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Abs t r ac t .  This paper gives a compact, self-contained tutorial survey 
of reinforcement learning, a tool that is increasingly finding application 
in the development of intelligent dynamic systems. Research on rein- 
forcement learning during the past decade has led to the development 
of a variety of useful algorithms. This paper surveys the literature and 
presents the algorithms in a cohesive framework. 
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1. I n t r o d u c t i o n  

Reinforcement Learning (RL), a term borrowed from animal learning literature by 
Minsky (1954, 1961), refers to a class of learning tasks and algorithms in which the 
learning system learns an associative mapping, 7r : X ~ A by maximizing a scalar 
evaluation (reinforcement) of its performance from the environment (user). Com- 
pared to supervised learning, in which for each x shown the environment provides 
the learning system with the value of ~r(x), RL is more difficult since it has to work 
with much less feedback from the environment. If, at some time, given an x E X, 
the learning system tries an a E A and, the environment immediately returns a 
scalar reinforcement evaluation of the (x, a) pair (that indicates how far a is from 
r(x)) then we are faced with an immediate RL task. A more difficult RL task is 
delayed RL, in which the environment only gives a single scalar reinforcement eval- 
uation, collectively for {(zt, as)}, a sequence of (x, a) pairs occuring in time during 
the system operation. Delayed RL tasks commonly arise in optimal control of dy- 
namic systems and planning problems of AI. In this paper our main interest is in the 
solution of delayed RL problems. However, we also study immediate RL problems 
because methods of solving them play an useful role in the solution of delayed RL 
problems. 

Delayed RL encompasses a diverse collection of ideas having roots in animal learn- 
ing (Barto 1985; Sutton & Barto 1987), control theory (Bertsekas 1989; Kumar 
1985), and AI (Dean & Wellman 1991). Delayed RL algorithms were first employed 
by Samuel (1959, 1967) in his celebrated work on playing checkers. However, it 
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F i g u r e  1. Navigating in a grid world. 

was only much later, after the publication of Barto, Sutton and Anderson's  work 
(Barto ct al 1983) on a delayed RL algori thm called adaptive heuristic critic and 
its applicat ion to tile control problem of pole balancing, that  research on RL got 
off to a flying start.. Watkins '  Q-Learning algori thm (Watkins 1989) made another  
impact  on the research. A number  of significant ideas have rapidly emerged during 
the past  five years and the field has reached a certain level of matur i ty .  In this 
paper  we provide a comprehensive tutorial  survey of various ideas and methods of 
delayed RL. To avoid distractions and mmecessary clutter of notations,  we present 
all ideas in an intuitive, not-so-rigorous fashion. In preparing this tutorial,  we have 
obtained a lot of guidance f rom tile works of Watkins (1989), Bar to  et al (1990, 
1992), Bradtke (1994), and Bar to  (1992). 

To illustrate the key features of a delayed RL task let us consider a simple example.  

Example 1 Navigating a Robot 

Figure 1 illustrates a grid world in which a robot navigates. Each blank cell on 
the grid is called a state. Shaded cells represent barriers; these are not states. Let 
X be the s tate  space, i.e., the set of states. The cell marked G is the goal state. 
The  aim is to reach G from any state in the least number  of t ime steps. Navigation 
is done using four actions: A = iN ,  S, E,  W}, the actions denoting the four possible 
movements  along the coordinate directions. 

Rules of transit ion are defined as follows. Suppose that  the robot is in s tate  x 
and action N is chosen. Then the resulting next state, y is the s ta te  directly to the 
north of x, i f  there is such a state; otherwise y = x. For instance, choosing W at 
the x shown in figure 1 will lead to the system staying at x. The  goal s tate  is a 
special case. By definition we will take it that  any action taken f rom the goal s tate  
results in a transit ion back to the goal state. In more general problems,  the rules of 
transit ion can be stochastic. 
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The robot  moves at discrete (integer) t ime points starting from t = 0. At a t ime 
step t, when the robot is at state, xt, we define an immediate reward 1 as 

f 0 if xt = G, 
r ( x t )  

- 1 otherwise. 

In effect, the robot is penalized for every time step spent at non-goal states. It is 
simple to verify that  maximizing the total reward over time, 

oo 

is equivalent to achieving minimum time navigation from the starting state, x0 = x. 
Let Y*(x) denote the maximum achievable (optimal) value of V(x). 

We are interested in finding a feedback policy, 7r : X ~ A such that ,  if we start  
from any start ing state and select actions using a" then we will always reach the goal 
in the nainimum number of time steps. 

The usefulness of immediate  RL methods in delayed RL can be roughly explained 
as follows. Typical  delayed RL methods maintain V, an approximation of the op- 
timal function, V*. If action a is performed at state x and state y results, then 
V(y) can be taken as an (approximate) immediate evaluation of the (x, a) pair. 2 
By solving an immediate RL problem that  uses this evaluation function we can ob- 
tain a good sub-opt imal  policy for the delayed RL problem. We present relevant 
immediate  RL algorithn~s in §2. 

[] 

Delayed RL problems are much harder to solve than immediate RL problems for 
the following reason. Suppose, in example 1, performance of a sequence of actions, 
selected according to some policy, leads the robot to the goal. To improve the policy 
using the experience, we need to evaluate the goodness of each action performed. But 
the total  reward obtained gives only the cumulative effect of all actions performed. 
Some scheme must be found to reasonably apportion the cumulative evaluation to 
the individual actions. This is referred to as the temporal credit assignment problem. 
(In the previous paragraph we have already given a hint of how delayed RL methods 
do temporal  credit assignment.) 

Dynamic programming (DP) (Bertsekas 1989; Ross 1983) is a well-known tool 
for solving problems such as the one in example 1. It is an off-line method that  
requires the availability of a complete model of the environment. But the concerns 
of delayed RL are very different. To see th clearly let us return to example 1 and 
impose the requirement that  the robot has no knowledge of the environment and 
that the only way of learning is by on-line experience of trying various actions 3 
and thereby visiting many states. Delayed RL algorithms are particularly meant  for 
such situations and have the following general format. 

D e l a y e d  R L  a l g o r i t h m  
Initialize the learning system. 
Repeat 

1 Somet imes  r is referred to as the p r ima ry  reinforcement .  In  more  general s i tua t ions ,  r is a 
funct ion  of xt as well as at ,  the act ion at t ime s tep t. 

2An op t ima l  act ion at x is one t ha t  gives the m a x i m u m  value of V*(y). 
3 Dur ing  learning this is usual ly achieved by using a (s tochast ic)  explora t ion  policy for choosing 

actions.  Typical ly  the explora t ion policy is chosen to be total ly r a n d o m  at the  beg inn ing  of learning 
and  m a d e  to app roach  all op t ima l  policy as learning nears  complet ion.  
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1. With the system at state x, choose an action a according to an exploration 
policy and apply it to the system. 

2. The environment returns a reward, r, and also yields the next stale, y. 

3. Use the experience, (x, a, r, y) to update the learning system. 

4. Set x := y. 

Even when a model of the environment is available, it is often advantageous to 
avoid an off-line method such as DP and instead use a delayed RL algorithm. This 
is because, in many problems the state space is very large; while a DP algorithm 
operates with the entire state space, a delayed RL algorithm only operates on parts 
of the state space that  are most relevant to the system operation. When a model is 
available, delayed RL algorithms can employ simulation mode of operation instead 
of on-line operation so as to speed-up learning and avoid doing experiments using 
hardware. In this paper, we will use the term, real time operation to mean that  
either on-l ine operation or simulation mode of operation is used. 

In most applications, representing functions such as V* and ~r exactly is infea- 
sible. A bet ter  alternative is to employ parametric  function approximators,  e.g., 
connectionist networks. Such approximators must be suitably chosen for use in a 
delayed RL algorithm. To clarify this, let us take V* for instance and consider a 
function approximator ,  V(-; w) : X ---* R, for it. Here R denotes the real line and w 
denotes the vector of parameters of the approximator  that  is to be learnt so that  I/ 
approximates V* well. Usually, at step 3 of the delayed RL algorithm, the learning 
system uses the experience to come up with a direction, q in which V(x; w) has to be 
changed for improving performance. Given a step size, fl, the function approximator  
must alter w to a new value, w new so that  

V(x; w n°W) = V(x; w) + f l ,  (1) 

For example, in multilayer perceptrons (Hertzel a11991) w denotes the set of weights 
and thresholds in the network and, their updating can be carried out using back- 
propagation so as to achieve (1). In the rest of the paper we will denote the updating 
process in (1) as 

w) := w) + (2) 

and refer to it as a learning rule. 
The paper is organized as follows. Section 2 discusses immediate  RL. In §3 we 

formulate Delayed RL problems and mention some basic results. Methods of esti- 
mat ing total  reward are discussed in §4. These methods play an important  role in 
delayed RL algorithms. DP techniques and delayed RL algorithms are presented in 
§5. Section 6 addresses various practical issues. We make a few concluding remarks 
in §7. 

2.  I m m e d i a t e  r e i n f o r c e m e n t  l e a r n i n g  

Immediate  RL refers to the learning of an associative mapping, ~r : X--*A given a 
reinforcement evaluator. To learn, the learning system interacts in a closed loop 
with the environment.  At each t ime step, the environment chooses an x E X 
and, the learning system uses its function approximator, /r(- ;  w) to select an action: 
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a = #(x; w). Based on both x and a, the environment returns an evaluation or 
"reinforcement",  r (x,  a) E R. Ideally, the learning system has to adjust w so as to 
produce the m a x i m u m  possible r value for each x; in other words, we would like # 
to solve the parametr ic  global opt imizat ion problem, 

r(x, #(x; w)) = r*(x) de=r m a x r ( x ,  a) Vx E X (3) 
aEA 

Supervised learning is a popular  paradigm for learning associative mappings  
(Hertzet  al 1991). In supervised learning, for each x shown the supervisor pro- 
vides the learning system with the wdue of 7r(x). Immedia te  RL and supervised 
learning differ in the tbllowing two impor tan t  ways. 

• Ill supervised learning, when an x is shown and the supervisor provides a = 
7r(x), the learning system forms the directed information,  rl = a - ~(x; w) and 
uses the learning rule: #(x; w) := 7r(x; w) + c~rl, where o~ is a (positive) step 
size. For immedia te  RL such directed information in not available and so it 
has to employ some strategy to obtain such information.  

• In supervised learning, the learning system can simply cheek if r / =  0 and hence 
decide whether the correct map  value has been tbrmed by # at  x. However, 
in immedia te  RL, such a conclusion on correctness cannot be made without  
exploring the values of r(x,  a) for all a. 

