ta ined  in (3a*) concerns  the  choice of ref lect ion ope ra to r s  (~). 

2. - The spin project ion  operator.  

I t  is convenien t ,  t e m p o r a r i l y ,  to express  the  subs id i a ry  condi t ions  (1.3b, c, d) 
or (1.3b, c, d*) b y  the  symbol i c  n o t a t i o n  

(2.1) ~ , ~ = 0 ,  i ~ 1 ,  2, 3 .  

(12) The equivalence of Eqs. (1.2) and Eq. (b) may  be understood by noting that  
the former equates to zero all the tensors of lower rank tha t  can be formed from ~t*,,:" 
Thus, g~1~2~%,~ is a scalar, p~%,~, is a vector, and the antisymmetrio par t  of ~%,~2 is a 
<< six-vector ~>, which transforms by  the sum of two irreducible representations of spin 1. 
In Eqs. (3) below the components of ~t,~ ... are accounted for as follows: the 4 ~ com- 

ponents are reduced to ( s ;  3 ) / - "  by the symmet ry  condition. Subtracting the numbers 
\ - -  / 

2s+1  independent components, as is appropriate for the spin 2 field. 
(~3) Notation.  p ~ y,p~, where y~ are the four-by-four Dirae matrices, defined by 

the commutat ion relations 

Y/,Y~ § Y~Ye = ~gi,~ �9 
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Similarly, for (1.3a) or (1.3a*) 

(2.2) V~ = O. 

In t roduce  an or thogonal  project ion opera tor :  

( 2 . 3 )  0 = ~) = 0 ~ , (~ ~ 740+~a, 

with the following propert ies:  (i) if ~z... is a tensor of rank  s (or a spin-tensor 
of rank  s -  �89 then  (0~0)~...- ~,... t ransforms according to D(s )  (i.e., ~,~ = 0), 

(ii) if a specific (spinor-) tensor %~... t ransforms according to D(s), then  
% .... = (0~)~,.., and (iii) if q;,,.., satisfies Eq.  (2), so does (0~)~...: Symbolically,  

omit t ing indices: 

vi(OqJ) ~ 0 , 

( ~  = o) ~ (~ = Oq~), 

( ~  = o) -~  (~yO~ - o ) ,  

(i), 

(Condition of uniqueness) (ii), 

(Commutat iv i ty  with 7) (iii). 

I t  will now be shown tha t  the only non-tr ivial  solution of (3) and (i) satisfies (ii) 

and (iii). 

U niquenes s  o] O. In  view of the complete symmet ry  of (0~0)~... in all 
indices, O must  be constructed f rom the metr ic  tensor, the vector  p f, and 
(for half-odd-integer spin) y , :  

(2.4) ........ . . .  + + ~, , , ,~  . . .  + . . . } ,  Ot,~...t," = ~ , {ag  ,. . .  ~' o~,,d" + bg~,,~g .... ... d ~ 
P 

where the  sum is over all permuta t ions  of the lower indices. The defining 

equations (i) m a y  be wr i t ten  

(2.5a) 0 ...... ~ = 0 ....... 
. . . ,u~. . . l~  J . . . . . .  , u j . . . p ~ . . .  , 

(2.5b) p'~ 0~;;::. = o ,  

(2.5e) a ' ~ O  ..... = 0 2s even, 

u'b)~ .... = 0 2s odd. (2.5d) ~ __~ .... , 

Combination of Eqs.  (4) and (5) gives 

0/~1'" Vi... 
P 
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Provided O is not  identically zero, Eq. (3) yields 

a n !  = 1 . 

If  9t .... satisfies all the subsidiary conditions, Eq. (4) gives 

which proves tha t  (ii) is a consequence of (3) and (i) unless O is identically 
zero. The uniqueness of O follows. 

C o m m u t a t i v i t y  o/  0 w i t h  ~]. The consistency of Eqs. (1) with Eq. (2) re- 
quires tha t  

(2.~) [v,,  v i C a r #  = o .  

If  this condition is a consequence of Eq. (1) alone (14), the set (1) may  be said 
to be complete with respect to V. I f  i t  is not, simply include the new equa- 
tions (6) in the set (1), and repeat the process untfll a complete set of sub- 
sidiary conditions is obtained. No generality is lost therefore, by  assuming 
tha t  the original set was complete. This is actually true of the set (1.3b, c, d) 
or (1.3b~ c~ d*). 

The commutat iv i ty  of O with fl is an immediate  consequence of the comple- 
teness of the set of subsidiary conditions. The la t ter  m a y  be expressed by 
the equation 

[fl~, ~] O = 0 ,  
o r  

v , [ O ,  v] = - -  v m  O = o .  

Because of (ii), this means t ha t  

o [o ,  v] = [ o ,  v ] .  

Since O and either ~ or i~ are self-adjoint 

[0, v]t = :y [0, v]. 

Applying the last  two equations 

[.o, ~]= e[e, ~ ]=~  e[o, ~]~ ==: 0{0[0, ~]}+= T ore, ~]~e= e[o, ~3o= o. 

(24) If, for example ~ =  yl,qjff, ~2q3 = pl,qj~, f l = p + i m ,  then [91, ~]~v ~ ~'~o= 2p,%~= 
2~q = O. 
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This completes the proof tha t  (iii) as well as (ii) are consequences of (i) and 
of Eq.  (3). For  integral  spin (iii) is tr ivial;  for half-odd integral  spin it  means 
tha t  0 commutes  with p.  

The actual  determinat ion of 0 for a rb i t ra ry  spin has been carried out in 
Ref. (% The results are, for integral  spin s 

(2.7) O j~''''/~* ( l ) a : { i : [  a{*) O 0~"~"(--[0 ~' . . . . . . .  = ,,! 0~, ', + , . . . .  1 .  ~, + . . .  + 
p ( : x )  ~ l i ffi 3 

l'(fi) L 
,~) , ,  ,-,~,/~, ... 0 . . . . .  0 t~' ';~'] + a , . , , )e , , , , ,~  " , s even 

a ( " - l ) l - O  . . . .  " '"  a ,  , s odd 
where 

a(,? = ( - - � 8 9  (2s - -  2r + 1 ) }  -1 

0 .... = g .... _ _ p ~ , p . , J p 2 .  

For  half-odd-integral  spin s = n §189 

(2.8) ,~<...~ . . . .  2s + 1 
c, ...... ,,(s) = 4 ( s +  1) 7"Y~O~J~":::~:" (n + 1) .  

This last  formula provides a very  simple proof of the commuta t iv i ty  of O 
with p 

[O ........ ( s ) , p ] = 2 ( s + l ) ( y ' p e - - p y / 0 t ~  ......... t + 1 )  = 0 .  

