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Summary. — Extending calculations carried out before (), the present
paper is dealing with the exact statistics of the fluctuation of wave trains
emitted by a source the extension of which cannot be neglected. As before
the individual wave trains are supposed to decay exponentially, however,
it is assumed here that the individual trains have different frequencies,
intensgities and polarization. Various experimentally observed effects,
among them that obtained with the stellar interferometer by HANBURY
BrownN and Twiss (1) can be quantitatively accounted for.

1. - A beam emitted by any light source shows fluctuations of intengity;
the fluctuations are caused by the random superpositions of the wave trains
emitted by the individual atoms of the source. This problem was dealt with
phenomenologically by HANBURY BROWN and Twiss (1) and others; the quantum
mechanical treatment was considered recently by MANDEL (2) and we have
algo dealt with this problem previously (). However, so as to predict quan-
titatively effects caused by this fluctuation it is necessary to congsider the
problem in more detail.

In the first part of this paper we determine the simultaneous distribution
functions of the electric vectors produced by the source at given times in given
points of the receiver and their time derivatives. In the second part we shall
determine certain experimentally observable quantities and discuss a number
of effects.

1

(") R. Haxeury Brown and R. Q. Twiss: Proc. Roy. Soc., A 242, 300 (1957).
(%) L. MANDEL: Proc. Roy. Soc., 72, 1037 (1958).
(®) L. JAwossy: Nuovo Cimento, 8, 111 (1957).
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370 L. JANOSSY

2. — Consider a light source situated around a point P and a receiver si-
tuated around & point ¢, we denote

PG=L and L=|L|.

The atoms of the source are situated in points P;, while points of the receiver
may be denoted €, we shall write

PP.=R,, QQG,=r,.
Thus the vector pointing from P; to @, is given by
(1) Ly=L-+r,—R,, Lz‘k:lLiki-

We shall suppose that the atom in P, is suddenly excited at an instant T,
and thus starts to emit an exponentially decaying wave band. The front of
the wave band arrives at a time 7T;+ L;je in the point Q. The electric
vector of the wave train in @, at a time t; can be written

(2) E{” = E.e(yta) cos (0 + 2709;)

with

where y is the damping constant of the emitting atom, w,; the frequency emitted,
@, the phase. E, is a vector giving polarization and intensity of the emission,
finally

e, x>0,

3 =
(3) e(x) , s 0.

Strictly speaking, the vector E, depends also on the position of the point €.
We shall, however, assume that both the light source and the receiver have
dimensions small as compared with L, thus we assume

(4) R,,rn<L,

and therefore we shall neglect in our calculation the dependence of E; upon
the position of the point @,. Further we shall use such an approximation that
we may assume E; to be perpendicular to L; in order to investigate effects
of polarization, we fix two directions «1» and «2 » perpendicular to each other
and perpendicular to L; the components of E, in these directions may be de-
noted by E, I=1,2. The corresponding components of the field strength
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 371
in ¢ at ¢, can be written

EY = EPe(yty) cos (0.t + 279 , 1=1,2.
If ¢ #¢P, the radiation emitted is elliptically polarized.
Finally, in order to be able to work out infensities of the radiation, it is
useful to introduee quantities which are proportional to the time derivatives
of the field strength. We gshall write

(5) EP™ = Ble(yta)en(oity+ 2a¢) =1, 2,
where we suppose
cos ', m=1,
cm(“ﬂ =
sin &, m =2,

The four quantities E{*™, I, m =1, 2 fully characterize the effect of the emis-
gsion of the atom in P, in the point @, at .. The total field strength in @,
at ¢, is given by the four quantities

(6) B — 3 B lym=1, 2.

7

We shall be interested in the simultaneous values of the field strength in two
points say @, and ), at times #, and ¢,, respectively. The state is described
thus by eight quantities B, where we suppose that « can take eight values
corresponding to the eight values of the triple index klm with k, I, m =1, 2.
We shall also denote these eight components by one symbol

(7) € =8 E®, .., B"",
where 1, II, ..., VIII stand for 111, 112, ..., 222, respectively.

