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1. — Introduection.

In a previous paper (1), to which we shall hereafter refer as (A), we have
developed a causal inteérpretation of the Pauli equation, in terms of the model
of a fluid composed of spinning bodies, in which the spin angular momentum
of each body is directed along its first principal axis (i.e., its axis of symmetry).
Thé object of the present paper is two-fold, first, to genei"a-lize the above model
to show how the Pauli equation results as a special case of a theory in which
the angular momentum may point in an arbitrary direction, and secondly,
to illustrate our model of the Pauli theory in terms of the simple example
of a stationary state of an electron in an atom, and to apply this example
in'the theory of meastrements.

In Secs. 2 and 8 we shall develop our more general model and show that
in terms of it, the Pauli equation follows as a consistent subsidiary condition.
In other words, if the angular momentum points along the first principal axis
at any instant, say ¢ = 0, then the torques‘ will be such that this condition
will be maintained for all time. Moreover, small deviations from this con-
dition lead to a rapid oscillation of the motion about a mean,in which the

(Y) D. Borum, R. ScHILLER and R. TiomNo: Nuovo Cimento, 1, 48. (1955).
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condition is satisfied. Physically, such an oscillatory motion corresponds to
a precession of the angular momentum aboyt the direction of the axis of
symmetry, in which the component of the angular momentum perpendicular
to this axis averages out to zero. Thus, even in'the case of a general orientation
of the angular momentum vector, the Pauli equation would still be a good
approximation for processes that are slow compared with the rate of pre-
cession described above, while for more rapid processes, it would cease to be
a good approximation. Instead, a more general equation (which will be seen
to be non-linear) would have to be used. Thus, we are led to a specific example
in which the causal interpretation of the quantum theory implies new kinds
of equations in connection with high frequencies (and therefore high energies),
equations which would reduce approximately to those of the usual quantum
theory only at those relatively low energies for which the usual theory is
known to be valid.

In Seec. 4, we then illustrate our model of the Pauli equation in terms of
a stationary state of an electron in an atom. This illustration serves not only
to bring out important topological properties of a field of body orientations,
such as is implied by our model, but it also shows how a continuous distri-
bution of spin angular momentum throughout the fluid can lead to discrete
or ¢ quantized » possible values for the angular momentum of the fluid as a
whole. Quantization of angular momentum (and of other variables) is there-
fore seen to arise as an over-all property of the fluid, on the basis of a lower
level of continuous motion, much as discrete frequencies of stationary modes
of vibration arise in connection with the motions of continuous fields in
classical mechanics.

In Sec. 5, we indicate how the process of measurement is to be treated in
terms of our model. What is observed in a measurement of the angular mo-
mentum « observable » will be seen to be just one of the discrete possible
stationary values for the total angular momentum of the system, and not the
continuously distributed angular momenta existing in the various parts of
the fluid.

Finally, in Sec. 8, we summarize the esgsential features of the model, and
suggest possible further directions of research.

2. — Treatment of Arbitrary Direetion of Spin Motion for a Fixed Rigid Body.

Our first step will be to extend to the case of arbitrary spin motions the
hamiltonian formalism in terms of spinor variables developed in paper (A).

To do this, we begin with the case of a rigid body at rest. In the next
section, we shall then extend the theory to the more general case of a field
of rigid spinning bodies with translational motions.
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The lagrangian of a rigid body with no translational motion is just the
kinetic energy due to its spin, which is ()

(1) 7 L = %Zlikwiwk 5
ik
where the «; represent the components of the angular velocity, and I,, ik

the tensor for the moment of inertia of the body. The components of the
angular momentum are then given by

(2) 8§ = Z 1oy
3
80 that

The next problem is to express the w, in terms of spinors. Now, the
relationship between the w, and the Euler angles is (%)
w,=pcosl+ ¢,
(4) w, == sin 0 siny + 6 cos p,
w, = Psinfcosy—Osiny.

