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Introduection.

Recent experiments (1) on strange particles have given some support for
the possibility that elementary particles of spin higher than 1 may exist.
In particular the observed angular correlation between the planes of production
and decay of the hyperon A and X, and the anigsotropy of the angular distri-
bution of the X decay products, seem to indicate that the spins of these part-
icles are § or higher (?).

(*) Part of dissertation submitted in partial satisfaction of the requirements for
the degree of Doctor of Philosophy from the University of California at Los Angeles.

() Now a CERN Fellow, at Geneva.

(1) W. D. WaLker and W. D. SHEPHARD: Phys. Rev., 101, 1810 (1956); W. B.
Fowrer, R. P. Scuurr, A. M. Toorxpyke and W. L. WHITTEMORE: Phys. Rev., 91,
1287 (1953); 93, 861 (1594); 98, 121 (1955); 1.. W. Arvarez, H. BRADNER. P. FaLk-
VairanTt, I. D. Gow, A. H. RozeNreLD, F. T. Sormitrz and R. D. Trirp: UCRIL 3583,
University of (alifornia Radiation Laboratory, Berkeley 1956.

(%) At the time that the present work is being prepared for publication, evidence
for the higher spin of the hyperons is weakening, sce Proceedings of the Rochester Con-
ference of High Energy Physics, 1957 (to be published).
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The theory of higher spin fields proposed by Fierz (3), and FIiErz and
PAuLt () has been simplified by the work of RARITA and SCHWINGER (%),
GupTa (°) and MoLDAUER and CASE (). In spite of these simplifications,
however, calculations are very lengthy, as illustrated by the calculation of
the Compton scattering cross-section by MATTHEWS (8).

It is the aim of this note to present a new simple formulation of the Fierz-
Pauli theory, and to analyze in some detail the structure of this theory for
arbitrary spin.

All relativistic theories of free fields are based on the principle of invariance
under the group of co-ordinate transformations known as the Lorentz group (°).
This principle requires that the wave function form a bagis for a representation
of the Lorentz group. The simplest kind of field is defined by an irreducible
representation and is said to describe an elementary particle, which provides
an exact and natural definition of the latter concept.

The Lorentz group possesses two invariants

Pt =p"p,,
p28? = }L”L ,p* — L”‘L/Mpvp‘ }

In an irreducible representation these must be multiples of the identity.
Define, therefore, two numbers m and s, such that

(a) P2 = —m?, (Definition of mass),

(b) S2=s(s+1), (Definition of spin).

In all the cases of physical interest m is a positive number or zero, and 2s
is a positive integer or zero. In these cases there is only one representation of
the Lorentz group for any given set of values of m and s (¥), apart from an
ambiguity in the choice of reflection operators (*1). In the following the value
m =0 is excluded from consideration, unless otherwise stated.

In the first three sections conditions (¢) and (b) are formulated in terms
of conditions on the wave function, in the case of no external forces. A «spin

(®) M. Fierz and W. PauLi: Proc. Roy. Soc., A 173, 211 (1939).
(®) W. Rarita and J. SCHWINGER: Phys. Rev., 60, 61 (1941).

(6) S. N. Gupra: Phys. Rev., 95, 1334 (1954). N

(") P. A. MoLpauER and K. M. Case: Phys. Rev., 102, 279 (1956).

() J. MartHEWS: Phys. Rev., 102, 270 (1956).

(°) The short term « Lorentz group » is used for the ¢ Extended inhomogeneous
Lorentz group », which includes translations and reflections.

() E. P. WIGNER: Ann. of Math., 40, 149 (1939).

(1) L. L. FoLpY: Phys. Rev., 102, 568 (1956).

27 - Supplemento al Nuovo Cimento.
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projection operator » is introduced, which greatly simplifies the treatment of
the subsidiary conditions. In Sect. 4-9 the Fierz-Pauli theory for electro-
magnetic interaction of particles of arbitrary spin is analysed, with the aid
of the spin projection operator.

In the last sections polarization operators are introduced and applied to
the calculations of angular distribution of hyperon decay products.

1. — The free fields.

The simplest irreducible representation of the Lorentz group is that for
which s = 0. The wave function is a single function of p, and satisfies the
condition (a)

(1.1) (p* + m*)g(p) =0.

This is recognized as the Klein-Gordon equation.

Four functions ¢ (p), which transform like the components of a vector,
provide the basis for a reducible representation. Designating this represen-
tation by D, we have in fact

D =D@)® D),

where D(s) is the irreducible representation corresponding to the spin value s.

Irreducible representations corresponding to any other integral spin value
may be formed by taking direct products of D with itself and expanding the
products in Clebsch-Gordon series. For example

D@D =DE2)® 3DL)® 2D(0).

The quantity that transforms according to D°=D @ D ® ... ® D is the tensor
of rank s. The irreducible representation D(s) is (2s+1) dimensional. The
wave equation (1) applies to each component of the wave function, while con-
dition (b) requires that the projections of ¢ on the spaces of representations
of lower spin values vanish. When s = 2, this condition may be written

plll (p'u}‘”; =5 0 y
(1'2) (p,“\.”-z - (pﬂz."l )
gw'z(p”% =0,

where ¢ s 18 @ tensor of rank 2. Kquations (2) are equivalent to Eq. (6), and
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are referred to as subsidiary conditions (*?). Similarly the general integral
spin field is defined by the following set of equations:

(1.3a) >+ mp,.., =0,
(1.3b) Pttty = Posiytine
(1.3¢) Py = 05
(1.3d) 9Py = 0

where s is the spin. ,

If the spin is s =n -}, n integer, the wave function is a tensor of rank n,
each component of which is a Dirac four spinor.
Equation (3a) is replaced by the Dirac equation (13)

(].Sa*) (P + i’m)w."l"'ﬂn = O ’
and Eq. (3d) by the subsidiary condition
(1.3d%) V' = 0

Equation (3a) is a consequence of (3a*), and the only additional information
contained in (3a*) concerns the choice of reflection operators (11).

2. — The spin projection operator.