Therefore, immedia te  RL problems are much more difficult to solve than supervised 
learning problems. 

A number  of immedia te  RL algori thms have been described in the literature. 
Stochastic learning a u t o m a t a  algori thms (Narendra & Tha thachar  1989) deal with 
the special case in which X is a singleton, A is a finite set, and r C [0, 1]. 4 The  
Associative Reward-Penal ty  ( A n - p )  algori thm (Barto & Ana'ndan 1985; Bar toet  
al 1985; Barto & Jordan 1987; Mazzoniet al 1990) extends the learning a u t o m a t a  
ideas to the case where .¥..is a finite set. Williams (1986, 1987) has proposed a 
class of immedia te  RL methods and has presented interesting theoretical results. 
Gullapall i  (1990, 1992a) has developed algori thms for the general case in which X,  
A are finite-dimensional real spaces and r is real valued. Here we will discuss only 
algori thms which are most  relevant to, and useful in delayed RL. 

One simlal~ way of solving (3) is to take one x at a time, use a global opt imizat ion 
a lgor i thm (e.g., complete enumerat ion)  to explore the A space and obtain the correct 
a for the given x, and then make the function approximator  learn this (x, a) pair. 
Itowever, such an idea is not used for the following reason. In most  si tuations 
where i lnmediate RL is used as a tool (e.g., to approximate  a policy in delayed 
RL), the learning system has little control over the choice of x. When,  at a given 
x, the learning system chooses a part icular  a and sends it to the environment  for 
evaluation, the environment  not only sends a reinforcement evaluation but also 
alters the x value. Immedia te  RL seeks approaches which are appropr ia te  to these 
situations. 

Let us first eonsider the case in which A is a finite set: A = {a 1, a2, . . .  , am}. Let 
R "~ denote the m-dimens iona l  real space. The function approximator ,  # is usually 

[ 
4 S t o c h a s t i c  L e a r n i n g  A u t o m a t a  a lgo r i£hms  can  a lso  be  used  when  X is no t  a s ing le ton ,  by  

e m p l o y i n g  t e a m s  of  c o - o p e r a t i n g  a u t o m a t a .  For more  de t a i l s  on  such a l g o r i t h m s  see N a r e n d r a  &: 

T h a t h a c h a r  (1989).  
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formed as a composit ion of two functions: a function approximator ,  g(.; w) : X---~R '~ 
and a fixed function, M : R'n---*A. The  idea behind this set-up is as follows. For 
each given x,  z = g(x; w)  E R'* gives a vector of meri ts  of the various a i values. Let 
z~ denote the k - t h  component  of z. Given the meri t  vector z, a : M ( z )  is formed 
by the max  selector, 

a = a  k where z~- -  m a x  zi (4) 
l < i < m  

Let us now come to the issue of learning (i.e., choosing a w). At some stage, let x 
be the input, z be the merit vector returned by g, and a k be the action having the 
largest merit value. The environment returns the reinforcement, r(x,a}). In order 
to learn we need to evaluate the goodness of z k (and therefore, the goodness of ak). 
Obviously, we cannot  do this using existing information.  We need an est imator ,  call 
it ÷(x; v), tha t  provides an est imate of r*(x). The difference, r(x,  a k) - r(x;  v) is a 
measure of the goodness of a k. Then a simple learning rule is 

gk(x; w) := gk(x; w) + a k) - ÷(x; v)) (5) 

where cY is a small  (positive) step size. 
Learning ? requires tha t  all members  of A are evaluated by the environment  at 

each x. Clearly, the max  selector, (4) is not suitable tbr such exploration. For 
instance, if at some stage of learning, for some x, g assigns the largest merit  to a 
wrong action, say a k , and r gives, by mistake, a value smaller than r (x ,  ale), then no 
action other than a k is going to be generated by t.he learning system at the given x. 
So we replace (4) by a controlled stochastic action selector that  generates actions 
randomly  when learning begins and approaches (4) as learning is completed.  A 
popular  stochastic action selector is based on the Bo]tznaalm distribution, 

e x p ( z i / T )  (6) 
pi(x)  d~'=-f Prob{a = ailx} = E j  e x p ( z j / T )  

where T is a nonnegative real parameter  ( temperature)  that  controls the stochas- 
ticity of the action selector. For a given x the expected reinforcement of the action 
selector is 

a 

i 

As T - - 0  tl,~ stocllastic action select(," approaches the max  selector, (4), and, 
{(x)--+r*(~c'). Therefore we train ¢ to approximate  { (instead of r*). This is easy 
to do because, for any fixed value of T, ( can be es t imated by the average of the 
performance of the stochastic action selector over time. A simple learning rule tha t  
achieves this is 

÷(x; v) := ÷(x; v) + ~(r (x ,  a) - ÷(x; v)) (7) 

where 'fl is a small (positive) step size. 
R e m a r k  Two impor tan t  comments  should be made  regarding the convergence 

of learning rules such as (7) (we will come across many  such learning rules later) 
which are designed to est imate an expectat ion by averaging over time. 

• Even if ? -- {, r(x ,  a) - ÷(x; v) can be non-zero and even large in size. This  is 
because a is only an instance generated by the distribution, p(x) .  Therefore, 
to avoid unlearning as ~ comes close to ~, the step size, /3 must  be controlled 
properly. The value of/4 may be chosen to be 1 when learning begins, and 
then slowly decreased to 0 as learning progreses. 
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For good learning to take place, the sequence of x values at which (7) is carried 
out mus t  be such tha t  it covers all parts  of the space, X as often as possibie. 
Of  course, when the learning system has no control over the choice of x, it can 
do nothing to achieve such an exploration. To explore, the following is usually 
done. Learning is done over a number  of trials. A trial consists of beginning 
with a r andom choice of x and operat ing the system for several t ime steps. At 
any one t ime step, the system is at some x and the learning system chooses 
an action, a and learns using (7). Depending on x, a and the rules of the 
environment  a new x results and the next t ime step begins. Usually, when 
learning is repeated over multiple trials, the X space is thoroughly explored. 

Let us now consider the case in which A is continuous, say a finite dimensional 
real space. The idea of using meri t  values is not 'suitable. It  is bet ter  to directly 
deal with a function appro×imator ,  h(.; w) from X to A. In order to do explorat ion 
a controlled r andom perturbat ion,  ~1 is added to h (x ;w)  to form a = #(x).  A 
simple choice is to take 7/ to be a Gaussian with zero mean and having a s tandard  
deviation, c~(T) that  satisfies: or(T)---*0 as T---~0. The  sett ing-up and training of 
the reinforcement est imator ,  i; is as in the case when A is discrete. The  function 
approximator ,  h can adopt  the tbllowing learning rule: 

h(x; w) := h(x; w) + a(r(x, a) - ?(x; v))r/ (8) 

where a is a small (positive) step size. In problems where a bound on r* is available, 
this bound can be suitably employed to guide exploration, i.e., choose cr (Gullapall i  
1990). 

Jordan  ~ Rumelhar t  (1990) have suggested a method of ' forward models '  for 
continuous action spaces. If r is a known differentiab]e function, then a simple, 
determinist ic learning law based on gradient ascent can be given to update  ~: 

#(x; w) := ~(x; w) + c ~ - -  
~r(x, a) 

Oa 
(9) 

If  r is not known, Jordan  and Rumelhar t  suggest tha t  it is learnt using on-l ine 
data,  and (9) be used using this learnt r. If  for a given x, the function r(x, .) has 
local m a x i m a  then the #(x) obtained using learning rule, (9) may  not converge to 
7r(x). Typical ly  this is not a serious problem. The stochastic approach discussed 
earlier does not suffer from local m a x i m a  problems. However, we should add that ,  
because the determinist ic method  explores in systematic  directions and the stochas- 
tic method  explores in random directions, the former is expected to be much faster. 
The  comparison is very similar to the comparison of deterministic and stochastic 
techniques of continuous optimization.  

3 .  D e l a y e d  r e i n f o r c e m e n t  l e a r n i n g  

Delayed RL concerns the solution of stochastic op"6imal control problems.  In this 
section we discuss the basics of such problems. Solution methods  for delayed RL will 
be presented in §4 and §5. In these three sections we will mainly  consider problems 
in which the s tate  and control spaces are finite sets. This is because the main issues 
and solution methods  of delayed RL can be easily explained for-such problems. We 
will deal with continuous state and /o r  action spaces briefly in §5. 
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Consider a discrete-time stochastic dynamic  system with a finite set of states, 
X.  Let the system begin its operat ion at  t = 0. At t ime t the agent (controller) 
observes s ta te  5 xt and, selects (and performs) action at f rom a finite set, A(xt), of 
possible actions. Assume tha t  the system is Markovian and stationary,  i.e., 

P rob{xt+ l  = y I x 0 ,  a 0 ,  ~1 ,  a l , ' " ,  x t  : x ,  a t -~- a }  

= P r o b { x t + l  = y l x t  = x ,  a t  - -  a }  def = P x y ( a )  

A policy is a method  adopted by the agent to choose actions. The objective of 
the decision task is to find a policy tha t  is opt imal  according to a well defined sense, 
described below. In general, the action specified by the agent 's  policy at some t ime 
can depend on the entire past  history of the system. Here we restrict a t tent ion 
to policies tha t  specify actions based only on the current s tate  of the system. A 
determinist ic policy, ~r defines, for each x E X an action ~(x) E A(x). A stochastic 
policy, ~ defines, for each x E X a probabi l i ty  distribution on the set of feasible 
actions at  x, i.e., it gives the values of P r o b { r ( x )  = a} for all a E A(x). For the 
sake of keeping the notat ions simple we consider only deterministic policies in this 
section. All ideas can be easily extended to stochastic policies using appropr ia te  
detailed notations.  

Let us now precisely define the opt imal i ty  criterion. While at s tate x, if the agent 
performs action a, it receives an immedia te  payoffor reward, r(x, a). Given a policy 
~" we define the value function, V ~ : X -+R as follows: 

t :-0 

(10) 

Here future rewards are discounted by a factor 7 E [0, 1). The case 7 = 1 is avoided 
only because it leads to some difficulties associated with the existence of the sum- 
mat ion  in (10). Of course, these difficulties can be handled by put t ing appropr ia te  
assumptions  on the problem solved. But,  to avoid unnecessary distraction we do 
not go into the details; see (Bradtke 1994; Bertsekas & Tsitsiklis 1989). 