3. — Presently we determine the simultaneous probability distribution of
the eight components of € We denote this distribution by P(€); we shall
restrict ourselves to the determination of the logarithmic generating funetion
of P(E€), thus

(8) H(p) zlnfexp(@b)P(@)d@,

where the integral is an eightfold integral of the eight components of & and

VIII

. (o) .
Co =3 B, ;
=1
b o=, Uy Uy

1283



372 L. JANOSSY
are the eight transformation parameters corresponding to the components
of €.

So as to determine P(E) or H(v) we have to make assumptions about the
emissions. Each emission can be characterized by the following parameters

R, E, T, o, v, ¢,

namely, point and time of emission, amplitude and phases of emission. It
will be convenient to split R into two components

©) R=A+B,
where A is parallel to L, while B is perpendicular to L; furthermore, we are
interested in the components B and E® of E. We characterize thus an emis-

gion more precisely by a set of parameters , which we denote by a symbol ¥,
namely

(10) A =1, A, B, E®, E®, o, g0, ¢ ,
We suppose the probability of an emission inside an interval 9,% - 6% to be
equal to

7)) A .

The probability density 7(2() shall be assumed not to depend explicitly either
on the time 7 or on the average phase

@ = g 4 ).

Thus we may write
(11) P(A)dA = Np(a)dadT de,
where the symbol a stands for the parameters
(12) a=A4, B, BV E®, @, p
only, and where we have introduced
Y=g —gP.
N is the number of impulses emitted per unit time. The quantity

(13) n— N2y
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 373

has the dimension of a pure number and can be regarded as a measure of the
overlap of the exponentially decreasing wave bands. In most practical cases
we may suppose

w31,

So as to determine the generating function H(p) we have to introduce the
functions

(14) E(%A) = B°N), E(N), ..., BTNA) ,
with

(15) E@(U) = EP(yton) m(whog, -+ 27¢)
and

(16) tog =T — 1,4+ | L — R+ ryfe.

E(A) gives the eight components of the field strength which arise in ¢, and
@), at the times ¢, and ?,, provided an emission took place with the para-
meters A ingide the source.

As it was shown elsewhere (¢) the génerating function H (b) can be written as

(17) H(v) :f(exp bE(A)— 1) p(A) Ay,

where we have put
VIiL

&) = > v, B .
a=1
4. — With the help of the generating function (17) we can determine the mo-
ments of the distribution P(E€). We shall denote the derivatives of H(v) into
Vyy Vgy ooy U, &b the point =0 by H with suitable suffixes. Thus we write

8/00‘ *a,va a/uﬁ>b:0 = Hzxﬁy oo o
Differentiating (17) into v,, Dgy oy U, We find for =10
(19) Hyp..o= | EV(A) ED(A) ... E(A)p(AYdA .

Introducing the explicit expressions for E®(U) from (15) we find with the
help of (11) that on account of the averaging over the phase ¢

(20) H, =0, a=T1,11, ..., VIII;

(*) G. Grarr and L. JiwossY: in press. (Acta Phys. Hung. 10, n. 3).

24 - I1 Nuovo Cimenio.
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374 L. JANOSSY

similarly, all odd order derivatives of H vanish for v =0, in particular

(1) H,, =0.

aBy

Differentiating (8) one to four times, we find with the help of (20) the fol-
lowing expressions, which will be used further below

<E(zx)> — Hzx =0 , <E(pc)E(/3)> — Hzxﬂ’

(22) 2 2 ] 2
(BB — (B )EP) = H, 55+ 2H,,,

the meaning of the suffixes «, § is as follows:
(23) o= kim, g =KLM, k,l,mK, L, M=1, 2.