It is convenient, temporarily, to express the subsidiary conditions (1.3b, ¢, d)
or (1.3b, ¢, d*) by the symbolic notation

(2.1) ne =0, i=1, 2, 3.

(1) The equivalence of Eqs. (1.2) and Eq. () may be understood by noting that
the former equates to zero all the tensors of lower rank that can be formed from ¢, ,, .
Thus, grkep,, . is a scalar, ptig, ., is a vector, and the antisymmetric part of ¢, ,, is a
« six-vector », which transforms by the sum of two irreducible representations of spin I.
In Egs. (3) below the components of ¢, ... are accounted for as follows: the 4° com-

3
ponents are reduced to (8_; ) by the symmetry condition. Subtracting the numbers

( s+2
3
251 independent components, as is appropriate for the spin 2 field.

(**) Notation: p = y,p#, where y, are the four-by-four Dirac matrices, defined by
the commutation relations

8
) and (2) of conditions imposed by the other two subsidiary conditions leaves

Pu?y + PoVu= 2g,uv .
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Similarly, for (1.3a) or (1.3a*)
(2.2) ne =10.

Introduce an orthogonal projection operator:
(2.3) 0=0=0 O=y0%,,
with the following properties: (i) if ¢, is a tensor of rank s (or a spin-tensor
of rank s —}), then (@¢), =y, transforms according to D(s) (i.e., n.p = 0),
(ii) if a specific (spinor-) temsor ¢, transforms according to D(s), then

Po... = (@tp),,..,, and (iii) if ¢, satisfies Eq. (2), so does (@(p)ﬂ_“: Symbolically,
omitting indices:

7:(0p) =0, (@),
(g =0) - (p = O9p), {(Condition of uniqueness) (ii),
(g =0) > (Op =0),  (Commutativity with 7) (iii).

It will now be shown that the only non-trivial solution of (3) and (i) satisfies (ii)
and (iii).

Uniqueness of ©. In view of the complete symmetry of (Op), in all
indices, ® must be constructed from the metric tensor, the vector p, and
(for half-odd-integer spin) p,:

(2.4) O = dlaghe. gn +bg,,. 0" o o dy, e+,

P
where the sum is over all permutations of the lower indices. The defining
equations (i) may be written

(2.50) O = O

(2.5h) prey =0,

(2.5¢) gre@n =10, 2s even,
(2.53d) yhOh =0, 2s odd.

Combination of Eqs. (4) and (5) gives

Viee e Agerr 1 O
@Mr" @Vr" =4a E @,ul... = an. @/‘r" .
P
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Provided @ is not identically zero, Eq. (3) yields
an! =1.

If ¢, satisfies all the subsidiary conditions, Eq. (4) gives
0, @ =Py =Py
D

which proves that (ii) is a consequence of (3) and (i) unless @ is identically
zero. The uniqueness of @ follows.

Commutativity of @ with n. The consistency of Eqs. (1) with Eq. (2) re-
quires that

(2.6) [, nlp=ng=0.

If this condition is a consequence of Eq. (1) alone (), the set (1) may be said
to be complete with respect to . If it is not, simply include the new equa-
tions (6) in the set (1), and repeat the process untill a complete set of sub-
sidiary conditions is obtained. No generality iz lost therefore, by assuming
that the original set was complete. This is actually true of the set (1.3b, ¢, d)
or (1.3b, ¢, d*).

The commutativity of @ with z is an immediate consequence of the comple-
teness of the set of subsidiary conditions. The latter may be expressed by
the equation

[n,7]0 =0,
or
70, 1] =—nm 0 =0.

Because of (ii), this means that
@[9’ 77] = [@7 "]] .

Since @ and either # or iy are self-adjoint

[0, 7] =T [6,7].
Applying the last two equations

(6, 7] =010, ]=F 0[0, 7' =T 6{6[6, n]}'=T 610, 4]'0=06[6,7]0=0.

(1) If, for example 1,9 = y/p,, 7.9 = pre,, n= p-+im, then [n,, nlp = n'p= 2p p, =
= 2,9 = 0.
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This completes the proof that (iii) as well as (i) are consequences of (i) and
of Eq. (3). For integral spin (iii) is trivial; for half-odd integral spin it means
that © commutes with p.

The actual determination of @ for arbitrary spin has been carried out in
Ref. (°). The results are, for integral spin s

Pl l1=1 i=3
i

2 & 5
BrBs 1 B 1] Bip: 8
(2'7) @ Ay o (§ y> z \i I @’3;' + a @\,\._.@ I |@a: + o +
aoy®,,,0"" ... 0, 20" s even

’
(s Bs—sfam
a1y .0, ... O ‘@f'; , § odd

where
al = (=4 s!{ri(s—2r)! (25 —1)(2s —3).. (2s — 2r + 1)}
0.\, = 9.~ DD,/
For half-odd-integral spin s =n 3
Al
4(s + 1
This last formula provides a very simple proof of the commutativity of &
with p

(2.8) @rfn(s) = )ymﬂmfun+1y

[O%:(s), p] = 22(: i 1) 'ps— 1y O + 1) =0.
One of the main uses of the spin projection is through the formulae
(2.9) 2 Pu, P = AT O,
for half-odd integer spin, and
(2.10) 2 9.9 =00,

for integer spin, where the sums are over the positive energy solutions of the
wave equation and the subsidiary conditions. Equation (2.9) has been used
in Sect. 10 and in reference (¢).

3. - Electromagnetic interaction ().

The first attempt to introduce an interaction between the higher spin field
and the Maxwell field was made by DirAc (1), who started from Eq. (1.3)

(**) R. E. BEoreNDS and C. FrRoNSDAL: Plys. Rev., 106, 345 (1957).
(%) Only half-odd integer spins are considered in Sect. 3-6. Summary results for

integer spin are given in Sect. 7.
(") P. A. M. Dirac: Proc. Roy. Soc., A 155, 447 (1936).
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and carried out the substitution

(3.1) p,—~>p,—1ed

I

Although this substitution represénts the only known method of introducing
a gauge-invariant direct interaction between A  and the particle field, it does
not uniquely determine the form of the interaction. Indeed, different theories
are obtained by starting from different, though equivalent, formulations of
the free field theory.