[
Be

We now return to our spinor § = ( ), defined in paper (A), eq. (7). We have

o esn [0y 1 s D)
B, = iexp Uy — (P)l( (p — (p)sing—}—gcos—g).

Now let us consider the quantity

ﬁ*aﬂ /3*02/3-— ) (cos26 (p + ¢)—sin? = 0 (1/; q))) = i( cos0 + @) .

Hence we obtain

= i(B*c.p— p*a.p) .

(?) In the present paper, we leave out the electromagnetic field, which makes no
essential change in the formulation of the theory.
(®) H. GoLDSTEIN: Olassical Mechanics (Cambridge Mass., 1950). See Chap. 4.
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And more generally, because of rotational symmetry
(5) w = i(f*ef— f*af) .

The kinetic energy then takes the form

(6) ‘ L=T= (B*c-s)f— f*c s)f) .

| o

We now define the momenta canonically conjugate to the components of
the spinors f and f*, which are

L)

, o
W B

B P

¥ —
1

(7) D1

We also define the spinors

P Py
8- — *
(&) i (pz)’ i (p;")’

so that formally speaking

(8-b) w:%, n*:—;’i.
We then obtain from (6)

(9-a) n =—i(o-s)p*,

(9-b) n* = i(e-s)f.

Note that in eq. (6), s is a function of /5’ given by eqs. (2) and (5). As can
easilly be verified, however, this dependence merely leads to a multiplication
by a factor of two of the result that would be obtained if s were not a

function of f. :
We readilly see that under rotations, & transforms contragrediently to f.
To prove this, we form the quantity nf. From eq. (9-a), we obtain

af = — i(*(c-s)f) ,

which is evidently a scalar, so that s must transform in the same way as ¥,
or in other words, contragrediently to f,
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To solve for s,, we multiply (9-a) by fo;, and (9-b) by f*c;. We obtain

(10) s = 5 (w0 —a*op¥).

We shall now find it convenient to obtain the expressions for the projections
of the angular momentum vector on the principal axes of the body. It isevident
that each of these projections is a scalar with regard to rotations of the space
axes, since by definition, these components will not depend on which space
axes we choose for the expression of s. We can therefore evaluate the com-
ponents of the angular momentum along the body axes by choosing our space-
axes to agree with the body axes. In this case, according to paper (A), eq. (7),

we have = (1

0>, and for the components of the angular momenta, we get

(m—al) e m) A

11- T, =1
(11-a) 1=1 B) ’ B

We also introduce for convenience, the quantity, 7,, which as we shall
see presently is zero in our problem,

_my oo
= 2 )

(11-b) T,

We wish now to express the 7', in terms of the spinor quantities, taken
in an arbitrary frame of reference. To do this, we seek a set of scalar functions
of the spinors = and § which reduce to the 7', when we chose the space frame.
to be the same as the body frame. 1

Let us first consider the scalar #f. In the frame in which f = ( O)’ this

reduces to
af = m = Ty— iTy,
8o that
kA%
(12-a) T, — 2%@ ,
*Q%
(12-b) 7, = BT

2

Now from eq. (9-b), we see (since s is real) that T, = 0. This relationship
is a subsidiary condition whose meaning can be seen by writing § and 7z in
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extended form
g = (bl + ibz) o (pl - ipz)
by +ib,)’ Ps—ips)’
where p; is canonically conjugate to b,. We then get
(1)3 7f + w*p* = bipy 4 baps + bsps + bup, .

If we consider the space of the Cayley-Klein parameters introduced in
paper (A), eq. (8-b), we see that from the relation b-b5--b;-+-b2=1, it follows
that we must remain on a unit hyper-sphere in this four dimensional space.
Now eq. (13) then expresses the fact that the «radial momentum » in this
hyper-space is zero. Such a result is to be expected, since the kinetic energy
is a function only of the angular velocities, which do not involve the «radial »
component of the velocity in the C.K. space, so that the corresponding mo-
mentum must be zero.

