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Summary

This is a study of restriction methods in topology optimization of linear elastic con tinua. An ill-posed
optimization problem is transformed in to a well-posed one by restricting the feasible set, hence the term
restriction. A num ber of restriction methods are presen ted and compared, of whik some have been treated
previously in the literature and some are new. A dvantages and drawbacks of the methods are discussed from
a theoretical as well as a numerical point of view. The problems of minimizing compliance and designing
compliant mechanisms constitute the base for these discussions and several numerical examples are presen ted
that illustrate features of the various restriction methods.

1 INTRODUCTION

Structural optimization is usually divided in to the three subfields size, shape and topology
optimization. The latter, sometimes called layout optimization, is b y far the most general
as the connectedness of the optimal structure is not assumed a priori as it is in both size
and shape optimization. It is kno wn that the topology of a mehanical structure decisively
influences its performance, hence it is important to deal with these kind of problems. For a
comprehensiv e review of the field, refer to the monographs ly Bendsge [1| and Hassani and
Hinton [2] or to the review article by Rozvany et al. [3].

In topology optimization of linear elastic con tima, a naive mathematical modelling of
the physical situation results in an ill-posed optimization problem. Typically the problem
is posed in terms of distributing a fixed isotropic material in a fixed domain so that every
domain point is associated with either material or v oid. This determines a feasible set
that lacks closure and in general the infim um cannot be attained at an y feasible point. A
partly relaxed version of the compliance minimization problem was first solved by Bendsge
and Kikuchi [4]. They extend the feasible set to include a periodic microstructure with
rectangular inclusion from which the effective stiffness is determined b y homogenization
form ulae. T o obtain a w ell-posed optimization problem lwever, a full relaxation is required
[5]. This is equiv alent to extending the feasible set to include all the microstructures made
from material and void, i.e. to form the G-closure |6, 7| of the feasible set. Unfortunately ,
the G-closure is not explicitely kno wn in linear elasticiy 8] and the relaxed problem seems
in general difficult to solv e. In the special case of compliance, it is sufficiel to extend the
feasible set to consist of only sequential laminates, a subset of the G-closure. The relaxed
compliance minimization problem has been solved in this wa& by Allaire and Kohn [8],
Bendsge et al. |9] and Allaire et al. |10|. This approac h relies heavily on the fact that for a
given volume fraction, the sequen tial laminates attain the optimal bounds on the effectie
stiffness of an arbitrary microstructure, see for instance Allaire and Kohn [11|. For another
objective, it seems that new optimal microstructures need to be established before the
relaxed problem can be explicitely solv ed. Even when the relaxed problem can be solad,
the optimal structure is probably difficult and expensive to man ufacture because of the
complex material. To avoid this, the structural fluctuations can be k ept on a finite scale by
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restricting the feasible set to a closed subset. No microstructures are introduced and the
optimal structures are relativ ely simple, hence easy and heap to manufacture. Besides a
(hopefully slight) reduction in performance of an optimal structure, a main drawback with a
restriction approach is that the numerical treatment is challenging due to non-con vexity of
the optimization problem. The significance of this drawback depends on how the restriction
is performed whic h motiv ates a systematic in vestigation ofstriction metho dsin topology
optimization of linear elastic con tinua.

Up to now, the most popular problem in topology optimization of linear elastic continua
is the problem of minimizing compliance. This problem has nice features that have been
taken advantage of in the literature, see for instance [8, 10, 12, 13|, and has also been
extended to non-linear constitutive models [14, 15, 16]. The problem of designing compliant
mec hanisms w as introduced by Anan thasurestt al. [17] and has proved a challenging as
well as a popular problem. A compliart mec hanism is not a mehanism in the rigid-body
sense, but a structure that achieve motion from the flexibility of some or all of its structural
members. The advantages with a complian t mec hanism in comparison to a coentional
rigid-body mec hanism include the possibilit y of single-piece construction and the reduction
of friction, wear, backlash and noise [1§.

The main objectiv e for a complian t mec hanism is to perform usefubwk on a w orkpiece,
an objective that has resulted in varying mathematical formulations in the literature. Frecker
et al. |19] and Nishiwaki et al. [20] formulate it in terms of maximizing the ratio of mutual
potential energy to strain energy, and in Hetrick and Kota |21] an energy form ulation is used
where the objectiv ¢ is to maximize the medhanical efficiency . In Larsenet al. |22] the user is
allow ed to specify the mec hanical and geometrical adantages of the complian t mec hanism,
and in Sigmund [23] the mec hanical advantage is maximized. This paper follws the latter
reference in the sense that the objective is to transmit an applied force in to a maximal
force on an elastic w orkpiece. The linear elasticit y assumption is here questionable, see [23],
but since the objective with this paper is to in vestigate restriction methods rather than the
mathematical modelling of structural behaviour, this is disregarded. F or design of complian t
mec hanisms where non-linear effects are talen into account, the reader is referred to |24, 25].
Compliant mechanism design is an example of a topology optimization problem for which
solving the relaxation can be a cum bersome task, hence a restriction method is to prefer.

A compliant mechanism is in general categorized as a lumped or distributed compliant
mec hanism. F or a lumped complidnmec hanism, the elastic deformation is concerrated to
a finite number of flexural pivots. Disadvantages with lumped compliance include high stress
concentrations and man ufacturing difficulties |18 |. Considering that complidnmechanisms
are often used in the field of MEMS (MicroElectroMechanical Systems), the manufacturing
issue is highly importan t |22]. The mec hanism should possess distributed compliance whic
means that the flexibilit y is distributed almost equally throughout the mehanism. No struc-
tural part is m uch thinner than any other which eliminates the dmabacks with lumped
compliance. Some restriction methods in this paper exclude the possibility for lumped com-
pliance regions to occur and are therefore suitable for the design of distributed compliant
mec hanisms.

The rest of the paper is organized as follo ws. In section 2, con tinuum formlations of
the state and optimization problems are given for the purpose of discussing existence issues.
Section 3 presents some test problems that are used for evaluating the different restriction
methods. In section 4, the problems in section 2 are finite element discretized and numerical
issues are discussed. Sections 5-7 are devoted to restriction methods categorized as follo ws,
finite dimensional set of designs (section 5), bounds on the design gradient (section 6) and
filters (section 7). Section 8 discusses other types of restriction methods and the paper ends
with some discussions and conclusions in section 9.
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2 PROBLEM FORMULATIONS

This section starts with the description of the equation that determines the state of equi-

librium of a structure in con tact with a w orkpiece. This equation is used when formlating

the two optimization problems that will be the base for ewaluating the restriction methods.

Some notations that may be different from the usual are first presen ted. A geometric ector

is written in bold-face and |- | denotes the euclidean norm of such a vector. Assuming that

the LP-spaces, 1 < p < oo, are familiar to the reader, LP denotes the space of vector valued

functions for whic h the euclidean norm belongs to L”. The norm is in either case denoted

| - ||p- Furthermore, the space H' is the Sobolev space of vector valued functions for whic h
the function itself and its gradient are vector and tensor valued functions respectively with
square integrable norms. The norm on this space is denoted |- .. For details on Sobolev

spaces, the reader is referred to |26].

2.1 The State Problem

Let the structural domain Q@ C R? * be an open, bounded and connected set with a Lips-
chitzian boundary I', see Figure 1. Furthermore, letT', C T, |T'y| > 0, be the part of the
boundary where displacements are fixed, and I'y = T"\ T', the part where tractions are pre-
scribed. The tractions are represen ted ly a vector field t € L?(T;). The fourth order tensor
E represents an appropriately chosen isotropic material and p € L*°(Q) is a density that
for some 0 < pe < 1 fulfils p. < p < 1 a.e. in Q. It is assumed that E satisfies the usual
symmetry . ellipticity and boundedness features. Letf,, ¢ > 1, be a parameterizable function
on [pe, 1] with range (0, 1], in this context known as a material interp olation function This
function should satisfy some requirements that will be apparen t throughout this section.
The structure is represented by the effective elasticity tensor E4(p) = fq(p)E and occupies
the entire structural domain. The material interpolation function fg; should be chosen so
that the points in ) where p = 1 are occupied with the material represented by the ten-
sor E, ie. fy(1) = 1. Moreover, the points in € where p = p, should be occupied with
a very complian t material in tended to represemvoid, which indicates that f; should fulfil
fq(pe) < 1. In between pe and 1, f; should be increasing in order to assure that increasing
the density means increasing the stiffness.

Ly

Figure 1. A structural domain for the state problem in 2 dimensions

*For the sake of generality, the space dimension d may in section 2 be considered arbitrary (which in
practice means d = 2 or d = 3). However, because of the chosen numerical examples and to keep the
exposition and notation simple, it will from section 3 and on be assumed that d = 2. It should nevertheless
be mentioned that everything can be generalized to include the case d = 3.
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Now the set I'y, C I'; is introduced where the structure can in teract with some elastic
workpiece. The stiffness of this w orkpiece is represented b a vector field k € L*°(T'y) so
that for a structural displacement field v, the force that is exerted on the structure by the
w orkpiece is equal to

t(v) = ~(k - v)

= &

It is here assumed that k = |k| > 0 on T.

