
Sadhana, Vol. 19, Part 6, December 1994, pp 851-889. 1~) Printed in India

A tutor ia l s u r v e y of r e i n f o r c e m e n t learn-
ing

S S A T H I Y A K E E R T H I and B R A V I N D R A N

D e p a r t m e n t of C o m p u t e r Science and A u t o m a t i o n ,
I nd i an I n s t i t u t e of Science, Banga lo re 560 012, I n d i a

Abs t r ac t . This paper gives a compact, self-contained tutorial survey
of reinforcement learning, a tool that is increasingly finding application
in the development of intelligent dynamic systems. Research on rein-
forcement learning during the past decade has led to the development
of a variety of useful algorithms. This paper surveys the literature and
presents the algorithms in a cohesive framework.

Keywords . Reinforcement learning; dynamic programming; optimal
control; neural networks.

1. I n t r o d u c t i o n

Reinforcement Learning (RL), a term borrowed from animal learning literature by
Minsky (1954, 1961), refers to a class of learning tasks and algorithms in which the
learning system learns an associative mapping, 7r : X ~ A by maximizing a scalar
evaluation (reinforcement) of its performance from the environment (user). Com-
pared to supervised learning, in which for each x shown the environment provides
the learning system with the value of ~r(x), RL is more difficult since it has to work
with much less feedback from the environment. If, at some time, given an x E X,
the learning system tries an a E A and, the environment immediately returns a
scalar reinforcement evaluation of the (x, a) pair (that indicates how far a is from
r(x)) then we are faced with an immediate RL task. A more difficult RL task is
delayed RL, in which the environment only gives a single scalar reinforcement eval-
uation, collectively for {(zt, as)}, a sequence of (x, a) pairs occuring in time during
the system operation. Delayed RL tasks commonly arise in optimal control of dy-
namic systems and planning problems of AI. In this paper our main interest is in the
solution of delayed RL problems. However, we also study immediate RL problems
because methods of solving them play an useful role in the solution of delayed RL
problems.

Delayed RL encompasses a diverse collection of ideas having roots in animal learn-
ing (Barto 1985; Sutton & Barto 1987), control theory (Bertsekas 1989; Kumar
1985), and AI (Dean & Wellman 1991). Delayed RL algorithms were first employed
by Samuel (1959, 1967) in his celebrated work on playing checkers. However, it

851

852 S Sathiya Keerthi and B Ravindran

IIII

G

X

IIII

F i g u r e 1. Navigating in a grid world.

was only much later, after the publication of Barto, Sutton and Anderson's work
(Barto ct al 1983) on a delayed RL algori thm called adaptive heuristic critic and
its applicat ion to tile control problem of pole balancing, that research on RL got
off to a flying start.. Watkins ' Q-Learning algori thm (Watkins 1989) made another
impact on the research. A number of significant ideas have rapidly emerged during
the past five years and the field has reached a certain level of matur i ty . In this
paper we provide a comprehensive tutorial survey of various ideas and methods of
delayed RL. To avoid distractions and mmecessary clutter of notations, we present
all ideas in an intuitive, not-so-rigorous fashion. In preparing this tutorial, we have
obtained a lot of guidance f rom tile works of Watkins (1989), Bar to et al (1990,
1992), Bradtke (1994), and Bar to (1992).

To illustrate the key features of a delayed RL task let us consider a simple example.

Example 1 Navigating a Robot

Figure 1 illustrates a grid world in which a robot navigates. Each blank cell on
the grid is called a state. Shaded cells represent barriers; these are not states. Let
X be the s tate space, i.e., the set of states. The cell marked G is the goal state.
The aim is to reach G from any state in the least number of t ime steps. Navigation
is done using four actions: A = iN , S, E, W}, the actions denoting the four possible
movements along the coordinate directions.

Rules of transit ion are defined as follows. Suppose that the robot is in s tate x
and action N is chosen. Then the resulting next state, y is the s ta te directly to the
north of x, i f there is such a state; otherwise y = x. For instance, choosing W at
the x shown in figure 1 will lead to the system staying at x. The goal s tate is a
special case. By definition we will take it that any action taken f rom the goal s tate
results in a transit ion back to the goal state. In more general problems, the rules of
transit ion can be stochastic.

Tutorial survey of reinforcement learning 853

The robot moves at discrete (integer) t ime points starting from t = 0. At a t ime
step t, when the robot is at state, xt, we define an immediate reward 1 as

f 0 if xt = G,
r (x t)

- 1 otherwise.

In effect, the robot is penalized for every time step spent at non-goal states. It is
simple to verify that maximizing the total reward over time,

oo

is equivalent to achieving minimum time navigation from the starting state, x0 = x.
Let Y*(x) denote the maximum achievable (optimal) value of V(x).

We are interested in finding a feedback policy, 7r : X ~ A such that , if we start
from any start ing state and select actions using a" then we will always reach the goal
in the nainimum number of time steps.

The usefulness of immediate RL methods in delayed RL can be roughly explained
as follows. Typical delayed RL methods maintain V, an approximation of the op-
timal function, V*. If action a is performed at state x and state y results, then
V(y) can be taken as an (approximate) immediate evaluation of the (x, a) pair. 2
By solving an immediate RL problem that uses this evaluation function we can ob-
tain a good sub-opt imal policy for the delayed RL problem. We present relevant
immediate RL algorithn~s in §2.

[]

Delayed RL problems are much harder to solve than immediate RL problems for
the following reason. Suppose, in example 1, performance of a sequence of actions,
selected according to some policy, leads the robot to the goal. To improve the policy
using the experience, we need to evaluate the goodness of each action performed. But
the total reward obtained gives only the cumulative effect of all actions performed.
Some scheme must be found to reasonably apportion the cumulative evaluation to
the individual actions. This is referred to as the temporal credit assignment problem.
(In the previous paragraph we have already given a hint of how delayed RL methods
do temporal credit assignment.)

Dynamic programming (DP) (Bertsekas 1989; Ross 1983) is a well-known tool
for solving problems such as the one in example 1. It is an off-line method that
requires the availability of a complete model of the environment. But the concerns
of delayed RL are very different. To see th clearly let us return to example 1 and
impose the requirement that the robot has no knowledge of the environment and
that the only way of learning is by on-line experience of trying various actions 3
and thereby visiting many states. Delayed RL algorithms are particularly meant for
such situations and have the following general format.

D e l a y e d R L a l g o r i t h m
Initialize the learning system.
Repeat

1 Somet imes r is referred to as the p r ima ry reinforcement . In more general s i tua t ions , r is a
funct ion of xt as well as at , the act ion at t ime s tep t.

2An op t ima l act ion at x is one t ha t gives the m a x i m u m value of V*(y).
3 Dur ing learning this is usual ly achieved by using a (s tochast ic) explora t ion policy for choosing

actions. Typical ly the explora t ion policy is chosen to be total ly r a n d o m at the beg inn ing of learning
and m a d e to app roach all op t ima l policy as learning nears complet ion.

854 S Sathiya Keerthi and B Ravindran

1. With the system at state x, choose an action a according to an exploration
policy and apply it to the system.

2. The environment returns a reward, r, and also yields the next stale, y.

3. Use the experience, (x, a, r, y) to update the learning system.

4. Set x := y.

Even when a model of the environment is available, it is often advantageous to
avoid an off-line method such as DP and instead use a delayed RL algorithm. This
is because, in many problems the state space is very large; while a DP algorithm
operates with the entire state space, a delayed RL algorithm only operates on parts
of the state space that are most relevant to the system operation. When a model is
available, delayed RL algorithms can employ simulation mode of operation instead
of on-line operation so as to speed-up learning and avoid doing experiments using
hardware. In this paper, we will use the term, real time operation to mean that
either on-l ine operation or simulation mode of operation is used.

In most applications, representing functions such as V* and ~r exactly is infea-
sible. A bet ter alternative is to employ parametric function approximators, e.g.,
connectionist networks. Such approximators must be suitably chosen for use in a
delayed RL algorithm. To clarify this, let us take V* for instance and consider a
function approximator , V(-; w) : X ---* R, for it. Here R denotes the real line and w
denotes the vector of parameters of the approximator that is to be learnt so that I/
approximates V* well. Usually, at step 3 of the delayed RL algorithm, the learning
system uses the experience to come up with a direction, q in which V(x; w) has to be
changed for improving performance. Given a step size, fl, the function approximator
must alter w to a new value, w new so that

V(x; w n°W) = V(x; w) + f l , (1)

For example, in multilayer perceptrons (Hertzel a11991) w denotes the set of weights
and thresholds in the network and, their updating can be carried out using back-
propagation so as to achieve (1). In the rest of the paper we will denote the updating
process in (1) as

w) := w) + (2)

and refer to it as a learning rule.
The paper is organized as follows. Section 2 discusses immediate RL. In §3 we

formulate Delayed RL problems and mention some basic results. Methods of esti-
mat ing total reward are discussed in §4. These methods play an important role in
delayed RL algorithms. DP techniques and delayed RL algorithms are presented in
§5. Section 6 addresses various practical issues. We make a few concluding remarks
in §7.

2. I m m e d i a t e r e i n f o r c e m e n t l e a r n i n g

Immediate RL refers to the learning of an associative mapping, ~r : X--*A given a
reinforcement evaluator. To learn, the learning system interacts in a closed loop
with the environment. At each t ime step, the environment chooses an x E X
and, the learning system uses its function approximator, /r(- ; w) to select an action:

2btorial survey of reinforcement learning 855

a = #(x; w). Based on both x and a, the environment returns an evaluation or
"reinforcement", r (x, a) E R. Ideally, the learning system has to adjust w so as to
produce the m a x i m u m possible r value for each x; in other words, we would like #
to solve the parametr ic global opt imizat ion problem,

r(x, #(x; w)) = r*(x) de=r m a x r (x , a) Vx E X (3)
aEA

Supervised learning is a popular paradigm for learning associative mappings
(Hertzet al 1991). In supervised learning, for each x shown the supervisor pro-
vides the learning system with the wdue of 7r(x). Immedia te RL and supervised
learning differ in the tbllowing two impor tan t ways.

• Ill supervised learning, when an x is shown and the supervisor provides a =
7r(x), the learning system forms the directed information, rl = a - ~(x; w) and
uses the learning rule: #(x; w) := 7r(x; w) + c~rl, where o~ is a (positive) step
size. For immedia te RL such directed information in not available and so it
has to employ some strategy to obtain such information.

• In supervised learning, the learning system can simply cheek if r / = 0 and hence
decide whether the correct map value has been tbrmed by # at x. However,
in immedia te RL, such a conclusion on correctness cannot be made without
exploring the values of r(x, a) for all a.

Therefore, immedia te RL problems are much more difficult to solve than supervised
learning problems.

A number of immedia te RL algori thms have been described in the literature.
Stochastic learning a u t o m a t a algori thms (Narendra & Tha thachar 1989) deal with
the special case in which X is a singleton, A is a finite set, and r C [0, 1]. 4 The
Associative Reward-Penal ty (A n - p) algori thm (Barto & Ana'ndan 1985; Bar toet
al 1985; Barto & Jordan 1987; Mazzoniet al 1990) extends the learning a u t o m a t a
ideas to the case where .¥..is a finite set. Williams (1986, 1987) has proposed a
class of immedia te RL methods and has presented interesting theoretical results.
Gullapall i (1990, 1992a) has developed algori thms for the general case in which X,
A are finite-dimensional real spaces and r is real valued. Here we will discuss only
algori thms which are most relevant to, and useful in delayed RL.

One simlal~ way of solving (3) is to take one x at a time, use a global opt imizat ion
a lgor i thm (e.g., complete enumerat ion) to explore the A space and obtain the correct
a for the given x, and then make the function approximator learn this (x, a) pair.
Itowever, such an idea is not used for the following reason. In most si tuations
where i lnmediate RL is used as a tool (e.g., to approximate a policy in delayed
RL), the learning system has little control over the choice of x. When, at a given
x, the learning system chooses a part icular a and sends it to the environment for
evaluation, the environment not only sends a reinforcement evaluation but also
alters the x value. Immedia te RL seeks approaches which are appropr ia te to these
situations.

Let us first eonsider the case in which A is a finite set: A = {a 1, a2, . . . , am}. Let
R "~ denote the m-dimens iona l real space. The function approximator , # is usually

[
4 S t o c h a s t i c L e a r n i n g A u t o m a t a a lgo r i£hms can a lso be used when X is no t a s ing le ton , by

e m p l o y i n g t e a m s of c o - o p e r a t i n g a u t o m a t a . For more de t a i l s on such a l g o r i t h m s see N a r e n d r a &:

T h a t h a c h a r (1989).