The expressions (22) can be evaluated using (19) and (15). We find with the
help of (11) and (13) when we carry out the integration into T

(24)  Hy=mn f exp [— | torg — fopy, | 10 (@lay + 277P)
“Cpr(wly -+ 2mp P ) EVE® p(a) dady .

The above expression can be simplified if we put m = M and sum over this
index; we find

2

(256) > ) Hyp= nfexp [— ¥ o — for 1"
m= =
008 [t — togy) - 2@ — )] BOED p(a) da.

Another important expression derived from (24) is the following:

©6) 23 H—w f exp [— 7l o — toge | + fapze — fors -

m, M=1
+ 008 [ty — top,) — @ (byy e — togye) + 20(@® — @ — @ - )]
.E(l)E(l)'E(L)E(L)'p(a)p(a’) dada’.

Finally, we write down an expression containing fourth derivatives which will
be needed further below

L 1 2 2
(27) > Huups= 5 nfexp [— 2y [torg — tog 1 B E** p(a) da .
m, M=1

5. — The expressions (25), (26) and (27) can be further simplified if we
neglect suitable small terms.
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 375

Split R into its longitudinal and transversal part according to (9) and split
r;, similarly into
r, = a;+ bk ’

where a, is parallel, b, perpendicular to L; expanding (16) into powers of 1/L
we find

1 (b,— B)?
(28) tﬂk:T—tk+z(L+a’Ic+—k2L

+ terms of higher 0rder>.

Neglecting higher orders we may put

(29) torg — tok = T+ Tk »
where
1 b:—b?
(30) t:tk—tx+_0(ax—ak+ “% ’“),
and
B(b;—b,)
(31) Togr = _’;‘ITG_’L )

‘We note that
B(bx—b:)  Bb,
VYR = T4 T4
where
A =cly

18 the half length of the individual wave frains. If we suppose
(32) L, A> By, b ,

By, b, are the orders of magnitude of the transversal dimensions of cathode
and light source, then we have

(33) Yo~ 0

and we may put

(34) ¥ [k — foue | ~ vt .

When evaluating the integrals in Sect. 4, we cannot neglect, however,

Bbx—b,) 2nBb,

(35) OTopp = 27 T ~ T

where we have put 2nc¢/w = 4, 2mejw,= 4,. The latter quantity has a signi-

24* - Il Nuovo Cimenlo.
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376 L. JANOSSY
ficance well known in interference optics. If

Bgb,
L,

<<17

then the source P with transversal dimensions B, produces on the screen with
transversal dimension b, a coherent image.
We can, however, neglect

' 27t By
(36) (0 — wo)Tope ~ ﬁ ~0,
where
2nce
37 '
(37) 4 Aw,

is the coherence length of the beam as determined by the spectral width of
the emissions only, when disregarding the effects of damping.

Equations (33) and (34) express that we suppose the transversal dimen-’
sions B,, b, of light source and receiver both to be small as compared with .

- 2me
T Awy

A= and A’

¢
14

S0 as to simplify the integrals in Sect. 4 it is also useful to assume some
symmetry properties. If we assume the projection of the light source onto
a plane perpendicular to L to have circular symmetry, we can assume the
probability of an emission corresponding to a co-ordinate vector B to be equal
to that with a co-ordinate vector — B; therefore a value of 7y, = v appears

with the same probability as 7y, . =—7 and under the integral we may re-
place

cos w(t 4+ tQIkK)
by

$(cos ot + Ty ) + cos ot — Typ)) = COS wF COS WTgp, .
Furthermore, we can write because of (36)

OTorr ™~ Polopx -

Finally, if we suppose

fsin (0 — woYtp(a)dw~0,
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 377

then we can replace under the integral
cos mt by COS gl Co8 (w — wy)t .