The space of kinematically admissible displacements, V', is the closed subspace of Hl(Q)
whose members are such that their traces vanish onI',. On V| Cauchy’s infinitesimal strain
tensor is given by

(v) = 5(Vo + Vo).

For a given material in terpolation functionfy, the internal work symmetric bilinear form

on V x V is defined as
apk(u,v) = a,(u,v) + ap(u,v)

where
ap(u.v) = [ elw)- Byfp) - €(v)
and .
o) = [ Lkwiev), &

For any p satisfying the requiremen ts men tioned above, the following relations hold,
|apk(u,v)| < Mllullgg)llvla@, Yu,veV

and
ap (v, 0) > fq(pG)aHvH%{l(Q)a VweV

for some strictly positiv e constaits o and M. It is crucial that the parameter p. is strictly
positive to assure ellipticity of the operator a, ;. The external load linear form, £, is defined
as
l(v)= [ t-v, (2)
I
which makes it a bounded linear functional on V. The total poten tial energy of the system,
i.e. the structure, the w orkpiece and the external loads, can nov be stated as

1

j(p,'v) = §ap,k(vv'v) - E(’U)

The equilibrium displacement field is the unique minimizer of v — J(p, v), also character-
ized as the solution to the following v ariational equality

weV: app(u,v)=~»v), YveV. (3)

These t wo form ulations are the well known principles of minmmn potential energy and
virtual work.



Topology Optimization of Elastic Con tinua Using Restriction 355

2.2 The Optimization Problems

Here it is assumed that an appropriate material interpolation function f; has been chosen,
given by for instance (4) or (5). The in tention is to present the optimization problems in
nested form, where the state v ariableu is eliminated through (3). F or a given densityp
(again satisfying the requiremen ts men tioned in the previous section), the unique solution
to (3) is denoted u(p).

The complianc eof the structure is an inverse measure of the stiffness and is mathemat-
ically seen as a function of p. It is denoted £ and given by £(p) := £(u(p)), where £ is given
by (2). Furthermore, the force that is exerted on the structure b y the w orkpiece is projected
in the k/k direction and integrated on I'y,

nw = [ ) == [ oG D= [ o)

Again the displacement field is eliminated through (3) and #j is viewed as a function of
p, i.e. tr(p) := trp(u(p)). This function can be seen as a scalar measure of the total force

that is exerted on the w orkpiece by the structure or vice versa, a large negatie value of

means that a large force is exerted on the workpiece by the structure. On the other hand,

a large positive value of ¢, should in one sense be prohibited since that w ould mean that
the structure and w orkpiece are separated. Because of the proposed model, whih could be

seen as a very simple frictionless bilateral con tact model, this is not the case. Newrtheless,

the objective will be to minimize 5 and a positive value will thus never occur in practice.

The direction k/k is chosen as the desired direction of a force exerted by the structure on
a workpiece and k measures the stiffness of this workpiece in this direction.

2.2.1 Maximum stiffness design

The first problem to consider is the problem of maximizing stiffness subject to a constraint
on the volume. Here I'y, = () and the problem can be formulated mathematically as

min ()
(P)sue st [op<V
Pe < p<1 ae in

2.2.2 Compliant mechanism design

The second problem that is considered is to design a compliant mec hanism. The objectie
is to maximize the force that is exerted on the workpiece by the structure. Following [23],
a volume constraint is introduced in order to keep a low volumne fraction for manufacturing
reasons, as well as a constraint on the compliance in order to k eep the stresses in the
structure low. In fact, in [23 | the constraint is put on the input displacemen t in the direction
of the applied point load. A generalization of this constrain t to the case of an arbitrary line
(or surface) load would be a constraint on the compliance. This is further motiwnted by
consulting [9] where it is demonstrated that the integrated von Mises equivalent stress is
bounded by some constan t times the in tegrated strain energy densgtwhich here is a smaller
quantity than the compliance. This does not imply that the stresses are uniformly bounded
pointwise but it is demonstrated in [23] that there is reason to believe that they are. The
problem can no w be form ulated mathematically as

min ¢,
g k(p)

(P)oc st Jop
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2.3 P enalty Schemes

In topology optimization, a goal is to assure that an optimal density p* to either one of
the optimization problems (P)yg or (P)ye is discrete valued. This means that p* should
preferrably take only the values p. or 1 almost ev erywhere in€). This could be explicitely
imposed when formulating the problem by changing the last constraint in any of the prob-
lems to p € {pe, 1} a.e. in Q. Alternatively, one could introduce some kind of penalization
in the problem in either one of the follo wing t & ways.
Omne one hand, one could ¢ hoose the material in terpolation function so that intermediate

density values are given a higher cost compared to discrete density values. Consider for
instance

falp) = p?, (4)

commonly known as the SIMP (Solid Isotropic Material with Penalization) interpolation
function [27, 28], or
— p K

another SIMP variant [29]. It is seen that f1(p) = p and that f,(p) decreases tow ards0 as
q increases for an intermediate density value p. For high ¢, the intermediate density values
are suppressed as they contribute comparativ ely little to the stiffness. The parameterg is
intended to be used as a control of the level of penalization, as a high wlue of ¢ implies
hard penalization. For examples of other artificial material itterpolation schemes, see for
instance [30, 31|, and for a general treatment of material interpolation schemes in topology
optimization the reader is referred to [32].

Another w g is to choose the material in terpolation functionf,(p) = p and explicitely
penalize the intermediate v alues by adding a penalty term in the objectiv e of the form
QP(p), where @ is a positive scalar used to find a proper degree of penalization and P is a
penalty function that encourages discrete valued densities. This penalty function could take
the form, see for instance (33, 34 |,

P(p) = /Q(l —p)(p— pe)- (6)

The in termediate density values contribute more to the objectiv e than the discrete density
values, hence they are suppressed.

2.4 Existence Issues

For convenience of this section and the rest of the paper, let H denote the densities p that
are determined b y the constraints in either one of the problems(P).ig or (P)mecn-

In general, the problems considered in section 2.2 are ill-posed when discrete constraints
are imposed or penalization is in troduced as described in the previous section. The term
ill-posed in this context means that there are no optimal solutions. A sufficient condition for
such an optimization problem to be well-posed is for it to have the following t w o properties.
First, the set H has to be compact and second, the objective function has to be low er semi-
continuous. Furthermore, since the problem is infinite dimensional, these two properties
must be valid with respect to the same topology .

For the problem (P)y, H is always weakly™ compact in L>°(Q) but the objective
function is not known to be weakly™ lower semi-continuous in L*(€2) when ¢ > 1. However,
it is so when ¢ = 1 and hence this problem is well-posed, a problem that is known as the
variable thickness sheet problem |35, 36]. For the problem (P),.., H is not known to be
weakly™ compact in L () unless ¢ = 1 and the objective function is not known to be
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weakly™ lower semi-con tinuous inL*°(Q2) for any ¢. It appears likely that this problem is
ill-posed even for ¢ = 1.

Restriction is a measure for obtaining a well-posed optimization problem in this context.
Starting from an ill-posed problem with a feasible set H. the idea is to restrict this set to
another set H C H so that the problem becomes well-posed. Noting that the objectiv e
function in either one of the optimization problems (P)yg or (P)mea 1s strongly (lower
semi-)continuous in LP(Q), 1 < p < oo, the set H should be compact in the same sense.
At this point, it should be men tioned that a restriction method can be formlated in terms
of not changing the set H but to implicitely making it compact by adding a term in the
objective with certain compactness properties, something that is dealt with in section 6.

3 NUMERICAL TEST PROBLEMS

Four numerical test problems are chosen to illustrate and validate the different restriction
methods. Bach of the Figures 2-5 shows a structural domain in which an optimal density is to
be distributed. The parts of the boundary where the displacements are fixed are indicated by
gray and the applied forces are indicated by arrows. F or the complian t mhanisms, Figures 4
and 5, the parts of the boundary that are in con tact with a w orkpiece are indicated  a black
patch that is connected to a spring. The thin arro ws in these figures sho w the direction in
which the maximized force should act. The material for ead of the test problems is isotropic
with a Y oung’s modulus 0f1000.0 and a Poisson’s ratio of 0.29.

3.1 Maximum Stiffness Problems

The problems that are considered for stiffness maximization, or compliance minimization,
are two classical benchmark problems in topology optimization.

The first one is a can tilever beam sho wn in Figure 2. The dimensions of the structural
domain are 3.2 x 2.0 and the optimal structure should occup y no more than50% of this
domain. The structure is fixed along the left vertical edge and a vertical line load is applied
at the center of the right vertical egde. The magnitude of the line load integrated is 1.0.
Symmetry allows for performing the computations on the upper half of the domain.