From (11-a) and (11-b), we readilly obtain for the total spin

(14) 82 =T = (w*n)*— T° = (7*n)? (since T, = 0).

‘We now wish to obtain expressions corresponding to (12-a) and (12-b) for
T, and T;. To do this, we first consider the spinor

(5

The spinor 5 has the same transformation properties under rotation as
does § itself, as can be readilly verified by direct computation with the trans-
formation matrix exp [¢(R-6)/2]. Indeed, we have § = ig,f*, which' is just
the non-relativistic form of the so-called charge conjugate spinor (*) which,
a8 is well-known, has the same transformation properties as the spinor f itself.

We now consider the invariant 5. If we evaluate this in a frame in which

~ 0 .
the space and body axes are the same, so that f = ( 1), then we obtain
(using eq. (11-a)) |

(16-a) af = ;= Ty— iT,,

(4) W. PauLi: Rev. Mod. Phys., 18, 203 (1941).
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or

(16-b) T, — w . T, = @@*ﬁ
2 2

It is readilly verified by direct computation that (T, 7,, Ts) satisfy the
characteristic P.B. relationships of angular momenta, (7., T,) = T,, etec..
One also readily verifies that the P.B. of any component of 7, with any com-
ponent of S are zero, as they have to be, since S is the generator of the infini--
tesimal rotation of the space axes and since the T, are scalars with respect
to such rotations.

We shall now go to the hamiltonian formalism. The hamiltonian is

a7 H=Ysw0—L=3"" =L

i

We must now eliminate the o, from the hamiltonian. This is most con-
veniently done by expressing the angular momentum in terms of its projection
T; on the principal axes of the body. This gives

Tl T TZ
(18) +ﬁ +

where I,, I,, I;, are the moments of inertia relative to the principal axes.
For the case of a symmetrical top, which interests us here, I, = I,—= I. Let
us write I, = I/e. Hq. (18) then becomes

l(T2 (e—1)T%) .

1
(19) He 55 (sTi+ 15+ 1) = o

21

To obtain the equations of motion for S, we note that the P.B.’s of S with
the T'; are zero. Thus the components of the angular momentum, taken with
respect to axes fixed in space, are constants of the motion. As for the 7',
we note that 7', is also a constant of the motion. For T, and T, we readilly
obtain the equation of motion

(20) % (T iTs) = i (8;1)

T\(Ty—iTy) .

Thus, the component of the angular momentum normal to the first prine-
ipal axis rotates with angular velocity, w = ((¢— 1)/I)T,. This means that
the first principal axis rotates around the direction of the vector, s, with the
angular velocity w. Thus, on the average the first principal axis points in
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the direction of s; and insofar as phenomena that do not change much in the
time 7= 1/w are concerned, the body acts as if its angular momentum were
parallel to this principal axis.

We note that when &< 1 (disc-shaped object), the energy is a minimum
(for a given total angular momentum |7|) when Tf:Tz; i.e.,, when the
principal axis points along the direction of s. Thus, for this case, the motion
in which the principal axis is parallel to s will be stable. If &> 1, (cigar-
shaped object), such motion becomes unstable.

Finally, we shall express in terms of spinors the condition that the motion
reduces to the type implied by the Pauli equation, in which the spin points
along the principal axis. If this condition is satisfied, we have T, = T; = 0;
or nﬁ: 0. This leads to

7715;‘ :752/3;x< ;o or 7;1/3-;2:/3’11‘//5’;‘7

so that
(21) 7w = ik?p*,

where k is a constant, and where we have chosen the factor of ¢ to simplify
subsequent expressions. But in order that T, = (nf-+n*f*)/2 = 0, k* must,
be a real number. If this is the case, however, then we see that i5* is canon-
ically conjugate to f, which iz what is essentially the same relation as
paper (A) eq. (14), which holds in the Pauli theory. To demonstrate in more
detail the relationship between z, §, and the Pauli spinor, we make the fol-
lowing canonical transformation to thé spinors 4 and B

[ A= (kf + in*/k)1/VZ,

(22) -
| B= (kf— in*[k)1/V/2 .