We thus get the following approximate expressions:

2

(38) > H.,p~ nexp[—y|t|]cos wot[E(”E“) cos (0w — we)t-

M=M=l

* 08 27 (g — V) cos 27 lj(bz; o) p(a) da,
0

(39) 2 z By = (n exp [— ¢ [t|]{ EDE® cos (0 — o)t

m, M=1

B(by—b,)

- o8 2n(p — pP) eos 2x

. 2
——L’}Lo—— p(a) da) .

(In obtaining the last expression we also supposed on grounds of symmetry

. B(b;—b,)
/sm2n2“;tok~dB:0.)

2

1
(40) 2 Hups= znexp[—y[t]]| EVE'p(a)da .

m, M=1

The expressions (38) and (39) can be further simplified if we take the distri-
butions of 4, B, of v and of E, E®, g, — ¢, to be independent of each other

(41) p(a) = pi(4, B) po(@)po( BV, B?, @, — 1) 5
we have
2
(42) m=§=1 H, 3= nexp[—y|t]] cos wit (BVE® cos 27 (g™ — @) -
- {eos (0 — wo)t) / L\

\ L, VA

2

(43) 23 Hi= (n exp [— k|t |[<EVE® cos 2m (¢ — g®)> -

(€03 (0 — wo)t> <e 2B ;Az >)2

2
44 2 Houps= %% exp [— 2y [¢||[{BVE®™ |
M=

m, 1
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I1.

We apply the expressions obtained in the previous Section to the evaluation
of certain observables effects.

6. — Two-ray interferometer.

We receive in a point @ of the screen two coherent images of the source P.
The effect is the same as if we were to add up the emissions received in two
points @, and @, at one and the same instant ¢, = £, =0. We may specify

the points @, by writing a,=b,=0, a,=, by=1y. If we regard the com-
ponent polarized into the direction ! we find for the intensity in ¢

(45) J(Q) = 22 (BES™ - Ge™)2

The expected value of J(Q) is obtained with the help of (42) and (22)

TR = 2J(1+¢),

where
dJ 0= <E(l)2> ?

is the intensity of the single beam, and

(46) £ = 22: H,4|J, = exp[— X/|A] éos (27 X[ )"
| o -{cos (v — a)o)'X/0> <eos 27 —1%);> .
and
g ¥
X =04+ 5T *

The second factor on the right of (46) gives the interference pattern. The ‘
first deseribes its extinction with increasing path difference due to the damping
effect, the third term ‘gives the extinction arising from the band width
Awy = w — w,, the lagt factor gives the effect of the finite size of the source.
The third, respectively fourth factor approach unity if

AwX/e -0, Tesp. i—"f —0.
0
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 379

7. — Fluctuation of intensity in a point.

The mean square fluctuation of intensity in a point @ is given by

<(3J(11))“> — <J<11)“> _ <J(1z)>’ .
Further
JAv — Fouw’ 4 gaw’

Thus
2
Juvt — Z Fom’® gaun ,

m, M=1

and therefore according to (22)

STy = Z H,,p+2 Z H“ﬁ, oa=1lm, f=1IM.

m, M =1 m, M=1

Thus if we put k=K =1, l=L we get with the help of (43) and (44)

BTV = Ind B + p2 (B,

Writing
”<E(Z)2> =y,
we have
2
(47) @Iy =14+ 2 =4,
where
(48) o — <E”>4>/<E”’2>2~ 1

The first term of (47) gives the fluctuation caused by the interference between
the independent wave trains, the second term gives the Poisson fluetuation
caused by the fluctuation of the number of emission processes per unit time

8. — Fluctuation on an extended cathode.