The second problem is an MBB beam shown in Figure 3. The dimensions are 6.0 x 1.0
and, again, the amoun t of material is limited to50% of the structural domain. Here the
displacemen ts are fixed in the vertical direction at the bottom corners as indicated in the
figure. The singularit y of the stiffness matrix is eliminated ly considering only the left half
of the domain for computations along with appropriate symmetry conditions. A vertical line
load is applied at the top center of the domain with a magnitude of 1.0 integrated.

Figure 2. A cantilever beam
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0] o0

Figure 3. An MBB beam

3.2 Compliant Mechanism Problems

The two problems for designing compliart mechanisms ha ve previously been treated in for
instance |23].

The first problem is a force inverter mec hanism shavn in Figure 4. The structural domain
is a square of dimensions 2.0 x 2.0 with forces and fixed displacements prescribed on the
left vertical edge. The applied force is con verted into a force in the opposite direction on
the center of the right vertical edge. The magnitude of the applied force integrated is 1.0
and similarily , the magnitude of the stiffness of the workpiece integrated is 1000.0. The
compliance is not allo wed to exceed).1, whic h corresponds to an average input displacemen t
of approximately 0.1. The maximum amount of material allo wed i20% of the domain and
the computations are performed on the upper half.

The last problem is a gripper mechanism sho wn in Figure 5. The dimensions of the
structural domain are again 2.0 X 2.0 but with a patc h of dimensions0.5 x 0.5 removed from
the right center side of the square to form a gap. As for the force inverter mec hanism, forces
and fixed displacemen ts are prescribed on the left vertical edge. This applied force should
result in a force on a w orkpiece situated in the gap as shown in the figure. The magnitude
of the applied force integrated is 1.0 and the magnitude of the stiffness of the workpiece
integrated is 500.0 on each of the two considered parts of the boundary. The compliance is
not allow ed to exceed 0.1, which again corresponds to an average input displacemen of 0.1.
The maximum amount of material allo wed i120% of the domain and only the upper half
is subject for computations. Because of the current implementation, the state problem is
solved with the upper half of the gap included as well, in whic h the density is kept constant,

P = Pe-

Figure 4. A force inverter mec hanism
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J
= E¢

Figure 5. A gripper mec hanism

4 NUMERICS
4.1 The Discrete State Problem

Following a standard finite element procedure, the structural domain of each of the numerical
examples in the previous section is discretized in to a uniform mesh ofN" four noded bilinear
finite elemen ts. The densit yp is approximated elementwise constan t and the displacemen ts
u are approximated bilinear within and continuous across the edge of each finite elemen t.
Let p" denote the discrete density, p? the value of the discrete density in element i and u”
the vector of nodal values of the discrete displacemen ts. The discrete state problem related
to (3) is the following system of linear equations

K, pu" = f. (7)

Here K, is the global stiffness matrix which is the sum of the con tributions from the
stiffness of the structure and the w orkpiece respectively,

K, = K,+K;.

The standard stiffness matrix K, is the sum of element stiffness matrices weighted by
elemen t stiffness values,
Nh
K, =3 fo(r) K,

i=1

and K is a diagonal matrix with positive diagonal values ]klh | that are non-zero only at
indices corresponding to places where the structure is assumed in contact with the w orkpiece,

K, = diag{|k}'[}.

The v alues klh are the mean v alues of the functionk along the edge of one finite elemen t
calculated just as the elemen ts of the right hand side force vectorf.

It should be noted that a rigorous finite elemen t discretization of the integral (1) would
not result in a diagonal stiffness matrix. The reason for approximating this matrix diagonal
is due to computational simplicity and to the belief that this approximation is accurate
enough to establish very similar n umerical results. The matrixKj can be seen as a lumped
approximation of the true stiffness matrix.
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4.2 The Discrete Optimization Problems

Let u”(p) be the solution to (7) corresponding to the discrete densit yp”. The compliance
¢ and force on the w orkpiccet, now have the following discrete coun terparts,

2(ph) = FTul (o)

) = KT (),

(8)

where k" is the vector with values k:lh described in the previous section. The discrete opti-
mization problems corresponding to (P)g and (P)yen can be posed as

min th(p)
P
h ) —
(P) s s.t. z{i’l mhph <V
pe < ph <1 i=1,...,N"
and
: Th(  h
min ti(p")
h —
(P st Mymlpl <V
hph) <t
pe < ph <1 i=1,...,N"

where m? 1s the measure of the 7:th finite elemen t.

4.3 Sensitivit y Analysis

In order to solve the problems (P)? . and (P)"_ . with standard optimization algorithms
(at least of first order), sensitivities of the involved functions with respect to ¢ hanges in
the density p* are required. Since calculating the sensitivities of the volume constraint is
straightforw ard, this section focusses on the two objective functions.

The sensitivities of the objectiv e functions can be obtained by differentiating (7) and (8)
which for the compliance yields

o
G = i K
J

A similar approac h with the force on the w orkpiece yields

o

k= fL PN K ju”,
8/)? J J

q

where A" is the solution to the following adjoin t equation

K, A" =kl
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4.4 Numerical Algorithms and Strategies

The discrete problems in this section (together with extensions throughout the paper) are

implemented mainly in C-++ but with some aid of Fortran 77 to impro ve the computational
efficiency . The optimization problems are soled with MMA (Method of Moving Asymptotes)

[37], an optimization algorithm that is based on the idea of sequential convex approxima-

tions. In each iteration the system (7) is solv ed with anL D L”-factorization of the stiffness

matrix follo wed by a forward substitution, elimination of diagonal elements and a backw ard
substitution whic h yields the sensitivities of the inwvlved functions. Assuming that p is the

considered design variable T, an approximating separable subproblem is formed where each

of the involved functions is on the following form

tecte)

h h
i—1 \Pi — L uwi—p;

The parameters p; and ¢; are chosen so that the sensitivities coincide with the ones that
are obtained from the sensitivit y analysis and so that the subproblem is con vex. Because
of the small number of constraints in (P)" . and (P)" . the subproblem is solved with a
dual method which in turn yields a design suggestion for the next iteration. The parameters

l; and wu; are the mo ving asymptotes that are con tinuously updated in order to control the
optimization procedure. F or details concerning the MMA, the reader mu consult [37]. Other
optimization algorithms used in this context include so called optimalit y criteria methods,
see [1] and references therein, and sequen tial linear programming |20 23, 38].

Regardless of the t ype of restriction, the problems(P)". . and (P)" . are well known to
be non-convex when some kind of penalization is introduced. Thus it may happen that an
obtained numerical solution is only a local optimum to the considered problem. To prevent
this from occurring, con tinuation strategies are often suggested. Con tinuation means that
a sequence of problems is solv ed where the solution to eac h problem is used as a starting
solution for the next. The sequence of problems are chosen so that the “degree” of non-
convexity is gradually increased and hopefully the final solution is, if not a global optimum,
at least better than a solution that is obtained without a con tinuation strategy For the
problems (P)".. and (P)"_, this could for instance mean that the parameter ¢ in the
material in terpolation functionf; is gradually increased from ¢ = 1 to some ¢ = g@. In [39],
by considering some small scale examples, it is shown that this strategy does not necessarily
guarantee that a global optim um is reac hed. In this srk, numerous t ypes of continuation
strategies were applied to the considered problems, for instance the one just mertioned. In
most cases ho wever, the solutions that are obtained in this w ay turn out to be orse than
the ones that are obtained without any continuation. Based on this experience, all numerical
examples in this paper are solv ed without a con tinuation strategy except in one particular
case, sce section 6.1.

In the numerical examples, the parameter p. always has the value that yields f,(pc) ~
1072 for the chosen penalty parameter ¢ and the convergence criterion is given by the
following. An optimal solution is considered to be reached when the difference in max-
norm bet ween two successive design suggestions is less thail0~*. The reason for ¢ hoosing
this strict criterion is that for compliant mechanisms, small changes in the design during
a long time does in general result in a major change in the shape of the structure even

'In the problems (P)stie and (P)mecn there is no distinction between the design variable and the density
p since the optimization is with respect to this v ariable. In sections 5 and 7.2, a design variable will be
introduced that is purely a mathematical help v ariable with no physical interpretation. The optimization
will be with respect to this variable and the physical density p will be determined b y a design-to-density
mapping.
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though the objective function is only slightly impro ved. In appendix A, table 1 presen ts
some computational data from the numerical examples in this paper. The examples are
named Cj, M;, I; and G; where the capital letter indicates what test problem is solved
and the subindex ¢ refers to the order in which they appear in the text. In each of the
upcoming figures, the figure text rev eals what particular example is shemn. As can be seen
from table 1, the n um ber of optimization iterations is in general v ery high due to the
men tioned convergence criterion and in practice it w ould often suffice to perform a few
hundred iterations to obtain a reasonable solution. This n urher may vary depending on the
specific problem and t ype of restriction considered. In appendix B, three t ypes of restriction
methods for compliance minimization are compared from a more practical point of view.