One of the main uses of the spin project ion is through the formulae 

for half-odd integer spin, and 

(2.10) ~ ~0 ..... ~ "  = O'~::::, 

for integer spin, where the sums are over the positive energy solutions of the 

wave equation and the subsidiary conditions. Equat ion  (2.9) has been used 

in Sect. i0  and in reference ("). 

3.  - E l e c t r o m a g n e t i c  i n t e r a c t i o n  (16). 

The first a t t empt  to introduce an in teract ion between the higher spin field 

and the Maxwell field was made by  DIRAC (17)~ who s ta r ted  f rom Eq. (1.3) 

(15) R. E. B]~ilttzz~)s and C. FRONSDAL: Phys .  Rev.,  106, 345 (1957). 
(1~) Only half-odd integer spins are considered in Sect. 3-6. Summary results for 

integer spin are given in Sect. 7. 
(17) p. A. M. DIRAC: Proc. Roy.  Soc., A 155, 447 (1936). 
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and (.arried out the subst i tu t ion 

(3.1) PI, --> P , , -  ieAl, �9 

Although this subs t i tu t ion  represents  the only known method  of introducing 

a gauge- inv~r iant  direct  in te rac t ion  between A~, and the  part icle  field, i t  does 
not  uniquely  de termine  the form of the interact ion.  Indeed,  different theories 

are obta ined b y  s ta r t ing  f rom different, though equivMent,  formulat ions of 

the  free field theory.  

I t  was shown b y  FIERZ and PAULI (4) t h a t  Dirac ' s  me thod  leads to in- 

consis tent  equations for the in teract ion of ~ with an a rb i t r a ry  external  electro- 

magnet ic  field. An a l te rna t ive  me thod  w~s proposed, t ha t  avoids the in- 

consistency of the Di rac  theory,  wi thout  complete ly  removing  the ambigui ty .  
Al though it  is not  cer ta in t ha t  the  Fierz-Paul i  theory  is self-consistent 

(in par t icu lar  difficulties seem to preseot  themselves  with regard  to quan- 
t iza t ion (~8)), i t  has been ra the r  wide ly /accep ted .  I t  is, therefore, of some 

in teres t  to exhibit ,  in a s imple way,  the  in t imate  relat ionship between the 

var ious formulat ions  of the Fierz-Paul i  theory,  as well ~s the  impor tance  of 

the spin project ion opera tor  in this connection. 
The theory  of Fierz and  Paul i  is based  on the  requ i rement  t ha t  M] the 

field equutions be der ivable  f rom a single Lagrang ian  vuriat ionM principle (~9). 

Whi le  this requ i rement  is satisfied b y  any  formulat ion of the free field theory,  

the  same m a y  not  hold af ter  the subst i tu t ion (1) has been carried out. The 

me thod  therefore consists of determining a Lagrangian  for the free fields, and 
then  carrying out  the subst i tu t ion in the Lagr~mgian. 

Applicat ion of Eq.  (2.5) shows tha t  the wave  equat ion and subsidiary 
condit ion (1.3) m a y  be deduced ve ry  simply f rom the following equution 

(3.2) (Op + im)q~ = O . 

I n  the m o m e n t u m  representa t ion  pr is a c-number,  so t ha t  Eq. (4.2) m a y  be 

obta ined  f rom the Lagrangian  

(3.3) /i? =- ~( Op -~ im)qJ 

b y  var ia t ion with respect  to ~. However ,  since Op involves inverse powers 

of p~. it does not  seem possible to t r ea t  with conventional  methods  the theory  

(18) •. KUSAKA and J. W. ~VJEINBERG: University o] Cali]ornia Doctoral Dissertatio~t 
of J. W. ~V~xNB]~G (Berkeley, 1940). 

(19) That is, all equations which are postulated (( a priori ~) (i.e., before the variation 
of the Lagrangian is carried out.) <~ A priori ~) conditions on the wave function are 
permissible provided there are properly taken into account under the variation: the 
variations ~q%, ... are not all independent. This was overlooked in the theory of Mol- 
dauer and Case. 
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which would result  from applying (1) to Eq.  (2). Indeed,  it  is a pract ical  
necessity tha t  the Lagrangian be l inear in p .  

The remainder  of this section deals with the problem of replacing (3) by  

a Lagrangian which is l inear in p , ,  with the objective of relat ing to each 
other  the various existing formulations of the Fierz-Pauli  theory.  The dis- 
cussion is l imited to the case of spin 9, since much of the l i t t e ra ture  t reats  this 
case exclusively. In  the following section a more general approach is taken. 

The case o] sp in  9. Eq. (2) may  be reduced to the form of a first-order 
differential equation. The corresponding first order Lagrangian is equivalent  
to (3) in the sense tha t  var ia t ion leads to the same equations (wave equat ion 
as well as subsidiary conditions) for ~ .  After  the subst i tut ion (1) has been 
carried out, this will no longer be true.  

Eq. (2) m a y  be writ ten,  omit t ing indices 

(3.4) - -  imq~ = (1 - -  ~ y ) p O q Y  , 

where ~' is the project ion of ~ which satisfies y . q  = 0 : 

(3.5) ~ ' - -  (1 - ~ r r ) ~ .  

The explicit  expression for O is 

1 1 
(3.6) 0 = 1 - - ~  Y 7 -  ,,:~ (PYP § P~P) . 

0" 1 ) 

When Eq. (6) is inserted into Eq.  (4), the resul t  may  be wri t ten  

(3.7) - -  imq~ = (1 - -  �88 P~) , 

where 

(3.8) 
2 

=- ~p2 PP "q ~ 

is a four-component  spinor field. 

Multiplying Eq.  (8) by  - - i m ,  and subst i tut ing for -- imq~ f rom Eq. (7), 
there  results 

(3.9) - -  i m ~ v  = - -  � 8 9  + �89 .q~' . 

Eqs. (7), (9) are equivalent  to the original set (1.3), and are seen to be iden- 
t ical to the equations of Fierz and Pauli,  in the form obtained in the Ap- 
pendix. 



ON T H E  T I I E O R Y  OF H I G I I E R  S P I N  F I E L D S  4 ~ 5  

Late r  formulat ions of the Fierz-Pauli  theory  do not  require the use of the 
auxil iary field ~p. In  the following it  will be seen how ~p can be eliminated, and 
a general theory  obtained tha t  includes, as special cases, the theories of Rar i ta  
and Schwinger (~), Harish-Chandra (20) and ~[oldauer and Case (7). 

Equa t ion  (7) is equivalent  to 

(3.10) - -  i m q / =  (1 - -  ~ yy)(pq~'-- p F ) ,  

(3.]1) y .~  = 0 .  