The current received from a photocathode can be taken to be propor-
tional to the integral of the square of the field strength over the cathode
surface; if we consider fluctuations of this current, we have to take into ac-
count that the electric recording instrument averages the current intensity
over some period 7 of time. Thus the intensity fluctuation is characterized
by x, where

(49) x? [ ( fdtj (r, t db) fdt/J(r, J 251212,
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Jo=<{JP> being the average value of intensity and S = f db is the illuminated
part of the surface of the cathode.
Instead of (49) we may also write

(50) e = f f e’ de” f ] (3T, ) 3 (1", 1) db’ db” [ 82T 2r2 .
00

We note that we may put according to (22)

2

(OTRV §JEDY, 2 gy T 2H? 28) s o= kim, f= KIM.

m, M=1

With the help of (44) and (43) we find if we assume t=¢—1#', |= L

(61)  <3J(r, ) 3J(ry 1)) :% n exp [— 2y [t'— " [[KEV") +

+ (n exp [— y [t'— " | (B {cos (w0 — wo} (' —1")) <00s 2 lﬂ%#>)2.

Integrating into b’ and b” we get a form factor

(52) g f f { cos 2B b")> db’'db’/8e.

If the light spot on the cathode is coberent, i.e. if

Bgb,
Li,

<1,

then g~1.

The integration into " and ¢ can be carried out when we express the square
of the expectation value of cos (w— w,){t'—1") by a double integral, and ecarry
out the integration into ' and #" first. We find

g2
22 :ngz+%02’

where we have taken

_ %ijexp [— 2y |t'— ' [1a¢' v,
(53) °*
fr= %fexp [—2¢|t'— "] cos (0'— we) (t'— ") €08 (0'— wo) (t'— ")

P ) pa(w") doo’ dow” dt’ dt"
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THE FLUCTUATIONS OF INTENSITY OF AN EXTENDED LIGHT SOURCE 381

if y7>1, we find

) {[ 1, it oy,
2~
[ Yyr, it pr>1
and
2 /DZ
(54) fa f o sz::z O Balon - W) pufoy + ) Qi

The latter integrals can be approximately evaluated for certain extreme cases
and we find

! 1, if y>>Aw,,
(55) e~ )
| 7wpa(wo)y, if y<Aw,.
Supposing
(o) ~ /2
Pol®0) & 7 Aw,

(the latter relation holding exactly if p,(w) is a Gaussian distribution), we find

Vo
(56) TP, (o) NAwo ’
thus
2gefe — & it yr, A 1
9°f o’ 1n T, w,T K 1,
7) el L9 if y7>> Awgr, 1
YT + 2nyt’ 14 o
\/27zg2 o?
i 1.
Aw, 2nyt’ it Aot > 7,

We note that according to (13)
2nyt = Nt

is the number of emission processes taking place during the collecting time 7;
thus the second term in (57) represents the contribution to the fluctuation of
the random fluctuations of the number of emission processes taking place
during the time 7. The first term gives the fluctuation caused by the inter-
ference of the wave traing superposed at random. In general, the first term
is more important than the second; however, if either the geometry of the
arrangement is such that g2 becomes small, or if the wave hand is broad so

1293



382 L. JANOSSY

that Aw, >y, then the first term becomes small as compared with the second
one which is independent of the geometry or width of the wave band.

The effect corresponding to the first term was observed recently by BRANNEN,
FERGUSON and WEHLAU (°) counting -individual photons.

9. — Simultaneous fluetuation on two cathodes.

The correlation coefficient of the fluctuations of intensity as observed on
two cathodes can be obtained as

(58) Iy, =f<8J(r1, ') 8J(ry, t'))> db, db,dt’ dt" [((3JT5> (3T 3))E 8222,

where the integrations into ' and ¢ have to carried out from 0 to 7 and the
integrations over b, and b, over the surfaces of the first and the second cathode.
If we split a beam into two coherent components and project exactly the
same part of the two beams on each cathode, then we find [3,=1. If on
the other hand we throw the same image on two similar cathodes but at dif-
ferent distances from the source, ¢.e. if b, = b, but @, = a, 4+, we find with
the help of (43), if we put ¢= z/c,

(69) I = exp[— 2x/4] ((cos 2m{w — wo) x]e?) g*f + %} (;2> / (g2f2 —}—;—;) .