The  expectat ion in (10) should be understood as 

N - 1  

V*(x) = lim E{ ~ 7tr(xt,~r(xt))lxo = x} 
N - - *  oo 

N - 1  where the probabi l i ty  with which a part icular  s tate  sequence, {xt}t=o occurs is 
taken in an obvious way using x0 = x and repeatedly employing ~- and P.  We wish 
to maximize  the value function: 

V*(x) = m axV~(x )  Yx (11) 

V* is referred to as the opt imal  value function. Because 0 < 7 < 1, V~(x) is 
bounded. Also, since the number  of r ' s  is finite V*(x) exists. 

5if  t h e  s t a t e  is n o t  c o m p l e t e l y  observab le  t h e n  a m e t h o d  t h a t  u ses  t he  obse rvab le  s t a t e s  a n d  
r e t M n s  p a s t  i n f o r m a t i o n  h a s  to b e  used ;  see ( B a c h a r a a h  1991; B a c h a r a c h  1992; C h r i s m a ~  1992; 
Mozer  & B a c h a r a c h  1990a,  1990b; W h i t e h e a d  & Ba l l a rd  1990). 
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How do we define an opt imal  policy, ~*? For a given x let 7r ~'* denote a policy tha t  
achieves the m a x i m u m i n  (11). Thus we have a collection of policies, {~'~,* : x E X}.  
Now ~r* is defined by picking only the first action from each of these policies: 

~ * ( x )  = ~ ' ~ ' * ( x )  , x ~ X 

It  turns out tha t  n* achieves the m a x i m u m  in (11) for every x E X.  In other words, 

V*(x) = V~*(x) , x C X (12) 

This result is easy to see if one looks at Bel lman's  opt imal i ty  equation - an impor tan t  
equation tha t  V* satisfies: 

V*(x) = max [r(x'a)+ 7 E y ~ x  J (13) 

The fact tha t  V* satisfies (13) can be explained as follows. The  te rm within square 
brackets on the right hand side is the total reward that  one would get if action a is 
chosen at the first t ime step and then the system performs opt imal ly  in all future 
t ime steps. Clearly, this te rm cannot exceed V*(x) since tha t  would violate the 
definition of V*(x) in (11); also, if a = rr~,*(x) then this te rm should equal Y*(x). 
Thus (13) holds. It  also turns out that  V* is the unique function from X to R tha t  
satisfies (13) for all x E X. This fact, however, requires a non-trivial proof; details 
can be found in (Ross 1983; Bertsekas 1989; Bertsekas & Tsitsiklis 1989). 

The  above discussion also yields a mechanism for comput ing rr* if V* is known: 

7r*(x) =arg max Ir(x'a)+ T E PxY(a)V*(Y) yEX 

A difficulty with this computa t ion  is that  the system model, i.e., the function, P~u(a) 
must  be known. This difficulty can be overcome if, instead of the V-funct ion  we 
employ another  function called the Q-function. Let U = {(x, a) : x E X, a E A(x)},  
the set of feasible (state,action) pairs. For a given policy ~r, let us define Q~ : /4 -+R 
by 

: + (14)  
y E X  

Thus Q'~(x, a) denotes the total  reward obtained by choosing a as the first action and 
then following rr for all future t ime steps. Let Q* = Q'~*. By Bel lman 's  opt imal i ty  
equation and (12) we get 

V*(x) = max  [Q*(x, a)] (15) 
a e A ( x )  

It  is also useful to rewrite Bel lman's  opt imal i ty  equation using Q* alone: 

Q*(x, a) = r(x, a) 47 7 E Pa~u(a){ m a x  Q*(y, b)} (16) 
y E X  - beA(y )  

Using Q* we can compute  ~-*: 

~r*(x) = arg max  [Q*(x, a)] (17) 
aEA(x )  
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Thus, if Q* is known then ~r* can be computed  without  using a system model.  This  
advantage of the Q-funct ion  over the V-funct ion will play a crucial role in §5 for 
deriving a model- f ree  delayed RL algori thm called Q-Learn ing  (Watkins 1989). 

Let us now consider a few examples tha t  give useful hints for problem formulation.  
These examples  are also commonly  mentioned in the RL literature. 

E x a m p l e  2 N a v i g a t i n g  a robot wi th  d y n a m i c s  
Ill example  1 the robot  is moved from one cell to another like the way pieces are 

moved in a chess board.  True robot  motions,  however, involve dynamics;  the effects 
of velocity and acceleration need to be considered. In this example we will include 
dynamics in a crude way, one tha t  is appropr ia te  to the grid world. Let ht and vt 
denote the horizontal and vertical coordinates of the cell occupied by the robot  at 
t ime t, and, ]h and ~)t denote the velocities. The vector, (ht ,  vt,  h~t, i)t) denotes the 
system state  at t ime t; each one of the four components  is an integer. The goal s ta te  
is x a = (h a ,  v d, 0, 0) where (h G, v C) is the coordinate vector of the goal cell G. In 
other words, the robot  has to come to rest at G. Let hm~× and 6max be limits on 
velocity magnitudes.  Thus  the s tate  space is given by 

= { x = ( h , v , ) ~ , , b ) l  ( h , v )  is a blank cell, 

Ih] ~ hmax, and li, I < 'bronx} 

We will also include an extra  state, f called failure state to denote si tuations where 
a barrier (shaded) cell is entered or a velocity limit is exceeded. Thus 

X = .,9 U { f }  

The accelerations 6 along the horizontal and vertical directions, respectively a h 
and a",  are the actions. To keep h and v as integers let us assume that  each of 
the accelerations takes only even integer values. Let amax be a positive even integer 
that  denotes the l imit  on the magni tude  of accelerations. Thus a = (a ~, a ~) is an 
admissible action if each of a h and a" is an even integer lying in [--amax, amax]- 

As in example 1 s tate  transitions are deterministic. They are defined as follows. 
If barrier cells and velocity limits are not present, then application of action (a h, a ~) 

/ / / ' /  '1  at x t  (ht ,  "vt, Jzt, iJt) wilt lead to the next s tate  xt+ 1 = (ht+l,  ht+ 1 ) given Vt+ 1 ~ ~ Vt+l  
by 

h'  ht +itt +ah/2 V~+I --~-Vt + i ' t  + a v l 2  • t + l  - ~  

h I J~t + a h .i = i't + a ~ t + l  ~ ~ Vt+l  

Let C denote the curve in the grids world resulting during the transit ion from (h~, v t )  
at t ime t to (h~+l, v~+l) at t ime (t + 1), i.e., the solution of the differential equa- 

tions: d 2 h / d v  2 = a h, d ~ v / d r  " = a ~, r E [t, t + 1], h( t )  = ht,  d h / d r l ~  = ht ,  v ( t )  = vt ,  
"! .! 

dv /d7]~  = i~t. If, either C cuts across a barrier cell or (ht+ 1, v t+l )  is an inadmissi- 
ble velocity vector, then we say failure has oceured during transition. Thus s tate  
transit ions are defined as 

f 
f 

Xt+l  -~- TG 
! 

X t + i  

if x ~ = f  
if failure occurs during transit ion 
if x t = x a 
otherwise 

6 N e g a t i v e  a c c e l e r a t i o n  wi l l  m e a n  d e c e l e r a t i o n .  
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The primary aim is to avoid failure. Next, among all failure-avoiding trajec- 
tories we would like to choose the trajectory which reaches the goal state, x a = 
(h a, v a, 0, 0) in as few time steps as possible. These aims are met if we define 

- 1  if x = f ,  
r ( x , a ) =  1 if x = x  a, 

0 otherwise. 

The following can be easily checked. 

• V*(x)  < 0 iff there does not exist a trajectory starting from x that  avoids 
failure. 

• V*(x)  = 0 iff, starting from x, there exists a failure-avoiding trajectory, but 
there does not exist a trajectory that reaches G. 

~, V*(x)  > 0 iff, starting from x, there exists a failure-avoiding trajectory that  
also reaches G; also, an optimal policy 7r* leads to the generation of a trajectory 
that  :caches G in the fewest number of steps from x while avoiding failure. 

[] 

Example 3 Playing backgammon 
Consider a game of backgammon (Magriel 1976) between players A and B. Let 

us look at the game from A's perspective, assuming that B follows a fixed policy. 
Now A can make a decision on a move only when the current board pattern as well 
as its dice roll are known. Therefore a state consists of a (board pattern, dice roll) 
pair. Each action consists of a set of marker movements. State transition is defined 
as follows. 

• A moves its markers in accordance with the chosen action. This step is deter- 
ministic, and results in a new board pattern. 

¢ B roils the dice. This step is stochastic. 

• B moves its markers according to its policy. This step can be deterministic or 
stochastic depending on the type of B's policy. 

* A rolls the dice. This step is stochastic. 

The set of states that  correspond to A's win is tile set of goal states, G to be 
reached. We can define the reward as: v(x, a) = 1 if x is a goal state; and r(x,  a) = 0 
otherwise. If 7 = 1, then for a given policy, say :¢, the value function V'~(x) will 
denote the probability that .4 will win from that  state. 

[] 

Example ~ Pole balaT~ciT~g We now deviate from our problem formulation and 
present an example that involves continuous state/action spaces. A standard prob- 
lem for learning controllers is that  of balancing an inverted pendulum pivoted on 
a trolley, a problem similar to that  of balancing a stick on one's hand (Barto ct al 
1983). The system comprises a straight horizontal track, like a railway track, with 
a carriage free to move along it. On the carriage is an axis, perpendicular to the 
track and poin,:.ing out to tim side, about which a pendulum is free to turn. The 
controller's task is to keel) the pendulum upright, by alternately puliing and pushing 
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F i g u r e  2. Pole balancing. 

the carriage along the track. Let h and 0 be as shown in figure 2. We say balancing 
has failed if anyone of the following inequalities is violated: 

h _~ hmax, h ~ --hmax, 0 ~ Omax , 0 ~ --Ornax 

where hmax and 0max are specified bounds on the magnitudes of h and 0. The aim 
is to balance without failure for as long a time as possible. 

The state of the system is the 4-tuple,  (h, J~, 0, 0), where J~ and 0 are the t ime 
derivatives of h and 0 respectively. The action is the force applied to the carriage. 
It takes real values in the interval, [-Fm~×, Fm~x]- To simplify the problem solution, 
sometimes the action space is taken to be {-Fmax,/ 'max} (Michie & Chambers 
1968; Barto et al 1983; Anderson 1989). A discrete time formulation of the problem 
is obtained by cutting continuous time (non-negative real line) into uniform time 
intervals, each of duration A, and taking the applied force to be constant within 
each interval. 7 The state of the system at the continuous time instant, tA is taken 
to be xt, the discrete t ime state at the t - t h  t ime step. The mechanical dynamics of 
the system defines state transition, except for one change: once failure occurs, we 
will assume, for the sake of consistent problem formulation, that  the system stays 
at failure for ever. 