The vanishing of p .~ '  and hence of F does not  depend on Eq.  (11), hu t  may  
be inferred from Eqs. (9), (10). Since the la t ter  do not  involve the project ion 

~ " =  �88 , 

which is or thogonal  to ~0', i t  is possible to ident i fy  the field F (which vanishes 
by  vir tue of Eqs. (9), (10)), with the field y.~0 -- ~.~" (which vanishes b y  vi r tue  
of Eq.  (11)). Thus the ~uxili~ry field ~ may  be el iminated by  writing 

(3.12) ~ ---- a y . ~ ,  a ~- 0. 

This makes Eq. (11) superfluous, while Eqs. (9), (10) become, 
respectively 

1 1 - - - -  r !  p .  ! 
(3.]3) --im~v"=- 8 7PY'qP +-19~-a ~' ~ 

(3.14) - -  imq~' = (1 - -  i ~'Y)(Pq~'-- apy.q~"). 

Eqs. (13)7 (14) may  be replaced by  any linear combination of them 

(3.15) k(3.13) + (3.14), k ~ 0, 

as is seen by  mult iplying first by  �88 and then by  ( 1 -  �88 

�88 ~r(3.]5) = k(3.13), 

(1 - -  i rY)(3.15) = (3.14). 

(~o) HXasR-CHANDRA: Phys. Rev., 71, 793 (1947). The theories of References (~) 
and (7), as well as the part of Reference (2o) which is of interest in the present con- 
nection, are all equivalent to the Fierz-Pauli theory. The latter, however, suffers from 
a cumbersome formulation (see Appendix). 
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When Eq. (15) is writ ten out in full, and multiplied by  Cp, the Lagrangian 

{ ( 1  ) (1) 
(3.16) _ P = ~  im 1 - - ~ ( 1 - - k ) 7 ~  + p - -  ~ + a  py ~- 

-+- - , 2 + 1 2 a  Vp + 8- §  8 48a 7PY 

is obtained. 

In  order t ha t  the equation derived from (16) by  var ia t ion of ~ be the  adjoint  
of Eq.  (15), the Lagrangian must  be Hermit ian.  This imposes the condition 

(3.17) k = --  12aa* :A 0 , 

and (16) reduces to, with A - - -  a - -  �89 ~ - - 1  , 

(3.18) /~ =- ~ [ (p  4-ira) §  + A * y p  + �89 =- A + A * §  

- -  i m ( 3 A A *  § ~A + ~-A* -7 ] )yy}~ �9 

This is ~ two-parameter  family of Lagrangians,  and reduces to a one-para- 
mete r  family which is identical  to tha t  obtained by  MOLDAUER and CASE (7), 
when A is t aken  to be real. The Rari ta-Schwinger (5) theory  is obta ined b y  
the  special choice A - - - . } .  F rom the theory of I tar ish-Chandra (20), which 
describes particles of mixed spins, �89 and ~, PET[~AS (2z) has ex t rac ted  the 
spin ~ part .  Pet ras '  Lagrangian,  which is not  Hermit ian,  corresponds to the 

speciM choice k = 1, a = --- �89 =[: ~/~. 

The complete generali ty of (18) is not  guaranted  by  the above analysis, 
bu t  is p roved  rigorously in Sect. 5. The proof rests on some general theorems 
concerning first order wave equations for a rb i t ra ry  spin; these are obtained in 
Sect. 4 for half-odd integer spin, and in Sect. 7 for integer spin. 

4. - The minimal condition. 

The most  general Euler-Lagrange equation which is obtained from a Her- 

mit ian;  Lorentz  invar iant  Lagrangian,  and which is of the first order in Pt,' 
and linear in ~v, may  be wri t ten  

(4.1) (pt~ ~ , Jr imfl)q) O, ~, t, ' 

where the matrices ~ and /~ are form-invariant ,  numerical  matrices (22). 

(21) ~[. I'ETRAS: Czech. Journ. Phys., 5, 2 (1955). 
(22) Note that in the spin �89 case, ~/,= Yl,' fl= 1. 
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The wave funct ion ~v transforms according to some reducible represent- 
ation D~ of the Lorentz  group. The t ransformations consist of an ~ orbital 
pa r t  ,) und ~ <~ spin par t  )), and the two par ts  commute.  Therefore the spin 
matrices are, by  themselves,  a representat ion of the Lorentz  group; ~' D ~ (L) 
say. This ma y  be wri t ten  as a direct  sum of irreducible representat ions D(i, L), 
with i = �89 -~, ..., s, (we are dealing in this section with half-odd-integer spin 

only) 

(4.2) D'j)(L) = D(s, L ) |  D ( s - - 1 ,  L ) |  ...| D ( s - - 1 ,  L ) |  D(s - 2, L ) |  ... 
s 1 

= D(s, L ) |  ~ n~D(i, L ) ,  

The spin value s appears once, while the number  ni is the multiplici ty of the 
spin value  i. 

Commuta t ion  relations for the matrices ~, and fi will now be derived from 
the following requirements.  

two equations 

First,  tha t  Eq. (1) be equivalent  to the following 

(4.3) (1 - -  0)~ : 0 ,  

(4.4) (p ~- ira) Oq~ = O . 

Here  O~v is the pa r t  of ~v which transforms according to the first term of 
Eq.  (2). Thus Eq.  (3) is the subsidiary condition which requires tha t  the 
spin be unique, and Eq.  (4) is the wave-equat ion which we impose on O~v only. 
~ot ice  tha t  the representat ion is not  necessarily in terms of Dirac spinors, 
so tha t  Eq.  (4) means tha t  there  is a wave equation which would take tha t  
form i] such a representa t ion were used. 

Eq. (4) is the condition tha t  the mass be unique, bu t  reflects also the choice 
of reflection operators.  Specifically, it is invar iant  under  the substi tut ion 

(4.5) Oq~(p,, p)  -+ ~, off(p, ,  - - p )  . 

The reason for demanding this invariance is simply the success of the Dirac 
equation for spin ~-. As long as one is discussing free fields only, there is no 
reason to ex tend  invariance under  (5) to hold for the entire wave-function. 

However,  when the electromagnetic  interact ion is introduced, Eq.  (3) will no 
longer hold. Analogy with the spin -�89 case therefore suggests tha t  Eq. (1) 

be invar iant  under  a t ransformat ion of the form 

(4.6) q~(p,, p) -+ ~,~(p,, - - p ) .  