5 FINITE DIMENSIONAL SET OF ADMISSIBLE DESIGNS

Any of the problems in section 4.2 is well-posed and hence it should not be troublesome
to establish at least a locally optimal solution to this finite dimensional problem. How ever,
unless the corresponding infinite dimensional problem is well-posed, it is likely that this
solution would cortain checkerboards [33, 40, 41| and/or structural parts that are no more
than one or two elemen ts wide, these being regions in the structural domain from whik
the structural responses are quite misleading. A refinement of the finite element mesh does
in general not help as this w ould give a completely differen t design suggestion, probably
with ev en more ¢ heckerboards and thin structural merbers [41]. As indicated in section 2.4,
the fundamen tal problem is that there can be no connection bet ween the finite dimensional
optimization problem and any well-posed infinite dimensional problem. Another, perhaps
more intuitive, way of putting it is that the discretizations of design and displacements are
coupled, a refinemen t of the displacemen t mesh implies a refinemdnof the design mesh.
For any discretization level, the discrete set of admissible displacemerts is incapable of
giving accurate information of the state of all the admissible designs. This suggests that a
refinemen t of the finite elemen t mesh should be possible without refining the set of designs.
The set of designs is made finite dimensional a priori and hence independent of the numerical
discretization.

5.1 Problem Formulation

Referring to section 2.4, the restricted set H is chosen

NH
H={peL™@ | p=Xtdn [p<V. p<&<i). (9)
=1

Here N is a fixed num ber that is independent of the numerical discretization, & are the
componen ts of the design vector€ € RM" and ¢; are suitably chosen basis functions. These
basis functions should be chosen first so that H C H and second so that H allows for a
rich supply of structures. The definition of H above is assumed for the problem (P)us and
should of course be complemented with the compliance constraint when considering the
problem (P)ec- It should be noted that p is not the design variable as the optimization is
now with respect to the v ectoi§. The densit yp is determined b y the linear design-to-density
mapping giv en in the definition ofH.

5.2 The Basis Functions

For the description of the basis functions that are used for the n wmerical examples, the
rectangular structural domain is embedded in a uniform mesh with elements of size H x H
so that it is aligned along the mesh and so that eac h corner point of the structural domain
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coincide with some nodal point of the considered mesh. The basis functions are chosen as
gaussian bells that are centered at the nodal points of this mesh. A node ¢ with coordinates
(24,Y;), the corresponding basis function ¢; is given by

1 _ e+ y—y)?
QZ)Z("an) = ;6 a2

For practical purposes, a neighbourhood of the point(x;,y;) is chosen, outside of whic h the
contribution from ¢; is put equal to zero. For the numerical examples, this neighbourhood

is a quadrant of dimensions 6 H x 6 H that is aligned along the mesh and cen tered at(z;, ;).

The N basis functions that are considered for computations are those that can give a

non-zero contribution to the density p, namely those that are situated sufficiently close to

the structural domain. It should be mentioned that with this ¢ hoice of basis functions,’H is

not completely con tained inH because the constraint p, < & < 1, i = 1,..., N¥ does not

imply pe < p <1 ae. in Q. However, it is almost v alid in the sense that the deviation from
the last constraint is only a fraction of a percent. This set of basis functions has previously

been used in the theory of approximate appro ximations [4R a numerical solution method

for partial differential equations.

5.3 Numerics and Sensitivity Analysis

When solving the problem numerically , one would have to determine the discrete densit y
p" that is to be used for solving the state problem (7). The element values of p/ are in this
implementation determined b y the sample v alues of in the centroids of the finite elemen ts,

NH
Pl =" i,
i=1

where ¢;; is the value of ¢; at the centroid of elemen tj. It remains to determine the
sensitivities of the involved functions with respect to the design v ariable€. By the chain
rule in differential calculus, it is only necessary to determine the sensitivities of p" with
respect to € and com bine them with the sensitivities in section 4.3. These are gien by

op"
== = bij-
9&i

5.4 Numerical Results

The first n umerical example is the cattilever beam whic h is solved withH = 0.1 for three
different displacemen t meshes. The material iherpolation function is given by (5) with
q = 6 and the solutions are shown in Figure 6. As illustrated in this figure, the boundary
description of an optimal structure is blurry and the few number of design variables in
general mak es the structural parts rather jagged despite a fine displacemert mesh. On the
other hand, the few n um ber of design variables allows for a fast optimization procedure
in comparison to the other methods that are presented in this paper, cf. table 1. Worth
men tioning is also that the mmber of optimization iterations is virtually independent of
the displacemen t mesh as it should be since the mmber of design variables does not change
when the displacement mesh is refined.

The second n umerical example is the iwverter mec hanism whid is solved for H = 1/30
and H = 1/15 with the respectiv e solutions shown in Figure 7. The same material iterpola-
tion function as for the previous example is used. Noticable is that structural members that
are aligned along and diagonal to the mesh are in fact straigh t and smooth, whik is signif-
icant for the chosen set of basis functions. The reason for obtaining the weakly gray density
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20 20 20

Figure 6. The cantilever beam (C; — C3) with a finite dimensional set of designs

region appearing in the solution I is believed to be partly because of the few number of
design variables. There is no w ay of eliminating the gra y without violating the compliance
constraint for this choice of H. In the solution I;, which is solwed with appro ximately four
times as many design variables, the gray is eliminated b y at the same time slighly changing
the shape of the structure. These solutions should be compared to the inverter mec hanisms

in section 7.2.2.

Figure 7. The inverter mec hanism (/1 —I) with a finite dimensional set of designs

6 BOUNDS ON THE DESIGN GRADIENT

A minimizing sequence of either one of the problems in section 2.2 is in general characterized
by increasingly oscillating designs. A w ay to measure oscillations of a function is through
some norm on the distributional gradient, hence it w ould be natural to impose a bound on
such a norm. Straigh tforw ard choices of norms w ould be the commah’ norms, i.e. impose

Vol < Cp < oo, 1<p<oo, (10)
or add a term in the objectiv e on the form

ol Vol 1<p<oo, (11)

with ¢, > 0. In the former case, the restricted set H in section 2.4 is exactly the set H with
the additional constraint (10). In the latter case, the set H is not explicitely changed, but
the measure (11) implies that the optimal solution satisfies (10) for some Cp.

Since Vp may not exist as a function, it is at this moment not clear what ||Vp||, means.
The follo wing definition is tak en,

IVl i=sup{ [ pdive | @€ CF@, (ol <1}, (12)
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where ¢ is the conjugate exponent of p. A constraint of type (10) or a measure of t ype
(11) implies that for a minimizing sequence p, ||Vp||, is uniformly bounded and existence

of solutions follows, loosely speaking, from lo wer semi-con tinwitof || - ||, and the Rellic h-
K ondrachovs compactness theorem [2¢. For 1 < p < oo, this means that p belongs to the

Sobolev space W1P(Q) and | - ||, is the usual L norm. For p = 1 however, p belongs to

a superspace of W1(Q) denoted BV (Q), functions of bounded variation, which plays an
importan t role in e.g. the theory of plasticiy [43] and minimal surfaces |[44]. When p = oo,

the gradient is bounded pointwise whic h is the strongest constraint. The three casep = 1,

1 < p < 0o and p = oo will be treated separately in the follo wing three subsections.

6.1 P erimeter Constrain

Forp =1, (12) is the total variation of p. When p is the characteristic function of a set, the
total variation is called the perimeter of the set. For a set w C Q with sufficien tly smooth
boundary, it can be shown that

IVXwllt = [0w N Q. (13)

In other w ords, the perimeter ofw is equal to the measure of the part of Jw that is contained
in €. Since this suggests that structural parts of the optimal structure are preferrably
situated at the boundary of €, this total variation is replaced by

TV (p) = s.up{/R2 pdivg | ¢ <€ CF(R?), |¢| <1 almost everywhere},

where p is assumed extended b y zero outsidef2. This does not change any of the theoretical
results men tioned above, and forw C Q with sufficien tly smooth boundary , cf. (13),

TV (xw) = [0w].

The difference is that this v ariation tals into account the variation over the boundary of
Q.

For a problem v ery similar to the considered problem, existence of solutions ws shown
by Ambrosio and Butazzo [45 | and in the context of topology optimization, the problem ws
later treated theoretically by Petersson [46]. A n umerical treatmert was first provided by
Haber et al. [47] and has since been followed up by for instance Duysinx [48] and Beckers [49].
In Beckers [49] the problem is solv ed with discrete constrain ts and it also includes topology
optimization of 3-dimensional structures. P erimeter constrained topology optimization i3
dimensions has also been treated by Fernandez et al. [50].