856 S Sathiya Keerthi and B Ravindran

formed as a composit ion of two functions: a function approximator , g(.; w) : X---~R '~
and a fixed function, M : R'n---*A. The idea behind this set-up is as follows. For
each given x, z = g(x; w) E R'* gives a vector of meri ts of the various a i values. Let
z~ denote the k - t h component of z. Given the meri t vector z, a : M (z) is formed
by the max selector,

a = a k where z~- - m a x zi (4)
l < i < m

Let us now come to the issue of learning (i.e., choosing a w). At some stage, let x
be the input, z be the merit vector returned by g, and a k be the action having the
largest merit value. The environment returns the reinforcement, r(x,a}). In order
to learn we need to evaluate the goodness of z k (and therefore, the goodness of ak).
Obviously, we cannot do this using existing information. We need an est imator , call
it ÷(x; v), tha t provides an est imate of r*(x). The difference, r(x, a k) - r(x; v) is a
measure of the goodness of a k. Then a simple learning rule is

gk(x; w) := gk(x; w) + a k) - ÷(x; v)) (5)

where cY is a small (positive) step size.
Learning ? requires tha t all members of A are evaluated by the environment at

each x. Clearly, the max selector, (4) is not suitable tbr such exploration. For
instance, if at some stage of learning, for some x, g assigns the largest merit to a
wrong action, say a k , and r gives, by mistake, a value smaller than r (x , ale), then no
action other than a k is going to be generated by t.he learning system at the given x.
So we replace (4) by a controlled stochastic action selector that generates actions
randomly when learning begins and approaches (4) as learning is completed. A
popular stochastic action selector is based on the Bo]tznaalm distribution,

e x p (z i / T) (6)
pi(x) d~'=-f Prob{a = ailx} = E j e x p (z j / T)

where T is a nonnegative real parameter (temperature) that controls the stochas-
ticity of the action selector. For a given x the expected reinforcement of the action
selector is

a

i

As T - - 0 tl,~ stocllastic action select(," approaches the max selector, (4), and,
{(x)--+r*(~c'). Therefore we train ¢ to approximate { (instead of r*). This is easy
to do because, for any fixed value of T, (can be es t imated by the average of the
performance of the stochastic action selector over time. A simple learning rule tha t
achieves this is

÷(x; v) := ÷(x; v) + ~(r (x , a) - ÷(x; v)) (7)

where 'fl is a small (positive) step size.
R e m a r k Two impor tan t comments should be made regarding the convergence

of learning rules such as (7) (we will come across many such learning rules later)
which are designed to est imate an expectat ion by averaging over time.

• Even if ? -- {, r(x , a) - ÷(x; v) can be non-zero and even large in size. This is
because a is only an instance generated by the distribution, p(x) . Therefore,
to avoid unlearning as ~ comes close to ~, the step size, /3 must be controlled
properly. The value of/4 may be chosen to be 1 when learning begins, and
then slowly decreased to 0 as learning progreses.

Tutorial survey of reinforcement learning 857

For good learning to take place, the sequence of x values at which (7) is carried
out mus t be such tha t it covers all parts of the space, X as often as possibie.
Of course, when the learning system has no control over the choice of x, it can
do nothing to achieve such an exploration. To explore, the following is usually
done. Learning is done over a number of trials. A trial consists of beginning
with a r andom choice of x and operat ing the system for several t ime steps. At
any one t ime step, the system is at some x and the learning system chooses
an action, a and learns using (7). Depending on x, a and the rules of the
environment a new x results and the next t ime step begins. Usually, when
learning is repeated over multiple trials, the X space is thoroughly explored.

Let us now consider the case in which A is continuous, say a finite dimensional
real space. The idea of using meri t values is not 'suitable. It is bet ter to directly
deal with a function appro×imator , h(.; w) from X to A. In order to do explorat ion
a controlled r andom perturbat ion, ~1 is added to h (x ;w) to form a = #(x). A
simple choice is to take 7/ to be a Gaussian with zero mean and having a s tandard
deviation, c~(T) that satisfies: or(T)---*0 as T---~0. The sett ing-up and training of
the reinforcement est imator , i; is as in the case when A is discrete. The function
approximator , h can adopt the tbllowing learning rule:

h(x; w) := h(x; w) + a(r(x, a) - ?(x; v))r/ (8)

where a is a small (positive) step size. In problems where a bound on r* is available,
this bound can be suitably employed to guide exploration, i.e., choose cr (Gullapall i
1990).

Jordan ~ Rumelhar t (1990) have suggested a method of ' forward models ' for
continuous action spaces. If r is a known differentiab]e function, then a simple,
determinist ic learning law based on gradient ascent can be given to update ~:

#(x; w) := ~(x; w) + c ~ - -
~r(x, a)

Oa
(9)

If r is not known, Jordan and Rumelhar t suggest tha t it is learnt using on-l ine
data, and (9) be used using this learnt r. If for a given x, the function r(x, .) has
local m a x i m a then the #(x) obtained using learning rule, (9) may not converge to
7r(x). Typical ly this is not a serious problem. The stochastic approach discussed
earlier does not suffer from local m a x i m a problems. However, we should add that ,
because the determinist ic method explores in systematic directions and the stochas-
tic method explores in random directions, the former is expected to be much faster.
The comparison is very similar to the comparison of deterministic and stochastic
techniques of continuous optimization.

3 . D e l a y e d r e i n f o r c e m e n t l e a r n i n g

Delayed RL concerns the solution of stochastic op"6imal control problems. In this
section we discuss the basics of such problems. Solution methods for delayed RL will
be presented in §4 and §5. In these three sections we will mainly consider problems
in which the s tate and control spaces are finite sets. This is because the main issues
and solution methods of delayed RL can be easily explained for-such problems. We
will deal with continuous state and /o r action spaces briefly in §5.

858 S Sathiya Keerthi and B Ravindran

Consider a discrete-time stochastic dynamic system with a finite set of states,
X. Let the system begin its operat ion at t = 0. At t ime t the agent (controller)
observes s ta te 5 xt and, selects (and performs) action at f rom a finite set, A(xt), of
possible actions. Assume tha t the system is Markovian and stationary, i.e.,

P rob{xt+ l = y I x 0 , a 0 , ~1 , a l , ' " , x t : x , a t -~- a }

= P r o b { x t + l = y l x t = x , a t - - a } def = P x y (a)

A policy is a method adopted by the agent to choose actions. The objective of
the decision task is to find a policy tha t is opt imal according to a well defined sense,
described below. In general, the action specified by the agent 's policy at some t ime
can depend on the entire past history of the system. Here we restrict a t tent ion
to policies tha t specify actions based only on the current s tate of the system. A
determinist ic policy, ~r defines, for each x E X an action ~(x) E A(x). A stochastic
policy, ~ defines, for each x E X a probabi l i ty distribution on the set of feasible
actions at x, i.e., it gives the values of P r o b { r (x) = a} for all a E A(x). For the
sake of keeping the notat ions simple we consider only deterministic policies in this
section. All ideas can be easily extended to stochastic policies using appropr ia te
detailed notations.

Let us now precisely define the opt imal i ty criterion. While at s tate x, if the agent
performs action a, it receives an immedia te payoffor reward, r(x, a). Given a policy
~" we define the value function, V ~ : X -+R as follows:

t :-0

(10)

Here future rewards are discounted by a factor 7 E [0, 1). The case 7 = 1 is avoided
only because it leads to some difficulties associated with the existence of the sum-
mat ion in (10). Of course, these difficulties can be handled by put t ing appropr ia te
assumptions on the problem solved. But, to avoid unnecessary distraction we do
not go into the details; see (Bradtke 1994; Bertsekas & Tsitsiklis 1989).

The expectat ion in (10) should be understood as

N - 1

V*(x) = lim E{ ~ 7tr(xt,~r(xt))lxo = x}
N - - * oo

N - 1 where the probabi l i ty with which a part icular s tate sequence, {xt}t=o occurs is
taken in an obvious way using x0 = x and repeatedly employing ~- and P. We wish
to maximize the value function:

V*(x) = m axV~(x) Yx (11)

V* is referred to as the opt imal value function. Because 0 < 7 < 1, V~(x) is
bounded. Also, since the number of r ' s is finite V*(x) exists.

5if t h e s t a t e is n o t c o m p l e t e l y observab le t h e n a m e t h o d t h a t u ses t he obse rvab le s t a t e s a n d
r e t M n s p a s t i n f o r m a t i o n h a s to b e used ; see (B a c h a r a a h 1991; B a c h a r a c h 1992; C h r i s m a ~ 1992;
Mozer & B a c h a r a c h 1990a, 1990b; W h i t e h e a d & Ba l l a rd 1990).

Tutorial survey of reinforcement learning 859

How do we define an opt imal policy, ~*? For a given x let 7r ~'* denote a policy tha t
achieves the m a x i m u m i n (11). Thus we have a collection of policies, {~'~,* : x E X}.
Now ~r* is defined by picking only the first action from each of these policies:

~ * (x) = ~ ' ~ ' * (x) , x ~ X

It turns out tha t n* achieves the m a x i m u m in (11) for every x E X. In other words,

V*(x) = V~*(x) , x C X (12)

This result is easy to see if one looks at Bel lman's opt imal i ty equation - an impor tan t
equation tha t V* satisfies:

V*(x) = max [r(x'a)+ 7 E y ~ x J (13)

The fact tha t V* satisfies (13) can be explained as follows. The te rm within square
brackets on the right hand side is the total reward that one would get if action a is
chosen at the first t ime step and then the system performs opt imal ly in all future
t ime steps. Clearly, this te rm cannot exceed V*(x) since tha t would violate the
definition of V*(x) in (11); also, if a = rr~,*(x) then this te rm should equal Y*(x).
Thus (13) holds. It also turns out that V* is the unique function from X to R tha t
satisfies (13) for all x E X. This fact, however, requires a non-trivial proof; details
can be found in (Ross 1983; Bertsekas 1989; Bertsekas & Tsitsiklis 1989).

The above discussion also yields a mechanism for comput ing rr* if V* is known:

7r*(x) =arg max Ir(x'a)+ T E PxY(a)V*(Y) yEX

A difficulty with this computa t ion is that the system model, i.e., the function, P~u(a)
must be known. This difficulty can be overcome if, instead of the V-funct ion we
employ another function called the Q-function. Let U = {(x, a) : x E X, a E A(x)},
the set of feasible (state,action) pairs. For a given policy ~r, let us define Q~ : /4 -+R
by

: + (14)
y E X

Thus Q'~(x, a) denotes the total reward obtained by choosing a as the first action and
then following rr for all future t ime steps. Let Q* = Q'~*. By Bel lman 's opt imal i ty
equation and (12) we get

V*(x) = max [Q*(x, a)] (15)
a e A (x)

It is also useful to rewrite Bel lman's opt imal i ty equation using Q* alone:

Q*(x, a) = r(x, a) 47 7 E Pa~u(a){ m a x Q*(y, b)} (16)
y E X - beA(y)

Using Q* we can compute ~-*:

~r*(x) = arg max [Q*(x, a)] (17)
aEA(x)

860 S S a t h i y a K e e r t h i a n d B R a v i n d r a n

Thus, if Q* is known then ~r* can be computed without using a system model. This
advantage of the Q-funct ion over the V-funct ion will play a crucial role in §5 for
deriving a model- f ree delayed RL algori thm called Q-Learn ing (Watkins 1989).

Let us now consider a few examples tha t give useful hints for problem formulation.
These examples are also commonly mentioned in the RL literature.

E x a m p l e 2 N a v i g a t i n g a robot wi th d y n a m i c s
Ill example 1 the robot is moved from one cell to another like the way pieces are

moved in a chess board. True robot motions, however, involve dynamics; the effects
of velocity and acceleration need to be considered. In this example we will include
dynamics in a crude way, one tha t is appropr ia te to the grid world. Let ht and vt
denote the horizontal and vertical coordinates of the cell occupied by the robot at
t ime t, and,]h and ~)t denote the velocities. The vector, (ht , vt, h~t, i)t) denotes the
system state at t ime t; each one of the four components is an integer. The goal s ta te
is x a = (h a , v d, 0, 0) where (h G, v C) is the coordinate vector of the goal cell G. In
other words, the robot has to come to rest at G. Let hm~× and 6max be limits on
velocity magnitudes. Thus the s tate space is given by

= { x = (h , v ,) ~ , , b) l (h , v) is a blank cell,

Ih] ~ hmax, and li, I < 'bronx}

We will also include an extra state, f called failure state to denote si tuations where
a barrier (shaded) cell is entered or a velocity limit is exceeded. Thus

X = .,9 U { f }

The accelerations 6 along the horizontal and vertical directions, respectively a h
and a", are the actions. To keep h and v as integers let us assume that each of
the accelerations takes only even integer values. Let amax be a positive even integer
that denotes the l imit on the magni tude of accelerations. Thus a = (a ~, a ~) is an
admissible action if each of a h and a" is an even integer lying in [--amax, amax]-

As in example 1 s tate transitions are deterministic. They are defined as follows.
If barrier cells and velocity limits are not present, then application of action (a h, a ~)

/ / / ' / '1 at x t (ht , "vt, Jzt, iJt) wilt lead to the next s tate xt+ 1 = (ht+l, ht+ 1) given Vt+ 1 ~ ~ Vt+l
by

h' ht +itt +ah/2 V~+I --~-Vt + i ' t + a v l 2 • t + l - ~

h I J~t + a h .i = i't + a ~ t + l ~ ~ Vt+l

Let C denote the curve in the grids world resulting during the transit ion from (h~, v t)
at t ime t to (h~+l, v~+l) at t ime (t + 1), i.e., the solution of the differential equa-

tions: d 2 h / d v 2 = a h, d ~ v / d r " = a ~, r E [t, t + 1], h(t) = ht, d h / d r l ~ = ht , v (t) = vt ,
"! .!

dv /d7]~ = i~t. If, either C cuts across a barrier cell or (ht+ 1, v t+l) is an inadmissi-
ble velocity vector, then we say failure has oceured during transition. Thus s tate
transit ions are defined as

f
f

Xt+l -~- TG
!