It was shown by FIErZ and PAULI (*) that Dirac’s method leads to in-
consistent equations for the interaction of ¢ with an arbitrary external electro-
magnetic field. An alternative method was proposed, that avoids the in-
consistency of the Dirac theory, without completely removing the ambiguity.

Although it is not certain that the Fierz-Pauli theory is self-consistent
(in particular difficulties seem to prese‘lt themselves with regard to quan-
tization (%)), it has been rather widely accepted. It is, therefore, of some
interest to exhibit, in a simple way, the intimate relationship between the
various formulations of the Fierz-Pauli theory, as well as the importance of
the spin projection operator in this connection.

The theory of Fierz and Pauli is based on the requirement that all the
field equations be derivable from a single Lagrangian variational principle (*?).
While this requirement is satisfied by any formulation of the free field theory,
the same may not hold after the substitution (1) has been carried out. The
method therefore consists of determining a Lagrangian for the free fields, and
then carrying out the substitution in the Lagrangian. .

Application of Eq. (2.5) shows that the wave equation and subsidiary
condition (1.3) may be deduced very simply from the following equation

(3.2) (Op +im)p = 0.

In the momentum representation p, is a c-number, so that Eq. (4.2) may be
obtained from the Lagrangian

(3.3) L =9(Op + im)p

by variation with respect to . However, since @p involves inverse powers
of pz. it does not seem possible to treat with conventional methods the theory

(1%) 8. Kusaka and J. W. WEINBERG: University of California Doctoral Dissertation
of J. W. WEINBERG (Berkeley, 1940).

(1*) That is, all equations which are postulated «a priori» (i.e., before the variation
of the Lagrangian is carried out.) « A priori» conditions on the wave function are
permissible provided there are properly taken into account under the variation: the
variations 3¢, ... are not all independent. This was overlooked in the theory of Mol-
dauer and (lase.
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which would result from applying (1) to Eq. (2). Indeed, it is a practical
necessity that the Lagrangian be linear in p,.

The remainder of this section deals with the problem of replacing (3) by
a Lagrangian which is linear in p,, with the objective of relating to each
other the various existing formulations of the Fierz-Pauli theory. The dis-
cussion i8 limited to the case of spin 2, since much of the litterature treats this
case exclusively. In the following section a more general approach is taken.

The case of spin 4. Eq. (2) may be reduced to the form of a first-order
differential equation. The corresponding first order Lagrangian is equivalent
to (3) in the sense that variation leads to the same equations (wave equation
as well as subsidiary conditions) for ¢, . After the substitution (1) has been
carried out, this will no longer be true.

Eq. (2) may be written, omitting indices

(3.4) —imp = (1 — }yy)pOy’,

where ¢’ is the projection of ¢ which satisfies y-¢=0:

(3.5) =1—iye.

The explicit expression for @ is

1 1
(3.6) 0=1 —g 7 3pt (pyp + pyp) .

When Eq. (6) is inserted into Eq. (4), the result may be written

(3.7) —imp = (1 —}yy)(pe'— py),
where
(3.8) = i .

. 'l/’ - 3p2 Pp (p

is a four-component spinor field.
Multiplying Eq. (8) by — im, and substituting for — ime from Eq. (7),
there results

(3.9) —imy =—3}py + sp-g’ .
Eqgs. (7), (9) are equivalent to the original set (1.3), and are seen to be iden-

tical to the equations of Fierz and Pauli, in the form obtained in the Ap-
pendix.
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Later formulations of the Fierz-Pauli theory do not require the use of the
auxiliary field p. In the following it will be seen how v can be eliminated, and
a general theory obtained that includes, as special cases, the theories of Rarita
and Schwinger (%), Harish-Chandra (*) and Moldauer and Case (7).

Equation (7) is equivalent to

(3.10) —img'= (1 —}yy)(pg'— py) ,
(3.11) yop =0,

The vanishing of p-¢’ and hence of ¢ does not depend on Eq. (11), but may
be inferred from Eqs. (9), (10). Since the latter do not involve the projection

¢ =19,
which is orthogonal to ¢', it is possible to identify the field ¢ (which vanishes

by virtue of Eqs. (9), (10)), with the field y-@ = y-¢" (which vanishes by virtue
of Eq. (11)). Thus the auxiliary field » may be eliminated by writing

(3.12) Y =ay'@, a 7= 0.

This makes Eq. (11) superfluous, while Eqs. (9), (10) become,
respectively

1 1
3. e ime = — 2. v oot
(3.13) ime g VPYY +12ayp v,

(3.14) —im@'= (1 —yy)(py' — apy-¢') .

Eqgs. (13), (14) may be replaced by any linear combination of them

(3.15) k(3.13) - (3.14) , k0,
as is seen by multiplying first by }yy and then by (1 —}yy)

1yp(3.15) = k(3.13),

(1 —1yp)(3.15) = (3.14).

(3%) HARSH-CHANDRA: Phys. Rev., 71, 793 (1947). The theories of References ()
and (%), as well as the part of Reference (20) which is of interest in the present con-
nection, are all equivalent to the Fierz-Pauli theory. The latter, however, suffers from
a cumbersome formulation (see Appendix).
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When Eq. (15) is written out in full, and multiplied by @, the Lagrangian
. 1 ‘ Loy
(3.16) B:(plzm l—z(l—k)yy) +p— ;+a>pﬁ/ +

1k 3 a b K\ |
AR -s“*'z‘gnsa)wrp

is obtained.
In order that the equation derived from (16) by variation of ¢ be the adjoint
of Eq. (15), the Lagrangian must be Hermitian. This imposes the condition

(3.17) k= —12aa* 0,

and (16) reduces to, with 4 = —a —45—1,

(818) 2 =g{(p tim) + Apy + A%yp + HBALAT L A+ A%+ 1)ypy —
— im(BAA* + 34 + 3AF + yyle .