The choice of ~4 in Eq.  (6) is not  imperative,  bu t  any other  choice consistent 
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with Eq. (5) is easily seen to be equivalent for our purpose. An al ternative 
way of stat ing the inv~riance under (6) is to require that ,  if u representation 
in terms of 4-spinors is used, the ~, and fl be expressible in terms of 7 -matrices 
and the metric tensor (i.e. no a-matrices or 75 will appear). 

Thus, the requirements from which commutat ion relations for ~# and fl 
will be derived ~re the equivalence of Eq. (1) to the set (3), (4), plus the 
invarianee of Eq. (1) under  (6). 

A component of ~0 may  be labelled by the number i, referring to the re- 
presentation D(i, L) (see Eq. (2)), a number  t,, (1 ~ t ~n~)  which refers to 
one of the n~ representations D(i, L), a number  s~ taking on 2i §  values 
and a sign (the sign of the energy). The two la t ter  refer to the 2(2i+1) 
components of D(i, L). Hence 

(4.7) 9~ =I t s ,  i, s~, e ) ,  e = 2~. 

I t  is clear that ,  by  definition 

(4.s) ! o / 

Consider the sub-group L ~ of L under  which a given momentum vector pO 
is inv~riant. This was called the little group by Wm~ER (~0), who proved 
tha t  D(~)(L o) may  be writ ten as the following direct sum of irreducible repre- 
sentations 

(4.9) 
s - 1  

D(~)(L ~ = D+(s, L ~ �9 D-(s, L o) �9 ~ n~[D+(i, L ~ | D-(i, L~ 
i=�89 

Form-invariance of ~, and fi under L, means t ha t  al,p ~ and fl commute with 
(,~) 0 D r (L).  By  Schur's lemma:  

(4.1o) (e, s,,  i, t,l%pO'It',, i', s',, e') = ~,,~,5~,.,~(e, s,, i, t~i~ po'[t',, i, s,, # )  

~nd similarly for ft. Invariance under (6) gives (as is easily seen in the rest- 
system of p0,) 

(~, s,, i, t, i%p o~ it',, i, s~, ~') = (po)~ .a(i),,,,, 

Formal ly  

s - 1  

0:.]1) ~,,p" = p |174 ~ a(i),,,,], 

(4.12) fl ~- [b(s) �9 ~ b(i),,,;], 
*-�89 
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where a(i)t,t ~ and b(i)t,t; are numerical matrices diagonal in the dimension i. 
Here the superscript (,% on p0, has been dropped, since Eqs. (11) and (12) 
are explicitely eovariant. 

Comparison of Eqs. (8), (11) and (12) gives immediately (since a(s) and 
b(s) are one-dimensional) 

(4.13) 

(4.14) 

~ p "  0 = Oazp ~ =: pOa(s) , 

flO - O f f  = Ob(s).  

Hence Eq. (11) may  be writ ten as two separate equations 

(4.15) [pa(s) + i m  b(s)JOq~ = O, 

(4.16) [~,p" -~ imfl](1 - -  O)q~ = O. 

Up to this point the form-invariance of ~,  and fl plus invariance of Eq. (1) 
under  (6) have been exploited. There remains the requirement tha t  Eq. (1) 
be equivalent to Eqs. (3) and (4). In view of the above this means, first, tha t  

(4.17) a(s) = b(s) = i ,  

and, second, tha t  Eq. (16) reduce to Eq. (3), i.e. t ha t  the secular determinant  

(4.18) Det [ (~,p~' + imfl)(1 --  O)] 

mus t  be non-zero for all values of m. I t  is seen tha t  this is impossible for 
m = 0, so tha t  this case must  be excepted. Next,  fi must  be non-singular, 
or more precisely, fl~ must  have the same number  of components as ~. Then 
there exists a matr ix  defined by 

/~-~fi~ = q~ . 

The determinant  (4.18) may  then be replaced by 

(4.19) Det [ ( F p "  Jr im)(1 --  0 ) ] ,  / ' ,  : f l - ~ .  

According to Eqs. (11) and (12), 

S--1 

(4.2o/ ~ p ~  - v | [1 | ~ c ( i ) , f l ,  
i=�89 

and (4.18) is the product  of the determinants 

C(i) • b- l ( i )  a(i),  

(4.21) Det  [p | C(i),,t~ § im~,,t;], i = s, s - -1 ,  ..., �89 
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These determinants  are non-zero only if they  are all of the form 

( i m )  "~ . 

But  every mat r ix  satisfies its eharacterist ie equation, hence 

(4.22) [ c ( i )F  = 0 .  

This is the main result. I t  may  be wri t ten  in a number  of ways, the mos t  
striking being Eq.  (27) below. Conditions of this form are referred to as 

minimal  conditions. 

I t  has been proved tha t  the necessary and sufficient conditions tha t  Eq.  (1), 
with form invar iant  % and fi, be equivalent  to Eqs.  (3) and (4), and be inva- 
r ian t  under  (6), are tha t  the m~trices satisfy the conditions 

(4.23) F # p "  0 = O F ~ , p  ~ = p O  , 

(4.24) ~ o  = o ~  = o ,  

s 1 

(4.25) p . p .  -- p G [1 | ~ c(i)~,~:] , 

s - 1  

(4.26) /~ = 1Q  ~ b(i)t~t~, 

(4.27) ( l~p,)  ~ o = (p)~ o ,  

where 

and g is the largest of the numbers  n~. Eqs. (23) and (24) are simple resta- 
tements  of Eqs. (13), (14) and (17). Eq.  (27) is completely equivalent  to  
Eq.  (22). 

N o t e .  - I f  the wave-funct ion is a tensor spinor of rank  s -  �89 and sym- 
metr ic  in all the  tensor indices, ~ = ni = s+�89 so tha t  

(Ft, p~) '~ ~ = (p)~§ 0 .  

This can be realized only if s = �89 or ~, since only then  is the r ight-hand side 
a polynomial  in p , .  This proves a s ta tement  b y  KVSAKA and W~I~BEaG (18), 

t ha t  a symmetr ic  tensor-spinor of rank  2 is insufficient to describe the spin 
field by  a first order wave equation. If,  however,  a general (i.e., no t  

symmetric)  spinor-tensor is used, ~ will always satisfy the min imum requi- 
r emen t  of making the r ight-hand side of Eq.  (27) a polynomial  in p~. 
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5. - W a w e  equat ions  for spin 

In  Sect. 3 it  was seen tha t  the spinor-tensor ~.  is adequate  for the con- 
s t ruct ion of a first-order wave equation for spin ~, and a Lagrangian (Eq. (3.18)) 
was constructed.  With the aid of the results of the preceeding section, the  
complete general i ty of th'~t Lagrangian will be demonstrated.  