X t + i

if x ~ = f
if failure occurs during transit ion
if x t = x a
otherwise

6 N e g a t i v e a c c e l e r a t i o n wi l l m e a n d e c e l e r a t i o n .

Tutorial survey of reinforcement learning 861

The primary aim is to avoid failure. Next, among all failure-avoiding trajec-
tories we would like to choose the trajectory which reaches the goal state, x a =
(h a, v a, 0, 0) in as few time steps as possible. These aims are met if we define

- 1 if x = f ,
r (x , a) = 1 if x = x a,

0 otherwise.

The following can be easily checked.

• V*(x) < 0 iff there does not exist a trajectory starting from x that avoids
failure.

• V*(x) = 0 iff, starting from x, there exists a failure-avoiding trajectory, but
there does not exist a trajectory that reaches G.

~, V*(x) > 0 iff, starting from x, there exists a failure-avoiding trajectory that
also reaches G; also, an optimal policy 7r* leads to the generation of a trajectory
that :caches G in the fewest number of steps from x while avoiding failure.

[]

Example 3 Playing backgammon
Consider a game of backgammon (Magriel 1976) between players A and B. Let

us look at the game from A's perspective, assuming that B follows a fixed policy.
Now A can make a decision on a move only when the current board pattern as well
as its dice roll are known. Therefore a state consists of a (board pattern, dice roll)
pair. Each action consists of a set of marker movements. State transition is defined
as follows.

• A moves its markers in accordance with the chosen action. This step is deter-
ministic, and results in a new board pattern.

¢ B roils the dice. This step is stochastic.

• B moves its markers according to its policy. This step can be deterministic or
stochastic depending on the type of B's policy.

* A rolls the dice. This step is stochastic.

The set of states that correspond to A's win is tile set of goal states, G to be
reached. We can define the reward as: v(x, a) = 1 if x is a goal state; and r(x, a) = 0
otherwise. If 7 = 1, then for a given policy, say :¢, the value function V'~(x) will
denote the probability that .4 will win from that state.

[]

Example ~ Pole balaT~ciT~g We now deviate from our problem formulation and
present an example that involves continuous state/action spaces. A standard prob-
lem for learning controllers is that of balancing an inverted pendulum pivoted on
a trolley, a problem similar to that of balancing a stick on one's hand (Barto ct al
1983). The system comprises a straight horizontal track, like a railway track, with
a carriage free to move along it. On the carriage is an axis, perpendicular to the
track and poin,:.ing out to tim side, about which a pendulum is free to turn. The
controller's task is to keel) the pendulum upright, by alternately puliing and pushing

862 S Sathiya Keerthi and B Ravindran

/
(), ()

I t
¢ I
I I

t ~ r l

I I

' h ' ! I

F i g u r e 2. Pole balancing.

the carriage along the track. Let h and 0 be as shown in figure 2. We say balancing
has failed if anyone of the following inequalities is violated:

h _~ hmax, h ~ --hmax, 0 ~ Omax , 0 ~ --Ornax

where hmax and 0max are specified bounds on the magnitudes of h and 0. The aim
is to balance without failure for as long a time as possible.

The state of the system is the 4-tuple, (h, J~, 0, 0), where J~ and 0 are the t ime
derivatives of h and 0 respectively. The action is the force applied to the carriage.
It takes real values in the interval, [-Fm~×, Fm~x]- To simplify the problem solution,
sometimes the action space is taken to be {-Fmax,/ 'max} (Michie & Chambers
1968; Barto et al 1983; Anderson 1989). A discrete time formulation of the problem
is obtained by cutting continuous time (non-negative real line) into uniform time
intervals, each of duration A, and taking the applied force to be constant within
each interval. 7 The state of the system at the continuous time instant, tA is taken
to be xt, the discrete t ime state at the t - t h t ime step. The mechanical dynamics of
the system defines state transition, except for one change: once failure occurs, we
will assume, for the sake of consistent problem formulation, that the system stays
at failure for ever.

As in example 2 we will take the state space to be X =)(U {f}, where

2 = {x = (h, h, 0, b)l - hmax < h < hm~x, -0m~x < 0 _< 0m~x)

and f is the failure state that collectively represents all states not in) f . Since the

7This constant is the action for the time step corresponding to that interval.

Tutorial survey of reinforcement learning 863

aim is to avoid failure, we choose

a) =
(

- 1 if x = f,
0 otherwise.

[]

4. M e t h o d s o f e s t i m a t i n g V ~ a n d Q~

Delayed RL methods use a knowledge of V ~ (Q'~) in two crucial ways: (1) the
optimali ty of 7r can be checked by seeing if V ~ (Q~) satisfies Bellman's optimali ty
equation; and (2) if ~r is not optimal then 1/'~ (Q'~) can be used to improve rr. We
will elaborate on these details in the next section. In this section we discuss, in some
detail, methods of estimating V ~ for a given policy, rr. (Methods of estimating Q~
are similar and so we will deal with them briefly at the end of the section.) Our aim
is to find V(-; v), a function approximator that estimates V ~. Much of the material
in this section is taker] from the works of Watkins (1989), Sutton (1984, 1988) and
Jaakkolact al (1994).

To avoid chnnsiness we employ some simplifying notations. Since 7r is fixed we
will omit the superscript fi'om V ~ and so call it as V. We will refer to r'(xt, rr(xt))
simply as ft. If p is a random variable, we will use p to denote both, the random
variable as well as an instance of the random variable.

A simple approximation of V(x) is the n-step truncated return,

;9--1
v ["] (x) = = (18)

7=0

(Here it is understood that x0 --- x. Thus, throughout this section r will denote
the number of time steps elapsed after the system passed through state x. It is for
stressing this point that we have nsed r instead of t. In a given situation, the use
of time - is it 'actuM system time' or ' t ime relative to the oceurence of x' will
be obvious fl'om the context.) If rmax is a bound on the size of r then it is easy to
verify that

n~laX[~7(x;v)- g (*)] < ") /'max (19)
- (1 - v)

Thus, as n--~,~, V(x; v) converges to V(x) uniforinly in x.
But (18) suffers from an important drawback. The computation of the expecta-

tion requires the complete enumeration of the probability tree of all possible states
reachable in n time steps. Since the breadth of this tree may grow very large with n,
the computat ions can become very burdensome. One way of avoiding this problem
is to set

9 (x ; v) = Vt"](x) (20)

where V['d(x) is obtained via either Monte-Carlo simulation or experiments on the
real system (the latter choice is the only way to systems for which a model is
unavailable.) The approximation, (20) suffers from a different drawback. Because
the breadth of the probability tree grows with n, the variance of V[n](x) also grows
with n. Thus V(x; v) in (20) will not be a good approximation of E(VD](x)) unless

864 S Sathiya Keerthi and B Ravindran

it is ob ta ined as an average over a large number of trials. 8 Averaging is achieved if
we use a learning rule (similar to (7)):

?(x; v) := ¢,(x; v) + /3 [v H (x) - ~(x; v)] (21)

where/3 C (0, 1) is a small step size. Learning can begin with a r a n d o m choice of v.
Eventual ly, after a number of trials, we expect the V result ing f rom (21) to satisfy
(19).

In the above approach, an approx ima t ion of V, V is always available. Therefore,
an es t imate tha t is more appropriate than V[n](x) is the corrected n-step truncated
return,

r~--]

v(,~)(~) = S ~ T + <~'(x~;~) (22)
7 - : 0

where x,, is the s ta te t ha t occurs n t ime steps after the sys tem passed th rough s ta te
x. Let us do some analysis to just i fy this s ta tement .

First , consider the ideal learning rule,

? (x ; v) := E(V(n) (x)) V x (23)

Suppose v gets modif ied to V~w in the process of sat isfying (23). Then , s imilar to
(19) we can easily derive

max IV(x; v.o~) - W(x)l _< 7 ~ max I?(~; v) - V(x)i
x

Thus, as we go th rough a number of learning steps we achieve ~--+V. Note tha t this
convergence is achieved even if n is fixed at a small value, say n = 1. On the other
hand, for a fixed n, the learning rule based on V ['1, i.e., (18), is only guaran teed to
achieve the bound in (19). Therefore, when a system model is available it is best to
choose a small n, say n = 1, and employ (23).

Now suppose that , ei ther a model is unavailable or (23) is to be avoided because
it is expensive. In this case, a suitable learning rule t ha t employs V (~) and uses
rea l - t ime d a t a is:

~(~;

Which is bet ter : (21) or (24)? There are two reasons as to why (24) is better .

• Suppose 1) is a good es t imate of V. Then a small n makes V (n) ideal: V(') (x)
has a mean close to V(x) and it also has a small variance. Small variance
means tha t (24) will lead to fast averaging and hence fast convergence of
to V. On the other hand n has to be chosen large for V['q(x) to have a mean
close to V(x) ; bu t then, V M (z) will hav,~ a large variance and (21) will lead
to slow averaging.

• If ~I is not a good es t imate of V then both V !'~) arid V [~] will require a large
n for their means to be good. If a large n is used, the difference between V (~)
and V ['q, i.e., 7'~19 is negligible and so both (21) and (24) will yield similar
per formance .

aAs already mentioned, a trial consists of starting the system at a random state and then
running the system for a number of time steps.

Tutorial survey o f reinforcement learning 865

The above discussion implies that it is better to employ V('O than V['q. It is
also clear that , when V ('~) is used, a suitable value of n has to be chosen dynami-
cally according to the goodness of 1). To aid the manipulat ion of n, Sutton (1988)
suggested a new estimate constructed by geometrically averaging {V('~)(x) : n _> 1}:

Va(x) = (1 - A) ~ A"-aVtn)(x) (25)
n = l

Here (1 - A) is a normalizing term. Sutton referred to the learning algorithm that
uses V "x as TD(A). Here T D stands for 'Temporal Difference'. The use of this name
will be justified below. Expanding (257 using (22) we get

v~(z) = (3 - A) [v(~)(z) + ~v~)(~) + A-~v(a)(~) + . . .]
= r o + 7 (1 - A) (7 (x l ; v) +

"~ Jr1 -~ 7(1 -- A)I~;(Z2; V) + (26)

7A [r2 + 7(1 - A)V(Xa; v) +
f

Using the fact that r0 = r(x, re(x)) the above expression may be rewritten recursively
a~s

v ~ (.) = r(z, a-(z)) + 7(1 - ~)v(<;~) + 7~v~(*~) (27)

where Xl is tile state occuring a time step after x. Putt ing A = 0 gives V ° = V (1)
and putt ing A = 1 gives V 1 = V, which is the same as V (''a/. Thus, the range of
values obtained using V ('~) and varying n from 1 to oo is approximately achieved by
using V ~ and varying A from 0 to 1. A simple idea is to use V A inste.~,! ,~f V (n), begin
the learning process with A = 1, and reduce A towards zero as learnia~l progresses
and (; becomes a better estim.ate of I7. If A is properly chosen then a significant
bet terment of computat ional efficiency is usually achieved when compared to simply
using A = 0 or A = 1 (Sutton 1988). In a recent paper, Sutton & Singh (1994) have
developed automat ic schemes for doing this assuming that no cyck's are present in
state trajectories.