This is a two-parameter family of Lagrangians, and reduces to a one-para-
meter family which is identical to that obtained by MoLDAUER and CASE (7),
when A is taken to be real. The Rarita-Schwinger (5) theory is obtained by
the special choice A =-—1%. From the theory of Harish-Chandra (2°), which
describes particles of mixed spins, } and 3, PETRAS (2!) has extracted the
spin § part. Petras’ Lagrangian, which is not Hermitian, corresponds to the
special choice k=1, a =—1 4 \/:1,.

The complete generality of (18) is not guaranted by the above analysis,
but is proved rigorously in Sect. 5. The proof rests on some general theorems
concerning first order wave equations for arbitrary spin; these are obtained in
Sect. 4 for half-odd integer spin, and in Sect. 7 for integer spin.

4. — The minimal condition.
The most general Euler-Lagrange equation which is obtained from a Her-

mitian; Lorentz invariant Lagrangian, and which is of the first order in p
and linear in @, may be written

1w

(4.1) (pl‘a” + imﬂ)(p = O y a;‘ —_— OC/’ , ﬂ+ — ﬂ ,

where the matrices «, and f are form-invariant, numerical matrices (22).

(®1) M. PETrAS: Czech. Journ. Phys., 5, 2 (1955)
(*?) Note that in the spin } case, a,=1y,, f=1.
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The wave function ¢ transforms according to some reducible represent-
ation D, of the Lorentz group. The transformations consist of an « orbital
part » and a «spin part», and the two parts commute. Therefore the spin
matrices are, by themselves, a representation of the Lorentz group; D‘;’(L)
say. This may be writfen as a direct sum of irreducible representations D(i, L),

with i =14, %, ..., s, (we are dealing in this section with half-odd-integer spin
only)
(4.2) D)L) = D(s, L)® D(s — 1, L)® ...® D(s — 1, L)® D(s — 2, L)® ..
-1
= D(s, L)® z

The spin value s appears once, while the number #, is the multiplicity of the
spin value 4.

Commutation relations for the matrices «, and § will now be derived from
the following requirements. First, that Eq. (1) be equivalent to the following
two equations

(4.3) (1—6)p =0,
(4.4) (p + im) Op = 0.

Here @¢ is the part of ¢ which transforms according to the first term of
Eq. (2). Thus Eq. (3) is the subsidiary condition which requires that the
spin be unique, and Eq. (4) is the wave-equation which we impose on Gp only.
Notice that the representation is not necessarily in terms of Dirac spinors,
so that Eq. (4) means that there is a wave equation which would take that
form if such a representation were used.

Eq. (4) is the condition that the mass be unique, but reflects also the choice
of reflection operators. Specifically, it is invariant under the substitution

(4.5) Op(ps; p) = ¥s @‘P(pu —p).

The reason for demanding this invariance is simply the success of the Dirac
equation for spin . As long as one is discussing free fields only, there is no
reagson to extend invariance under (5) to hold for the entire wave-function.
However, when the electromagnetic interaction is introduced, Eq. (3) will no
longer hold. Analogy with the spin —3} case therefore suggests that Eq. (1)
be invariant under a transformation of the form

(4.6) o(psy P) = y4@p(Psy — P) -

The choice of y, in Eq. (6) is not imperative, but any other choice congistent
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with Eq. (5) is easily seen to be equivalent for our purpose. An alternative
way of stating the invariance under (6) is to require that, if a representation
in terms of 4-spinors is used, the «, and § be expressible in terms of y -matrices
and the metric tensor (i.e. no o-matrices or y, will appear).

Thus, the requirements from which commutation relations for o, and f
will be derived are the equivalence of Eq. (1) to the set (3), (4), plus the
invariance of Eq. (1) under (6).

A component of ¢ may be labelled by the number i, referring to the re-
presentation D(i, L) (see Eq. (2)), a number ¢;, (1 <t< ;) which refers to
one of the n, representations D(i, L), a number s; taking on 2i-+1 values
and a sign (the sign of the energy). The two latter refer to the 2(2i-+1)
components of D(i, I.). Hence

(4.7) ¢:ltt7i73i78>’ £= 4.

It is clear that, by definition

(4.8) <& 845 1 tii@‘t;’ U s;? &'y =9,,0, -6tie,’6 [0

is Vil 88, Tee’ *

Consider the sub-group L° of L under which a given momentum vector p°
is invariant. This was called the little group by WIGNER (), who proved
that DY(L°) may be written as the following direct sum of irreducible repre-
sentations

(4.9) D?(LO) = Dt(s, L)@ D (s, L°)(-Bs§ n, [ D¢, IN® D-(i, L)) .

Form-invariance of o, and § under L, means that «,p*" and f commute with
DY(L°). By Schur’s lemma:

(4.10) <y 8,17, 1“yp0Mlt’z', iy 8 8 = 6i,i'6sl,s;<57 8,30 Y, ]“”pon [t 4y 8,5 &>

and similarly for §. Invariance under (6) gives (as is easily seen in the rest-
system of p°#)

(& 8,501, Idﬂpo"it;, iy 8, &) = (po)ge'a’(i)ttt’i ’

Cey 8y byt 1Bt 4y 8,, > =4, b(i),,.; -

Formally

(4.11) " = p GLae)® 3 ali), ],
=}

(4.12) B=DbE)® 3 b)),

T
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where a(i),, and b(i),,, are numerical matrices diagonal in the dimension i.
Here the superscript «»» on p* has been dropped, since Egs. (11) and (12)
are explicitely covariant.

Comparison of Egs. (8), (11) and (12) gives immediately (since a(s) and
b(s) are one-dimensional)

(4.13) a,p* O = Ox,p* = pOa(s),
(4.14) BO = 6f = Obs).

Hence Eq. (11) may be written as two separate equations
(4.15) [pa(s) + im b(s)|0p = 0,
{4.16) [o,p" +imBl(1 —O)p = 0.