6.1.1 Numerics

The numerical appro ximation of the perimeter, or total ariation, is something that has
drawn atten tion. For this exposition, it is for simplicit y assumed that 2-dimensional rect-
angular structural domain is discretized uniformly so that h denotes the length and width
of each finite elemen t andn, and n, denote the num ber of finite elemen ts in each coordinate
direction. Each elemert is given an index (i,7), i =1,...,ny, j = 1,...,ny that indicates the
position of the elemen t in the finite elemeit mesh in an obvious w ay Furthermore, let chj
be the density value of p" that corresponds to elemen t(i,j) and for any i < 0, j < 0,4 > n,
or j > ny, plhj = 0. To keep the form ulas in this section of reasonable length, let

85 = plry — Py, 523‘ = |pl = Pl

h h h h
51/] = |P¢+1,j+1 - pi,j|) 5;\] = |pi,j+1 - pi+1,j|‘



366 T. Borrvall

A straigh tforw ard evaluation of the total variation of an elemen twise constant density
h 201/
yields

TVa(p") = h iz +izcsj] . (14)

1=0j=1 i=135=0

This appro ximation tak es differences of densit values in the 2 coordinate directions whic h
explains the introduction of the subindex. It is well known that using this formula will
favour a structure with a large portion of its boundary aligned along the cartesian coordinate
axes [46, 47]. In fact, even for a smooth function p that is appropriately approximated as
elemen twise constan tp”, this form ula will not conerge to the correct total variation whic h
1s unfortunate. Considering that for a smooth function p,

:/R2|Vp|’

an alternative to (14) would be to mak e a finite difference approximation of the gradien t
of p (neglecting the fact that it ma y not be differentiable) and then perform n umerical
integration. One w ay of doing this yields the following appro ximation of the total v ariation,

ng Ny

TVs(p ZZW% SR 624012 (15)

szO

It is straightforw ard, although tedious, to verify that for a smooth functionp that is appro-
priately approximated as clementwise constan t p”, this form ula will in fact conarge to the
correct total variation,

TV2(p") = TV(p), h—0.

This is illustrated in the first graph of Figure 8, which shows the deviation from the true
total variation of a rotating plane for some n umerical appro ximations. The horizdual solid
line at y = 0 corresponds to T'Vy and the dashed line corresponds to T'Vo. However, for
a non-smooth function, the deviation of the t w approximations appears similar which is
illustrated in the second graph of Figure 8. This graph shows the deviation from the true
total variation of a rotating edge for some n umerical appro ximations and the dashed line
corresponds to both TVQ and T'V;. It is seen that the deviation can be as large as &~ 41% but
this can be significantly reduced by considering differences of density values in 4 directions,
namely horizon tally vertically and also diagonally in the finite elemen t mesh. This is done
in [51] and the suggested approximation is

TVi(p") = (ﬂ—l)h{zzo ?”157} i S0l )+

YR 5o 0+ it it 00 |

This reduces the anisotropy to ~ 8%, see the dash-dotted line in both graphs in Figure 8.
An attempt to improve on this is here made through the follo wing ansatz,

T~V4(ph) = a h \/5_)2 z]-i—l + 522 51—1—1]

Ny n 1
CEDErED RV PR PR

Sufficient for ~
TVa(p") = TV(p), h—0
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to hold when p is smooth is to require o + 3 = 1. Unfortunately, the low est anisotropy for
a rotating edge given this condition is &~ 31% for o = § = 0.5, which is illustrated ly the
solid line in the second graph of Figure 8. For a = 8 = /2 — 1, the anisotropy for TV
coincide with T'Vy which how ever mak es the variation for a rotating plane underestimated
by ~ 17%. ~

The sensitivit y analysis of the expression forTV, with respect to p” is straightforward
but rather lengthy and is therefore omitted.

Rotating plane Rotating edge
50 T T T T T T

40 P ~. 4 sk T -

30F

’ \
201 / N

Anisotropy (%)
Anisotropy (%)

. . . 1 - 1 1 1 . . 1 1 .
05 06 07 08 09 1 [ 01 02 03 0.4 [ 07 08 09 1
Angle (yrad) Angle (3rad)

Figure 8. Anisotropies for the different perimeter appro ximations

6.1.2 Numerical results

Two numerical examples are presented where a variation term is added in the objective as
in (11). The reason for not imposing a constraint on the form (10) is because the former
approach has shown to be more stable numerically . First, the cantilever beam is solv ed
with the T'Vy approximation for t wo differen values of ¢;. The t wo solutions are shown in
Figure 9 and the T'Vy values are 25.6 and 19.6 obtained with the ¢; values 2.5 - 10~° and
1.5-10% respectively. The material in terpolation function is chosen as (5) witlg = 2.5 and
q = 6 respectively. It is immediately noted that the boundary description is very sharp in
comparison to for instance the solutions in Figure 6. This is expected since intermediate
density values are suppressed and p is certainly allow ed to be non-smooth. This can also be
seen in Figure 10, which shows the gripper mec hanism solv ed for three different meshes with
the TV 4 approximation, « = 8 = 0.5. The same material interpolation function is used but
this solution requires that g is gradually increased. A con tinuation strategy is used where
200 iterations are performed for ¢ = 2 and ¢ = 3.5 before the final solution is obtained for
q = 6. T3he TV 4 values for these three structures are 28.2, 29.4 and 30.2 for a ¢; value of
8.3-107°.

Figure 9. The cantilever beam (Cy — C5) with a TV constraint
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Figure 10. The gripper mec hanism G1 — G3) with a TV 4 constraint

Regardless of the particular ¢ hoice of perimeter appro ximation, the solution procedure
for the optimization problem with a perimeter constraint is rather unstable and sensitive
to local optima. The experience is that it requires delicate parameter adjustments for each
individual problem. The solutions presented here are obtained through man y trials and
errors and it is hard to guarantee that the solutions that are presented here are true global
optima for the ¢ hosen parameters. In fact, it will be apparet that the solution Cj in
Figure 9 is only a local optim um when consulting section 7.3.2. It should be noted that the
perimeter problem appears to has been solved more successfully b y others, see for instance
[48, 49], but with a solution algorithm especially tailored for this problem. In these references,
some heuristically estimated second order information for the perimeter function is used to
stabilize the numerical procedure. Inspired b y this and the fact thatI'V, is sometimes
smooth (in comparison to T'Vy which never is), the author tried to impro ve the solution
procedure but unsuccessfully. Another disadv antage is of course that the value of (or Cf)
can in practice only be determined b y experimen ts. All this mak es it hard to give a general
description on how to solve these kinds of problems and perimeter constrained topology
optimization is not recommended in practice.

6.2 LP-constraint

The case 1 < p < oo is now considered. A n umerical treatmet of this problem in the
context of topology optimization has nev er appeared in the literature although something
similar has been suggested as an alternativ e to the perimeter constrain. In Bendsge [1] for
instance, a slightly modified problem is proved to be well-posed whenp = 2 and the same
result w as obtained by Bendsge [53 in the context of optimization of solid, elastic plates.

6.2.1 Numerics and sensitivity analysis

The assumptions and notation from section 6.1.1 are kept. The numerical appro ximation
for ||Vpl|p is denoted Dp(ph) and is chosen as

hQI;]p Ng—1 ny_1

D) =" 3 X s et ol ol 16)

i=1 j=1

[ SIS

again based on finite differences and n umerical in tegration. Referring to (15), it is in teresting
to note that Dy = T~V2 with the exception of no w not considering elemerts outside the
structural domain. ~

The sensitivit y analysis for a generalp is just as lengthy as for TV 4 and only the case
p = 2 is studied. To avoid taking the square-root into account, the sensitivities for Dy (p")?
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are considered. For an elemen t(7, j) in the interior of the structural domain it holds that

P h h h h h h
%DQ(P )? = 8pl = 2pf 1 — 2001 — 2015 — 20041

9?2 h\2
=D = 8.
ap;ﬁ Q(P )

Notew orthy is thatDP is smooth for every even p as opposed to any perimeter appro xima-
tion.

6.2.2 Numerical results

Just as for the perimeter, a term in the objective is added for numerical purposes. The
values p = 2,4, 8 are chosen and the norm in (11) is raised to these po wers to simplify the
sensitivity analysis, i.e. for each individual p the following term is added in the objective

5pr(Ph)p-

The first example is the MBB beam which is solved for p = 2 and two differert values of
¢2. The material in terpolation function is given P (5) with ¢ = 2.5 and ¢ = 6 respectively
and the solutions are shown at the top in Figure 11. The values of Dy for the two solutions
are 49.5 and 20.0 for & values of 1.8 - 1076 and 5.6 - 107°. The same problem is solved for
p = 4 and p = 8 with the corresponding solutions shown at the bottom in Figure 11. The
material in terpolation function is the same withqg = 6 and the values of Dy and Dg for the
tw o respective solutions are15.9 and 11.4 for ¢4 = 8.3- 1077 and ég = 2.2 - 10~°. From this
it is seen that the amount of gray is increasing with increasing p which suggests that these
problems can be viewed as interpolations, in some v ague sense, betw een perimeter and slope
constrained topology optimization (see section 6.3). To strengthen this, it is interesting to
estimate the constribution to |Vpl|, from a structural bar with a width of b and a length
of L. Assuming that the bar occupies the domain

Qe = {(z,y) €R?> | —L/2<z<L/2, —b/2<y<b/2}

and that p is there given by
p(z,y) =1 = 2[yl/b,
this contribution is equal to

([ Vo) =2t (17)

ar P

As is expected, for p = 1 the length of the bar is measured and for p = oo the slope of the
function p is measured. In bet ween, a com bination of both length and slope is measured in
the sense given by the form ula.