As in example 2 we will take the state space to be X = )(  U {f}, where 

2 = {x = (h, h, 0, b)l - hmax < h < hm~x, -0m~x < 0 _< 0m~x) 

and f is the failure state that  collectively represents all states not in ) f .  Since the 

7This constant is the action for the time step corresponding to that interval. 
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aim is to avoid failure, we choose 

a )  = 
( 

- 1  if x = f,  
0 otherwise. 

[] 

4. M e t h o d s  o f  e s t i m a t i n g  V ~ a n d  Q~ 

Delayed RL methods use a knowledge of V ~ (Q'~) in two crucial ways: (1) the 
optimali ty of 7r can be checked by seeing if V ~ (Q~) satisfies Bellman's optimali ty 
equation; and (2) if ~r is not optimal then 1/'~ (Q'~) can be used to improve rr. We 
will elaborate on these details in the next section. In this section we discuss, in some 
detail, methods of estimating V ~ for a given policy, rr. (Methods of estimating Q~ 
are similar and so we will deal with them briefly at the end of the section.) Our aim 
is to find V(-; v), a function approximator that  estimates V ~. Much of the material 
in this section is taker] from the works of Watkins (1989), Sutton (1984, 1988) and 
Jaakkolact  al (1994). 

To avoid chnnsiness we employ some simplifying notations. Since 7r is fixed we 
will omit  the superscript fi'om V ~ and so call it as V. We will refer to r'(xt, rr(xt)) 
simply as ft. If p is a random variable, we will use p to denote both, the random 
variable as well as an instance of the random variable. 

A simple approximation of V(x) is the n-step truncated return, 

;9--1 
v [ " ] ( x )  = = (18)  

7=0 

(Here it is understood that x0 --- x. Thus, throughout this section r will denote 
the number of time steps elapsed after the system passed through state x. It is for 
stressing this point that  we have nsed r instead of t. In a given situation, the use 
of time - is it 'actuM system time' or ' t ime relative to the oceurence of x'  will 
be obvious fl'om the context.) If rmax is a bound on the size of r then it is easy to 
verify that  

n~laX[~7(x;v)- g (* ) ]  < ") /'max (19) 
- ( 1  - v )  

Thus, as n--~,~, V(x; v) converges to V(x) uniforinly in x. 
But (18) suffers from an important  drawback. The computation of the expecta- 

tion requires the complete enumeration of the probability tree of all possible states 
reachable in n time steps. Since the breadth of this tree may grow very large with n, 
the computat ions can become very burdensome. One way of avoiding this problem 
is to set 

9 (x ;  v) = Vt"](x) (20) 

where V['d(x) is obtained via either Monte-Carlo simulation or experiments on the 
real system (the latter choice is the only way to systems for which a model is 
unavailable.) The approximation, (20) suffers from a different drawback. Because 
the breadth of the probability tree grows with n, the variance of V[n](x) also grows 
with n. Thus V(x; v) in (20) will not be a good approximation of E(VD](x))  unless 
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it is ob ta ined  as an average over a large number  of  trials. 8 Averaging is achieved if 
we use a learning rule (similar to (7)): 

?(x; v) := ¢,(x; v) + /3  [ v H ( x )  - ~(x;  v)] (21) 

where/3  C (0, 1) is a small  step size. Learning can begin with a r a n d o m  choice of  v. 
Eventual ly,  after a number  of  trials, we expect  the V result ing f rom (21) to satisfy 
(19). 

In the above approach,  an approx ima t ion  of  V, V is always available. Therefore,  
an es t imate  tha t  is more appropriate than V[n](x) is the corrected n-step truncated 
return, 

r~--] 

v(,~)(~) = S ~ T  + <~'(x~;~) (22) 
7 - : 0  

where x,, is the s ta te  t ha t  occurs n t ime steps after the sys tem passed th rough  s ta te  
x. Let us do some analysis to just i fy this s ta tement .  

First ,  consider the ideal learning rule, 

? ( x ;  v) :=  E(V(n) (x) )  V x (23) 

Suppose v gets modif ied to V~w in the process of sat isfying (23). Then ,  s imilar  to 
(19) we can easily derive 

max IV(x; v.o~) - W(x)l _< 7 ~ max I?(~; v) - V(x)i 
x 

Thus,  as we go th rough  a number  of learning steps we achieve ~--+V. Note  tha t  this 
convergence is achieved even if n is fixed at a small  value, say n = 1. On  the other  
hand,  for a fixed n, the  learning rule based on V ['1, i.e., (18), is only guaran teed  to  
achieve the bound  in (19). Therefore, when a system model is available it is best to 
choose a small n, say n = 1, and employ (23). 

Now suppose  that ,  ei ther a model  is unavailable or (23) is to be avoided because 
it is expensive. In this case, a suitable learning rule t ha t  employs  V (~) and uses 
rea l - t ime  d a t a  is: 

~(~;  

Which is bet ter :  (21) or (24)? There  are two reasons as to why (24) is better .  

• Suppose  1) is a good  es t imate  of  V. Then  a small n makes V (n) ideal: V( ' ) ( x )  
has a mean  close to V(x )  and it also has a small  variance. Small  variance 
means  tha t  (24) will lead to fast averaging and hence fast convergence of  
to V. On the other  hand  n has to be chosen large for V[ 'q(x) to have a mean  
close to V(x) ;  bu t  then,  V M ( z )  will hav,~ a large variance and (21) will lead 
to slow averaging.  

• If  ~I is not  a good  es t imate  of  V then both V !'~) arid V [~] will require a large 
n for their  means  to  be good.  If  a large n is used, the difference between V (~) 
and V ['q, i.e., 7'~19 is negligible and so both (21) and (24) will yield similar  
per formance .  

aAs already mentioned, a trial consists of starting the system at a random state and then 
running the system for a number of time steps. 
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The above discussion implies that  it is better  to employ V('O than V['q. It is 
also clear that ,  when V ('~) is used, a suitable value of n has to be chosen dynami- 
cally according to the goodness of 1). To aid the manipulat ion of n, Sutton (1988) 
suggested a new estimate constructed by geometrically averaging {V('~)(x) : n _> 1}: 

Va(x)  = (1 - A) ~ A"-aVtn)(x)  (25) 
n = l  

Here (1 - A) is a normalizing term. Sutton referred to the learning algorithm that  
uses V "x as TD(A). Here T D  stands for 'Temporal  Difference'. The use of this name 
will be justified below. Expanding (257 using (22) we get 

v~(z) = (3 - A) [v(~)(z) + ~v~)(~) + A-~v(a)(~) + . . . ]  
= r o + 7 ( 1 - A ) ( 7 ( x l ; v )  + 

"~ Jr1 -~ 7(1 -- A)I~;(Z2; V) + (26) 

7A [r2 + 7(1 - A)V(Xa; v) + 
f 

Using the fact that r0 = r(x, re(x)) the above expression may be rewritten recursively 
a~s 

v ~ ( . )  = r(z, a-(z)) + 7(1 - ~)v(<;~)  + 7~v~(*~)  (27) 

where Xl is tile state occuring a time step after x. Putt ing A = 0 gives V ° = V (1) 
and putt ing A = 1 gives V 1 = V, which is the same as V (''a/. Thus, the range of 
values obtained using V ('~) and varying n from 1 to oo is approximately achieved by 
using V ~ and varying A from 0 to 1. A simple idea is to use V A inste.~,! ,~f V (n), begin 
the learning process with A = 1, and reduce A towards zero as learnia~l progresses 
and (; becomes a better estim.ate of I7. If A is properly chosen then a significant 
bet terment  of computat ional  efficiency is usually achieved when compared to simply 
using A = 0 or A = 1 (Sutton 1988). In a recent paper, Sutton & Singh (1994) have 
developed automat ic  schemes for doing this assuming that  no cyck's are present in 
state trajectories. 

The definition of V x involves all V(")s and so it appears that  we have to wait for 
ever to compute it. Ilowever, computations involving V a can be nicely rearranged 
und then suitably approximated to yield a practical algorithm that is suited for 
doing learning concurrently with real time system operation. Consider the learning 
rule in which we use V "x instead of V ('~' 

v(~; ~) := V(z; ~) + ~ [v~(~) - ~(~; v)] (28) 

Define the temporal difference operator, A by 

A(x) = r(a:, a-(x)) + 7I)(**; v) -- l)(a:; v) (29) 

A(z)  is the difference of predictions (of V=(a:)) at two consecutive t ime steps: 
, ( z ,  a-(z)) + 7g(z~ ;v) is a prediction based on information at r = 1, and l?(x; v) is 
a prediction based on information at r = 0. ttence the name, ' temporal  difference'. 
Note that  zX(x) can be easily computed using the experience within a t ime step. A 
simple rearrangement of the terms in the second line of (26) yields 

VA(x) -- 9(=;U) ----- h ( , )  ~t. ( . . /a)A(,  1)-It- (7.~)2A(z2) Aft... (30) 
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Even (30) is not in a form suitable for use in (28) because it involves future terms, 
A(xl) ,  A(x2), etc., extending to infinite time. One way to handle this problem is to 
choose a large N, accumulate A(x), A(xl) ,  .-.,  A(xg -1 )  in memory, truncate the 
right hand side of (30) to include only the first N terms, and apply (28) at 7- = N +  1, 
i.e., (N + 1) t ime steps after x occured. However, a simpler and approximate way 
of achieving (30) is to include the effects of the temporal differences as and when 
they occur in time. Let us say that  the system is in state x at time t. When the 
systems transits to state xa at time (t + 1), compute A(x) and update V according 
to: r~(z; v) := ~r(x; V) +/3(TA)A(Xl ). When the system transits to state x~ at tim,. 
(t+2), compute A(Xl) and update V according to: l)(x; v) := V(x; v)+fl(7A)2A(x2) 
and so on. The reason why this is approximate is because l/(z; v) is continuously 
altered in this process whereas (30) uses the V(x; v) existing at time t. However, 
if 13 is small and so l)(x; v) is adapted slowly, the approximate updating method is 
expected to be close to (28). 

One way of implementing the above idea is to maintain an eligibility trace, e(x, t). 
for each state visited (Klopf 1972; Klopf 1982; Klopf 1988; Bartoet a11983; Watkin.~ 
1989), and use the following learning rule at time t: 

l /(x; v) := $)(x; v) + 13e(x, t)A(xt) V x (31) 

where xt is the system state at time t. The eligibility traces can be adapted according 
to 

0 if x has never been visited 
e ( x , t )=  7Ae(x , t - -1)  if xt # x (32) 

l + 7 ~ e ( x , t - 1 )  if x t = x  

Two important  remarks must be made regarding this implementation scheme. 