The definition of V x involves all V(")s and so it appears that we have to wait for
ever to compute it. Ilowever, computations involving V a can be nicely rearranged
und then suitably approximated to yield a practical algorithm that is suited for
doing learning concurrently with real time system operation. Consider the learning
rule in which we use V "x instead of V ('~'

v(~; ~) := V(z; ~) + ~ [v~(~) - ~(~; v)] (28)

Define the temporal difference operator, A by

A(x) = r(a:, a-(x)) + 7I)(**; v) -- l)(a:; v) (29)

A(z) is the difference of predictions (of V=(a:)) at two consecutive t ime steps:
, (z , a-(z)) + 7g(z~ ;v) is a prediction based on information at r = 1, and l?(x; v) is
a prediction based on information at r = 0. ttence the name, ' temporal difference'.
Note that zX(x) can be easily computed using the experience within a t ime step. A
simple rearrangement of the terms in the second line of (26) yields

VA(x) -- 9(=;U) ----- h (,) ~t. (. . /a)A(, 1)-It- (7.~)2A(z2) Aft... (30)

866 S Sathiya Keerthi and B Ravindran

Even (30) is not in a form suitable for use in (28) because it involves future terms,
A(xl) , A(x2), etc., extending to infinite time. One way to handle this problem is to
choose a large N, accumulate A(x), A(xl) , .-., A(xg -1) in memory, truncate the
right hand side of (30) to include only the first N terms, and apply (28) at 7- = N + 1,
i.e., (N + 1) t ime steps after x occured. However, a simpler and approximate way
of achieving (30) is to include the effects of the temporal differences as and when
they occur in time. Let us say that the system is in state x at time t. When the
systems transits to state xa at time (t + 1), compute A(x) and update V according
to: r~(z; v) := ~r(x; V) +/3(TA)A(Xl). When the system transits to state x~ at tim,.
(t+2), compute A(Xl) and update V according to: l)(x; v) := V(x; v)+fl(7A)2A(x2)
and so on. The reason why this is approximate is because l/(z; v) is continuously
altered in this process whereas (30) uses the V(x; v) existing at time t. However,
if 13 is small and so l)(x; v) is adapted slowly, the approximate updating method is
expected to be close to (28).

One way of implementing the above idea is to maintain an eligibility trace, e(x, t).
for each state visited (Klopf 1972; Klopf 1982; Klopf 1988; Bartoet a11983; Watkin.~
1989), and use the following learning rule at time t:

l /(x; v) := $)(x; v) + 13e(x, t)A(xt) V x (31)

where xt is the system state at time t. The eligibility traces can be adapted according
to

0 if x has never been visited
e (x , t)= 7Ae(x , t - -1) if xt # x (32)

l + 7 ~ e (x , t - 1) if x t = x

Two important remarks must be made regarding this implementation scheme.

• Whereas the previous learning rules (e.g., (21), (24) and (28)) update IY only
for one x at a time step, (31) updates the V of all states with positive eligibility
trace, at a t ime step. Rule (31) is suitable for connectionist implementation,
but not so for implementations on sequential computers. A more efficient way
is to keep track of the last k states visited and update V for them only. The
value of k should depend on)~. If ~ is small, k should be small. If A = 0 then
k = l .

• The rule for updating eligibility traces, (32) assumes that learning takes place
in a single trial. If learning is done over multiple trials then all eligibility traces
must be reset to zero just before each new trial is begun.

The remark made below equation (7) applies as well to the learning rules, (21),
(24), (28) and, (31). Dayan & Sejnowski (1993), and Jaakkolaet al (1994) have
shown that , if the real time TD(A) learning rule, (31) is used, then under appro-

^

priate assumptions on the variation of/3 in time, as t--+oc, V converges to V ~r with
probability one. Practically, learning can be achieved by doing multiple trials and
decreasing/3 towards zero as learning progresses.

Thus far in this section we have assumed that the policy, zc is deterministic. If
7r is a stochastic policy then all the ideas of this section still hold with appropriate
interpretations: all expectations should include the stochasticity of 7r, and, the 7r(x)
used in (27), (29) etc. should be taken as instances generated by the stochastic
policy.

Tutorial survey of reinforcement learning 867

Let us now come to the estimation of Q~. Recall from (14) that Q~(at, a) denotes
the total reward obtained by choosing a as the first action and then following 7r for
all future time steps. Details concerning the extension of Q~ are clearly described in
a recent report by Rummery & Niranjan (1994). Let 0(at, a; v) be the estimator of
Qn(x, a) that is to be learnt concurrently with real time system operation. Following
the same lines of argument as used for the value function, we obtain a learning rule
similar to (31):

(~(at, a; v) := Q,(x,a; v) + /3e@(x,a,t)Ac2(att,at) V (x,a) (33)

where: att and at are, respectively, the system state and the action chosen at time t;

and

AQ(X, a) = r(at, a) + TO(at1,7r(xl); v) - Q(at, a; v); (34)

0 if (at,a) has never been visited
eo(x,a, t) = 7AeQ(x ,a , t - 1) if (att,at) ~: (at,a) (35)

l + TAeQ(x ,a , t -1) if (xt,at) = (at, a)

As with e, all eQ(x, a, t) 's must be reset to zero whenever a new trial is begun from
a random starting state.

If rr is a stochastic policy then it is better to replace (34) by

A~(x, a) = r(x, a) + 7 ~ (x l) -- Q(at, ~; ~) (36)

w h e r e

l)(xl) = E Prob{Tr(x) = b}Q(xl,b; v) (37)
bEA(Xl)

Rummery & Niranjan (1994) suggest the use of (34) even if rr is stochastic; in
that case, the rr(xl) in (34) corresponds to an instance generated by the stochastic
policy at x~. We feel that, as an estimate of V~(xl), V(x~) is better than the term
Q(xl, rr(xl); v) used in (34), and so it fits-in better with the definition of Q~ in (14).
Also, if the the size of A(xl) is small then the computations of l)(x~) is not much
more expensive than that of 0 (x l , rr(xl); v).

5. D e l a y e d r e i n f o r c e m e n t l e a r n i n g m e t h o d s

Dynamic Programming (DP) methods (Ross 1983; Bertsekas 1989) are well known
classical tools for solving the stochastic optimal control problem formulated in §3.
Since delayed RL methods also solve the same problem, how do they differ from DP
methods? 9 Following are the main differences.

Whereas DP methods simply aim to obtain the optimal value function and
an optimal policy using off-line iterative methods, delayed RL methods aim
to learn the same concurrently with real time system operation and improve
performance over time.

9The connection between DP and delayed RL was first established by Werbos (1987, 1989,
1992) and Watkins (1989).

868 S Sathiya Keerthi and B Ravindran

• DP methods deal with the complete state space, X in their computations,
while delayed lq.L methods operate on .Y, the set of states tha t occur during
real t ime system operation. In many applications X is very large, but X is
only a small, manageable subset of X. Therefore, in such applications, DP
methods suffer from the curse of dimensionality, but delayed RL methods do
not have this problem. Also, typically delayed RL methods employ function
approximators (for value function, policy etc.) that generalize well, and so,
after learning, they provide near optimal performance even on unseen parts of
the state space.

• DP methods fundamental ly require a system model. On the other hand, the
main delayed RL methods are model-free; hence they are particularly suited
for the on-line learning control of complicated systems for which a model is
difficult to derive.

• Because delayed RL methods continuously learn in t ime they are better suited
than DP methods for adapting to situations in which the system and goals
are non-stationary.

Although we have said that delayed RL methods enjoy certain key advantages, we
should also add that DP has been the fore-runner from which delayed RL methods
obtained clues. In fact, it is correct to say that delayed RL methods are basically
rearrangements of the computat ional steps of DP methods so that they can be
applied during real t ime system operation.

Delayed RL methods can be grouped into two categories: model-based methods
and model-free methods. Model based methods have direct links with DP. Model-
free methods can be viewed as appropriate modifications of the model based methods
so as to avoid the model requirement. These methods will be described in detail
below.

5.1 Model based methods

In this subsection we discuss DP methods and their possible modification to yield
delayed RL methods. There are two popular DP methods: value iteration and policy
iteration. Value iteration easily extends to give a delayed RL method called 'real
t ime DP' . Policy iteration, though it does not directly yield a delayed method, it
forms the basis of an impor tant model-free delayed RL method called actor-critic.

5.1.1 Value iteralion

Tile basic idea in value iteration is t o compute V*(x) as

V*(x) = lim V~(x) (38)
n "---4- O 0

where Vg(x) is the optimal value function over a finite-horizon of length n, i.e.,
Vg(x) is the maximum expected return if the decision task is terminated n steps
after start ing in state x. For n = 1, the maximum expected return is just the
maximum of the expected immediate payoff:

V~(x) = max r(x, a) Y x (39)
a6A(x)

Tutorial survey of reinforcement learning 869

Then, the recursion, 1°

V n * + l (x) = m a x [r (x ' a) + V E P x y (a) V ~ (y)] a e A (x) y VX (40)

can be used to c om pu t e * n = - V~+t for 1 , 2 , . . . (I terat ions can be t e rmina ted after
a large n u m b e r (N) of i terations, and V~ can be taken to be a good approx ima t ion

of V*.)
In value i terat ion, a policy is not involved. But it is easy to a t tach a sui table policy

with a value funct ion as follows. Associated with each value function, V : X---*R is
a policy, ~r t h a t is greedy with respect to I/ , i.e.,

~ (x) = a r g m a x [r (x , a) + T E P x y (a) Y (y)] V x (41)
aeA(x) [] y

If the s ta te space, X has a very large size (e.g., s ize=k d, where d--- n u m b e r of
componen t s of x, k = n u m b e r of values tha t each componen t can take, d ~ 10,
k ~ 100) then value i terat ion is prohibi t ively expensive. This difficulty is usual ly
referred to as the curse of dimensionality.

In the above, we have assumed tha t (38) is correct. Let us now prove this conver-
gence. It turns ou t t ha t convergence can be established for a more general a lgor i thm,
of which value i terat ion is a special case. We call this a lgor i thm as generalized value
iteration.

G e n e r a l i z e d v a l u e i t e r a t i o n
Set n = I and t"~ ~ = an arbitrary function over states.
Repeat

1. Choose a .subset of states, Bn and set

V.* { 1TlaXaeA(x) [F(X, a) + 7 ~ y P~:y(a)Vn*(Y)] if x e Bn (42)
, + j (x) -- ~ (x) otherwise

2. Reset n :-- n + 1.

If we choose V~ as in (39) and take Bn = X for all n, then the above a lgor i thm
reduces to value i terat ion. Later we will go into other useful cases of generalized
value i terat ion. But first, let us concern ourselves with the issue of convergence. If
x ¢ B,,, we will say t h a t the value of s ta te x has been backed up at the n - th i terat ion.
P roof of convergence is based on the following result (Bertsekas ~ Tsitsiklis 1989;
Watkins 1989; Bar toe t al 1992).

L o c a l v a l u e i m p r o v e m e n t t h e o r e m
Let M~ = max~ IV,*(x) - V*(x)[. Then max~eB. {V*+x(x) - V*(x)[<_ 7 M , .

• is a policy = * r~(x) , where 7r n P r o o f : Take any x E B , . Let a* 7r*(x) and a~ =
tha t is greedy with respect to V*. Then

>_ r(x,a*) ÷ 7 ~ y P,~(a*)[V'~(y) - M]
= V * (x) - T M ,

10 One can also view the recnrs lon as doing a f ixed-polnt i te ra t ion to solve Bel lman ' s op t imal i ty

equat ion, (13).

870 S Sathiya Keerthi and B Ravindran

Similarly,
VZ+x(.) = r(x,a~) + 7 E y Pxy(a*)V*(y)

< a*.) + [v*(v) + M]
= V*(x) + 7M~

and so the theorem is proved. []

The theorem implies that ~¢I,~+, _< J~4,, where)~/Jn+l = I n a x x I V n * + l (X) - - Vzk(a2) l .

A little further thought shows that the following is also true. If, at the end of
i teration k, K fllrther i terations are done in such a way that the value of each state
is backed up at least once in these K iterations, i.e., ~jk+K r~ " ~ = k + l ~ n = X, then we get
Mk+K <_ 7Mk. Therefore, if the value of each state is backed up infinitely often,
then (38) holds. 11 In tile case of value iteration, the value of each state is backed
up at each i teration and so (38) holds.

Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed
by Bertsekas & Tsitsiklis (1989) as a suitable method of solving stochastic opt imal
control problems on multi-processor systems with communicat ion t ime delays and
without a cornmon clock. If N processors are available, the state space can be parti-
tioned into N sets - one for each processor. The t imes at which each processor backs
up the values of its states can be different for each processor. To back up the values
of its states, a processor uses the "'present" values of other states communicated to
it by other processors.

Barto, Bradtke & Singh (1992) suggested the use of generalized value iteration as
a way of learning during real t ime system operation. They called their a lgori thm
as Real Time Dynamic Programming (RTDP). In generalized value iteration as
specialized to RTDP. n denotes system time. At t ime step n, let us say that the
sys tem resides in state ~z~. Since V,~ is available, a,~ is chosen to be an action tha t
is greedy with respect to ~,~, i.e., a,~ = ~r~(x~,). B,~, the set of states whose values
are backed up. is chosen to include x,~ and, perhaps some more states. In order
to improve performance in the immediate future, one can do a lookahead search to
some fixed search depth (either exhaustively or by following policy, 7r*) and include
these probable future states in B,~. Because the value of x~ is going to undergo
change at the present t ime step, il is a good idea to also include, in B,~, the most
likely predecessors of xn (Moore ,k Atkeson 1993).