From the above, we readilly prove the Poisson-bracket relations

(@3) [4,B] =[4* B¥|=0; [A* A]=[B%B]=i.

To satisty eq. (21), we choose B = 0. Then the spinor A* has the same
P.B.’s with 4 as does the Pauli spinor (see paper (A), eq. (14)). Moreover,
we also have A = kf, so that j is proportional to the Panli spinor. To express
the angular momentum, we eliminate = and § from eq. (10), obtaining

(24) s = k(4%cd) .
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Thus, the theory is able to treat an arbitrary value of the spin angular mo-
mentum. To obtain the same value as in the Pauli theory we must set k=#/2.
In this way, we complete our demonstration showing how the canonical for-
malism for an arbitrafy direction of spin reduces to that of the Pauli theory
when the spin points along the principal axis.

3. - Extension to Rigid Bodies with Translational Motion.

In the previous section, we developed a hamiltonian formalism that permits
a treatment in terms of spinors of arbitrary motions of a rigid body fixed in
space. We shall now extend this formalism to permit the treatment of a field
of such rigid bodies, undergoing translation through space.

To do this, we shall first write the kinetic energy of translation of the
bodies in terms of Clebsch parameters as we did in the case of the Pauli theory.
Now, in the Pauli theory, we found that one rather naturally obtained the
expression given in paper (A), eq. (25) for the velocity, v = #/2(Vy-cos 0 V),
which involved only the pair of Clebsch parameters, cos 8 and ¢/2, along with
the velocity potential, /2. It is possible, however, to introduce as many
additional pairs of Clebsch parameters as we please in the definition of the
velocity. Thus we may write

Now, it is true that the most general velocity field can in principle always
be expressed without these additional pairs of Clebsch parameters. Neverthe-
less, the physical conditions of the problem may often make it convenient to
introduce such additional pairs. Indeed, as we shall see presently, the treatment
of the problem of the motion of a body with a general orientation of its angular
momentum relative to its principal axes is an example of just such a problem.

In terms of the expression (25) for the velocity, the kinetic energy of trans-
lation of the bodies then becomes

26 T = ~Q_ 3 2 .
(26) o (VA+ 2 £, Vy.)2dx
Now, introducing the P.B. relations

27) [o(x), Mx")] = [(e(x)é,(x)), nu(x")] = S(x— )
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with all other P.B.’s zero, we get for the equations of motion

0 .
(28-a) a“: + div (ov) = 0,
al 771 P2 .
(28-b) _8?——;&(” v),"n +%—07
dé; _ dn, _

Eq. (28-a) expresses just the conservation of bodies, while (28-b) is an
extengion of the Hamilton-Jacobi equation. Eq. (28-¢) expresses the constancy
of the Clebsch parameters as we follow a moving body. It is this property
of the Clebsch parameters that is most interesting to us here; for eq. (28-c)
means that the & and the 7, may represent internal properties of bodies (such
ag angle or spin variables). While these variables remain constant in eq. (28-¢),
it we add terms to the hamiltonian involving the &, and the #,, then the
equation that takes the place of (28-¢) will tell how these properties change
as we follow the moving body.

The Clebsch parameters therefore provide a natural canonical treatment
of the motions of a field of parameters that represent internal properties of
moving bodies.

Now, in the Pauli theory, the current vector was expressed as

J=0Vi+ (08 Vp.
with

£ = cos /2, n=—q/2, A=—wp/2.

Let us recall that %p was canonically conjugate to — p/2, fipé to —g¢/2.
Thus writing fig/2 = J, fig cos0/2=J , we have (remembering that J, is
density of the component of the angular momentum in the direction of the
prineipal axis, and J, the density of the Z component of the angular mo-
mentum)

j=J,Vy+J, V.