• Whereas the previous learning rules (e.g., (21), (24) and (28)) update IY only 
for one x at a time step, (31) updates the V of all states with positive eligibility 
trace, at a t ime step. Rule (31) is suitable for connectionist implementation, 
but not so for implementations on sequential computers. A more efficient way 
is to keep track of the last k states visited and update V for them only. The 
value of k should depend on )~. If ~ is small, k should be small. If A = 0 then 
k = l .  

• The rule for updating eligibility traces, (32) assumes that  learning takes place 
in a single trial. If learning is done over multiple trials then all eligibility traces 
must be reset to zero just  before each new trial is begun. 

The remark made below equation (7) applies as well to the learning rules, (21), 
(24), (28) and, (31). Dayan & Sejnowski (1993), and Jaakkolaet al (1994) have 
shown that ,  if the real time TD(A) learning rule, (31) is used, then under appro- 

^ 

priate assumptions on the variation of/3 in time, as t--+oc, V converges to V ~r with 
probability one. Practically, learning can be achieved by doing multiple trials and 
decreasing/3 towards zero as learning progresses. 

Thus far in this section we have assumed that  the policy, zc is deterministic. If 
7r is a stochastic policy then all the ideas of this section still hold with appropriate 
interpretations: all expectations should include the stochasticity of 7r, and, the 7r(x) 
used in (27), (29) etc. should be taken as instances generated by the stochastic 
policy. 
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Let us now come to the estimation of Q~. Recall from (14) that  Q~(at, a) denotes 
the total reward obtained by choosing a as the first action and then following 7r for 
all future time steps. Details concerning the extension of Q~ are clearly described in 
a recent report by Rummery & Niranjan (1994). Let 0(at, a; v) be the estimator of 
Qn(x, a) that  is to be learnt concurrently with real time system operation. Following 
the same lines of argument as used for the value function, we obtain a learning rule 
similar to (31): 

(~(at, a; v) := Q,(x,a; v) + /3e@(x,a,t)Ac2(att,at ) V (x,a) (33) 

where: att and at are, respectively, the system state and the action chosen at time t; 

and 

AQ(X, a) = r(at, a) + TO(at1,7r(xl); v) - Q(at, a; v); (34) 

0 if (at,a) has never been visited 
eo(x,a, t  ) = 7AeQ(x ,a , t -  1) if (att,at) ~: (at,a) (35) 

l + TAeQ(x ,a , t -1 )  if (xt,at) = (at, a) 

As with e, all eQ(x, a, t) 's must be reset to zero whenever a new trial is begun from 
a random starting state. 

If rr is a stochastic policy then it is better to replace (34) by 

A~(x,  a) = r(x, a) + 7 ~ ( x l )  -- Q(at, ~; ~) (36) 

w h e r e  

l )(xl)  = E Prob{Tr(x) = b}Q(xl,b; v) (37) 
bEA(Xl) 

Rummery & Niranjan (1994) suggest the use of (34) even if rr is stochastic; in 
that  case, the rr(xl) in (34) corresponds to an instance generated by the stochastic 
policy at x~. We feel that,  as an estimate of V~(xl), V(x~) is better than the term 
Q(xl,  rr(xl); v) used in (34), and so it fits-in better with the definition of Q~ in (14). 
Also, if the the size of A(xl) is small then the computations of l)(x~) is not much 
more expensive than that  of 0 ( x l ,  rr(xl); v). 

5. D e l a y e d  r e i n f o r c e m e n t  l e a r n i n g  m e t h o d s  

Dynamic Programming (DP) methods (Ross 1983; Bertsekas 1989) are well known 
classical tools for solving the stochastic optimal control problem formulated in §3. 
Since delayed RL methods also solve the same problem, how do they differ from DP 
methods? 9 Following are the main differences. 

Whereas DP methods simply aim to obtain the optimal value function and 
an optimal policy using off-line iterative methods, delayed RL methods aim 
to learn the same concurrently with real time system operation and improve 
performance over time. 

9The connection between DP and delayed RL was first established by Werbos (1987, 1989, 
1992) and Watkins (1989). 
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• DP methods deal with the complete state space, X in their computations,  
while delayed lq.L methods operate on .Y, the set of states tha t  occur during 
real t ime system operation. In many applications X is very large, but  X is 
only a small, manageable subset of X. Therefore, in such applications, DP 
methods suffer from the curse of dimensionality, but delayed RL methods do 
not have this problem. Also, typically delayed RL methods employ function 
approximators (for value function, policy etc.) that  generalize well, and so, 
after learning, they provide near optimal performance even on unseen parts of 
the state space. 

• DP methods fundamental ly require a system model. On the other hand, the 
main delayed RL methods are model-free; hence they are particularly suited 
for the on-line learning control of complicated systems for which a model is 
difficult to derive. 

• Because delayed RL methods continuously learn in t ime they are better  suited 
than DP methods for adapting to situations in which the system and goals 
are non-stationary. 

Although we have said that delayed RL methods enjoy certain key advantages, we 
should also add that  DP has been the fore-runner from which delayed RL methods 
obtained clues. In fact, it is correct to say that  delayed RL methods are basically 
rearrangements of the computat ional  steps of DP methods so that  they can be 
applied during real t ime system operation. 

Delayed RL methods can be grouped into two categories: model-based methods 
and model-free methods. Model based methods have direct links with DP. Model-  
free methods can be viewed as appropriate modifications of the model based methods 
so as to avoid the model requirement. These methods will be described in detail 
below. 

5.1 Model based methods 

In this subsection we discuss DP methods and their possible modification to yield 
delayed RL methods. There are two popular DP methods: value iteration and policy 
iteration. Value iteration easily extends to give a delayed RL method called 'real 
t ime DP' .  Policy iteration, though it does not directly yield a delayed method,  it 
forms the basis of an impor tant  model-free delayed RL method called actor-critic.  

5.1.1 Value iteralion 

Tile basic idea in value iteration is t o  compute V*(x) as 

V*(x) = lim V~(x) (38) 
n "---4- O 0  

where Vg(x) is the optimal value function over a finite-horizon of length n, i.e., 
Vg(x) is the maximum expected return if the decision task is terminated n steps 
after start ing in state x. For n = 1, the maximum expected return is just  the 
maximum of the expected immediate  payoff: 

V~(x) = max r(x, a) Y x (39) 
a6A(x) 



Tutorial survey of reinforcement learning 869 

Then,  the recursion, 1° 

V n * + l ( x ) = m a x [  r ( x ' a ) + V E P x y ( a ) V ~ ( y )  ] a e A ( x )  y VX (40) 

can be used to c om pu t e  * n = - V~+t for 1 , 2 , . . .  ( I terat ions can be t e rmina ted  after 
a large n u m b e r  (N)  of  i terations, and V~ can be taken to be a good approx ima t ion  

of  V*.) 
In value i terat ion,  a policy is not  involved. But  it is easy to a t tach  a sui table policy 

with a value funct ion as follows. Associated with each value function,  V : X---*R is 
a policy, ~r t h a t  is greedy with respect to I/ ,  i.e., 

~ ( x ) = a r g  m a x  [ r ( x , a ) + T E P x y ( a ) Y ( y )  ] V x  (41) 
aeA(x) [ ] y 

If  the s ta te  space, X has a very large size (e.g., s ize=k d, where d--- n u m b e r  of  
componen t s  of  x, k = n u m b e r  of  values tha t  each componen t  can take, d ~ 10, 
k ~ 100) then value i terat ion is prohibi t ively expensive. This  difficulty is usual ly 
referred to as the curse of dimensionality. 

In the above, we have assumed tha t  (38) is correct. Let us now prove this conver- 
gence. It turns  ou t  t ha t  convergence can be established for a more  general a lgor i thm,  
of  which value i terat ion is a special case. We call this a lgor i thm as generalized value 
iteration. 

G e n e r a l i z e d  v a l u e  i t e r a t i o n  
Set n = I and t"~ ~ = an arbitrary function over states. 
Repeat 

1. Choose a .subset of states, Bn and set 

V.* { 1TlaXaeA(x) [F(X, a) + 7 ~ y  P~:y(a)Vn*(Y)] if x e Bn (42) 
, + j ( x )  -- ~ ( x )  otherwise 

2. Reset n :-- n + 1. 

If  we choose V~ as in (39) and take Bn = X for all n, then the above a lgor i thm 
reduces to  value i terat ion.  Later  we will go into other  useful cases of  generalized 
value i terat ion.  But  first, let us concern ourselves with the issue of  convergence. If  
x ¢ B,,, we will say t h a t  the value of  s ta te  x has been backed up at the n - th  i terat ion.  
P roof  of  convergence is based on the following result (Bertsekas ~ Tsitsiklis 1989; 
Watkins  1989; Bar toe t  al 1992). 

L o c a l  v a l u e  i m p r o v e m e n t  t h e o r e m  
Let M~ = max~ IV,*(x) - V*(x)[. Then  max~eB.  {V*+x(x) - V*(x)[ <_ 7 M , .  

• is a policy = * r~(x) ,  where 7r n P r o o f :  Take any x E B , .  Let a* 7r*(x) and a~ = 
tha t  is greedy with respect to V*. Then  

>_ r(x,a*) ÷ 7 ~ y  P,~(a*)[V'~(y) - M] 
= V * ( x ) - T M ,  

10 One can also view the recnrs lon as doing a f ixed-polnt  i te ra t ion  to solve Bel lman ' s  op t imal i ty  

equat ion,  (13). 
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Similarly, 
VZ+x(.) = r(x,a~) + 7 E y  Pxy(a*)V*(y) 

< a*.) + [v*(v) + M] 
= V*(x) + 7M~ 

and so the theorem is proved. [] 

The  theorem implies that  ~¢I,~+, _< J~4,, where )~/Jn+l = I n a x x  I V n * + l ( X )  - -  Vzk(a2) l .  

A little further thought  shows that  the following is also true. If, at the end of 
i teration k, K fllrther i terations are done in such a way that  the value of each state 
is backed up at least once in these K iterations, i.e., ~jk+K r~ " ~ = k + l ~ n  = X,  then we get 
Mk+K <_ 7Mk. Therefore, if the value of each state is backed up infinitely often, 
then (38) holds. 11 In tile case of value iteration, the value of each state is backed 
up at each i teration and so (38) holds. 

Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed 
by Bertsekas & Tsitsiklis (1989) as a suitable method of solving stochastic opt imal  
control problems on multi-processor systems with communicat ion t ime delays and 
without  a cornmon clock. If  N processors are available, the state space can be parti- 
tioned into N sets - one for each processor. The t imes at which each processor backs 
up the values of its states can be different for each processor. To back up the values 
of its states, a processor uses the "'present" values of other states communicated to 
it by other processors. 

Barto, Bradtke & Singh (1992) suggested the use of generalized value iteration as 
a way of learning during real t ime system operation. They called their a lgori thm 
as Real Time Dynamic Programming (RTDP).  In generalized value iteration as 
specialized to RTDP.  n denotes system time. At t ime step n, let us say that  the 
sys tem resides in state ~z~. Since V,~ is available, a,~ is chosen to be an action tha t  
is greedy with respect to ~,~, i.e., a,~ = ~r~(x~,). B,~, the set of states whose values 
are backed up. is chosen to include x,~ and, perhaps some more states. In order 
to improve performance in the immediate  future, one can do a lookahead search to 
some fixed search depth (either exhaustively or by following policy, 7r*) and include 
these probable future states in B,~. Because the value of x~ is going to undergo 
change at the present t ime step, il is a good idea to also include, in B,~, the most  
likely predecessors of xn (Moore ,k Atkeson 1993). 

One may ask: since a model of the sysl.em is available, why not simply do value 
i teration or, do generalized value iteration as Bertsekas & Tsitsiklis suggest? In 
other words, what  is the mot ivat ion l:,ehind RTDP?  The answer is simple. In most  
problems (e.g., playing games such as checkers and backgammon)  the state space is 
extremely large, but only a small subset of it actually occurs during usage. Because 
R T D P  works concurrently with actual system operation, it focusses on regions of the 
s ta te  space that  are most  relevant to the syst, em 's  behaviour.  For instance, successfnl 
learning was accomplished in the checkers program of Samuel (1959) and in the 
backgammon program, TDgamrnon  of Tesauro (1992) using variations of RTDP. 
In (Bartoe/  al 1992), Barto, Bradtke & Singh also use RTDP to make interesting 
connections and useful extensions to learning real t ime search algori thms in Artificial 
Intelligence (Korf  1990). 

The convergence result mentioned earlier says that  the values of all states have to 

t l  If ") ---- 1, then convergence holds under  cer ta in  a s sumpt ions .  ~i'he analysis  required is more  
sophis t ica ted.  See (Bertsekas & Tsitsiklis 1989; Bradtke 1994) for details. 
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be backed up infinitely often x2 in order to ensure convergence. So it is impor tant  to 
suitably explore the state space in order to improve performance. Barto, Bradtke 
& Singh have suggested two ways of doing exploration13: (1) adding stochasticity 
to the policy; and (2) doing learning cumulatively over multiple trials. 

If, only an inaccurate system model is available then it can be updated in real 
t ime using a system identification technique, such as maximum likelihood estimation 
method (Bartoet  al 1992). The current system model can be used to perform the 
computat ions in (42). Convergence of such adaptive methods has been proved by 
Gullapalli &: Barto (1994). 

5 . t .2  Policy iIeralion 

Policy iteration operates by maintaining a representation of a policy and its value 
function, and forming an improved policy using them. Suppose 7r is a given policy 
and V ~ is known. How can we improve 7r? An answer will become obvious if we 
first answer the following simpler question. If tt is another given policy then when 
is 

VU(x) >_ V~(x) V x (43) 

i.e., when is # uniformly better  than ~r? The following simple theorem (Watkins 
1989) gives the answer. 

P o l i c y  i m p r o v e m e n t  t h e o r e m  
The policy # is uniformly bet ter  than policy 7r if 

Q~(x, p(z)) > V"(x)  V x (44) 

P r o o f :  To avoid clumsy details let us give a not-so-rigorous proof (Watkins 1989). 
Starting at x, it is better  to follow p for one step and then to follow ~r, than it is to 
follow 7r right from the begining. By the same argument, it is better  to follow # for 
one further step from tht' state just  reached. Repeating the argument we get that  it 
is always bet ter  to follow/t than 7r. See Bellman & Dreyfus (1962) and Ross (1983) 
for a detailed proof. [] 

Let us now return to our original question: given a policy 7r and its value function 
V ~, how do we form an improved policy, p? If we define # by 

#(x) = arg m a x  Q~(x,a) V x (45) 
aEA(x) 

then (44) holds. By the policy improvement theorem # is uniformly bet ter  than 7r. 
This is the main idea behind policy iteration. 

P o l i c y  i t e r a t i o n  
Set rc := an arbitrary initial policy and compute V ~. 
Repeat 

1. Compute Q~ using (14). 

2. Find p using (45) and compute V u, 

] 2 For g o o d  p rac t i ca l  p e r f o r m a n c e  it  is sufficient  t h a t  s t a t e s  t h a t  are  m o s t  r e l evan t  to t h e  s y s t e m ' s  
b e h a v i o u r  a re  b a c k e d  u p  r epea ted ly .  

1 3 T h r u n  (1986) h a s  d i s c u s s e d  t h e  i m p o r t a n c e  of  exp lo ra t i on  a n d  s u g g e s t e d  a var ie ty  of  m e t h o d s  
for it 
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3. Set:  ~r := p and V '~ := V u. 

unt i l  V u = V ~ occurs at step 2. 
Nice features of the above algori thm are: (1) it terminates  after a finite num- 

ber of i terat ions because there are only a finite number  of policies; and (2) when 
terminat ion occurs we get 

v - ( x )  = maxQ (x,a) w 

(i.e., V ~ satisfies Bel lman 's  opt imal i ty  equation) and so 7r is an opt imal  policy. But  
the a lgor i thm suffers from a serious drawback: it is very expensive because the entire 
value function associated with a policy has to be recalculated at each iteration (step 
2). Even though V u may  be close to V ~, unfortunately there is no simple short cut 
to compute  it. In §5.2 we will discuss a well-known model-f ree  method called the 
actor-cr i t ic  method  which gives an inexpensive approximate  way of implement ing 
policy i teration. 

5.2 Model- f ree  methods 

Model-free delayed RL methods  are derived by making suitable approximat ions  
to the computa t ions  in value iteration and policy iteration, so as to el iminate the 
need for a sys tem model.  Two impor tan t  methods  result f rom such approxima-  
tions: Barto,  Sut ton & Anderson's  actor-cri t ic  (Barto et al 1983), and Watkins '  
Q-Learn ing  (Watkins 1989). These methods  are milestone contributions to the 
opt imal  feedback control of dynamic systems. 

5.2.• Ac tor - c r i t i c  method 

The actor-crit ic method was proposed by Barto et al (1983) (in their popular  work 
on balancing a pole on a moving cart) as a way of combining, on a s tep-by-step 
basis, the process of forming the value function with the process of forming a new 
policy. The  method  can also be viewed as a practical, approximate  way of doing 
policy iteration: perform one step of an on-line procedure for es t imat ing the value 
function for a given policy, and at the same t ime perform one step of an on-line 
procedure for improving tha t  policy. The actor-critic method 14 is best derived by 
combining the ideas of §2 and §4 on immedia te  RL and est imating value function, 
respectively. Details are as follows. 

A c t o r  (Tr) Let m denote the total  number  of actions. Maintain an approximator ,  
g('; w) : X - + R  "~ so tha t  z = g(x;  w) is a vector of meri ts  of the various feasible ac- 
tions at  s ta te  x. In order to do exploration, choose actions according to a stochastic 
action selector such as (6). 15 

C r i t i c  (V ~) Maintain an approximator ,  ~7(.; w) : X - - * R  that  es t imates  the value 
function (expected total  reward) corresponding to the stochastic policy ment ioned 
above. The  ideas of §4 can be used to upda te  V. 

Let, us now consider the process of learning the actor. Unlike immedia te  RL, 
learning is more complicated here for the following reason. Whereas, in immedia te  

14A mathematical analysis of this method has been done by Williams & Baird (1990). 
15 In their original work on pole-balancing, Barto, Sutton & Anderson suggested a different way 

of including stochasticity. 
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P~L the environment immediately provides an evaluation of an action, in delayed RL 
the effect of an action on the total reward is not immediately available and has to 
be estimated appropriately. Suppose, at some time step, the system is in state x 
and the action selector chooses action a k. For g the learning rule that parallels (5) 
would be 

w) := w) + .  a - v)j 
f , I  

(46) 

where p(x; a k) is the expected total reward obtained if a k is applied to the system at 
state x and then policy n is followed from the next step onwards. An approximation 
is 

p(x, a k) ~ r(x, a k) + 7 E P~:Y(ak)~7(Y; v) (47) 
Y 

This estimate is unavailable because we do not have a model. A further approxima- 
tion is 

p(x, a k) ~ r(x, a k) + 7I/(xl; v) (48) 

where Xl is the state occuring in the real time operation when action a k is applied 
at state x. Using (48) in (46) gives 

gk( ; w) := gk( ; w) + (49) 

where A is as defined in (29). The following algorithm results. 
A( ' to r -c r i t i c  t r ia l  

Set t = 0 and x =a random starting state. 
Repeat (for a number of time steps) 

i. With the system at state, x, choose action a according to (6) and apply it to 
the system. Let xl  be the resulting next state. 

2. Compute A(x) = r(x,a) + ~ V ( ~ ; v ) -  V(~;v) 

~. Update 9 using 9(~; ~) := 9(~; ~) + ZA(~) 

4. Update gk using (49) where k is such that a = a I:. 

The above algorithm uses the TD(O) estimate of V ~. To speed-up learning the 
TD(A) rule, (31) can be employed. Barto et al (1983) and others (Gullapalli 1992a; 
Gullapallie/ al 1994) use the idea of eligibility traces for updating g also. They 
give only an intuitive explanation for this usage. Lin (1992) has suggested the 
accumulation of data until a trial is over, update V using (28) for all states visited 
in the trial, and then update g using (49) for all (sl,te,action) pairs experienced in 
the trial. 

5.2.2 Q-Learning 

Just. as the actor-critic method is a model-free, on-line way of approximately im- 
plementing policy iteration, Watkins' Q-Learning algorithm is a model-free, on-line 
way of approximately implementing generalized value iteration. Though the RTDP 
algorithm does generalized value iteration concurrently with real time system oper- 
ation, it requires the system model for doing a crucial operation: the determination 
of the maximum on the right hand side of (42), Q- Lcaruing overcomes this problem 
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elegantly by operating with the Q-function instead of the value function. (Recall, 
from §3, the definition of Q-function and the comment on its advantage over value 
function.) 