One may ask: since a model of the sysl.em is available, why not simply do value
i teration or, do generalized value iteration as Bertsekas & Tsitsiklis suggest? In
other words, what is the mot ivat ion l:,ehind RTDP? The answer is simple. In most
problems (e.g., playing games such as checkers and backgammon) the state space is
extremely large, but only a small subset of it actually occurs during usage. Because
R T D P works concurrently with actual system operation, it focusses on regions of the
s ta te space that are most relevant to the syst, em 's behaviour. For instance, successfnl
learning was accomplished in the checkers program of Samuel (1959) and in the
backgammon program, TDgamrnon of Tesauro (1992) using variations of RTDP.
In (Bartoe/ al 1992), Barto, Bradtke & Singh also use RTDP to make interesting
connections and useful extensions to learning real t ime search algori thms in Artificial
Intelligence (Korf 1990).

The convergence result mentioned earlier says that the values of all states have to

t l If ") ---- 1, then convergence holds under cer ta in a s sumpt ions . ~i'he analysis required is more
sophis t ica ted. See (Bertsekas & Tsitsiklis 1989; Bradtke 1994) for details.

Tutorial survey of reinforcement learning 871

be backed up infinitely often x2 in order to ensure convergence. So it is impor tant to
suitably explore the state space in order to improve performance. Barto, Bradtke
& Singh have suggested two ways of doing exploration13: (1) adding stochasticity
to the policy; and (2) doing learning cumulatively over multiple trials.

If, only an inaccurate system model is available then it can be updated in real
t ime using a system identification technique, such as maximum likelihood estimation
method (Bartoet al 1992). The current system model can be used to perform the
computat ions in (42). Convergence of such adaptive methods has been proved by
Gullapalli &: Barto (1994).

5 . t .2 Policy iIeralion

Policy iteration operates by maintaining a representation of a policy and its value
function, and forming an improved policy using them. Suppose 7r is a given policy
and V ~ is known. How can we improve 7r? An answer will become obvious if we
first answer the following simpler question. If tt is another given policy then when
is

VU(x) >_ V~(x) V x (43)

i.e., when is # uniformly better than ~r? The following simple theorem (Watkins
1989) gives the answer.

P o l i c y i m p r o v e m e n t t h e o r e m
The policy # is uniformly bet ter than policy 7r if

Q~(x, p(z)) > V"(x) V x (44)

P r o o f : To avoid clumsy details let us give a not-so-rigorous proof (Watkins 1989).
Starting at x, it is better to follow p for one step and then to follow ~r, than it is to
follow 7r right from the begining. By the same argument, it is better to follow # for
one further step from tht' state just reached. Repeating the argument we get that it
is always bet ter to follow/t than 7r. See Bellman & Dreyfus (1962) and Ross (1983)
for a detailed proof. []

Let us now return to our original question: given a policy 7r and its value function
V ~, how do we form an improved policy, p? If we define # by

#(x) = arg m a x Q~(x,a) V x (45)
aEA(x)

then (44) holds. By the policy improvement theorem # is uniformly bet ter than 7r.
This is the main idea behind policy iteration.

P o l i c y i t e r a t i o n
Set rc := an arbitrary initial policy and compute V ~.
Repeat

1. Compute Q~ using (14).

2. Find p using (45) and compute V u,

] 2 For g o o d p rac t i ca l p e r f o r m a n c e it is sufficient t h a t s t a t e s t h a t are m o s t r e l evan t to t h e s y s t e m ' s
b e h a v i o u r a re b a c k e d u p r epea ted ly .

1 3 T h r u n (1986) h a s d i s c u s s e d t h e i m p o r t a n c e of exp lo ra t i on a n d s u g g e s t e d a var ie ty of m e t h o d s
for it

872 S S a t h i y a Keer th i and B R a v i n d r a n

3. Set: ~r := p and V '~ := V u.

unt i l V u = V ~ occurs at step 2.
Nice features of the above algori thm are: (1) it terminates after a finite num-

ber of i terat ions because there are only a finite number of policies; and (2) when
terminat ion occurs we get

v - (x) = maxQ (x,a) w

(i.e., V ~ satisfies Bel lman 's opt imal i ty equation) and so 7r is an opt imal policy. But
the a lgor i thm suffers from a serious drawback: it is very expensive because the entire
value function associated with a policy has to be recalculated at each iteration (step
2). Even though V u may be close to V ~, unfortunately there is no simple short cut
to compute it. In §5.2 we will discuss a well-known model-f ree method called the
actor-cr i t ic method which gives an inexpensive approximate way of implement ing
policy i teration.

5.2 Model- f ree methods

Model-free delayed RL methods are derived by making suitable approximat ions
to the computa t ions in value iteration and policy iteration, so as to el iminate the
need for a sys tem model. Two impor tan t methods result f rom such approxima-
tions: Barto, Sut ton & Anderson's actor-cri t ic (Barto et al 1983), and Watkins '
Q-Learn ing (Watkins 1989). These methods are milestone contributions to the
opt imal feedback control of dynamic systems.

5.2.• Ac tor - c r i t i c method

The actor-crit ic method was proposed by Barto et al (1983) (in their popular work
on balancing a pole on a moving cart) as a way of combining, on a s tep-by-step
basis, the process of forming the value function with the process of forming a new
policy. The method can also be viewed as a practical, approximate way of doing
policy iteration: perform one step of an on-line procedure for es t imat ing the value
function for a given policy, and at the same t ime perform one step of an on-line
procedure for improving tha t policy. The actor-critic method 14 is best derived by
combining the ideas of §2 and §4 on immedia te RL and est imating value function,
respectively. Details are as follows.

A c t o r (Tr) Let m denote the total number of actions. Maintain an approximator ,
g('; w) : X - + R "~ so tha t z = g(x; w) is a vector of meri ts of the various feasible ac-
tions at s ta te x. In order to do exploration, choose actions according to a stochastic
action selector such as (6). 15

C r i t i c (V ~) Maintain an approximator , ~7(.; w) : X - - * R that es t imates the value
function (expected total reward) corresponding to the stochastic policy ment ioned
above. The ideas of §4 can be used to upda te V.

Let, us now consider the process of learning the actor. Unlike immedia te RL,
learning is more complicated here for the following reason. Whereas, in immedia te

14A mathematical analysis of this method has been done by Williams & Baird (1990).
15 In their original work on pole-balancing, Barto, Sutton & Anderson suggested a different way

of including stochasticity.

TutoriM survey of reinforcement learning 873

P~L the environment immediately provides an evaluation of an action, in delayed RL
the effect of an action on the total reward is not immediately available and has to
be estimated appropriately. Suppose, at some time step, the system is in state x
and the action selector chooses action a k. For g the learning rule that parallels (5)
would be

w) := w) + . a - v)j
f , I

(46)

where p(x; a k) is the expected total reward obtained if a k is applied to the system at
state x and then policy n is followed from the next step onwards. An approximation
is

p(x, a k) ~ r(x, a k) + 7 E P~:Y(ak)~7(Y; v) (47)
Y

This estimate is unavailable because we do not have a model. A further approxima-
tion is

p(x, a k) ~ r(x, a k) + 7I/(xl; v) (48)

where Xl is the state occuring in the real time operation when action a k is applied
at state x. Using (48) in (46) gives

gk(; w) := gk(; w) + (49)

where A is as defined in (29). The following algorithm results.
A(' to r -c r i t i c t r ia l

Set t = 0 and x =a random starting state.
Repeat (for a number of time steps)

i. With the system at state, x, choose action a according to (6) and apply it to
the system. Let xl be the resulting next state.

2. Compute A(x) = r(x,a) + ~ V (~ ; v) - V(~;v)

~. Update 9 using 9(~; ~) := 9(~; ~) + ZA(~)

4. Update gk using (49) where k is such that a = a I:.

The above algorithm uses the TD(O) estimate of V ~. To speed-up learning the
TD(A) rule, (31) can be employed. Barto et al (1983) and others (Gullapalli 1992a;
Gullapallie/ al 1994) use the idea of eligibility traces for updating g also. They
give only an intuitive explanation for this usage. Lin (1992) has suggested the
accumulation of data until a trial is over, update V using (28) for all states visited
in the trial, and then update g using (49) for all (sl,te,action) pairs experienced in
the trial.

5.2.2 Q-Learning

Just. as the actor-critic method is a model-free, on-line way of approximately im-
plementing policy iteration, Watkins' Q-Learning algorithm is a model-free, on-line
way of approximately implementing generalized value iteration. Though the RTDP
algorithm does generalized value iteration concurrently with real time system oper-
ation, it requires the system model for doing a crucial operation: the determination
of the maximum on the right hand side of (42), Q- Lcaruing overcomes this problem

874 S Sathiya Keerthi and B Ravindran

elegantly by operating with the Q-function instead of the value function. (Recall,
from §3, the definition of Q-function and the comment on its advantage over value
function.)

The aim of Q-Learning is to find a function approximator, Q(., -; v) that approx-
imates Q*, the solution of Bellman's optimality equation, (16), in on-line mode
without employing a model. However, for the sake of developing ideas systemati-
cally, let us begin by assuming that a system model is available and consider the
modification of the ideas of §5.1a to use the Q-function instead of the value function.
If we think in terms of a function approximator, If(x; v) for the value function, the
basic update rule that is used throughout ~5.1a is

l / (x ;v) := a~A(x)max [r(x,a) + T E Px~(a)V(y; v)]
y

For the Q-function, the corresponding rule is

(~(x,a; v) := r(x,a) + T E Pxy(a) bm~X) Q(y,b; v) (50)
y

Using this rule, all the ideas of §5.1a can be easily modified to employ the Q-
function.

However, our main concern is to derive an algorithm that avoids the use of a
system model. A model can be avoided if we: (1) replace the summation term in
(50) by maxbEA(x~)Q(Xl, b; v) where x~ is an instance of the state resulting from
the application of action a at state x; and (2) achieve the effect of the update rule
in (50) via the "averaging" learning rule,

If (51) is carried out we say that the Q-value of (x, a) has been backed up. Using
(51) in on-line mode of system operation we obtain the Q-Learning algorithm.

Q - L e a r n i n g t r i a l
Set t = 0 and x -- a random starting state.
Repeat (for a number of time steps)

1. Choose action a E A(x) and apply it to the system. Let xl be the resulting
state.

z. Update 0 sing (51).

3. Reset x := y.

The remark made below equation, (7) in §2 is very appropriate for the learning
rule, (51). Watkins showed 1G that /f the Q-value of each admissible (x, a) pair is
backed up infinitely often, and if the step size, j3 is decreased to zero in a suitable
way then as t--.oo, Q, converges to Q* with probability one. Practically, learning can
be achieved by: (1) using, in step 1, an appropriate exploration policy that tries all

16A revised proof was given by Watkins & Dayan (1992). Tsitsiklis (1993) and Jaakkolaet al ,
(1994) have given other proofs.

TutoriM survey of reinforcement learning 875

actions; 17 (2) doing multiple trials to ensure that all states are frequently visited;
and (3) decreasing fl towards zero as learning progresses.

We now discuss a way of speeding up Q-Learning by using the TD(A) estimate
of the Q-funct ion, derived in §4. If TD(A) is to be employed in a Q-Learning trial,
a fundamental requirement is that the policy used in step 1 of the Q-Learning Trial
and the policy used in the update rule, (51) should match (note the use of 7r in (34)
and (37)). Thus TO(A) can be used if we employ the greedy policy,

7r(a:) = arg max Q(x, a; v)
a6.A(x)

(52)

in step 1. is But, this leads to a problem: use of the greedy policy will not allow
exploration of the action space, and hence poor learning can occur. Rummery &
Niranjan (1994) give a nice comparative account, of various a t tempts described in
the li terature for dealing with this conflict. Here we only give the details of an
approach that Rummery & Niranjan found to be very promising.

Consider the stochastic policy (base0 on the Boltzmann distribution and Q-
values),

Prob{Tr(x) = alx) =
exp(d2(x, a; v) /T)

a e A(x) (53)

where T 6 [0, cxD). When T - -*~ all actions have equal probabilities and, when T--~0
the stochastic policy tends towards the greedy policy in (52). To learn, T is s tar ted
with a suitable large value (depending on the initial size of the Q-values) and is
decreased to zero using an annealing rate; at each 7' thus generated, multiple Q -
learning trials are performed. This way, exploration takes place at the initial large
T values. The TD(A) learning rule, (36) estimates expected returns for the policy at
each T, and, as T---~0, Q will converge to Q*. The ideas here are somewhat similar
to those of simulated annealing.