Up to this point the form-invariance of «, and g plus invariance of Eq. (1)
under (6) have been exploited. There remaing the requirement that Eq. (1)
be equivalent to Eqs. (3) and (4). In view of the above this means, first, that
(4.17) a(s) =b(s) =1,
and, second, that Eq. (16) reduce to Eq. (3), i.e. that the secunlar determinant
(4.18) Det [(x,p*+imp)(1 — O)]
must be non-zero for all values of m. It is seen that this is impossible for
m =0, so that this case must be excepted. Next, § must be non-singular,

or more precisely, fp must have the same number of components as ¢. Then
there exists a matrix defined by

bp=¢.
The determinant (4.18) may then be replaced by
(4.19) Det [(I',p"+im)(1 — O)], I, =g,
According to Eqs. (11) and (12),
(4.20) Ly =p e 3 06,4, 0fi) = b (0)a(i),
and (4.18) is the product of the determinants

(4.21) Det [p ® 0(i),,, + imd, ], i=s, s—1,.., L
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These determinants are non-zero only if they are all of the form
(im)™ .

But every maftrix satisfies its characteristic equation, hence

(4.22) [CEN=0.

This is the main result. It may be written in a number of ways, the most
striking being Eq. (27) below. Conditions of this form are referred to as
minimal conditions.

It has been proved that the necessary and sufficient conditions that Eq. (1),
with form invariant o, and f, be equivalent to Eqs. (3) and (4), and be inva-
riant under (6), are that the matrices satisfy the conditions

(4.23) rp*0 =06r,p"=po,

(4.24) O =06 =0,

(4.25) r'p=poel® z O)y)
8—1

(4.26) B=1@ 2 b,

(4.27) (") @ = (p) 6,

where

(4.28) r,=pgta,

and % is the largest of the numbers n,. Eqgs. (23) and (24) are simple resta-
tements of KHqs. (13), (14) and (17). Eq. (27) is completely equivalent to
Eq. (22).

Note. — If the wave-function is a tensor spinor of rank s —}, and sym-
metric in all the tensor indices, @ = n, = s+4, so that

(") = (p)* 6.

This can be realized only if s =1} or 3, since only then is the right-hand side
a polynomial in p,. This proves a statement by KusaxA and WEINBERG (1%),
that a symmetric tensor-spinor of rank 2 is insufficient to describe the spin
5 field by a first order wave equation. If, however, a general (i.e., not
symmetric) spinor-tensor is used, m will always satisfy the minimum requi-
rement of making the right-hand side of Eq. (27) a polynomial in P,
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5. — Wawe equations for spin 3§

In Sect. 3 it was seen that the spinor-tensor ¢, is adequate for the con-
struction of a first-order wave equation for spin , and a Lagrangian (Eq. (3.18))
was constructed. With the aid of the results of the preceeding section, the
complete generality of that Lagrangian will be demonstrated.

The reduction of ¢, according to irreducible representations of the Lorentz
group may be carried out as follows

0, o

p
v, =4 o |,
B g,
with
A'g, =V (AN2) (" — 4p'plpYyp, »
By, =4)'p,.

Here @g is the spin § part, having 8 independent components, and the other
two parts have each the four components appropriate to spin } fields. Further-
more

AB=B-A=0,
A-A=BB=1.

In this representation the explicit form of I'p* as given by (4.25) is
(5.1) (Ip") = Op + AC,,pA + AC,,pB + BCyuypA + BCypB .
It is now a simple matter to impose the requirements 1), that I";p* be of the
first order in p,, and 2), that the square of the matrix O” be zero, as required
by Eq. (4.27). Next the most general form of the matrix § is written down
(5.2) f =1+ constyy.
It is immediately found that the Lagrangian

2 =G{pr,p' +imflg,

with I',p, and g given by (5.1) and (5.2), is identical to the one found in
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Sect. 3 (Eq. 3-16). This constitutes a rigorous proof that the latter is indeed
the most general Lagrangian which is linear in p,, and from which all the
field equations may be derived by a single variation, when the wave equation
for the spin § field is taken to be the tensor-spinor @, In particular (3.18)
is the most general hermitian Lagrangian, under these conditions.

6. — Algebra of the /-matrices.

Commutation-relations may be derived for the matrices I',=f"a, from
the minimal condition (4.27) and from (4.23), (4.24). In terms of r,

(8" =" 6,

(6.1)
(r'p" 0 =6 (I,p") =po),

or

(6.2) (" —p)LpY = 0.

In the rest system

{6.3) (]14 - V4)F4" =0.

In these equations % is the largest number of fields of given spin that appear
in the wave-function ¢. The esixtence of a relation of the form of Eq. (3)
was derived by KUsakA and WEINBERG (18), who did not give the present
definition of the number n. Neither was Eq. (1) given by these authors. The
weaker condition

(6.4) I —nrye =0,

has been given by HARISH-CHANDRA (2°) and by UMEZAWA and VISCONTI (22).
Although the methods of these authors differ somewhat from each other, the
bagis of the argument is in each case the requirement that every component
of the wave-function satisfy the Klein-Gordon equation. In the present ana-
lysis Eq. (4), as well as the stronger condition (2) have been derived from the
requirements that the solutions of Eq. (1) describe particles of unique spin,
and that a unitary parity operator exist.

In the rest system @ = I')", by Eq. (1). Hence I',” is an idempotent. This
can also be seen by iteration of Eq. (4).

Since the p, are arbitrary, conditions more general than Eq. (3) may be
deduced from Eq. (2)

(6.5) SL=y )Ly =30 T (I, —7,)=0,

Pl Pig)
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and the weaker conditions

(6.6) 2aor,.—o,)0, .. =3I, rr,—aé

e [ /m')
Py Pl

=0,

where the sums are over all permutations of the indices. Special examples
of Eqs. (3), (6) are needed for the calculation in Sect. 8 of magnetic moments

6.7) I, —y ) =o,

(6.8) PLT(

<El\4:|
o

_%' 4’7)1’,~+Fj(zﬂi—%ﬂ;')ﬂ]E:6u-,
i=0

(6.9) nr, =+p,,

where 4, j=1, 2,3 and

(6.10) P, =31 4+T)" =31 +1y).

7. — Integer spin fields.

In the case of integer spin, not first-order but second order wave equations
are considered

(7.1) (2, p"p” -+ mP)p =0 .