The aim of Q-Learning is to find a function approximator, Q(., -; v) that  approx- 
imates Q*, the solution of Bellman's optimality equation, (16), in on-line mode 
without employing a model. However, for the sake of developing ideas systemati- 
cally, let us begin by assuming that  a system model is available and consider the 
modification of the ideas of §5.1a to use the Q-function instead of the value function. 
If we think in terms of a function approximator, If(x; v) for the value function, the 
basic update rule that  is used throughout ~5.1a is 

l / (x ;v)  := a~A(x)max [r(x,a) + T E Px~(a)V(y; v)] 
y 

For the Q-function, the corresponding rule is 

(~(x,a; v) := r(x,a) + T E Pxy(a) bm~X) Q(y,b; v ) (50) 
y 

Using this rule, all the ideas of §5.1a can be easily modified to employ the Q-  
function. 

However, our main concern is to derive an algorithm that  avoids the use of a 
system model. A model can be avoided if we: (1) replace the  summation term in 
(50) by maxbEA(x~)Q(Xl, b; v) where x~ is an instance of the state resulting from 
the application of action a at state x; and (2) achieve the effect of the update rule 
in (50) via the "averaging" learning rule, 

If (51) is carried out we say that  the Q-value of (x, a) has been backed up. Using 
(51) in on-line mode of system operation we obtain the Q-Learning algorithm. 

Q - L e a r n i n g  t r i a l  
Set t = 0 and x -- a random starting state. 
Repeat (for a number of time steps) 

1. Choose action a E A(x) and apply it to the system. Let xl be the resulting 
state. 

z. Update 0  sing (51). 

3. Reset x := y. 

The remark made below equation, (7) in §2 is very appropriate for the learning 
rule, (51). Watkins showed 1G that  /f the Q-value of each admissible (x, a) pair is 
backed up infinitely often, and if the step size, j3 is decreased to zero in a suitable 
way then as t--.oo, Q, converges to Q* with probability one. Practically, learning can 
be achieved by: (1) using, in step 1, an appropriate exploration policy that  tries all 

16A revised proof was given by Watkins & Dayan (1992). Tsitsiklis (1993) and Jaakkolaet al ,  
(1994) have given other proofs. 
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actions; 17 (2) doing multiple trials to ensure that  all states are frequently visited; 
and (3) decreasing fl towards zero as learning progresses. 

We now discuss a way of speeding up Q-Learning by using the TD(A) estimate 
of the Q-funct ion,  derived in §4. If TD(A) is to be employed in a Q-Learning trial, 
a fundamental  requirement is that  the policy used in step 1 of the Q-Learning Trial 
and the policy used in the update rule, (51) should match (note the use of 7r in (34) 
and (37)). Thus TO(A) can be used if we employ the greedy policy, 

7r(a:) = arg max Q(x, a; v) 
a6.A(x) 

(52) 

in step 1. is But, this leads to a problem: use of the greedy policy will not allow 
exploration of the action space, and hence poor learning can occur. Rummery  & 
Niranjan (1994) give a nice comparative account, of various a t tempts  described in 
the li terature for dealing with this conflict. Here we only give the details of an 
approach that  Rummery  & Niranjan found to be very promising. 

Consider the stochastic policy (base0 on the Boltzmann distribution and Q- 
values), 

Prob{Tr(x) = alx ) = 
exp( d2( x, a; v) /T) 

a e A(x) (53) 

where T 6 [0, cxD). When T - -*~  all actions have equal probabilities and, when T--~0 
the stochastic policy tends towards the greedy policy in (52). To learn, T is s tar ted 
with a suitable large value (depending on the initial size of the Q-values) and is 
decreased to zero using an annealing rate; at each 7' thus generated, multiple Q -  
learning trials are performed. This way, exploration takes place at the initial large 
T values. The TD(A) learning rule, (36) estimates expected returns for the policy at 
each T, and, as T---~0, Q will converge to Q*. The ideas here are somewhat similar 
to those of simulated annealing. 

5.3 Extension to conlinuous spaces 

Optimal  control of dynamic systems typically involves the solution of delayed RL 
problems having continuous s ta te /act ion spaces. If the state space is continuous but  
the action space is discrete then all the delayed RL algorithms discussed earlier can 
be easily extended, provided appropriate function approximators that  generalize a 
real t ime experience at a state to all topologically nearby states are used; see §6 
for a discussion of such approximators.  On the other hand, if the action space 
is continuous, extension of the algorithms is more difficult. The  main cause of 
the difficulty can be easily seen if we try extending PJFDP to continuous action 
spaces: the max operation in (42) is non-trivial  and difficult if A(x) is continuous. 
(Therefore, even methods based on value iteration need to maintain a function 
approximator  for actions.) In the rest of this subsection we will give a brief review of 

aTNote t h a t  s t e p  1 does  n o t  p u t  a n y  res t r i c t ion  oll choos ing  a feasible  ac t ion .  So, any  s t o c h a s t i c  
e x p l o r a t i o n  pol icy  t h a t ,  a t  every  x g e n e r a t e s  each feasible  a c t i on  wi th  pos i t ive  p robab i l i t y  c a n  be  
used .  W h e n  l e a r n i n g  is comple te ,  t h e  g reedy  policy, ~ (x )  ---- argmaxaeA(~)Q(x,a;v ) s h o u l d  be  
u s e d  for o p t i m a l  s y s t e m  p e r f o r m a n c e .  

18If m o r e  t h a n  one  a c t i o n  a t t a i n s  t h e  m a x i m u m  in  (52) t h e n  for conven ience  we t ake  7r to be  a 
s t o c h a s t i c  po l icy  t h a t  m a k e s  all s u c h  m a x i m i z i n g  ac t i ons  equa l ly  p robab le .  
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various methods  of handling continuous action spaces. Just  to make the presentat ion 
easy, we will make the following assumptions.  

• The  sys tem being controlled is deterministic.  Let 

xt+1 = f(xt ,  at) (54) 

describe the transitiolJ. ~'° 

• There are ~,o action constraints, i.e., A(x) =an  m-dimensional  real space for 
every x. 

• All fnnctions involved (r, f ,  1), Q etc.) are continuously differentiable. 

Let us first consider model-based methods.  Werbos (1990b) has proposed a variety 
of algorithms. Here we will describe only one impor tan t  algori thm, the one tha t  
Werbos refers to as Backpropagat.ed Adaptive Critic. The algori thm is of the ac tor -  
critic type, but it is somewhat  different from the actor--critic method of §5.2a. There 
are two function approximators :  ,~(.; w) for action; and, 1)(-; v) for critic. Tile critic 
is meant  to approx imate  V~r; at each t ime step, it is updated using the TD(A) 
learning rule, (31) of §4. The actor tries to improve the policy at each t ime step 
using the hint provided by the policy improvement  theorem in (44). To be more 
specific, let us defiue 

Q(x, a) a~=f r(x, a) + 7f / ( f (x ,  a); v) (55) 

At t ime t, when the system is at s tate xt, we choose the action, at = rr(xt;w), 
leading to the next state, xt+l given by (54). Let us assume !) ~ = V ~, so that  
V~(a:t) = Q(x~, at) holds. Using the hint from (44), we aim to adjust #(xt;  w) to 
give a new value, a new such that  

Q(xt,a . . . .  ) >Q(xt ,a t )  (56) 

A simple learning rule that  achieves this requirement is 

OQ(~,, a) I,,-o (57) # ( x , ; w ) : = ~ ( ~ , ; ~ ) + , ~  Oa - '  

where c~ is a small (positive) step size. The partial  derivative in (57) can be evaluated 
using 

OO(xt, a) cOr(xt, a) c0V(y; V )  [ x a cOf(xt, a) 
Oa = - -  0--7-- + "~ Oy Y=J( ', ~ ~a  (58)  

Let us now come to model-free methods.  A simple idea is to adapt  a function 
approximator ,  J: for the system model function, f ,  and use j: instead of f in Werbos '  
algori thm. On-l ine experience, i.e., the combination,  (xt, at, xt+l), can be used to 

learn f .  This  method was proposed by Brody (1992). actually ms a way of overcoming 
a serious deficiency 2° associated witl, an ill--formed model-free method  suggested by 
.Jordan & Jacobs (1990). A key difficulty associated with Brody 's  method is that ,  
until the learning system adapts  a good f ,  system performance does not improve 

19 Vqerbos (1990b) describes ways of treating stochastic systems. 
2°This deficiency was also pointed out by Gullapalli (1992b}. 
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at all; in fact, at the early stages of learning the method can perform in a confused 
way. To overcome this problem Brody suggests that  ] be learnt well, before it is 
used to train the actor and the critic. 

A more direct model-free method can be derived using the ideas of §5.2a and 
employing a learning rule similar to (8) for adapting ~r. This method was pro- 
posed and successfully demonstrated by Gullapalli (Gullapalli 1992a; Gullapalliet  
al 1994). Since Gullapalli 's method learns by observing the effect of a randomly 
chosen per turbat ion of the policy, it is not as systematic as the policy change in 
Brody's  method.  

We now propose a new model-free method that  systematically changes the policy 
similar to what  Brody's  method does, and, avoids the need for adapting a system 
model. This is achieved using a function approximator,  Q(-,-; v) for approximating 
Qe, the Q-funct ion  associated with the actor. The TD(A) learning rule in (33) 
can be used for updating Q. Also, policy improvement can be a t tempted  using the 
learning rule (similar to (57)), 

: =  to) + ' Oa la=a, (59) 

We are currently performing simulations to study the performance of this new 
method relative to the other two model-free methods mentioned above. 

Werbos'  algorithm and our Q-Learning based algorithm are deterministic, while 
Gullapalli 's algorithm is stochastic. The deterministic methods are expected to be 
much faster, whereas the stochastic method has better assurance of convergence to 
the true solution. The arguments are similar to those mentioned at the end of §2. 

6 .  O t h e r  i s s u e s  

In this section we discuss a number of issues relevant to practical implementat ion 
of RL Mgorithms. A nice discussion of these (and other) issues has been presented 
by Barto (1992). 

6.1 Function--approximalzon 

A variety of function approximators has been employed by researchers to practically 
solve RL problems. When the input space of the fimction approximator  is finite, 
the most s traight-forward method is to use a look-up table (Singh 1992a; Moore & 
Atkeson 1993). All theoretical results on the convergence of P~L algorithms assume 
this representation. The disadvantage of using look-up table is that  if the input 
space is large then the memory requirement becomes prohibitive. 21 Continuous in- 
put  spaces have to be discretized when using a look-up table. If the discretization 
is done finely so as to obtain good accuracy we have to face the 'curse of dimen- 
sionality'. One way of overcoming this is to do a problem-dependent  discretization; 
see, for example, the 'BOXES'  representation used by Barto et al (1983) and others 
(Michie & Chambers 1968; Gullapalliet al 1994; Rosenet al 1991) to solve the pole 
balancing problem. 