For the sake of an example we suppose that the spectral distribution is a
Gaussian distribution, i.e. that

_ exp[— 2(w — w,)*/Awy]

6 N .
(60) pa(e) Vw2
We have
(61) exp [— @/A1<cos 2n(w — wy)xfc) = exp |—x[d — ﬁ(siz)—")z .

We see thus that the part of the correlation which depends on the frequency
band decreases more rapidly with « than the frequency independent part.
For large values of #, we have thus

(62) Iy ~ exp[— 2/ 4] for xAwyfe>1,

independent of the width of the spectrum. We note, however, that the cor-
relation coefficient I}, thus obtained follows from & purely classical picture.

() E. Brannen, H. I. S. FEreuson and W. WenLAU: Can. Jowrn. Phys., 36,
871 (1958).
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10. — Stellar interferometer.

It was pointed out by Twiss and HANDBURRY BROWN (!), that the cor-
relations of the fluctuations on two cathodes can be used similarly to a Michelson
stellar interferometer for the determination of the angular size of a light source.
This effect follows also from our formulae. Calculating the correlation co-
efficient of the intensity fluctuations for two small eathodes, so that a, =a, = 0;
b,=b,+y we get

_/ By\* i L
(63) I = \cos 27 L}to/ + terms in .

Supposing the source to be a disc of radius B, we find

sin oB 1 — cos aB,\?
(64) = 4( 2B L B “) , ‘o = 2my/ L, -

The correlation decreases with increasing distance y and with increasing angle
of vision 2B,/L. We have neglected terms in 1/n; the latter terms become
predominant in the region, where the terms we have considered above are
small.

11. — Coincidences observed with photon counters.

Suppose two parts of a beam to fall onto the cathodes of photon counters.
The expected rate of coincidences registered with an arrangement of resolving
time 7 is given by

T

{65) #1p = 208 | (I (ry, D) (ry, t ') db, db, AL,

0

where p, is the expected rate of impulses produced by the unit intensity falling
on the cathode.
With the help of (43), (44), (48), (b7)

T T

2 2
(66) »,, = 2Ni7T (1 + ;%fexp [— 2ypt']at’ —}—%— exp [—2yt"] {cos (w— wo)t'>2dt') ,
[} [}

with
Ny = JopoS .

J, is the average intengity and S the surface of each cathode.
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Evaluating the last integral we find for y7>>1

_ o ¢/ 1 o?
6D e = 2T (1 T\t o= w0)2/72> + 2nw) '

Further we may put

(68) / 1 > b it Aoy

1+ (0 — . )2/y? .
\1 + (o — a0y 7pa(wo)y 5 if Awy>>y .
The rate of accidental coincidences, in case of a constant intensity would be

(69) %Y = 2N°T.
The excess x,—zx\y consists of two components. The first one, which is in
general the more important, is sensitive to the degree of coherence of the light
spot on the cathode and in addition to the spectral width of the band of emis-
sions. The second term (which represents a kind of Poisson fluctuation) de-
pends only on the rate of emission processes of the source. The latter term
should become preponderant if the first term becomes small on account of
geometry or band width.

We hope to return to the problem as to what modifications in the above
formulae are to be expected if the light waves are subjected to quantization.

RIASSUNTO (%

Estendendo calcoli eseguiti prima della (%) il presente lavoro si occupa della statistica
esatta della fluttuazione dei treni d’onde emessi da una sorgente di estensione non
trascurabile. Come precedentemente, si assume che i singoli treni d’onde decadano espo-
nenzialmente; tuttavia qui si assume che i singoli treni abbiano differenti frequenze,
intensitd e polarizzazioni. Vari effetti osservati sperimentalmente, fra cui quello otte-
nuto coll’interferometro stellare da HANBURY BrowN e Twiss, si possono giustificare
quantitativamente.

(*) Tradugione a cura della Redazione.
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