But now we are going to give up the restriction that Sis directed along the
principal axis. To complete the description of the angular momentum, we
shall introduce, J ,, the momentum canonically conjugate to the Euler angle, 0.
This is equal to the density of angular momentum about an axis perpendicular
to the plane containing the Z axis and the principal axis (1) of the body.
In order that the P.B.’s of the kinetic energy of translation with J, and ¢
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shall give dJ ,/d¢ and d0/df respectively, it is clearly necessary, however, that
J shall be the same functions of J, and 8 as it is of J,, and ¢, and of J,, and y.
This, we write

Ji=J, V9 +J, Vg +J,V0 .

Now, in order to obtain a simple model that approaches the Pauli case,
we set the density of bodies equal to 2J /fi, which is proportional to the
density of the component of the angular momentum along the first principal
axis. This implies that all bodies have the same value of this component of
the angular momentum. We shall see presently that this assumption is con-
sistent with the equations of motion that we are going to adopt. We then get
(1) v = g =§ (V) +J—;w+ f—’j—ve.

The next step is to add the kinetic energy of spin to the hamiltonian.
To do this, we introduce the quantities @, = ¢1';, which are the densities
of the components of the angular momenta taken along the principal axes.
From the results of the previous section, this is

I \
(28) H = f g (@ (=100 8

{note that by definition, ¢, =J,).

Finally, we must add an appropriate generalization of the qguantum
mechanical part of the energy (« quantum potential » plus spin potential),
which, for the Pauli case is expressed in paper (A), eq. (35-b). We write for
the term

#? 08,\2
29) H,= - Lzy (awj) dx .
The complete hamiltonian is then
(30) H=H, 6 +H +H,.

Let us now obtain some of the equations of motion. First of all, since @,
has zero P.B.’s with §;, we get for @, =J,,

o6

(31) rr

+ div (@, v)=0.

6 — Supplemento al Nuovo Cimento.
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This is just a conservation equation, for the component of the angular
momentum along the first principal axis. Since the density of bodies, g,
satisfies the same equation, we see that if we choose 7fig/2 = @, at any
instant, say ¢=0, they will remain equal for all time. But #o/2 = @,
implies that all of the bodies have the same value of the component of the
angular momentum along the principal axis. Since this component is a constant
of the motion, the condition that it has the same value for all the bodies will
evidently likewise be maintained for all time, if it is. satisfied at any time.

As for @, and Q,, we get

52) a [Qré@] (e— 1 Qs— i,
d? 0 Iy 0

Thus, as in the case of the freely rotating body, the component of the
angular momentum perpendicular to the first principal axis rotates with ang-
ular velocity o = ((s — 1)@,)/Ip. We may evidently then adopt Q,—@;=10
as a congistent subsidiary condition, so that if the body is set with S ori-
ginally in the direction of its first principal axis, then the torques will be such
that this condition is maintained for all time. Moreover, if the principal axis
is nearly in the direction of the angular momentum, then ¢, and @, will rotate
with angular velocity, w,so that for phenomena involving characteristic times z,
which are much less than 1/w, the body will act as if S were parallel to the
first principal axis.

Since @, — @, — 0 is a consistent subsidiary condition, we may obtain
the equations of motion of the remainder of the variables by Setting Qs— =0
in the hamiltonian. The parts, H,+H,, then reduce to the Pauli hamiltonian
(see paper (A) eqs. (31) and (35)). The term, H, becomes

H, /801 ﬁg}gdx

where we have written @, = #ip/2. This part of the hamiltonian will have

the same effect as adding to the Hamilton-Jacoby equation (paper (A), eq.