:~1Buckland & Lawrence (1994) have proposed a new delayed RL method called Transition point 
DP which can significantly reduce the memory requirement for problems in which optimal actions 
change infrequently in time. 
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Non look-up table approaches use parametr ic  function approximat ion  methods. 
These methods have the advantage of being able to generalize beyond the training 
da ta  and hence give reasonable performance on unvisited parts  of the input space. 
Among these, connectionist methods  are the most  popular.  Connectionist  methods  
that  have been employed for RL can be classified into four groups: mul t i - layer  per- 
ceptrons; methods  based on clustering; CMAC; and recurrent networks. Multi-layer 
perceptrons have been successfully used by Anderson (1986, 1989) for pole balanc- 
ing, Lin (1991a, 19911>, 1991c, 1992) for a complex test. problem, Tesauro (1992) 
for backgammon,  Thrun (1993) and Millan & Torras (1992) for robot navigation, 
and others (Boyen 1992; Gullapalliet  al 1994). On the other hand, Watkins (1989), 
C, hapman  (1991), Kaelbling (1990, 1991). and Shepanski ,% Macy (1987) have re- 
ported bad results. A modified form of P la t t ' s  Resource allocation network (Pla t t  
1991), a method  based on radial basis functions, has been used by Anderson (1993) 
for pole balancing. Many researchers have used CMAC (Albus 1975) for solving 
RL problems: Watkins (1989) for a test problem; Singh (1991, 1992b, 1992d) and 
T h a m  & Prager (1994) tbr a navigation problem; Lin L: Kiln (1991) for pole bal- 
ancing; and Sutton (1990, 1991b) m his 'Dyna  ' architecture. Recurrent networks 
with context information feedback have been used by Bacharach (1991, 1992) and 
Mozer & Bacllarach (1990a, t990b) in dealing with RL problems with incomplete 
state information.  

A few non-connect ionist  methods  have also been used for R.L. Mahadevan & 
Connell (1991) have used statistical clustering in association with Q-Learn ing  for 
the au tomat ic  p rogramming  of a mobile robot.  A novel feature of their approach is 
that  the number  of clusters is dynamical ly varied. Chapman  & Kaelbling (1991) have 
used a tree based clustering approach in combinat ion with a modified Q-Learn ing  
algori thm for a difficult test problem wilh a huge input space. 

The fimction approximator  has t.o exercise care to ensure that  learning at some 
input point, x does not seriously disturb the function values for y # x. It  is often 
a.dvantageous to choose a function approximator  and employ an update  rule in such 
a way tha t  the function values of x and states 'near '  x are modified similarly while 
the va.lues of states ' far '  from x are left unchanged. Such a choice usually leads to 
good generalization, i.e., good performance of the learnt function approx imator  even 
on states tha t  are not visited during |earning. In this respect, CMAC and methods  
based on clustering, such as RBF, statistical clustering, etc., are more suitable than  
multi  layer perceptrons.  

The effect of errors introduced by fimction approximators  on the op t imal  per- 
formance of the controller has not been well understood. 22 It has been pointed 
out by Watkins  (1989), Bradtke (1993), and others (Barto 1992), that ,  if f imction 
approximat ion  is not done in a careful way, poor learning can result. In the con- 
text of Q-Learning ,  Thrun  & Schwartz (1993) have shown that  errors in function 
approximat ion  can lead to a systematic over est imation of the Q-funct ion.  Linden 
(1993) points out tha t  in many  problems the value function is discontinuous and so 
using continuous fimction approximators  is inappropriate.  But he does not suggest 
any clear remedies for this problem. Overall, it must  be mentioned that  much work 
needs to be done on the use of fimction approximators  for RL. 

22Bertsckas(19~9) and $ingh & Yee (1993) have derived some theoretical bounds for errors in 
vMue functioi~ in tcrms of function approximator error. 
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6.2 Modular and hierarchical architectures 

When applied to proble,ns with large task space or sparse rewards, RL methods  
are terribly slow to learn, l)ividing the problem into simpler subproblems,  using a 
hierarchical control structure, etc., are ways of overcoming this. 

Sequential task decomposzt~on is one such method.  This method is useful when a 
number  of complex tasks call be performed making use of a finite number  of "ele- 
mental"  tasks or skills, say, T~, T2, . . . ,  77,,. ']'he original objective of the controller 
can then be achieved by temporal ly  concatenating a number  of these elemental tasks 
to form what is called a "composite" task. For example,  

G'j =[T(j ,  1),T(j, 2 ) , . . . ,T ( j , k ) ] ,  where T(j , i)  E {7~,T2,...,7;~} 

is a composi te  task made up of k elemental tasks that  have to be performed in the 
order listed. Reward fimctions are defined for each of the elemental tasks, making 
them more al)t, ndant  than in the original problem definition. 

Singh (1992a, 1992b) has proposed a.n algori thm based on a modular  connection- 
ist network (.lacobsel al 1991), making use of these ideas. In his work the controller 
is unaware of the decomposition of the task and has to learn both tile elemen- 
tal tasks, and the decomposit ion of the composite  tasks simultaneously. T h a m  & 
Prager (1994) and Lin (1993) have proposed similar solutions. Mahadevan & Con- 
nell (1991) have developed a method based on the subs~tmption architecture (Brooks 
198Ii) where the decomposit ion of the task is specified by the user before hand, and 
the controller learns only the elemental tasks, while Maes & Brooks (1990) have 
shown that  the controller can be made to learn the decomposit ion also, ill a similar 
fi 'amework. All these methods require some ex/,ernal agency to specify the problem 
decomposit ion.  Can the controller itself learn how the problem is to be decolnposed? 
Though Singh (1992d) has some preliminary results, much work needs to be done 
here. 

Anol, her approach to this problem is to use some form of hierarchical control 
(Watkins 1989). llere there are different "levels" of controllers ~3, each learning 
to perform a more abstract  task than the level below it and directing /.he lower 
lewel controllers to achieve its objective. ["or example,  in a ship a navigator  decides 
in what  direction to sail so as to reach the port  while the he lmsman steers tile 
ship in tile direction indicated by the navigator,  llere the navigator  is the higher 
level controller and the helmsman the lower level controller. Since the higher level 
controllers have to work on a smaller task space and the lower level controllers are 
set simpler tasks improw~d performance results. 

Examples  of such hierarchical architectures are Feudal RL by Dayan & Hinton 
(1993) and Hicralvh*eal planning by Singh (1992a, 1992c). These methods  too, 
require an external agency to specify the hierarchy to be used. This  is done usually 
by making use of some "structure" in the problem. 

Training controllers on simpler tasks tirst and then training them to perform 
progressively more complex tasks using these simpler tasks, can also lead to bet ter  
performance.  Itere at any olle stage the controller is faced with only a simple learning 
task. This technique is called shaping in animal behaviour literature. Gullapalli  
(1992a) and Singh (1992d) have reported some success in using this idea. Singh 
shows tha t  the controller can be made to "discover" a. decomposit ion of the task by 
itself using this technique. 

23 Controllers at different levels may operate at different temporM resolutions. 
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6.3 Speeding-up l,:arning 

Apart from the ideas mentioned above, various other techniques have been suggested 
tbr speeding-up RL. Two novel ideas have bern) suggested by Lin (1991a, 1991b, 
1991c, 1992): ca:pcricncc playback; and leaching. Let us first discuss experience 
pla.yback. An experim~ce consists of a quadruple (occuring in real time system 
operation),  (x ,a ,y ,r) ,  where x is a state, a is the action applied at s tate  x, y is 
the resulting stale, and r is r(.r, a). Past :xperienc~,s are stored in a finite memory  
bufl'er, 7:'. An approl)riate slrategy can be. used to maintain P.  At some point in 
t ime let 7r be the "'current" (st, ochaslaic) policy, l,et 

e: = {(.,'. ,/, Y, ") C "P I Prol,{~(x) = ,,) > c} 

where ( is some chosen toleralJ('e. Th(~ learning up(late rule is applied, not only to 
t i le ctlrrellt exl)erience, but also to a chosen subset, of ~7. lCxperience playl~ack can be 
especially useful in I ea ru iugabou t  rarecxpcrieuces.  In teachiug, the user provides 
the learning system with experiences so as l.o expedite h~arning. 

Incorporat ing domain specitic kttowledge also helps in speeding-up learning. For 
example,  for a. given probtcm, a 'non it a.[" controller that gives reasonable per- 
formance tt,W be e~tsily available. In that  case I{L nwthovls can begin with tiffs 
controller and improve its p~rfonnance (Singh(! al 1994). Domain specific intbr- 
mat.ion can also greatly h,'ll> in cltoosing state repr~senta.tion and setting up the 
function apl , roximators  (Barto 1992: hlillan & Torras 1992). 

In many  applications an iuaccurat.e system model is available. It. turns o,,t to be 
w'l'y im'Ilicient to ~tis('ar(I the model attd si,nply ~'ml)loy a model--fl'ee method.  An 
ellicic.nt, al)llronch is to interweave a liUtllber Of "l>Iannhig '" steps between ew-.ry two 
on-lim~ learning st.el,s. A planning sic l) lltay l)e Oil,? of" the following: a l ime step 
o{' a mode[ based ntcthod such as I/:[ 'DI'; or, ~t l ime step of a model--free method 
for which experience, is gmwrat, 'd using the availal*le system ntod~']. In such an 
approach,  it is also appropriat  c to adapl  the sysl,.nl lnode] using on --line experience. 
' lhese i(hms form the basis o[" Sut ton 's  Dyl~a architecl.ures (Sutton 1990. 1991b)a.nd 
reiat.~d methods (Moore & Atk~:s<m 1993: Peng ,k, Williams 1993). 

7. C o n c l u s i o n  

In this paper  we have tried t.o give a. cohesive overview of existing RL algorithms. 
Though resea.rch has reached a mature  level, RL has been successfully demonst ra ted  
only on a few practical applications (Gullapalli c ! al 1994; Tesauro 199:2; Mahadevan 
& Connell 1991; Thrun 1993), and clear guidelines for its general applicabil i ty do 
uot exist.. The conm'ctiou between DP and ll.I, has nicely bridged control lheorists 
~md AI researchers. With contributions fl'om both these groups on the pipeline, 
more interesting results are forthconfiug and it is expected that  RL will make a 
strong impact  on the iutclligent control of dynamic systems. 
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