In the simplest non-trivial case, that of spin 2, it proves sufficient to work
with a symmetric, traceless second rank tensor ¢,,, and one auxiliary scalar

field . Starting from the wave equation (in terms of an arbitrary 2-nd rank
tensor)

(Op* +m)p =0,
a field ¢’ that satisfies the algebraic subsidiary conditions, is introduced

(7.2) @, = [3(6,0¢ + 020)) — % 8,,0"%p;, -

The terms in @p? containing powers of 1/p? are absorbed into a new scalar
field u, which is subsequently identified with ¢ /: There result two equations
that may be added in analogy with Eqs. (3.13), (3.14), to give a 2-parameter
family of Lagrangians.

Considerations very analogous to those of Sect. 4 may be applied to the
integer spin case. The main results of Sect. 4 are contained in Egs. (4.23-27),

28 - Supplemento al Nuovo Cimento.
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and have the following analogues, respectively

(7.3) (prap)® = O(p-ap) =@,
(7.4) BO — 6 — 0,

(1.5) pTp = p[1® 3 Cl),)
(7.6) B=11® 3 b,
(1.7) (p-Ipy" =p* 0,

where

(7.8) ]"'w, = ﬁ‘loc”v ,

and - is defined by
by =g.

These results may be applied to the derivation of the most general wave
equation for spin 2, in terms of the wave function ¢, . For a traceless, sym-
metric @,,, the dimensions of the C(i) matrices are n, =n,=1. Thus w =1,
and Eq. (7) cannot be satisfied. Relaxing the trace condition on ¢,,, there
results n, =1, n,=7n=2. Alternatively, the symmetry condition may be
given up, so that n,=m =3, n,=1.

In the general case of integer spin s, the wave function may be taken to
be a tensor of rank s. A completely symmetric tensor cannot be used, since
then # = n,= }(s-+2) or }(s+1), according to whether s is even or odd, res-
pectively. But this does not make the right hand side of Eq. (5) a polynomial,

except when s=2. TIf, instead ¢, . is completely traceless, n, ,= <S>, which
in general is much larger than what is required by Eq. (5).
From Egs. (3), (4), (5) commutation relations may be derived in the form

z Fﬂ]/‘z F/l,-,_mn (F/m' - g/m') =0.

Py

8. — Magnetic moment of fermions.

The magnetic moment of particles defined by an equation of the form
(8.1) [I 11"+ imlp =0, II" = p“— ieA*,

was considered by HARISH-CHANDRA (2%). HARISH-CHANDRA finds, in the non-

(2*) H. UmezAwA and A. VisconTI, see H. UMEZAWA : Quantum Field Theory (Am-
sterdam 1956).
(**) HarisH-CHANDRA: Proc. Roy. Soc., A 195, 195 (1948).
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relativistic approximation, that Eq. (1) reduces to
. 1 . n—1 ; 1
(8.2) (H4+@m)—mHLH7P+E(P_+22F4P0)P,IP+¢:0,
1=0

where P were defined by Eq. (6.10) and
-PO e 1 -_— F4;‘ .

This result relies on Eq. (6.4) only, and the number # remains unspecified
in Harish-Chandra’s theory.
Noting that the form invariance of I', requires that

(8.3) I'y= I8 — 8,1y,

where §,; are the spin transformation matrices, there follows by a generalization
of a technique due to Petras

n-1 n-1
(8.4) P+TZ(P_+2ZF4ZP0)F,P+'——%P.{.(I}SM—SM]—L)(P_"I—2ZF4iPO)F]P++
T=0 i=0

n—1
+ 3P, TP+ 23 I P8y — 8y )Py = Po(84: ', — I;84,) P,

t=0

When this result is introduced into Eq. (2), that equation becomes

I ;, __L T i 1
1(H4+7/m) 2imﬂﬂl F M” P+q)0,

where the magnetic moment M,; is given by

[4

(8.5) M=

P8yl — 8y )P .

Any relativistic wave function may be considered as being composed of
two parts as follows. One part contains the spin s field, and is a tensor-spinor
of rank n=s — 4. This part of the complete wave function ¢ (written without
indices) shall be written ¢, ..., (with indices). The other part of ¢ does not
contain a spin s field, and must therefore vanish as a consequence of the field
equations. This part will be written ¢. The projection (B¢) is the set of wave



436 C. FRONSDAL

functions which satisfy the following conditions

(i) PP == 0
(ii) YO, = 05
(iii) Pttty = Prvtyoesi?
(iv) p=0.

Let an infinitesimal Lorentz transformation be carried out

pt—p't,
(8.6)
(p) = (') + dwS,; p(p) -

When thege substitutions are made in Eqs. (i)-(iv), there follows that
ey =0} = (. Sup =0} .

Here n,¢ =0, r=1, 2,3 stands for the three conditions (ii), (iii) and (iv).
By the definition of © this may be written

nrs_u‘g = 0,

or, in the rest system

(8.7) anuPJr =0.

With respect to (iv), this means that the part y of the wave funetion may
be ignored in the calculation of the magnetic moment. Then the I';-matrices
must be expressed in terms of the invariant matrices g4, y,, and ¢,,,. When
an expression of this form is introduced into (5), it is immediately recognized
that, because of Eq. (7), the only surviving term is that which is diagonal
in all tensor indices. By Eq. (6.7), this term is equal to y;. Hence

(3.8) Mi; = (e/2m) P (8,iy; — Suy:) P+ .
The explicit form of 8,; is (ignoring the part which acts on )

(S0l = Fyapidlin 4 3 80.(0,, 80n— 08, 8m)80m

Km+1

When this is inserted into (8), all but the first term iz annihilated by the
projection operator P., and there remains

M = (e/2m)Py.y; Py .

if
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By means of some simple algebra

(P+)§1iiiyiy;(P+)Z§ii'.‘, =
— (PR (00 — 31— 1/28)y5,9™)pevi (05, — B (A — 1/28)ps, Y™ (P15, =

1 1 t m 1 1
= (P _8 300 e — 3 08t oo (8ig, 01" — 85,07 . (PG, = ~8uP,.