(34-b)) a «rest mass» term such as would be obtained by deduecing the Pauli

equation as the non-relativistic limit of the Dirac equation. To bring out

this property of H; more directly, we may make the canonical transformation

to the Pauli spinor, 4, given in eq. (22), which yields the «rest mass» term,
fite

(33) H="_

&
o |(A*4)dx

We conclude then that if the subsidiary coundition, ¢, = @; = 0 is satis-:
fied, our set of equations representing the motion of a field of spinning bodies
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will reduce essentially to the Pauli equation, which is a linear equation for
a spinor, ¥. Moreover, even if the spin does not point along the principal
axis, the components @, and ¢, will in general turn with some angular ve-
locity, w, so that for processes involving characteristic times, 7 »1/w, the
Pauli equation will still serve as an adequate approximation, since the effects
of the components @, and @, will average out to zero in such processes. But
in processes so rapid that z ~ 1/, the Pauli equation would in such cases
cease to be a good approximation, and one would have to go back to our
basically non-linear set of equations for the various spin and angle variables.
Of course, in the present theory, there is nothing to determine the value of w.
We may, however, consistently suppose that 1/w is of the order of the times
involved in the high energy processes connected with the « creation », « des-
truction » and « transformation » of so-called «elementary » particles. In this
case, the linear Pauli equation would be a good approximation for atomic
processes, but would break down completely with regard to the high energy
processes described above. Of course, to treat such processes correctly, we
should need a relativistic theory, and this will require a causal interpretation
of the Dirac equation. But we can already see that the generalization of the
Pauli equation adopted here leads in a natural way to a breakdown in con-
nection with high energy processes of the hypothesis of linear superposition,
which is one of the basic postulates underlying the present form of the quantum
theory. When this postulate fails, then the usual interpretation of the quantum
theory cannot consistently be applied. This is an example of how a causal
i‘nterpreta‘tion of the quantum theory permits the consideration of new kinds
of theories, not permitted if one restricts oneself to the theories that are con-
sistent with the usual interpretation.

Finally, we note that in the present theory, the basic meaning of 7% is
that %/2 is the angular momentum per body in the fluid. Thus, in the theory
proposed here, the statement that % is a universal constant of nature implies
that all bodies have the same spin angular momentum. This requirement is, as
we have seen, a subsidiary condition that is consistent with the equations of
motion that we have adopted. Of course, we have not yet explained why
the subsidiary condition should be universally satisfied but this may perhaps
be done later in connection with more extensive theories, such as, for example,
those concerned with a causal interpretation of the Dirac equation and second
quantization.

4, — An Illustration in Terms of Orbits in a Hydrogen Afom.

We shall now illustrate the causal interpretation of the Pauli. equation
in terms of the example of an electron in a hydrogen atom. This illustration
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will also permit us to draw some interesting conclusions concerning the meaning
of the quantization conditions in the hydrodynamic model with spin.

We begin by considering a stationary state, in which the spinor wave
function «, is given by

(34) o = R(x) exp [— iBt/h] (gz Ei;) =

cos 0/2 exp [ip/2]
= R(x) exp [ip(x, 1)/2] ( )

i sin 0/2 exp [— igp/2]
where R(x) :\/[a1]2+|a2[2' is the normalized spinor of eq. (7) and

2Kt .
(35) plo ) =— 2 F (), with  yo(e) =[x, 0]

(Note that here y(x, t) refers to the Euler angles of the body which is a function
of position, while « is.the wave-function spinor).

We see then that in a stationary state the orientation angles 6 and ¢ are
in general funetions of position, but are constants in time. However, the
angle y of rotation about the first principal axis increases linearly with the time,
when evaluated at a given position, x.

If, however, we look at a particular moving body, then it will follow some
orbit in space, in which the various Euler angles and spin directions may
change with time. But the motion must be periodic, in the sense that after
the body returns to its original position in space, the Euler angles 6 and ¢
must return to their original values (plus perhaps some multiple of 2z for
the Euler angle @) while » must have changed by — 2EAt/f (plus a suitable
multiple of 27). If these conditions were not satisfied, then we could not have
a stationary state in which the only change with time of the state of the fluid
at a given point is at most & rotation of each body around its axis of symmetry.