Regarding the LP-constraint for a large p, the added term in the objective is in a sense
ill-conditioned and there can be problems with convergence. For instance, the example My
with p = 8 above is solved with conservative asymptote updates in the MMA in order to
converge properly, see [37|. Considering implementation aspects and numerical stabilit y a
suitable choice of p would bep = 2. This also makes the function D? a quadratic function
which can be taken advantage of. The problems above are solved with MMA but with the
function DJ approximated as quadratic and separable in eac h iteration which appears to
somewhat stabilize the solution procedure.

The second example is the gripper mechanism with p = 2 and the same material in-
terpolation function with ¢ = 6. The problem is solv ed for three different meshes and the
three solutions are shown in Figure 12. The Dy values for these three structures are 25.0,
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Figure 11. The MBB beam (M; — M4) with an LP-constraint, p = 2,4, 8

27.7 and 28.0 for a ¢ value of 1.0 - 1073, The stability of the solution procedure is very
m uh improved compared to a perimeter constraint even when no second order information
is used. Considering the three solutions in Figure 12, one can see that any non-smoothness
of the numerical solution v anishes as the mesh is refined whih reflects the fact that the
true solution is smooth. That this effect is expected can also be seen from the numerical ap-
proximation (16) with p = 2 as a discontinuity in the design will con tribute infinitely m uch
as the mesh is infinitely refined. To obtain a smooth solution, it seems that a fine mesh
is required in the lumped compliance regions which suggests that this restriction method
should be com bined with some kind of finite elemet adaptivity scheme similar to the one in
[16, 30]. Despite all the advantages compared to using a perimeter constraint, the method
can for the design of compliant mechanisms be extra sensitiv e to local optima. In addition
to this, a main disadv antage is that there is no more straigh tforward way of determining
the parameter ¢o than through trial and error.

3533

Figure 12. The gripper mec hanism (G4 — G¢) with an L*-constraint
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6.3 Slope Constraint

As both the perimeter constraint and the LP-constraint are global constraints there is a
problem regarding the ¢ hoice ofc, or C), depending on the choice of approad. More at-
tractive from that poin t of view is to consider a poin twise constraiion the derivative of
p, a slope constraint. In structural optimization this was introduced in the optimal design
of elastic plates by Niordson [53] and a similar problem has been treated theoretically in
optimal con trol ly Hlavacek et al. [54|. Slope constraints in the context of topology opti-
mization w as introduced and treated } Petersson and Sigm und [38] although that paper
considers a bound on the partial derivatives. Existence of solutions for that case is sho wn
and the problem has also been treated later by Zhou et al. |55] which includes 3-dimensional
topology optimization.

For slope constrained topology optimization, there is a simple relationship between a
desired minimum width of the structural members bpi, and the parameter Co, namely (cf.
(17) with p = o0)

2

bmin

Coo ~ (18)

Ho wever, a bound on the slope of the densiy is from a numerical aspect not attractiv e
since it results in man y constraints, approximately? for each finite elemen t. In |38, this is
reported to be a significant drawback with the method. An algorithm for this problem that
exploits the characteristics of the constraints is dealt with in [55 | where it is reported that
the incorporation of these constraints requires almost no extra computational cost. Since
the optimization algorithm that is used in this paper is based on the assumption of a small
num ber of constraints, this problem is not treated n umerically here. F rom the discussion in
the previous section however, it is believed that results very similar to ones obtained with
a slope constraint can be obtained with an LP-constraint for a large p. It is for instance
interesting to compare the MBB beam solution for p = 8 in Figure 11 with a corresponding
solution with a slope constrain t in [38]. Since a largep in the former case could result
in numerical problems and the physical interpretation of || Vp||, is not straightforward, an
alternative would be to consider filters in topology optimization.

7 FILTERS

In image processing, a well known tec hnique to reduce high frequency componen ts in an
image is through lo w pass filtering. As metiioned earlier, a minimizing sequence of designs
to any of the problems (P). g and (P)yea contains man y high frequency componen ts which
indicates that filters in some way could be useful in the context of topology optimization. In
the literature, there have appeared at least three different suggestions on how to use filters
appropriately in order to obtain a w ell behaved solution procedure. T w o of these approhes
are based on a mathematically well-founded problem formulation while one of them is not.
Nev ertheless, that is the first w ork on filters in topology optimization and gies an indication
of the use of image processing tec hniques in this field.

7.1 Filtering the Sensitivities

A filter approach was first introduced by Sigm und [5¢ who uses it as a stabilizing measure
in the numerical procedure. The idea is to use filtered sensitivities for the objective function
in order to prevent too thin structural parts to appear in the optimal design. Since the
measures tak en are purely numerical, the expressions giv en in this section are referring to
a modification of the problems (P)" and (P)"_,. With the same notation as previously

and (;5?], i =1,...,N" j = 1,...,N" denoting the considered filter componen ts, the
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sensitivities of the objective function ¢ to either one of the considered problems are filtered
in the following w ay,

dc ;

h h

ij i (19)
8[)2 pz j=1 6pj

The filter components are for instance chosen as

dist(e;, ej)

qb?] = ¢; max(0,1 — = ),

(20)

where ¢; is a constant such that
Nh
h __
2 dy=1
7j=1

Here ¢; denotes the i:th finite elemen t andR is the filter radius that is intended to determine
the minimum width of the structural parts. In the problem (P)" . the constraint on the
compliance is filtered in exactly the same way. Although there is no theoretical justification
for this method at the moment, the numerical experience has pro ved that it is quite effective.
Moreo ver, the solutions have shown to be mesh independen, see |56], and it appears likely
that there is some problem in infinite dimension that is in some sense connected to this
algorithm. A n umerical solution of the MBB beam with this tdenique is shown in Figure 13
with R = 0.1 and ¢ = 3 in (4). Worth men tioning is that this approah has not been used
only for compliance minimization [56] and design of compliant mechanisms [23] but also for

e.g. m ulti-physics problems [57 | and eigenvalue maximization |48

Figure 13. The MBB beam (Mj5) with filtered sensitivities

Something that is noted from experimenting with this algorithm is that it is very unstable
when p, is small. The reason for this is that the filtered sensitivities in (19) can be of the order
1/pe even when the true sensitivities are quite moderate. This can be cured by changing

(19) to

~ Nh
Oc S gl Oc
YR h’
apz Zj 1P 7 Z] 1 apj

which makes the modified sensitivities con ex combinations of the true sensitivities. This also
has a remark able effect on the solutions as they become considerably more discrete alued.
The first impression is however that the boundary description ma y sometimes be rather
poor and the stability of the numerical procedure is worsened. The in verter mec hanism is
solved for R = 0.1 and ¢ = 6 in (5) with this method and the solution is shown in Figure 14.

7.2 Filtering the Design

In Bruns and T ortorelli [2§ the filter is introduced as a part of the problem formulation
very similarily to the exposition in this section. The restricted set H is the following

H={peH | p= /R2 £(y)o (-, y)dy for some & € L(R?, [p, 1))}, (21)
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Figure 14. The inverter mec hanism (I3) with filtered sensitivities

where L®(R?, [pe,1]) is the set of functions ¢ € L®(R?) that fulfil p. < ¢ < 1 almost
everywhere. The in tegral kernelg is a continuous variant of the filter that is proposed in
the previous section, namely

[z —y|

R )
Proof of existence of solutions to a very similar problem formulation is given by Bourdin
[59] where also n umerical examples are preserted that show the influence of the filter radius.
Similarily to the approac h with a finite dimensional set of admissible designs, see section
5, £ is the design variable and the density p is determined through the compact design-to-
density mapping giv en in the description of . Noticable is that this mapping assures that
the slope is uniformly bounded,

(22)

3
@(wa y) = 7T__RQ maX(Ov 1-

peR = Vol < —, (23)
TR
so the set H defined by (21) is in a sense smaller than the corresponding restricted set when
considering a slope constraint. In a similar sense, it is larger than the set H defined by (9).
V aguely speaking, one could say that this problem formmlation fills some of the gap bet ween
the slope constraint form ulation and the form ulation with a finite dimensional set of designs.
The filter radius R determines the minimum width of the structural members, cf. (18) with

Coo = 3/(7R).
7.2.1 Numerics and sensitivity analysis

For the numerical procedure, the componerts of the discretized kernel ¢" are chosen similar
to (20) where ¢; is independent of i and e; ma y denote elemen ts outsid€2. How ever, because
of the choice of filter kernel, the discretized design-to-density mapping is the summation over
the elemen ts that are within a distance of R from 2,

Mh

h h  h
pj = Zfz Jio
i=1

hence summing from 1 to M” instead of to N". The sensitivities of the in wlved functions
with respect to the design v ariable” are now obtained by combining the corresponding
sensitivities with respect to p? in section 4.3 and

ogh "
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7.2.2 Numerical results

Two numerical examples have been chosen for this filter method, the MBB beam and the
inverter mec hanism. F or the first example, the ¢ hoice of material in terpolation function is
briefly discussed. It is experienced that in terpolating with (5) could result in gra y in regions
in the structural domain where it is expected that the density should vanish, see for instance
the center of solution Mj in Figure 11. On the other hand, in terpolating with (4) could result
in gray where full densit y is expected, an effect that can be seen at the inner corners of the
solution in Figure 13. These are consequences of the ¢ hoice of material in terpolation function
and the functions in (4) and (5) are therefore com bined to form a t wo-parameter material
interpolation function according to

_ plh
fq1>lI2(10)_ 1+(q2_1)(1_p)

Two MBB beam solutions for this material iierpolation function are shown in Figure 15
where g1 = 1.5 and g9 = 1.75 for the first and ¢ = 1.5 and g2 = 3 for the second solution.
The filter radius is R = 0.05 and R = 0.1 for the two different examples respectiely and
the effects that are connected to the t wo individual material in terpolation functions, (4) and
(5), are eliminated. Worth men tioning is also that the mmerical value of the maximal slope
for each of the two solutions is almost iden tical to the corresponding theoretically obtained
estimate in (23).