Hence the eigenvalues of the magnetic moment are given by

e {8
(8.10) M) = 5 7
where (§,) are the eigenvalues of the k-component of the spin, and 4, j, k=1, 2,3
cyclically.

This formula has been given by MoLDAUER and CASE (?), but derived
rigorously only for spin 3 (see footnote ('°)). PETRAS (2!) gave the correct
value for the magnetic moment of spin § particles, although the Lagrangian
underlying Petras theory is not Hermitian. Recently evidence concerning the
spin of the muon has been obtained, which is partly based on Eq. (10).
GARWIN, LEDERMAN and WEINRICH (**) have found that the gyromagnetic
ratio of the muon is 2.00. The gyromagnetic ratio of particles obeying the
Fierz-Pauli equation (1) is given by Eq. (10) to be 1/s. Hence, if the muon
is a Fierz-Pauli particle, its spin must be {.

9. - Polarization operators.

In addition to the spin projection operators @ introduced in Sect. 2,
projection operators which select certain values of the z-component of the
gpin are needed. (For convenience polarization is always referred to the
z-direction.) These will be referred to as polarization operators. The simplest
example is encountered in the case of spin §. Polarization operators for this
case have been used by MIcHEL and WIGHTMAN (%%), and BoucHIAT and
MicHEL (2¢) Defining

1
(9.1) P(s) =5 (83 +3),
where 8§, is the spin operator with eigenvalues 414, it follows that
P(S)V)(SI) = 633’1/)(8,) H

(25) L. MicgeL and A. S. WIGHTMAN: Phys. Rev., 98, 1190 (1955).
(26) C. Boucuiar and L. MicHgL: Compt. Rend. Acad. Sci., 243, 642 (1956). See
also C. FronspaL and H. UBEraLL, Phys. Rev., to appear.
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where y describes a pure spin state. The spin operator §; may be taken fo
be either

! 1 i4 " i
Sy=5 87y ot Sy=gysy,,
where, if the momentum is directed along the z-axis

B
WS, S = {0, 0, ", E%} .
It is easy to see that
8y(p — im) = Sy(p — im)

so that the two operators are the same when applied to solutions of the Dirac
equation. Previous authors have used the operator S;’, here the alternative
8, will be found advantageous. (The prime will be dfopped henceforth.)

" The generalization of (1) to the case of a total spin of n+1 with z-com-
ponent s is

(9.2) Pn(s) = d("’ 8) ]___[ (Sn+% e SI) 9

$'#£s

where s’ runs over the eigenvalues of the z-component of the spin, and

(9.3) (Sppy)iibn — gy00 .. 00 + S of st o

m=1

The normalization factor may be found by noting that

S,L%Pﬂ(s) = sP,(s).

Hence

d(ny 8) ={IT (s — ")}
and h
(9.4) Po(s) ={TT (s — 80} TT (85—

$'FEs s ks

The polarization operator commutes with the spin operator, as is seen by
verifying that

p™(8,,0) =0,
Y (8,395 = 0.



ON THE THEORY OF HIGHER SPIN FIELDS 439

Examples of (4) that will be used in the following section are, for spin 2
and 3§, respectively

(9.5) Py(s) ={2s(s* — 9/165) }-(8, + 8)(8; — 9/16s?) ,
(9.6) Py(s) ={2s(28*— 35s%/4 4 225/645%) } (8, + 8)-
-[8§ + (s* — 35/4) 8} + 225/645%] .

‘When only the magnitude, but not the sign of the spin component is relevant,
the appropriate projection operators are

P,(|s]) = Pu(s) + Pu(— ) {H (82— 8" }—1]_[ 8., —8%).

8"t # 181 18’1 #181

10. — Angular distributions.

Calculations on angular distributions of the decay products in interactions
involving particles of higher spin will be limited to one particular case: the
decay of hyperons through the scheme

H—>N+=,

where ¢ is a hyperon and @7 is a nucleon. Of all the elementary particles
which are known or suspected to exist, the hyperons are most likely to have
higher spin (1-2).

The angular distributions of the hyperon decay products have been cal-
culated by ApAIR (2?) and TREIMAN (28). The present calculations differ in
two respects. First, ADATR and TREIMAN assumed that parity is conserved
in the decay. This assumption has been found to be inconsistent with observed
facts, in recently performed experiments (3°), and will not be made here.
Second, earlier calculations have been carried out by means of Clebsch-Gordon
coefficients, while the present method employs the spin projection operators
and the polarization operators. Because the parity non-conserving interaction
has a parity conserving part, a partial comparison with the results of ADAIR
and TREIMAN can be made.

(?) R. K. ADAIR: Phys. Rev., 100, 1540 (1955).

(*8) 8. B. TrREIMAN: Phys. Rev., 101, 1216 (1956).

(%%) C. S. Wu, E. AMBLER, R. W. Haywarp, D. D. Hopris and R. P. HuDpsoN:
Phys. Rev., 105, 1413 (1957); R. L. Garwin, .. M. LEpErMaAN and M. WEINRICH:
Phys. Rev., 105, 1415 (1957).

(30} Venice Conference, 1957.
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The most general direet interaction is given by the following matrix ele-
ment (no attention is paid to constant factors, since the interest is in the
distributions)

K =9,(p,)(1 + ay5) Pe .. P2 Pu(8) w1 (01 (D1 — pa)

where 9., ¥, and ¢ are the wave functions of the hyperon (spin n4 4, z-com-
ponent s), the nucleon and the pion, respectively. Non conservation of parity
is caused by interference of the two terms in the factor (1+ay;). The tran-
sition probability, summed over the spins of the two fermions, is caleulated
by means of Eq. (2.9), and is found to be given by

| K [2=Tr{p; ... paPa(8) OP1)Ps ... Po(pr — tm)(1 — a¥y5)(p. — imy)(1 + aps)}-
Using the subsidiary conditions, this can be reduced to

1+ aa* 1 — aa* a + a*

(10.1) | K |? ~ 2 P1°Pe— — 9 mym, | Ty + Ty T T,,
where
Ty = Tr{p, ... ;s [T (8},, —8") O(01) P2 ... 12},
181718]
T, = Tr{pz. S 3 Hl 2 —8)OPIP, ... Dy 1Pz%} .
s

The first trace, 7T, is the parity conserving part of the angular distribution.
The second trace depends on the relative signs of s and the z-component of
the nucleon momentum. This correlation between the directions of an axial
vector and a polar vector is characteristic of a transition in which parity is
not conserved.