To show how this wave function leads to quantlzauon of angular momentum,

we shall now evaluate the action integral, I'= 66 pdx, where p is the mo-

mentum of the motion of the center of mass of the body in its periodic orbit.
Expressing p with the aid of paper (A) eq. (23), we obtain

prdx = Z(Vgu + cos 0 Vp)-dx

Now dx represents the change of x as we follow the moving body in its orbit.
Let us then introduce the differential, dx, which represents the change of x
at a fixed instant of time. Now, from eq. (35), we have Vy = Vy,(x). Since
neither 6, ¢ nor y, are functions of ¢, we can then replace dx in the action
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integral by dx, obtaining

(36-a) pdx = g (Vy + cos 6 Vg)- 6x = g (1, + cos 6 dp)

and

(36-b) (ﬁ prde= g gﬁ (6w + cos 6 dg) ,

where on the right hand side of (36-b), the integration is carried out around
a circuit in space taken at a particular time, but the same circuit as is made
by the actual orbit of the body.

We must now find out how y, and ¢ change as we go a around the circuit.
Obviously we must have Ay, = 2n,7 and Ap = 2n,7 where n, and n, are
integers, in general different from each other. But now we shall show that
n, and n, must satisfy the further conditions that n,+n, and n, — n, shall
be even numbers. ‘

To prove this, we must first briefly review some of the topological properties
of the rotation group (**). Consider, for example, a series of infinitesimal
space displacements in our field of body orientations, which add up te give
some finite displacement. Such a series of space displacements will lead to
a corresponding series of infinitesimal rotations, which add up to give the
total rotation needed to bring the body from the orientation that it had at
the beginning of the series to the one that it has at the end. ‘Now, if the
series takes the form of a closed circuit, it is evidently necessary that the body
finally return to its original orientation, so that, as we have already pointed
out, an integral number of rotations of 2z must have taken place along the
cireuit. But now, let us suppose that we make the circuit smaller and smaller,
permitting it to shrink continuously down to a certain point. The total ro-
tation that takes place as we follow the circuit must then decrease continuously
to zero. Otherwise, we should have a finite rotation connected with an infi-
nitesimal displacement in space, and this would not be consistent with the
requirement that the field of body orientations be continuous.

In the mathematical expression of the above requirement of continuity
in the field of body orientations, the Buler angles do not provide a convenient
parametrization, because when 8 = 0, singularities can appear in the para-

(°) H. WEYL: Theory of Groups and Quantum Mechanics (New York, 1928). See
p- 180.

(®) F. D. Mur~NacuAM: The Theory of Group Representations (Baltimore, 1938).
See p. 318.
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metrization that do not correspond to any real physical singularity in the
field of orientations. Indeed, when 6 = 0, the only quantity defined by the
actual rotation of the body is the sum of the angles, ¢y, while the difference,
@ — vy is completely arbitrary. Thus, if we deform our circuit past a point
where 6 = 0, it is possible for ¢ and y separately to undergo large changes,
even when the actual rotation (and therefore along with it the sum, ¢4-y)
changes only by infinitesimal amounts. Hence continuous changes in the
orientations of the bodies need not always be reflected as continuous changes
in the Euler angles; and for this reason, there is no guarantee that as we shrink
a cireuit in a field of rotations down to a point, the corresponding circuit in
the space of the Fuler angles will also shrink down to a point. As a resulf,
the expression of the requirement that the field of body orientations be every-
where continuous would be rather complicated if done in terms of Fuler angles.

To avoid the kind of difficulty described above, we may parametrize the
rotation group, not in terms of Fuler angles, but rather, in terms of the Cayley-
Klein parameters, which are (according to paper (A), eq. (8-b)):

by= cos 8/2 cos (v + ¢)/2, by = cos 0/2 sin (y 4 ¢)/2 ,
by = sin 0/2 sin (v — ¢)/2, b, = sin 6/2 cos (v — @)/2 .