Figure 15. The MBB beam (Ms — M7) with a filtered design

The inverter mec hanism is solv ed foilR = 0.05 and R = 0.1 with the solutions shown in
Figure 16. The material interpolation function is (5) with ¢ = 6. The solutions here are v ery
similar to the ones obtained with a finite dimensional set of designs in Figure 7, even the
gray density region in solution I5 is noticed. The appearance of this gra y region in this case
is the choice of a large filter radius and it is remo ved by solving the problem for a smaller
filter radius, see solution I;. From the discussion abo ve, another suggestion to remoevthe
gray in either one of the solutions Is or I5 could be to change the material in terpolation
function from (5) to (4). The obvious difference between the solutions in Figure 7 and
the ones in Figure 16 is that the structural members in the latter case are straight (and
not jagged) regardless of the orientation in space. This is of course a consequence of only
having a finitely num ber of design variables in the former case. With the exception of this
difference, the relation R = 1.5H seems to yield similar solutions for the two restriction
methods. Common with these two restriction methods is that lumped compliance regions
are explicitely excluded since the structural members are of a minimum width. This width
is determined from the size of the gaussian bells in the case of a finite dimensional set of
designs and the size of the filter radius in the case of a filtered design.
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Figure 16. The inverter mec hanism (4 — I5) with a filtered design

7.3 Regularized Penalty

The last restriction method that is considered differs slightly in approach in comparison to
the other methods. Instead of making an ill-posed problem well-posed by compactifying the
feasible set, a well-posed problem is lept well-posed by making sure that all the in volved
functions are sufficien tly regular. The starting problem is the wriable thickness sheet prob-
lem, see section 2.4, and a penalt y is added in the objective. Choosing this penaly as in (6)
would mak e the problem ill-posed, hence the follo wing penalt y function is chosen. Compose
the penalty function g : L2(R?*) — R

9(9) = [ 1= )=o)
and the filter operator S : L?(Q) — L?(R?)

S(p) = /Qp(y)qﬁ(»y)dy

where ¢ is given by (22). The con tinuiy of g and the compactness of S mak es the penalty
function P = g o S sufficien tly regular in order to keep a well-posed problem. In [6Dit is
demonstrated that an almost discrete valued optimal design can be expected for a sufficiently
high penalty coefficien t@Q) which also is illustrated in |61] where the method is extended to
3-dimensional topology optimization. Since this approach is based on starting from a well-
posed problem, the theory fails for compliant mec hanisms whic h is unfortunate.

7.3.1 Numerics and sensitivity analysis

The n umerics are v ery similar to the ones in section 7.2.1 except for some details. br
instance, the numerical calculation of S can be written

Nh
h hoih
pi = Z P Pij
=

where ¢ may denote elemen ts outside of€2. The penalt y function g is then applied to the
elemen twise constan t functionp”,

Mh
g(7") = >_mi (L= 5 (B} = pe).



376 T. Borrvall

The sensitivities of the appro ximate penalt y function with respect t” are then obtained
by combining the sensitivities of S and g
0 ~
sar =i (14 pe = 20])
opl n
ﬁ# = ¢35

7.3.2 Numerical results

The can tilever beam is ¢ hosen to illustrate the features of regularized penalty approdc The
filter radius is R = 0.1 and the solution is shown in Figure 17. The regularized penalty value
is 0.21 obtained for a @ value of 1.5 - 1072. The boundary description is v ery sharp as for
perimeter constrained topology optimization. In fact, this approach is very similar to the
perimeter approac h since for a discrete valued solution, the contribution to the regularized
penalty comes from a ribbon along the boundary of the structure. That is, the value of
the penalty function is approximately proportional to the perimeter of the structure. That
this is true is illustrated by the fact that the solution in Figure 17 is sligh tly better than
solution Cj5 in Figure 9 in the sense that both compliance and perimeter have low er values.
Hence, solution C5 in Figure 9 is a local optimum which again illustrates the difficulties with
perimeter constrained topology optimization. Although the topologies of the two solutions
are the same, a small difference in shape is present. An explanation of this could be that
for a perimeter constraint, any change in shape of the boundary will most often result in
an increase in compliance due to the penalt y factorg > 1 in the material in terpolation
function. From this poin t of view, the regularized penalt y approach allows for a more stable
optimization procedure. As mentioned above, a crucial disadvantage with this approach is
that the regularized penalty function does not have the compactness properties that the
total variation possesses. Another problem is how to choose a suitable value of the penalty
coefficien t ) for a general problem. One way of dealing with this problem is to use a
continuation approach where the parameter () is gradually increased until a discrete valued
solution is obtained, see [61].

Figure 17. The cantilever beam (Cs) with a regularized penalty

Regarding the problem of designing a compliant mec hanism, it is experienced that it is
hard to develop a general strategy to treat this problem n umerically . Based on this experience
and the fact that the problem formulation is ill-posed, such a treatmen t is omitted.

8 OTHER RESTRICTION METHODS

The study in this paper is emphasised on methods for which a well-posed optimization
problem can be posed but there are some other approaches that would have to fall in the
category of a restriction method and hence should be mentioned in this context.

In Eschenauer et al. [62] the problem is not formulated in terms of distributing material
in a fixed domain but the approac h is based on solving a sequence of shape optimization
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problems. After a shape optimization problem is solved, the topology of the structure is
changed by introducing a small hole, called a bubble. The position of this bubble is deter-
mined from the solution of a variational problem and its boundary is allo wd to change in
the subsequent shape optimization problem. The procedure is terminated according to some
suitable stopping criterion, for instance when a certain number of holes in the structure are
present.

Xie and Steven [63] take another approach where the structure should follw an evo-
lutionary path along whic h it is adapted to the environmen t it finds itself in. The goal is
to evolve tow ards a fully stressed design starting from an initial configuration by removing
material that is not effectiv ely used. T o determine the regions in the structure where mate-
rial should be remo ved betwen each iteration, the stresses in the structure are measured.
At points where the stress is low, the material is remared. This procedure is repeated un til
all stresses in the structure are within some percentage of the maximal stress.

Guedes and T aylor [64] and Rodrigueset al. [65] solves a sequence of convex optimization
problems in which the volume constraint is weighted by a unit relative cost factor. This
factor is systematically updated in order to encourage a clear material-void structure. In
these references, the optimization is o ver a subset of all material tensors, see [13 66], but a
similar approac h can be applied on the variable thickness sheet problem |67 |.

In signal and image processing, wavelets have made an impact the last 15 years. The ad-
vantage with w avelet methods in comparison to traditional fourier methods is that vwavelets
have an ability to represent discontinuities efficien tly. Kim and ¥on [68] points out that this
makes the use of w avelets in topology optimization suitable. They perform the optimization
in w avelet space and the density is determined from the (iwverse) w avelet transform. A wry
similar approach is taken by Poulsen 69| with the exception that w avelet techniques are
used mainly to suppress ¢ heckerboards. He also suggests hw to obtain a well-posed opti-
mization formulation by using only the w avelet coefficien ts corresponding to the coarsest
scales to determine the densit y, an approah that is very similar to a finite dimensional set
of designs. It is shown with aid of the Haar wavelet that the numerical examples are not
prone to numerical instabilities suc h as mesh-dependence or ¢ heckerboards.