5.3 Extension to conlinuous spaces

Optimal control of dynamic systems typically involves the solution of delayed RL
problems having continuous s ta te /act ion spaces. If the state space is continuous but
the action space is discrete then all the delayed RL algorithms discussed earlier can
be easily extended, provided appropriate function approximators that generalize a
real t ime experience at a state to all topologically nearby states are used; see §6
for a discussion of such approximators. On the other hand, if the action space
is continuous, extension of the algorithms is more difficult. The main cause of
the difficulty can be easily seen if we try extending PJFDP to continuous action
spaces: the max operation in (42) is non-trivial and difficult if A(x) is continuous.
(Therefore, even methods based on value iteration need to maintain a function
approximator for actions.) In the rest of this subsection we will give a brief review of

aTNote t h a t s t e p 1 does n o t p u t a n y res t r i c t ion oll choos ing a feasible ac t ion . So, any s t o c h a s t i c
e x p l o r a t i o n pol icy t h a t , a t every x g e n e r a t e s each feasible a c t i on wi th pos i t ive p robab i l i t y c a n be
used . W h e n l e a r n i n g is comple te , t h e g reedy policy, ~ (x) ---- argmaxaeA(~)Q(x,a;v) s h o u l d be
u s e d for o p t i m a l s y s t e m p e r f o r m a n c e .

18If m o r e t h a n one a c t i o n a t t a i n s t h e m a x i m u m in (52) t h e n for conven ience we t ake 7r to be a
s t o c h a s t i c po l icy t h a t m a k e s all s u c h m a x i m i z i n g ac t i ons equa l ly p robab le .

876 S Sathiya Keerthi and B Ravindran

various methods of handling continuous action spaces. Just to make the presentat ion
easy, we will make the following assumptions.

• The sys tem being controlled is deterministic. Let

xt+1 = f(xt , at) (54)

describe the transitiolJ. ~'°

• There are ~,o action constraints, i.e., A(x) =an m-dimensional real space for
every x.

• All fnnctions involved (r, f , 1), Q etc.) are continuously differentiable.

Let us first consider model-based methods. Werbos (1990b) has proposed a variety
of algorithms. Here we will describe only one impor tan t algori thm, the one tha t
Werbos refers to as Backpropagat.ed Adaptive Critic. The algori thm is of the ac tor -
critic type, but it is somewhat different from the actor--critic method of §5.2a. There
are two function approximators : ,~(.; w) for action; and, 1)(-; v) for critic. Tile critic
is meant to approx imate V~r; at each t ime step, it is updated using the TD(A)
learning rule, (31) of §4. The actor tries to improve the policy at each t ime step
using the hint provided by the policy improvement theorem in (44). To be more
specific, let us defiue

Q(x, a) a~=f r(x, a) + 7f / (f (x , a); v) (55)

At t ime t, when the system is at s tate xt, we choose the action, at = rr(xt;w),
leading to the next state, xt+l given by (54). Let us assume !) ~ = V ~, so that
V~(a:t) = Q(x~, at) holds. Using the hint from (44), we aim to adjust #(xt; w) to
give a new value, a new such that

Q(xt,a) >Q(xt ,a t) (56)

A simple learning rule that achieves this requirement is

OQ(~,, a) I,,-o (57) # (x , ; w) : = ~ (~ , ; ~) + , ~ Oa - '

where c~ is a small (positive) step size. The partial derivative in (57) can be evaluated
using

OO(xt, a) cOr(xt, a) c0V(y; V) [x a cOf(xt, a)
Oa = - - 0--7-- + "~ Oy Y=J(', ~ ~a (58)

Let us now come to model-free methods. A simple idea is to adapt a function
approximator , J: for the system model function, f , and use j: instead of f in Werbos '
algori thm. On-l ine experience, i.e., the combination, (xt, at, xt+l), can be used to

learn f . This method was proposed by Brody (1992). actually ms a way of overcoming
a serious deficiency 2° associated witl, an ill--formed model-free method suggested by
.Jordan & Jacobs (1990). A key difficulty associated with Brody 's method is that ,
until the learning system adapts a good f , system performance does not improve

19 Vqerbos (1990b) describes ways of treating stochastic systems.
2°This deficiency was also pointed out by Gullapalli (1992b}.

Tutorial survey of reinforcement learning 877

at all; in fact, at the early stages of learning the method can perform in a confused
way. To overcome this problem Brody suggests that] be learnt well, before it is
used to train the actor and the critic.

A more direct model-free method can be derived using the ideas of §5.2a and
employing a learning rule similar to (8) for adapting ~r. This method was pro-
posed and successfully demonstrated by Gullapalli (Gullapalli 1992a; Gullapalliet
al 1994). Since Gullapalli 's method learns by observing the effect of a randomly
chosen per turbat ion of the policy, it is not as systematic as the policy change in
Brody's method.

We now propose a new model-free method that systematically changes the policy
similar to what Brody's method does, and, avoids the need for adapting a system
model. This is achieved using a function approximator, Q(-,-; v) for approximating
Qe, the Q-funct ion associated with the actor. The TD(A) learning rule in (33)
can be used for updating Q. Also, policy improvement can be a t tempted using the
learning rule (similar to (57)),

: = to) + ' Oa la=a, (59)

We are currently performing simulations to study the performance of this new
method relative to the other two model-free methods mentioned above.

Werbos' algorithm and our Q-Learning based algorithm are deterministic, while
Gullapalli 's algorithm is stochastic. The deterministic methods are expected to be
much faster, whereas the stochastic method has better assurance of convergence to
the true solution. The arguments are similar to those mentioned at the end of §2.

6 . O t h e r i s s u e s

In this section we discuss a number of issues relevant to practical implementat ion
of RL Mgorithms. A nice discussion of these (and other) issues has been presented
by Barto (1992).

6.1 Function--approximalzon

A variety of function approximators has been employed by researchers to practically
solve RL problems. When the input space of the fimction approximator is finite,
the most s traight-forward method is to use a look-up table (Singh 1992a; Moore &
Atkeson 1993). All theoretical results on the convergence of P~L algorithms assume
this representation. The disadvantage of using look-up table is that if the input
space is large then the memory requirement becomes prohibitive. 21 Continuous in-
put spaces have to be discretized when using a look-up table. If the discretization
is done finely so as to obtain good accuracy we have to face the 'curse of dimen-
sionality'. One way of overcoming this is to do a problem-dependent discretization;
see, for example, the 'BOXES' representation used by Barto et al (1983) and others
(Michie & Chambers 1968; Gullapalliet al 1994; Rosenet al 1991) to solve the pole
balancing problem.

:~1Buckland & Lawrence (1994) have proposed a new delayed RL method called Transition point
DP which can significantly reduce the memory requirement for problems in which optimal actions
change infrequently in time.

878 S Sathiya Keerthi and B Ravindran

Non look-up table approaches use parametr ic function approximat ion methods.
These methods have the advantage of being able to generalize beyond the training
da ta and hence give reasonable performance on unvisited parts of the input space.
Among these, connectionist methods are the most popular. Connectionist methods
that have been employed for RL can be classified into four groups: mul t i - layer per-
ceptrons; methods based on clustering; CMAC; and recurrent networks. Multi-layer
perceptrons have been successfully used by Anderson (1986, 1989) for pole balanc-
ing, Lin (1991a, 19911>, 1991c, 1992) for a complex test. problem, Tesauro (1992)
for backgammon, Thrun (1993) and Millan & Torras (1992) for robot navigation,
and others (Boyen 1992; Gullapalliet al 1994). On the other hand, Watkins (1989),
C, hapman (1991), Kaelbling (1990, 1991). and Shepanski ,% Macy (1987) have re-
ported bad results. A modified form of P la t t ' s Resource allocation network (Pla t t
1991), a method based on radial basis functions, has been used by Anderson (1993)
for pole balancing. Many researchers have used CMAC (Albus 1975) for solving
RL problems: Watkins (1989) for a test problem; Singh (1991, 1992b, 1992d) and
T h a m & Prager (1994) tbr a navigation problem; Lin L: Kiln (1991) for pole bal-
ancing; and Sutton (1990, 1991b) m his 'Dyna ' architecture. Recurrent networks
with context information feedback have been used by Bacharach (1991, 1992) and
Mozer & Bacllarach (1990a, t990b) in dealing with RL problems with incomplete
state information.

A few non-connect ionist methods have also been used for R.L. Mahadevan &
Connell (1991) have used statistical clustering in association with Q-Learn ing for
the au tomat ic p rogramming of a mobile robot. A novel feature of their approach is
that the number of clusters is dynamical ly varied. Chapman & Kaelbling (1991) have
used a tree based clustering approach in combinat ion with a modified Q-Learn ing
algori thm for a difficult test problem wilh a huge input space.

The fimction approximator has t.o exercise care to ensure that learning at some
input point, x does not seriously disturb the function values for y # x. It is often
a.dvantageous to choose a function approximator and employ an update rule in such
a way tha t the function values of x and states 'near ' x are modified similarly while
the va.lues of states ' far ' from x are left unchanged. Such a choice usually leads to
good generalization, i.e., good performance of the learnt function approx imator even
on states tha t are not visited during |earning. In this respect, CMAC and methods
based on clustering, such as RBF, statistical clustering, etc., are more suitable than
multi layer perceptrons.

The effect of errors introduced by fimction approximators on the op t imal per-
formance of the controller has not been well understood. 22 It has been pointed
out by Watkins (1989), Bradtke (1993), and others (Barto 1992), that , if f imction
approximat ion is not done in a careful way, poor learning can result. In the con-
text of Q-Learning , Thrun & Schwartz (1993) have shown that errors in function
approximat ion can lead to a systematic over est imation of the Q-funct ion. Linden
(1993) points out tha t in many problems the value function is discontinuous and so
using continuous fimction approximators is inappropriate. But he does not suggest
any clear remedies for this problem. Overall, it must be mentioned that much work
needs to be done on the use of fimction approximators for RL.

22Bertsckas(19~9) and $ingh & Yee (1993) have derived some theoretical bounds for errors in
vMue functioi~ in tcrms of function approximator error.

Tutorial survev of reinforcement learning 879

6.2 Modular and hierarchical architectures

When applied to proble,ns with large task space or sparse rewards, RL methods
are terribly slow to learn, l)ividing the problem into simpler subproblems, using a
hierarchical control structure, etc., are ways of overcoming this.

Sequential task decomposzt~on is one such method. This method is useful when a
number of complex tasks call be performed making use of a finite number of "ele-
mental" tasks or skills, say, T~, T2, . . . , 77,,. ']'he original objective of the controller
can then be achieved by temporal ly concatenating a number of these elemental tasks
to form what is called a "composite" task. For example,

G'j =[T(j , 1),T(j, 2) , . . . ,T (j , k)] , where T(j , i) E {7~,T2,...,7;~}

is a composi te task made up of k elemental tasks that have to be performed in the
order listed. Reward fimctions are defined for each of the elemental tasks, making
them more al)t, ndant than in the original problem definition.

Singh (1992a, 1992b) has proposed a.n algori thm based on a modular connection-
ist network (.lacobsel al 1991), making use of these ideas. In his work the controller
is unaware of the decomposition of the task and has to learn both tile elemen-
tal tasks, and the decomposit ion of the composite tasks simultaneously. T h a m &
Prager (1994) and Lin (1993) have proposed similar solutions. Mahadevan & Con-
nell (1991) have developed a method based on the subs~tmption architecture (Brooks
198Ii) where the decomposit ion of the task is specified by the user before hand, and
the controller learns only the elemental tasks, while Maes & Brooks (1990) have
shown that the controller can be made to learn the decomposit ion also, ill a similar
fi 'amework. All these methods require some ex/,ernal agency to specify the problem
decomposit ion. Can the controller itself learn how the problem is to be decolnposed?
Though Singh (1992d) has some preliminary results, much work needs to be done
here.

Anol, her approach to this problem is to use some form of hierarchical control
(Watkins 1989). llere there are different "levels" of controllers ~3, each learning
to perform a more abstract task than the level below it and directing /.he lower
lewel controllers to achieve its objective. ["or example, in a ship a navigator decides
in what direction to sail so as to reach the port while the he lmsman steers tile
ship in tile direction indicated by the navigator, llere the navigator is the higher
level controller and the helmsman the lower level controller. Since the higher level
controllers have to work on a smaller task space and the lower level controllers are
set simpler tasks improw~d performance results.

Examples of such hierarchical architectures are Feudal RL by Dayan & Hinton
(1993) and Hicralvh*eal planning by Singh (1992a, 1992c). These methods too,
require an external agency to specify the hierarchy to be used. This is done usually
by making use of some "structure" in the problem.

Training controllers on simpler tasks tirst and then training them to perform
progressively more complex tasks using these simpler tasks, can also lead to bet ter
performance. Itere at any olle stage the controller is faced with only a simple learning
task. This technique is called shaping in animal behaviour literature. Gullapalli
(1992a) and Singh (1992d) have reported some success in using this idea. Singh
shows tha t the controller can be made to "discover" a. decomposit ion of the task by
itself using this technique.