The reduct ion of ~,  according to irreducible representat ions of the Lorentz. 
group may  be carried out  as follows 

!!1 
with 

, ) i  . A f,, = ~/(1 2)(7"-- 4p p/~: )~:,,, 

B"v:,, = ~ ~:'v,,. 

Here O~ is the spin ~ part., having 8 independent  components,  and the o the r  
two parts  have each the four components  appropriate  to spin ~- fields. Fur ther-  
more 

A . B  -- B . A  ---- 0 , 

A . A = B . B = I .  

1" a In  this representat ion the explicit  form of ~.p, as given by  (4.25) is 

(5.1) (Fap ~) - Op ~- A C ~ p A  4- A C ~ p B  4- B C ~ p A  4- BC, ,2pB.  

I t  is now a simple ma t t e r  to impose the requirements  1), tha t  _Pap a be of the 
first order in P/,' and 2), tha t  the square of the mat r ix  C be zero, as required 
by  Eq. (4.27). Next  the most  general form of the mat r ix  fl is wri t ten down 

(5.2) /3 = 1 4- const 77 �9 

I t  is immediately found tha t  the Lagrangian 

z = - ~ { ~ v y  + imp}  q~, 

with -P ~,p:, and fi given by  (5.1) and (5.2), is identical to the one found in 
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Sect. 3 (Eq. 3-16). This constitutes a rigorous proof that  the latter is indeed 
the most general Lagrangian which is linear in p, ,  and from which all the 
field equations may be derived by a single variation, when the wave equation 
for the spin ~ field is taken to be the tensor-spinor ~ .  In particular (3.18) 
is the most general hermitian Lagrangian, under these conditions. 

6. - Algebra  of the  /~-matrices .  

Commutation-relations may be derived for the matrices I ~ = f l - ~  from 
the minimal condition (4.27) and from (4.23), (4.24). In terms of / '  /z 

(6.1) 

o r  

(6.2) 

In the rest system 

(6.3) 

(F, pt') ~ - p~ O ,  

(r~v, ' )  o = o ( C P " )  = ~ ,o  , 

(F ,p  ~-p)(F, ,p~)  ~ =- O. 

(]~ - y,)/'~; = o .  

In these equations ~ is the largest number of fields of given spin that  appear 
in the wave-function ~0. The esixtence of a relation of the form of Eq. (3) 
was derived by KUSAKA and WEI~BE~G (is), who did not give the present 
definition of the number ~. l~either was Eq. (1) given by these authors. The 
weaker condition 

(6.4) (F, ~ - 1)F~ ~ - o ,  

has been given by H),~Is~-C~A~])RA (~o) and by U~EZAWA and VISCO~TI (:~). 
Although tile methods of these authors differ somewhat from each other, the 
basis of the argument is in each case the requirement that  every component 
of the wave-function satisfy the Klein-Gordon equation. In the present ana- 
lysis Eq. (4), as well as the stronger condition (2) have been derived from the 
requirements that  the solutions of Eq. (1) describe particles of unique spin, 
and that  ~ unitary parity operator exist. 

In the rest system 0 = f~ ~, by Eq. (1). Hence f f i  is an idempotent. This 
can also be seen by iteration of Eq. (4). 

Since the p~ are arbitrary, conditions more general than Eq. (3) may be 
deduced from Eq. (2) 

(6.5) Z ( r , , -  ~ . ) r . . . . .  r . ~  = ~ F . ,  ... F . ( C , -  7 . ) =  o ,  
P(a} P(p) 
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and the weaker conditions 

(6.6) ~ ( I ' J ' , ,  - -  O,,,,)F/, . . . / ' ~  = Zr....r.(r.r.,- o . , )  = o ,  
P{/~) P(#)  

where the sums are over all permutat ions  of the indices. Special examples 
of Eqs. (5), (6) are needed for the calculation in Sect. 8 of magnetic moments  

(6.7) 

(6.s) 

(6.9) 

where i, ~ = 1, 2, 3 and 

{6.10) P~  

_r[  ( r  - r . ) / ' ,  ~ = o ,  

n 

P+[r,(~ r~ ~ - }I'[ )rj + r~(~ 1', ~ - ~ r,~) F,]P+ = ~,~, 
i =0  i = 0  

F4P•  = •  , 

= �89 Jr-/'4)/'4 n = �89 (1 ~ / ' 4 ) .  

7. - Integer  spin fields.  

In  the case of integer spin, not  first-order bu t  second order wave equations 

are considered 

(7.1) (~ ,~p 'p~  § m2fl)cf = 0 . 

In  the simplest non-trivial  case, tha t  of spin 2, it  proves sufficient to work 
with a symmetric,  traceless second rank tensor ~, , ,  and one auxiliary scalar 
field 9. Star t ing from the wave equation (in terms of an arbi t rary  2-nd rank 

tensor) 

(Op 2 4- m2)q ~ = 0 , 

a field ~' tha t  satisfies the algebraic subsidiary conditions, is introduced 

(7.2) 

The terms in ~p2 containing powers of 1 /p  2 are absorbed into a new scalar 

field 9, which is subsequently identified with ~%~': There result two equations 

tha t  may  be added in analogy with Eqs. (3.13), (3.14), to give a 2-parameter  

family of Lagrangians. 
Considerations very  analogous to those of Sect. 4 may  be applied to the 

integer spin case. The main results of Sect. 4 are contained in Eqs. (4.23-27), 

2 8  - Supp leme~do  tel Nt toeo  Cimento .  
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and have  the following analogues, 

(7.3) ( p . ~ . p ) O  

(7.4) t~o 

(7.5) p.F.p 

(7.6) 

(7.7) 

where 

(7.8) 

and //-i is defined by 

t~ 

(p. F" p)~ 

respect ively  

= O(p .~ .p )  ---- p 2 0 ,  

= O ~  = 0 ,  

s - 1  

= p , [ l e  ~ c ( 0 , j  
i = 0  

s - 1  

---- [lff~ Z b(i)t,,;], 
i = 0  

=p2n O ,  

~ -  l fl qj = qj . 