9 DISCUSSION AND CONCLUSIONS

This paper deals with restriction methods in topology optimization of elastic continua,
a measure for obtaining well-posed problem formulations. The problems of designing for
maximum stiffness and designing compliant mechanisms in linear elasticit y are treated. A
num ber of restriction methods are discussed both from a theoretical and a minerical point of
view and v arious advantages and drawbacks are men tioned. It is indicated o some of the
different restriction methods can be ordered with respect to the size of their corresponding
set of admissible densities H. A perimeter constraint determines a large H while a finite
dimensional set of designs determines a small H. Starting from the smallest set of admissible
densities, the suggested ordering w ould be

e Finite dimensional set of designs

e Filtering the design

Slope constraint

LP-constraint

P erimeter constrain t
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From a theoretical poin t of view, this ordering corresponds to the methods abiliy of finding
a reasonable optimal structure. F or a smallH this structure is in general characterized
by a blurry boundary description and perhaps ev en jagged structural menbers. On the
other hand, for a large H the optimal structure can ha e a very sharp and nice boundary
description as with for instance a perimeter constraint. If the set of densities is too large,
there ma y be theoretical problems as it ma lack compactness properties that are required
for well-posedness. This happens if no (or w eak) compactifying constrain ts are imposed,
see section 7.3. From a n umerical poin t of view, there are adv antages with a smal since
this in general yield a faster and more stable optimization procedure, see appendix B. This
knowledge should be a considerable help when choosing an appropriate restriction method
in topology optimization. The first tw o restriction methods, finite dimensional set of designs
and filtering the design, are considered most attractiv e as they are non-sensitive to local
optima and yield easily in terpretable results.

The numerical examples are solved with a strict termination criterion and the material
interpolation function is in most cases ¢ hosen as (5) withg = 6. The reason for the latter is
that the other penalty schemes in section 2.3 result in problems that appear more sensitive
to local optima and ¢ = 6 is in general an appropriate value of the penalty parameter. When
a fine topology is desired the penalty can be weakened, see solutions Cy, My and Mg, and
in such a case a strict convergence criterion is necessary since otherwise the optimization
procedure terminates too early .

A fundamental issue that has been postponed up to now is how to interpret a numerical
result. Let an optimal densit y to a problem be denotedp*. The interpretation is straightfor-
w ard when the solution is discrete v alued but my be ambiguous when there are regions of
intermediate density values in the structural domain. One obvious choice would be to post-
process the result by for instance choosing a cut-off density p. and determining a discrete
valued solution p* through

7 () :{ pe if p*(x) < pc

1 otherwise

where p. is chosen so that

/Q(p* —p)=0.

There is no guarantee how ever, that the solution p* is good even when p* in some sense is.
Nev ertheless, for any the restriction methods in this paper there is reason to beliew that
such an operation will only sligh tly change the structural behaviour since the intermediate
density values are most often represen ting transition zones betwen full density and void. If
it for some reason is important not to change the optimal densit yp*, it would have to be
interpreted as the density of an isotropic material with an effective stiffness represented by
the tensor E4(p*). This can only be possible if the material interpolation function is chosen so
that the Hashin-Sh trikman bounds |70 | are not violated. & the tw o material in terpolation
functions (4) and (5), this means that the parameter ¢ has to be chosen sufficien tly large,
see |29, 32|. The intention with the restriction methods in this paper is how ever to interpret
a solution as a suggestion for a solid-void structure and hence the former approad is to
prefer. In table 1 in appendix A, the t wo structural related functions are evaluated fop*,
fq(p*) as well as for p* for the purpose of comparing the three v alues. The value that is
obtained for fq(p*) differs in general m uch from the other t wo, a difference that is closely
connected to the amount of gray in the solution p*, see table 1. Even though the walues for
p* and p* are different, they are in general close enough to conclude that restriction can
advantagously be used for designing stiff structures as w ell as compliah mechanisms.
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A COMPUTA TIONALIATA

This appendix presents a Table containing the computational data for the n umerical exam-
ples in this paper. The en tries in the table are the following. The names of the mmerical
examples are giv en in the column “Ex.” and corresponds to idemical names in the figure
texts throughout the paper. F or each example, half of the structural domain is discretized
into a mesh of “Mesh” finite elements. The optimal structure has a compliance of “Compl.”
and exerts a force of “Force” onto a workpiece. Eah of these entries contains the following
three values. The first corresponds to the structure that can be represen ted by the optimal
density p*, the second value is for the structure represented by f;(p*), i.e. the “true” optimal
structure, and the third value is for a post-processed structure p* obtained as in section 9.
The amount of intermediate density values is given in the column “Pen.” by

P(p*)
100—2
Pmax ’

where P is given by (6). Ppax is the maximum possible v alue of this penalty function whic h
is attained for a completely gra y density,p = min(0.5(1 + pc), V/|Q|). The last column,
“Iter.”, gives the num ber of optimization iterations required to reac h the optimal solution
starting from a constan t density,p = V/|Q|. A limit of maximum 10000 iterations is used.

Ex. Mesh | Compl. (x1072) Force | Pen. (%) | Iter.
Cr [ 10x32| 3.62/4.90/3.07 o 3T1 | 92
Oy | 20x 64| 3.56/4.84/3.74 Sy 305 [ 225
Cs | 60 x 192 3.57/4.86/3.72 -/ = /- 30.5 292
Oy [60x 192 | 3.54/357/3.57 iy gy 17 [ 1503
Cs |60 x 192 | 3.66/3.66/3.67 gy 0.0 | 10000
Co |60 192 | 3.57/3.57/3.62 i 35 1989
M; | 60 x 180 8.52/8.72/8.67 -/ = /- 7.4 | 10000
M, [ 60 x 180 | 8.93/9.99/9.16 mmy gy 74| 4571
M, | 60 x 180 | 8.81/10.68/9.21 Sy 271 | 4963
M, | 60 x 180 | 8.67/11.77/9.30 -/ —=/- 39.6 | 4675
Ms | 60 x 180 | 8.90/10.22/9.12 -/ = /- 21.8 566
Mg | 60 x 180 8.54/9.26/8.72 —/—=/- 21.5 | 3283
N [ 60 x 180 | 9.00/10.91/9.16 Sy 56.7 | 1812
I | 60 x 120 | 5.91/10.00/6.73 | 1.31/1.52/1.48 24.5 1100
Iy | 60 x 120 | 3.95/10.00/5.39 | 0.80/0.96/1.09 46.2 310
I3 | 60 x 120 | 9.75/10.00/9.88 | 2.02/2.04/2.03 1.6 1422
I, | 60120 | 6.73/10.00/7.31 | 1.51/1.71/1.65 20.5 | 4090
I5 | 60 x 120 | 4.70/10.00/5.56 | 1.01/1.15/1.22 40.0 | 2518
G | 30 %60 | 9.58/10.00/17.73 | 1.81/1.83/1.77 50| 873
T, [ 60 x 120 | 9.94/10.00/10.04 | 1.90/1.90/1.90 04 1253
T [ 90 < 180 | 9.88/10.00/10.01 | 1.91/1.92/1.92 08 [ 2078
Gy | 30% 60| 7.34/10.00/8.24 | 1.50/1.51/1.51 284 300
G5 | 60 x 120 7.37/10.00/7.95 | 1.52/1.58/1.55 23.2 1342
Ge | 90 x 180 | 7.26/10.00/7.80 | 1.50/1.60/1.56 21.6 | 3154

Table 1. Computational data for the n umerical examples
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B COMPARISON OF THREE RESTRICTION METHODS

This appendix is dev oted to a comparison of three t ypes of restriction methods for compli-
ance minimization. The three types are finite dimensional set of designs (gaussian bells),
a filter method (filtering the design) and a bound on the design gradient (L2-constraint).
The comparison is from a more practical point of view as the optimization procedure for
each of the examples in this appendix is terminated when the relative difference betw een
tw o successive objective functions is less than1075. This convergence criterion is less strict
than the one for the examples in the paper and is more suitable for demonstrating the
convergence properties of the methods. The cantilever beam and the MBB beam are solved
with both (4) and (5) as the material interpolation function and the involved parameters
are chosen so that similar solutions for the differen t methods are obtained. The nmber of
optimization iterations is reduced and in general, a smaller feasible set of densities yields a
smaller n win ber of optimization iterations. F or compliamechanism design, this weak cri-
terion in general results in a too early termination. It is also seen in the Figures 18-21 how a
larger set of densities allows for smooth optimal solutions with less amount of intermediate
density values.

20 20 20

Figure 18. The cantilever beam with material in terpolation function (5)g = 6.
The parameters H = 1/15, R = 0.1 and é& = 5.0 - 10~* are used and
the number of optimization iterations are 65,61 and 181 respectively

20 20 20

Figure 19. The cantilever beam with material in terpolation function (4)g = 3.
The parameters H = 1/10, R = 0.15 and ¢, = 7.5 - 10~ are used and
the number of optimization iterations are 55,543 and 641 respectiv ely
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Figure 20. The MBB beam with material interpolation function (5), ¢ = 6. The
parameters H = 1/15, R = 0.1 and & = 5.6 - 1075 are used and the
num ber of optimization iterations are 119,475 and 539 respectiv ely

Figure 21. The MBB beam with material interpolation function (4), ¢ = 3. The
parameters H = 1/10, R = 0.15 and & = 8.3 - 107° are used and the
num ber of optimization iterations are 115,311 and 388 respectiv ely