23 Controllers at different levels may operate at different temporM resolutions.

880 S Sathiya Keerthi and B Ravindran

6.3 Speeding-up l,:arning

Apart from the ideas mentioned above, various other techniques have been suggested
tbr speeding-up RL. Two novel ideas have bern) suggested by Lin (1991a, 1991b,
1991c, 1992): ca:pcricncc playback; and leaching. Let us first discuss experience
pla.yback. An experim~ce consists of a quadruple (occuring in real time system
operation), (x ,a ,y ,r) , where x is a state, a is the action applied at s tate x, y is
the resulting stale, and r is r(.r, a). Past :xperienc~,s are stored in a finite memory
bufl'er, 7:'. An approl)riate slrategy can be. used to maintain P. At some point in
t ime let 7r be the "'current" (st, ochaslaic) policy, l,et

e: = {(.,'. ,/, Y, ") C "P I Prol,{~(x) = ,,) > c}

where (is some chosen toleralJ('e. Th(~ learning up(late rule is applied, not only to
t i le ctlrrellt exl)erience, but also to a chosen subset, of ~7. lCxperience playl~ack can be
especially useful in I ea ru iugabou t rarecxpcrieuces. In teachiug, the user provides
the learning system with experiences so as l.o expedite h~arning.

Incorporat ing domain specitic kttowledge also helps in speeding-up learning. For
example, for a. given probtcm, a 'non it a.[" controller that gives reasonable per-
formance tt,W be e~tsily available. In that case I{L nwthovls can begin with tiffs
controller and improve its p~rfonnance (Singh(! al 1994). Domain specific intbr-
mat.ion can also greatly h,'ll> in cltoosing state repr~senta.tion and setting up the
function apl , roximators (Barto 1992: hlillan & Torras 1992).

In many applications an iuaccurat.e system model is available. It. turns o,,t to be
w'l'y im'Ilicient to ~tis('ar(I the model attd si,nply ~'ml)loy a model--fl'ee method. An
ellicic.nt, al)llronch is to interweave a liUtllber Of "l>Iannhig '" steps between ew-.ry two
on-lim~ learning st.el,s. A planning sic l) lltay l)e Oil,? of" the following: a l ime step
o{' a mode[based ntcthod such as I/:['DI'; or, ~t l ime step of a model--free method
for which experience, is gmwrat, 'd using the availal*le system ntod~']. In such an
approach, it is also appropriat c to adapl the sysl,.nl lnode] using on --line experience.
' lhese i(hms form the basis o[" Sut ton 's Dyl~a architecl.ures (Sutton 1990. 1991b)a.nd
reiat.~d methods (Moore & Atk~:s<m 1993: Peng ,k, Williams 1993).

7. C o n c l u s i o n

In this paper we have tried t.o give a. cohesive overview of existing RL algorithms.
Though resea.rch has reached a mature level, RL has been successfully demonst ra ted
only on a few practical applications (Gullapalli c ! al 1994; Tesauro 199:2; Mahadevan
& Connell 1991; Thrun 1993), and clear guidelines for its general applicabil i ty do
uot exist.. The conm'ctiou between DP and ll.I, has nicely bridged control lheorists
~md AI researchers. With contributions fl'om both these groups on the pipeline,
more interesting results are forthconfiug and it is expected that RL will make a
strong impact on the iutclligent control of dynamic systems.

R e f e r e n c e s

Aibus J S 1975 A new approach to manipula tor control: The cerebellar model
art iculation controller (CMAC). 'Fran~. ASMF;, d. Dyn. ,b'yst., Meas., Contr.

TutoriM survey of reinforcement learning 881

97:220-227

Anderson C W 1986 Learning and problem solving with mullilayer connectionist
systems. Ph D thesis, University of Massachusetts, Amherst, MA

Anderson C W 1987 Strategy learning with multilayer connectionist representa-
tions. Technical report, TR87-509.3, GTE Laboratories, INC., Waltham, MA

Anderson C W 1989 Learning to control an inverted pendulum using neural net-
works. IEEE Contr. Syst. Mag. : 31-37

Anderson C W 1993 Q Learning with hidden-unit restarting. In Advances in
neural information processing systems 5 (eds) S J Hanson, J D Cowan, C L
Giles (San Mateo, CA: Morgan Kaufmann) pp 81-88

Bacharach J R 1991 A connectionist learning control architecture for navigation.
In Advance"s-in neural information processing systems 3 (eds) R P Lippman,
J E Moody, D S Touretzky (San Mateo, CA: Morgan Kaufinann) pp 457-463

Bacharaeh J R 1992 Connectionist modeling and control of finite state environ-
ments. Ph D thesis, University of Massachusetts, Amherst, MA

Barto A G 1985 Learning by statistical cooperation of self-interested neuron-like
computing elements. Human Neurobiology 4:229-256

Barto A G 1986 Game-theoritic cooperativity in networks of self interested units.
In Neural networks for computing (ed.) J S Denker (New York: American
Institute of Physics) pp 41-46

Barto A G 1992 Reinforcemnet learning and adaptive critic methods. In Handbook
of intelligenl control: Neural, fuzzy, and adaptive approaches (eds) D A White,
D A Sofge (New York: Van Nostrand Reinhold) pp 469-491

Barto A G, Anandan P 1985 Pattern recognizing stocahstic learning automata.
IEEE Trans. Syst., Man Cybern. 15:360-375

Barto A G, Anandan P, Anderson C W 1985 Cooperativity in networks of pattern
recognizing stochastic learning automata. In Proceedings of the Fourth Yale
Workshop on Applications of Adaptive Systems Theory, New Haven, CT

Barto A G, Bradtke S J, Singh S P 1992 Real-time learning and control using asyn-
chronous dynamic programming. Technical Report COINS 91-57, University
of Massachusetts, Amherst, MA

Barto A G, Jordan M I 1987 Gradient following without back-propagation in
layered networks. In Proceedings of the IEEE First Annual Conference on
Neural Networks, (eds) M Caudill, C Butler (New York: IEEE) pp II629-
II636

Barto A G, Singh S P 1991 On the computational economics of reinforcement
learning. In Conneetionist Models Proceedings of the 1990 Summer School.
(eds) D S Touretzky, J L Elman, T J Sejnowski, G E Hinton (San Mateo, CA:
Morgan Kaufmann) pp 35-44

882 S Sathiya Keerthi and B Ravindran

Barto A G, Sutton R S 1981, Landmark learning: an illustration of associative
search. Biol. Cybern. 42 :1 -8

Barto A G, Sutton R S 1982 Simulation of anticipatory responses in classical con-
ditioning by a neuron-like adaptive element.. Behav. Brain Res. 4:221-235

Barto A G, Sutton R S, Anderson C W 1983 Neuronlike elements that can solve
difficult learning control problems. IEEE Trans. Syst., Man Cybern. 13:
835-846

Barto A G,-Sutton R S, Brouwer P S 1981 Associative search network: a rein-
forcement learning associative memory. IEEE Trans. Syst., Man Cybern. 40:
201-211

Barto A G, Sutton R S, Watkins C J C H 1990 Learning and sequential decision
making. In Learning and computational neuroscience: Foundations of adaptive
networks. (eds) M Gabriel, J Moore (Cambridge, MA: MIT Press) pp 539-602

Bellman R E, Dreyfus S E 1962 Applied dynamic programming. RAND Corporation

Bertsekas D P 1982 Distributed dynamic programming. IEEE Trans. Aurora.
Contr. 27:610-616

Bertsekas D P 1989 Dynamic programming: Deterministic and stochastic models
(Englewood Cliffs, N J: Prentice-Hall)

Bertsekas D P, Tsitsiklis J N 1989 Parallel and distributed computation: Numerical
methods (Englewood Cliffs, N J: Prentice-Hall)

Boyen J 1992 Modular neural networks for learning context-dependent game strate-
gies. Masters thesis, Computer Speech and Language Processing, University
of Cambridge, Cambridge, England

Bradtke S J 1993 Reinforcement learning applied to linear quadratic regulation.
In Advances in neural information processing systems 5 (eds) S 3 Manson, J
D Cowan, C L Giles (San Mateo, CA: Morgan Kaufmann) pp 295-302

Bradtke S J 1994 Incremental dynamic programming for on-line adaptive optimal
control. CMPSCI Technical Report 94-62

Brody C 1992 Fast learning with predictive forward models. In Advances in neural
information processing systems ~ (eds) J E Moody, S J Hanson, R P Lippmann
(San Mateo, CA: Morgan Kaufmann) pp 563-570

Brooks R A 1986 Achieving artificial intelligence through building robots. Techni-
cal Report, A I Memo 899, Massachusetts Institute of Technology, Aritificial
Intelligence Laboratory, Cambridge, MA

Buckland K M, Lawrence P D 1994 Transition point dynamic programming. In
Advances in neural information processing systems 6 (eds) J D Cowan, G
Tesauro, J Alspector (San Fransisco, CA: Morgan Kaufmann) pp 639-646

Chapman D 1991 Vision, Instruction, and Action (Cambridge, MA: MIT Press)

Tutorial survey of reinforcement learning 883

Chapman D, Kaelbling L P 1991 Input generalization in delayed reinforcement
learning: an algorithm and performance comparisions. In Proceedings of the
1991 International Joint Conference on Artificial Intelligence

Chrisman L 1992 Planning for closed-loop execution using partially observable
markovian decision processes. In Proceedings of AAAI

Dayan P 1991a Navigating through temporal difference. In Advances in neural in-
formation processing systems 3 (eds) R P Lippmann, J E Moody, D S Touret-
zky (San Mateo, CA: Morgan Kaufmann) pp 464-470

Dayan P 1991b Reinforcing connectionism: Learning the statistical way. Ph D
thesis, University of Edinburgh, Edinburgh

Dayan P, Hinton G E 1993 Feudal reinforcement learning. In Advances in neural
information processing systems 5 (eds) S J Hanson, J D Cowan, C L Giles
(San Mateo, CA: Morgan Kaufmann) pp 271-278

Dayan P, Sejnowski T J 1993 TD(,\) converges with probability 1. Technical Re-
port, CNL, The Salk Institute, San Diego, CA

Dean T L, Welhnan M P 1991 Planning and control (San Mateo, CA: Morgan
Kauflnann)

Gullapalli V 1990 A stochastic reinforcement algorithm for learning real-valued
functions. Neural Networks 3:671-692

Gullapalli V 1992a Reinforcement learning and its application to control. Technical
Report, COINS, 92-10, Ph D thesis, University of Massachusetts, Amherst,
MA

Gullapalli V 19921) A comparison of supervised and reinforcement learning methods
on a reinforcment learning task. In Proceedings of the 1991 IEEE Symposium
on l , telligent Control, Arlignton, VA

Gullapalli V, Barto A G 1994 Convergence of indirect adaptive asynchronous value
iteration algorithms. In Advances in neural information processing systems
6(eds) J D Cowan, G Tesauro, J Alspector (San Fransisco, CA: Morgan Kauf-
mann) pp 695-7(12

Gullapalli V, Franklin J A, Benbrahim H 1994 Acquiring robot skills via reinforce-
ment learning. IEEE Contr. Syst. Mag. : 13-24

Hertz J A, Krogh A S, Palmer R G 1991 Introduction to the theory of neural
computation (Reading, MA: Addison-Wesley)

Jaakkola T, Jordan M I, Singh S P 1994 Convergence of stochastic iterative dy-
namic programming algorithms. In Advances zn Neural znformation processing
systems 6(eds) .I D Cowan, G Tesauro, J Alspector (San Fransisco, CA: Mor-
gan Kaufmann) pp. 703-710

Jacobs R A, Jordan M I, Nowlan S J, Hinton G E 1991 Adaptive mixtures of local
experts. Neural Compnt. 3:79-87

884 S Sathiya Keerthi and B Ravindran

Jordan M I, Jacobs R A 1990 Learning to control an unstable system with forward
modeling. In Advances in neural information processing systems 2 (ed.) D S
Touretzky (San Mateo, CA: Morgan Kaufmann)

Jordan M I, Rumelhart D E 1990 Forward models: Supervised learning with a distal
teacher. Center for Cognitive Science, Occasional Paper # 40, Massachusetts
Institute of Technology, Cambridge, MA

Kaelbling L P 1990 Learning in embedded systems. (Technical Report, TR-90-04)
Ph D thesis, Department of Computer Science, Stanford University, Stanford,
CA

Kaelbling L P 1991 Learning in Embedded Systems (Cambridge, MA: MIT Press)

Klopf A H 1972 Brain funtion and adaptive sytems - a heterostatic theory. Teach-
nical report AFCRL-72-0164, Air Force Cambridge Research Laboratories,
Bedford, MA

Klopf A H 1982 The hedonistic neuron: A theory of memory, learning and intelli-
gence. (Washington, D C: Hemisphere)

Klopf A H 1988 A neuronal model of classical conditioning. Psychobiology 16:
85-125

Korf R E 1990 Real-time heuristic search. Artif. Intell. 42:189-211

Kumar P R 1985 A survey of some results in stochastic adaptive control. SIAM
J. Contr. Optim. 23:329-380

Lin C S, Kim H 1991 CMAC-based adaptive critic self-learning control. IEEE
Trans. Neural Networks 2:530-533

Lin L J 1991a Programming robots using rcinforcement learning and teaching. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages
781-786, MIT Press, Cambridge, MA