The quantities 7, and T, can be calculated by making use of the explicit
form for the spin projection operators given by (2.7) and (2.8). The results
are as follows: In the rest system of the hyperon Eq. (1) reduces to

1+ aa* 1 — aa* a—l—a m
o PPy mamy| Ty + 7

(10.2) |K |2~ |p2|COS?9T2,

where & is the angle between the hyperon spin and the nucleon momentum.
For spin 3, T, and T, are equal to unity.

For spin §

=P, {;- —%—— cos? 19}

[19

(10.3)
T;:[f)’z|2l6 ———3c0s20} .
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For spin § the results are

N 17 97 225
T, _BI 2|4{? sZ—Z + 390 (8s% 4 10) cos2 4 4+ 30 00340} ,
(10.4)
.1 (49 17 225
T, = B|p2 |4 {—2— 82— T T304 (2452 + 150) cos? 9 + 150 cos? 19} .

If a hyperon is produced in a scalar interaction involving a nucleon and various
particles of spin zero, the component of its spin in the direction of flight is + 4.
If the two components of the hyperon beam—that is the spin +4 component.
and the spin —} component—decay incoherently and are of equal strength,
or if the decay conserves parity (that is, if ¢ is zero), the transition proba-
bility is given by T, alone. This case was considered by ADAIR (*7) and
TREIMAN (28). Setting sz =1 in Eqgs. (3) and (4), the result is:

for spin #

T,~1+4 3cos2d
and for spin §

Ti~1—2cos2d + b5 costd.

These angular distributions are the same as those found by ApAIr and TREI-
MAN. The more complete results of this work are contained in Egs. (2), (3)
and (4).
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APPENDIX

The connection between the spinor representation used by FIErRz and
PavuLl, and the tensor representation employed in the presen paper, is illus-
trated by transforming the spin § wave equations from one representation to
the other. Even though the spinor representation is the more complicated
one, it is useful for gaining new insight into the meaning of the subsidiary
conditions, and the nature of the spin projection operator.
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The van der Waerden spinors that form a basis for a spin § representation
-of the proper elements of the Lorentz group are of rank 3. There are four
kinds: a,,,, a4,,, a4, and a45¢, The improper elements of the Lorentz group
transform a,,, into a48é, a4, into a43,, and vice versa. Thus, to represent
the Lorentz group the set a,,,, ¢4%¢ or the set ad,,, ai®, is needed. These
representations are reducible. The subsidiary conditions satisfied by the ir-
reducible spin  parts are

(A-1) Qpey @AB¢,  completely symmetric,
(A-2) ady, = a‘ioB ’ aij?c = aj‘ic ’
(A'S) pfig“‘iso =0, pfi'a'ibo =0,
where

Pai = D.0%y;

and o, =4I, I being the unit 2-by-2 matrix.

The first set possesses an advantage with regard to simplicity. The spin
projection operator is simply the complete symmetrizer, and the redundant com-
ponents may be completely eliminated. This advantage is off-set, however,
by the non-existence of a first order wave equation connecting a,,, and ads¢,
For this reason Dirac, and all subsequent authors, have considered the second
set. The wave equation is

I Madge = Pppat?,,

A-4 , L
( ) 1 ma/A'BC — pBBaABv .

Dirac suggested introducing the electromagnetic interaction by means
-0f the substitution

(A-5) Dy —> Py— ieA” .
However, as pointed out by FIERz and PAULI, this leads to serious difficulties.
They therefore introduced two auxiliary fields, €, and C4, with the help of

which the free field equations (2), (3) and (4) can be derived from a single
Lagrangian principle. There also follows from this that

(A-6) C,=0C+=0.

The substitution (5) may now be carried out in the Lagrangian, or in the
Euler-Lagrange equations. Of Eqs. (2), (3), (4), (6) only Eq. (2) remains valid
in the presence of an interaction.

The free field Euler-Lagrange equations are

ma'?, = 35308 + 030 (PP’ + 9E0H)

5(0205 + 0505)(s50%%, + PECS)
mCA = —%pM;Ci’+ %pga’éux ’
mO; =— %ijOB + %pgaj&a .

mac,,

i

(A-T)
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Introduce tensor indices by writing

adb, — gud at ai = }o

Eq. (7) then agssumes the form
= (k9™ a,, + p,0%)
ma;u = ( ,u)A (pi:bav + y28 E’) ’
mOA = %pu'aoii + %pﬂa‘m y

mOi = — %ijCB + %p”aﬁ ’
where

f=105308 0k + ok oh) of =4 80f + 10,50,
= 0,8 + fots0y.

Next introduce the Dirac 4-spinors. Suppressing spinor indices
a,, _ 'ZCA
(pﬂ = (a,u‘i> ! ‘/’ - (ZCA> ’
and introducing the y-matrices
1 Ouin
Vo= i (O-”A'B ’
the wave equations finally reduce to

[ —img, = (6; — tv.¥" N pp,— DY),

A-8 )
A | —imy =—1ipy + 3v°g,.

Equations (8) may also be written

(A-9) (P, +im)y =0,
where _
2 It TRl 1 ¢
P2 5 At g‘pz*‘i‘yzl’
r=|%] Plu= =P . —Dst dvsp
Pa i — Pt ivp
14 3Ph 3[7 )y 30% p* _EP

Equation (9) is of the same form as that obtained by GuprTa (°). Although y
has 20 components, as compared with the 16 components in Gupta’s theory,
a considerable simplification is achieved in writing the I, matrices in terms
of the y-matrices. In Gupta’s theory the four matrices must be given expliticly.
It should be emphasized that the three formulations of the Fierz-Pauli theory
are completely equivalent. Equation (9) shall not be considered further, since
a yet simpler formulation (Eq. (3.18)) exists.