These results m a y  be applied to the  der ivat ion of the mos t  general  wave  
equat ion for spin 2, in te rms  of the  wave  funct ion ~%. For  a traceless, sym-  
metr ic  ~ ,  the dimensions of the  C(i) matrices  are nl = no = 1. Thus ~ = 1, 

and  Eq.  (7) cannot  be satisfied, l~elaxing the  t race  condit ion on q,v, there~ 

results nl = 1, no = ~ =  2. Al ternat ively ,  the  s y m m e t r y  condit ion m a y  be  

given up, so t h a t  nl = ~ =  3, n 0 =  1. 
I n  the  general  case of integer  spin s, the wave  funct ion m a y  be t aken  to  

be  a tensor  of r ank  s. A comple te ly  symmet r i c  tensor  cannot  be used, since 
then  ~ =  n o = - 1 ( s + 2 )  or { ( s + l ) ,  according to whether  s is even or odd, res- 

pect ively.  B u t  this does not  make  the  r ight  hand  side of Eq.  (5) a polynomial ,  
/ \ 

except  when s = 2 .  If,  instead q0 .... is complete ly  traeeless, n~_,----(:),  which 
in general  is much  larger t han  wha t  is required b y  Eq.  (5). Vii 

F r o m  Eqs. (3), (4), (5) commuta t i on  relat ions m a y  be derived in the  fo rm 

~ F , , , , , . . . F , ~ _ l , . ( F , , , - - g , , , , ) = O .  
P(l r 

8. - Magnetic moment of fermions. 

The magnet ic  m o m e n t  of particles defined b y  an equat ion of the form 

(8.1) [F#I7 ~ § imJq~ = O, II" ---- p" - -  ieA~, 

was considered b y  I-IARIStI-CHANDKA (24). HARISIt-CItANDRA finds, in the  non- 

(23) H. UM]~ZAWA and A. VISCONTI, see H. UMEZAWA: Quantum Field Theory (Am- 
sterdam 1956). 

(24) HARISH-CHANDRA: .PrOC. Roy. Soe., A195, 195 (1948). 
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relativistic approximation,  tha t  Eq. (1) reduces to 

(8.2) {(II4 + im) -- 2~mH~HJP+I'~ (P_ + 2"~=~F~4Po)F~} P+qo 

where P •  were defined by  Eq. (6.10) and 

/9o = 1 - -  T'4 ~ . 

= 0 ,  
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This result  relies on Eq.  (6.4) only, and the number  ~ remains unspecified 
in Harish-Chandra 's  theory.  

Noting tha t  the form invariance of F ,  requires tha t  

(8.3) F / =  F,S,, -- S,~F,, 

where 24/are the spin t ransformation matrices, there follows by  a generalization 
of a technique due to Petras  

(8.4) P+ r ,  (P_ + 2 ~ r~, Po)r~.P+ = �89 s.r~)(P_ + 2 ~ G,Vo)rP+ + 
i ~ 0  J = o  

~ - 1  

+ �89 F/(P_ + 2 ~/'4/Po)(ES4,- S4, F~)P+ = P+(S4,F,- 1-',S, jlP+. 
/ = 0  

When this result  is in t roduced into Eq.  (2), t ha t  equat ion becomes 

{(//4+ i m )  _ 2@m]-l, I I  i _ F"M.} P+9 0 , 

where the magnet ic  moment  M .  is given by  

e 
(8.5) M ,  ---- ~ P + ( S 4 / ~ - -  S4jF,)P+. 

Any relativistic wave funct ion may  be considered as being composed of 
two par ts  as follows. One pa r t  contains the spin s field, and is a tensor-spinor 
of rank  n = s - -  �89 This pa r t  of the complete wave funct ion ~0 (written wi thout  
indices) shall be wri t ten  ~, . . .z .  (with indices). The other  pa r t  of ~0 does no t  
contain a spin s field, and must  therefore vanish as a consequence of the field 
equations. This pa r t  will be wri t ten  9. The project ion (0~) is the set of wave  
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functions which satisfy the following conditions 

( i )  ~ . . . .  0 P %,...~. 

( i i )  ;~"~v ..~,. -= 0 , 

(iii) ~. . . , , . . . / ,~ . . .  = %..t,~.. .~.. .  , 

(iv) 

Le t  ~n infinitesimal Lorentz  t ransformat ion  be carried out  

p ,  -+ p,~ , 
(8.6) 

~(p) -+ ~(p') § d~oN4,~(p) �9 

When these substi tut ions are made in Eqs. (i)-(iv), there  follows tha t  

( ~  = O) ~ ( W S , , ~ =  0 ) .  

Here  ~j~ = 0, r = 1, 2, 3 stands for the three  conditions (ii), (iii) and (iv). 
By  the definition of O this m~y be wri t ten  

or, in the  rest  system 

(8.7) 

v~S4iO = 0 , 

~t~ S4i P+ ~ 0 . 

Wi th  respect  to (iv), this means tha t  the pa r t  ~ of the wave funct ion may  
be ignored in the calculation of the magnet ic  moment .  Then the F~-matriees 
must  be expressed in terms of the  invar ian t  matrices g~,  y~, and e~v~. When 
un expression of this form is in t roduced into (5), i t  is immediate ly  recognized 
tha t ,  because of Eq. (7), the only surviving t e rm is t ha t  which is diagonal 

in all tensor indices. By  Eq.  (6.7), this t e rm is equal  to y~. Hence 

(8.8) _M, = (e/2m) P+(S4iyj - -  S4jy~)P+. 

The  explicit  form of S~ is (ignoring the p~rt  which acts on ~o) 

2 y 4 y ~ U ~ x ~  " ' "  : ' ~ ' " ~  4:~m - -  ~ m + t  " ' "  

m 

When this is inserted into (8), all bu t  the first t e rm is annihilated by  the 
project ion operator  P+, and there  remains 

3 I  ~ ( e / 2 m ) P + y i y j P + .  
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By means of some simple algebra 

p "~, , p  ,~+,... 

. . . .  1 2  ~' P Y .... ---- (P+)~']:(5~', +(1 1/2s)rz, r~')r~rj(6~ ', � 8 9  / s)r~,r )( +),,00... 

tP  + ~ ' 1 r l  . . ~ '  ~ ~ '  (5~ ~ " - -  ~j~mS~)...j~ +j~,~ .... -sS~jP+ = l i p  ~ r , . . .  1 
, , . . . . .  ~ L ~ r , r J - ~ , . . . - ~  ~ , . . .  = = �9 

Hence the eigenvalues of the magnetic moment  are given by 

e <Sk> 
(8.10) <Mij> -- 2m S ' 

where <S,} are the eigenvalues of the k-component of the spin, and i, j, k =1 ,  2,3 

cyclically. 
This formula has been given by MOLDAUER and CASE (7), bu t  derived 

rigorously only for spin ~ (see footnote (19)). PETRAS (91) gave the correct 
value for the magnetic moment  of spin-~ particles, al though the Lagrangian 
underlying Petras theory is not  Hermitian.  Recently evidence concerning the 
spin of the muon has been obtained, which is par t ly  based on Eq. (10). 
GARWIN, LEDERMAN and WEINRICH (29) have found tha t  the gyromagnetie 
ratio of the muon is 2.00. The gyromagnetic ratio of particles obeying the 
Fierz-Pauli equation (1) is given by Eq. (10) to be 1/s. Hence, if the muon 
is a Fierz-Pauli particle, its spin must  be �89 

9.  - P o l a r i z a t i o n  o p e r a t o r s .  