Lin L J 1991b Self-improvement based orJ reinforcement learning, planning and
teaching. In Machine Learning: Proceedings of the Eighth International Work-
shop (eds) L A Birnbaum, G C Collins (San Mateo, CA: Morgan Kaufmann)
pp 323-327

Lin L J 1991c Self-improving reactive agents: Case studies of reinforcement learn-
ing frameworks. In From Animals to Animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behaviour, (Cambridge, MA:
MIT Press) pp 297-305

Lin L J 1992 Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Mach. Learning 8:2~3-321

Lin L J 1993 Hierarchical learning of robot skills by reinforcement. In Proceedings
of the 1993 International Conference on Neural Networks pp 181-186

Linden A 1993 On discontinuous Q-functions in reinforcement learning. Available
via anonymous ftp from archive.cis.ohio-state.edu in directory/pub/neuroprose

TutoriM survey of reinforcement learning 885

Maes P, Brooks R 1990 Learning to coordinate behaviour. In Proceedings of the
Eighth National Conferrence on Artificial Intelligence (San Mateo, CA: Mor-
gan Kaufmann) pp 796-802

Magriel P 1976 Backgammon (New York: Times Books)

Mahadevan S, Connell J 1991 Scaling reinforcement learning to robotics by exploit-
ing the subsumption architecture. In Machine Learning: Proceedings of the
Eighth International Workshop (eds) L A Birnbaum, G C Collins (San Mateo,
CA: Morgan Kaufmann) pp 328-332

Mazzoni P, Andersen R A, Jordan M I 1990 AR-p learning applied to a network
model of cortical area 7a. In Proceedings of the 1990 International Joint
Conference on Neural Networks 2:373-379

Michie D, Chambers R A 1968 BOXES: An experiment in adaptive control. Ma-
chine intelligence 2 (eds) E Dale, D Michie (New York: Oliver and Boyd) pp
137-152

Millan J D R, Torras C 1992 A reinforcement connectionist approach to robot path
finding in non maze-like environments. Mach. Learning 8:363-395

Minsky M L 1954 Theory of neural-analog reinforcement systems and application
to the brain-model problem. Ph D thesis, Princeton University, Princeton, NJ

Minsky M L 1961 Steps towards artificial intelligence. In Proceedings of the Insti-
tute of Radio Engineers 49:8-30 (Reprinted 1963 in Computers and thought
(eds) E A Feigenbaum, J Feldman (New York: McGraw-Hill) pp 406-450

Moore A W 1990 Efficient memory--based learning for robot control. Ph D thesis,
University of Cambridge, Cambridge, UK

Moore A W 1991 Variable resolution dynamic progranmming: Efficiently learning
action maps in multivariate real-vlaued state-spaces. In Machine Learning:
Proceedings of the Eighth International Workshop (eds) L A Birnbaum, G C
Collins (San Mateo, CA: Morgan Kaufmann) pp 328-332

Moore A W, Atkeson C G 1993 Memory-based reinforcement learning: Efficient
computation with prioritized sweeping. In Advances in neural information
processing systems 5 (eds) S J Hanson, J D Cowan, C L Giles (San Mateo,
CA: Morgan Kaufmann) pp 263-270

Mozer M C, Bacharach J 1990a Discovering the structure of reactive environment
by exploration. In Advances in neural information processing 2 (ed.) D S
Touretzky (San Mateo, CA: Morgan Kaufmann) pp 439-446

Mozer M C, Bacharach J 1990b Discovering the structure of reactive environment
by exploration. Neural Computation 2:447-457

Narendra K, Thathachar M A L 1989 Learning automata: An introduction (En-
glewood Cliffs, N J: Prentice Hall)

886 S Sathiya Keerthi and B Ravindran

Peng J, Williams R J 1993 Efficient learning and planning within the Dyna frame-
work. In Proceedings of the 1993 International Joint Conference on Neural
Networks, pp 168-174

Platt J C 1991 Learning by combining memorization and gradient descent. Ad-
vances in neural information processing systems 3 (eds) R P Lippmann, J E
Moody, D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 714-720

Rosen B E, Goodwin J M, Vidal J J 1991 Adaptive range coding. Advances in
neural information processing systems 3 (eds) R P Lippmann, J E Moody, D
S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 486-494

Ross S 1983 Introduction to stochastic dynamic programming (New York: Academic
Press)

Rummery G A, Niranjan M 1994 On-line Q-learning using connectionist systems.
Technical Report CUED/F- INFENG/TR 166, University of Cambridge, Cam-
bridge, England

Samuel A L 1959 Some studies in machine learning using the game of checkers.
IBM J. Res. Dev. : 210-229 (Reprinted 1963 in Computers and thought (eds)
E A Feigenbaum, J Feldman (New York: McGraw-Hill)

Samuel A L 1967 Some studies in machine learning using the game of checkers, II
- Recent progress. IBM J. Res. Dev. : 601 617

Selfridge O, Sutton R S, Barto A G 1985 Training and tracking in robotics. In Pro-
ceedings of the Ninth International Joint Conference of Artificial Intelligence
(ed.) A Joshi (San Mateo, CA: Morgan Kaufmann) pp 670-672

Shepansky J F, Macy S A 1987 Teaching artificial neural systems to drive: Man-
ual training techniques for autonomous systems. In Proceedings of the First
Annual InterT~ational CoT~ference on Neural Networks, San Diego, CA

Singh S P 1991 Transfer of learning across composition of sequential tasks. In
Machine Learning: Proceedings of the Eighth International Workshop (eds) L
A Birnbaunl, G C Collins (San Mateo, CA: Morgan Kaufinann) pp 348-352

Singh S P 1992a Reinforcement learning with a hierarchy of abstract models. In
Proceedings of the Tenth National Conference on Artificial Intelligence, San
Jose, CA

Singh S P 1992b On the efficient learning of multiple sequential tasks. In Advances
in neural information processing systems 4 (eds) J E Moody, S J Hanson, R
P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 251-258

Singh S P 1992c Scaling Reinforcement learning algorithms by learning variable
temporal resolution models. In Proceedings of the Ninth International Machine
Learning Conference

Singh S P 1992d Transfer of learning by composing solutions of elemental sequential
tasks. Mach. Learning 8:323-339

TutoriM survey of reinforcement learning 887

Singh S P, Barto A G, Grupen R, Connelly C 1994 Robust reinforcement learning
in motion planning. In Advances in neural information processing systems
6 (eds) J D Cowan, G Tesauro, J Alspector (San Fransisco, CA: Morgan
Kaufmann) pp 655--662

Singh S P, Yee R C 1993 An upper bound on the loss from approximate optimal-
value functions. Technical Report, University of Massachusetts, Amherst, MA

Sutton R S 1984 Temporal credit assignment in reinforcement learning. Ph D
thesis, Univerity of Massachusetts, Amherst, MA

Sutton R S 1988 Learning to predict by the method of temporal differences. Mach.
Learning 3:9-44

Sutton R S 1990 Integrated architecture for learning, planning, aud reacting based
on approximating dyanmic programming. In Proceedings of the Seventh In-
ternalional Conference on Machine Learning (San Mateo, CA: Morgan Kauf-
mann) pp 216-224

Sutton R S 1991a Planning by incremental dynamic programming. In Machine
Learning: Proceedings of the Eighth Internation.al Workshop (eds) L A Birn-
baron, G C Collins (San Mateo, CA: Morgan Kaufinann) pp 353-357

Sutton R S 1991b Integrated modeling and control based on reinforcement learning
and dynamic programming. In Advances in neural information processing
systems 3 (eds) R P Lippmann, J E Moody, D S Touretzky (San Mateo, CA:
Morgan Kaufmann) pp 471-478

Sutton R S, Barto A G 1981 Toward a modern theory of adaptive networks: Ex-
pectation and prediction. Psychol. Rev. 88:135 170

Sutton R S, Barto A G 1987 A temporal-difference model of classical condition-
ing. 111 Proceedings of the Ninth Annual Conference of the Cognitive Science
Society, Erlbaum, tIillsdale, NJ

Sutton R S, Barto A G 1990 Time derivative models of Pavlovian reinforceinent.
Learning and Computational Neuroscience: Foundations of Adaptive Networks
(eds) M Gabriel, J Moore (Cambridge, MA: MIT Press) PI) 497- 537

Sutton R S, Singh S P 1994 On step-size and bias in TD -learning. In P~veeedings of
the Eighth Yale Workshop on Adaptive and Learning Systems Yale University,
pp 91-96

Sutton R S, Barto A G, Williams RJ 1991 Reinforcement learning is direct adaptive
optimal control. Ill Proceedings of th American Control Conference Boston,
MA, pp 2143-2146

Tan M 1991 Larning a cost sensitive internal representation for reinforcement
learning. In Machine Learning: Proceedings of the Eighth International Work-
shop (eds) L A Birnbaum, G C Collins (San Mateo, CA: Morgan Kaufmann)
pp 358-362

Tesauro G J 1992 Practical issues in temporal difference learning. Mach. Learning
8:257-278

888 S Sathiya Keerthi and B Ravindran

Tham C K, Prager R W 1994 A modular Q-learning architecture for manipula-
tor task decomposition. In Machine Learning: Proceedings of the Eleventh
Inlenational Conference (eds) W W Cohen, H Hirsh (Princeton, N J: Morgan
Kaufmann) (Available via gopher from Dept. of Eng., University of Cam-
bridge, Cambridge, England)

Thrun S B 1986 Efficient exploration in reinforcement learning. Technical report
CMU-CS-92-102, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA

Thrun S B 1993 Exploration and model building in mobile robot domains. In
Proceedings of the 1993 International Conference on Neural Networks

Thrun S B, Muller K 1992 Active exploration in dynamic environments. In Ad-
vances in neural information processi,g systems/t (eds) J E Moody, S J Han-
son, R P Lippmann (San Mateo, CA: Morgan Kaufmann)

Thrun S B, Schwartz A 1993 Issues in using function approximation for reinforce-
ment learning. In Proceedings of the Fourlh Connectionist Models Summer
School (Hillsdale, N.I: Lawrence Erlbaum)

Tsitsiklis J N 1993 Asynchronous stochastic approximation and Q-learning. Tech-
nical Report, LIDS-P-2172, Laboratory for Information and Decision Sys-
tems, MIT, Cambridge, MA

Utgoff P E, Clouse J A 1991 Two kinds of training information for evaluation
function learning. In Proceedings of the Ninth A~nual Conference o7~ Artificial
Intelligence (San Mateo, CA: Morgan Kaufinann) pp 596 600

Watkins 1989 Learning from delayed rewards. Ph D thesis, C, ambridge University,
Cambridge, England

Watkins C J C H, Dayan P 1992 Technical note: Q-learning. Mach. Learning 8:
279--292

Werbos P a 1987 Building and understanding adaptive systems: a statisl.ical/numerical
approach to factory automation and brain research. IEEE Trans. Syst, Man
Cybern.

Werbos P J 1988 Generalization of back propagation with application to recurrent
gas market model. Neural Networks 1:339-356

Werbos P J 1989 Neural network for control and system identification. In Proceed-
z~gs of the 28th Conference on Deciswn aT~d Control Tampa, FL, pp 260 265

Werbos P J 1990a Consistency of IIDP applied to simple reinforcement learning
problems. Neural Networks 3:179--189

Werbos P J 1990b A menu of designs for reinforcement learning over time, In Neural
networks for control (eds) W T Miller, It S Sutton, P J Werbos (Cambridge,
MA: MIT Press) pp 67-95

Tutorial survey of reinforcement learning 889

Werbos P J 1992 Approximate dynamic programming for real-time control and
neural modeling. In Handbook of intelligent control: Neural, fuzzy, and adap-
tive approaches (eds) D A White, D A Serge (New York: Van Nostrand Rein-
hold) pp 493-525

Whitehead S D 1991a A complexity analysis of cooperative mechanisims in re-
inforcement learning. In Proceedings of the Ninth Conference on Artificial
Intelligence, (Cambridge, MA: MIT Press) pp 607-613

Whitehead S D 1991b Complexity and cooperation in Q-learning. In Machine
Learning: Proceedings of the Eighth International Workshop (eds) L A Birn-
baum, G C Collins (San Mateo, CA: Morgan Kaufmann) pp 363-367

Whitehead S D, Ballard D H 1990 Active perception and reinforcement learning.
Neural Comput. 2:409-419

Williams R J 1986 Reinforcement learning in connectionist networks: a mathe-
matical analysis. Technical report ICS 8605, Institut.e for Cognitive Science,
University of California at San Diego, La Joila, CA

Williams R J 1987 Reinforcement leanfing connectionist systems. Technical re-
port NU-CCS-87 3, College of Coullmtcr Science, Northeastern University,
Boston, MA

Williams R J, Baird L C, III 1990 A mat h, ttl:tt ical analysis of actor-critic architec-
tures for learning optimal controls l l~ L, ,rich incremental dynamic programming.
In Proceedings of the Si:cth Yrd(, II,,it',]~,~l , ol~ Adaptivc and Learning Systems
New Haven, CT, pp 96-101