In  addition to the spin projection operators O introduced in Sect. 2, 
projection operators which select certain values of the z-component of the 
spin are needed. (For convenience polarization is always referred to the 
z-direction.) These will be referred to as polarization operators. The simplest 
example is encountered in the case of spin �89 Polarization operators for this 
case have been used by MICHEL and WmHTMA~ (95), and BOUCHIAT and 
MICHEL (96) Defining 

] 
(9.1) P(s)  ---- 2s (S�89 + s) ,  

where S�89 is the spin operator with eigenvalues •189 it follows tha t  

P ( s ) ~ o ( s ' )  = a~.+~o(s') , 

(2~) L. MICHEL and A. S. WIGHTMAN: Phys. Rev., 98, 1190 (1955). 
(26) C. BOUCHIAT and L. MICHEL: Compt. Rend. Aead. Sei., 243, 642 (1956). See 

also C. FRONSDAL and H. ~BERALL, Phys. Rev., to appear. 
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where ~ describes a pure spin state.  

be ei ther 

, 1 

C .  F I ~ O N S D A L  

The spin opera tor  S�89 m ay  be taken  to 

i 
or S~ = 

2 

where,  if the momen tum is directed along the z-axis 

~ 1  v 2  - -  tJ2 t J l  , 

I t  is easy to see tha t  

S ~ =  O,O, Em,~m " 

II 
= S�89 - -  ira) 

~o tha t  the two operators are the same when applied to solutions of the Dirac 
equation.  Previous authors  have used the operator  S~, here the a l te rnat ive  
S~ will be found advantageous.  (The pr ime wilt be dropped henceforth.)  

The generalization of (1) to the case of a to ta l  spin of n § 1 8 9  with z-com- 
ponen t  s is 

(9.2) P~(s)  = d(n ,  s) 1-[ (S~+�89 - -  s ' ) ,  
S ' ~ 8  

where s' runs over the eigenvalues of the z-component  of the spin, and 

(9.3) ~S ~ " ~  r ~ ~"  1 ~ N~, S~,~ ~ ,  ,+�89 . . . . . . .  = ~�89 ~ + ~  ~ , .  . . . .  . . . . .  . 
m = l  

The  normalizat ion factor  may  be found by  not ing tha t  

S,~+~.P,,(s) = s P ~ ( s ) .  

t t ence  

and 

(9.4) 

d(n, 8 ) = { I I  ( 8 -  
S ' ~ 8  

p.(8) = { I I  (8 - 8')}-111 

The  polarization operator  commutes with the spin operator,  as is seen by  
ver i fying tha t  

p~l~ S 0~1... n+�89 Pcq... = 0 , 

~ 1  ~S ~ ' " "  = 0 n+�89 
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Examples  of (4) t ha t  will be used in the following section are, for spin 
~nd ~, respect ively 

(9.5) P,(s) : (2s(s ~ -  9/16s~)}-~(S~ + s ) (S~-  9/16s~), 

(9.6) P2(s) = (28(28 ~ -  35s2/4 ~- 225/64s2)}-~(S~ ~- s). 

�9 [S~ + (s ~ - -  3514)S~ ~- 225/64s~]. 

When  only the magnitude,  bu t  not  the sign of the spin component  is relevant ,  

the  appropria te  project ion operators are 

P.(18 I) = P . ( 8 ) +  Pn(-- 8) = { I I  8' )}-111 - 
Is ' tr  Is ' lr  

1 0 .  - A n g u l a r  d i s t r i b u t i o n s .  

Calculations on angular  distributions of the decay products  in interactions 
involving part icles of higher spin will be l imited to one par t icular  case: the 
decay  of hyperons  through the scheme 

gr --> q7 § r~ , 

where ~ is a hyperon  and q~ is a nucleon. Of all the  e lementary  particles 
which are known or suspected to exist, the  hyperons are most  likely to have 
higher spin (1.2). 

The angular  distributions of the hyperon decay products  have been cal- 
cula ted by  ADAIR (27) and TREIMAiN (2s). The present  calculations differ in 
two respects. First ,  ADAIR and TREIMAN assumed tha t  pa r i ty  is conserved 
in the decay. This assumption has been found to be inconsistent  with observed 
facts,  in recent ly  performed experiments  (3o), and will not  be made here. 
Second, earlier calculations have been carried out  by  means of Clebsch-Gordon 
coefficients, while the present  me thod  employs the spin project ion operators 
and the polarization operators.  Because the par i ty  non-conserving interact ion 

has a pa r i ty  conserving par t ,  a par t ia l  comparison with the results of ADAm 
and TREIMAN can be made. 

(27) R. K. ADAIR: Phys. Rev., 100, 1540 (1955). 
(2s) S. B. TR•IMAN: Phys. Rev., 101, 1216 (1956). 
(29) C. S. Wu, E. AMBLER, R. W. HAYWARD, D. D. HOPPES and R. P. HUDSON: 

Phys. Rev., 105, 1413 (1957); R. L. GARWIN, L. M. LEDERMAN and M. WEI~RICH: 
.Phys. Bey., 105, 1415 (1957). 

(30) Venice Conference, 1957. 
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The most general direct interaction is given by the following matr ix  ele- 
ment  (no at tent ion is paid to constant  factors, since the interest is in the  
distributions) 

K = ~2(p~)(1 § a~.dp2 ... p2P,(s)p~(pOp(p~ -- P2), 

where p~, P2 and p are the wave functions of the hyperon (spin n-l-�89 z-com- 
ponent  s), the nucleon and the pion, respectively. Non conservation of pari ty 
is caused by interference of the two terms in the factor (1§ The tran- 
sition probability, summed over the spins of the two fermions, is calculated 
by means of Eq. (2.9), and is found to be given by 

[KI~ = Tr{p2 ... p~P.(s) O(pOp2 ... P2(p~ -- imp)(1 --  a*y5)(p~- im2)(1 § a75)}. 

Using the subsidiary conditions, this can be reduced to 

, 01, 1--oo* ] o + o *  
2 Pl"P2 2 mlm2 T1 @-- ,~-- 

where 

T2 , 

�9 . .  I (~2 ~t2~ . . .  
T1 = Tr{p2 P2 H ~s ) O ( p l ) ~ ) 2  ~ 0 2 } ,  

IS'lC-iSl 

T2 = Tr {p2... p21S,,+�89 (S~,+,~-- si~')O(p~)p2 ... p,,.p~p2~,:,} . 

The first trace, T1, is the par i ty  conserving part  of the angular distribution. 
The second trace depends on tlle relative signs of s and the z-component of 
the nucleon momentum.  This correlation between the directions of an axial 
vector and a polar vector is characteristic of a transition in which par i ty  is 
not  conserved. 

The quantities T~ and T2 can be calculated by making use of the explicit 
form for the spin projection operators given by (2.7) and (2.8). The results 
are as follows: In the rest system of the hyperon Eq. (1) reduces to 

(10.2) I K 12~-- [ 1 +2aa* P, "P~ 1--aa*2 mxm~] T1 Jr a ~-a*2 m'lp~lc~ 

where v ~ is the angle between the hyperon spin and the nucleon momentum.  

For spin �89 T1 and T'~ are equal to uni ty.  

(10.3) 

For spin 

is/7 3 } T1=1~2 /6 ss2 cos~ , 

2 [19 3 3 cos 2 #} . 
T~=Ip~I 16 8s~ 
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For spin ~ the results arc 

(10.4) 

1 _~ 14{~ 97 225 (8s2 q_ 10) cos2 v~ q_ 30 cos, ~ } 

1 i49 17 225 

If a hyperon is produced in a scalar interaction involving a nucleon and various 
particles of spin zero, the component of its spin in the direction of flight is =~�89 
If the two components of the hyperon beam-- tha t  is the spin § �89 component 
und the spin --�89 component--decay incoherently and are of equal strength, 
or if the decay conserves parity (that is, if a is zero), the transition proba- 
bility is given by T~ alone. This case was considered by ADAIR (27) and 
TREIMAN (~s). Setting s2= 41 in Eqs. (3) and (4), the result is: 

for spin 

and for spin 

T ~  1 Jr 3 cos ~0 

T I ~  1 - -  2 co s  2 ~  + 5 cos  ~ . 

These angular distributions are the same as those found by ADAIR and TREI- 
~AN. The more complete results of this work are contained in Eqs. (2), (3) 
and (4). 

The author grutefully acknowledges the untiring guidance and encourage- 
merit of Prof. 1%. J. FINKELSTEIN during the course of these investigations. 
He should also like to express his gratitude to the ~orwegian Government, 
Chr. Michelsens Fund, the 5Tational Science Foundation and the Physics De- 
partment of the University of California at Los Angeles, for financial support. 

A P P E N D I X  

The connection between the spinor representation used by FIERZ and 
PAULI, and the tensor representation employed in the presen paper, is illus- 
trated by transforming the spin ~ wave equations from one representation to 
the other. Even though the spinor representation is the more complicated 
one, it is useful for gaining new insight into the meaning of the subsidiary 
conditions, and the nature of the spin projection operator. 
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The van der Waerden spinors tha t  form a basis for a spin ~ representat ion 
of  the proper  elements of the Lorentz  group are of rank  3. There  are four 
kinds:  aa~c, alva, a]~v and a~d .  The improper  elements of the Lorentz  group 
t ransform aa~ ~ into a ~ 6 ,  a~v into a ' ~ ,  and vice versa. Thus, to represent  
the Lorentz  group the set aa~v, a ]~id or the set a;%~, aAh c is needed. These 
representat ions are reducible. The subsidiary conditions satisfied by  the ir- 
reducible spin ~ parts  are 

(A-l) aaB ~ , a ~ 5, completely symmet r i c ,  

(A-2) a ~  = a , i~ ,  a,i~ = a~,~, 

(A-3) ~ " "" = paa,%~ = 0 , p ~ a , ~  0 , 

where 
PaJ ~ P~ ~ , 

and a, = i I ,  I being the unit  2-by-2 matrix.  
The first set possesses an advantage  with regard to simplicity. The spin 

projection operator is s imply the complete symmetrizer, and the redundant  com- 
ponents  ma y  be completely eliminated. This advantage  is off-set, however, 
by  the non-existence of ~ first order wave equation connecting aa~ o and a~d .  
For  this reason DIRAC, and all subsequent  authors,  have considered the second 
.set. The wave equation is 

[ m a2~v = p ~ h a  ~ b e 

(A-4) i ma]~c = P~Bwi~v. 

DIRAC suggested introducing the electromagnetic interact ion by  means 
.of the subst i tut ion 

(A-5) p,  --~ p , -  i e A , .  

However ,  as pointed out  by  F~ERZ and PAULI, this leads to serious difficulties. 
They  therefore  in t roduced two ~uxili~ry fields, Ca ~nd C ], with the help of 
which the free field equations (2), (3) and (4) can be derived from a single 
Lagrangian principle. There also follows from this t ha t  

(A-6) C a = C ~ =  0 .  

The subst i tut ion (5) may  now be carried out  in the Lagrangian,  or in the 
Euler-Lagrange equations. Of Eqs. (2), (3), (4), (6) only Eq.  (2) remains valid 
in the presence of an interaction.  

The free field Euler-Lngrange equations nre 

<A-7) 
ma~B ! i , ~ ,  Jr 'E ~ . ~ �9 = ~ , v a ~  O B ~ a ) ( p ~ a  ~ + p ~ C D ,  

m C  a = - - � 8 9  I~B.~ ' 

m C j  = - -  �89 B + ~p~aah~. 
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Introduce tensor indices by writing 

Eq. (7) then assumes the form 

where 

a~ = �89  a ~ e  . 

ma~, = (~,)~ (p~'C a.~ + p~ C ~) , 

~ a b 

m C ~  = - - � 8 9  ~ -~- �89 , 

31 ~ ~tt , 

v E I, E 1 E v b  (~.L + �9 = � 8 9  ~a~ka ~ 

Next introduce the Dirae 4-spinors. 

and introducing the ~-matrices 

1( 
the wave equations finally reduce to 

Suppressing spinor indices 

~.uAB) , 

�9 ~ ) (P~- -  p~) ,  
(A-S) / - -  i m y ~  ---- - -  � 8 9  + �89 . 

Equations (8) may also be written 

(A-9) 

where 

Z = 

(pt'l"t, + i m ) z  =- O, 

I - p, + ~ n p i  
�9 ((~ - ~ r j ) p  ~3 + i . , _ l  

\~p ' ,  �89 ~p~, I p' - � 8 9  ! 

Equation (9) is of the same form as that  obtained by GUPTA (~). Although Z 
has 20 components, as compared with the 16 components in Gupta's theory, 
a considerable simplification is achieved in writing the / ' ,  matrices in terms 
of the ~-matrices. In Gupta's theory the four matrices must be given explitiely. 
I t  should be emphasized that  the three formulations of the Fierz-Pauli theory 
are completely equivalent. Equation (9) shall not be considered further, since 
a yet  simpler formulation (Eq. (3.18)) exists. 