For the Cayley-Klein parameters have the advantage that they provide
everywhere a locally unique and continuous representation of the rotation
group, in the sense that an infinitesimal rotation always implies a corresponding
infinitesimal change in these parameters. To demonstrate this property of
the representation, we note that the unit spinor (which is in a one-to-one
correspondence with the Cayley-Klein parameters) transforms under the infi-
nitesimal rotation, @ dt, as 48 = i(dt/2)(w-e)5. Thus, an infinitesimal ro-
tation must always produce a corresponding infinitesimal change in f§ (and
therefore in the C.K. parameters).

Tt must be remembered, however, that the unique character of the C.K.
parameter representation applies only to small rotations. Indeed, with regard
to the properties of the rotation group «in the large », this representation is
two-valued. For corresponding to any. given rotation, there always exist fwo
sets of the b;, one of which is the negative of the other. But even the two-valued
character of the C.K. parameters in the large is significant; for it provides
a mathematical description of the fact that the rotation-group is dowbly-
conmected, a fact that is, as we shall see presently, very important in the de-
termination of the changes of angle that are permissible in going around 2
cireuit.

To see the meaning of the two-valued character of the representation of
the rotation group in terms of the C.K. parameters (and therefore in terms
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of the spinors), let us consider a circuit in space that leads to a continuous
series of infinitesimal rotations of the body orientations. There is of course
an ambiguity in the point in the C.K. space at which we must start, because,
corresponding to the initial orientation of the body, there are two possible
sets of values of the C.K. parameters. But after we have chosen one of these
sets, then the path in C.K. space that corresponds to our series of rotations
is determined uniquely because of the locally continuous character of the
representation of the retation group in terms of the C.K. parameters. Let us
now consider a circuit leading to a rotation of 27 about some axis. It is clear
from the definition of the b; that such a rotation carries us from a given set,
(bi, by, bs, by) of C.K. parameters to the corresponding set (— b, — by, — b;,
— b,). Thus, even though the body has come back to its original orientation,
the C.K. parameters have not come back to their original values. Indeed,
geometrically speaking, this rotation carries us only half way around the hyper-
spherical surface on which we must remain in the four dimensional space of
the b,. As in the case of a great circle on a sphere in three dimensional space,
there is no way to continuously deform such a curve to a point while keeping
the endpoints fized (7). As a result, when we make a cloged circuit in the field
of body orientations, if the body rotates through 2 along this circuit, then
as the circuit is shrunk down to a point, the total rotation that takes place
along this curve will have to remain equal to 2%, no matter how small the
circuit becomes, so that the field of body orientations cannot be continuous.
On the other hand, if the eircuit carries us through two rotations of 2m, we
are brought back to the original values of the C.K. parameters; and in the
space of these parameters, the corresponding path goes all the way around
the hypersphere. Then, as in the case of a complete great circle on a sphere
in three dimensional space, this curve can be deformed continuously to a
point, while keeping the endpoints fixed. From this, we conclude that a
circuit involving two rotations of 2z can be shrunk continuously to one having
no rotation at all, while a circuit involving a single rotation of 27 cannot.
More generally, this will happen wherever ¢-+y and ¢ — y change by even
multiples of 27 on going around a circuit; or whenever n,—+n, and n; — n,
are even integers. Thus, we justify the conditions which we gave earlier, re-
garding the permissible changes of value that the wave function may suffer
on going around a circuit.

We may illustrate the conclusions of the preceeding paragraph in terms
of an example in which a given circuit carries us through two rotations of 2z

() The fixing of the end points corresponds to the fact that we are choosing a
circuit that passes through a certain point in space. Since the orientation of the body
is fixed at this point, the C.K. parameters cannot change at the endpoints of the
cireuit, no matter how this circuit is shrunk or otherwise changed.
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in any specified direction. Now, as the circuit is shrunk, it would be possible
for the rotation to become equivalent to two separate rotations of 2z, each
carried out in a different direction; for in this case, the initial and final orien-
tation of the body would still remain anchanged.when the circuit was altered.
Thus, a continuous deformation of the path in the C.K. space would take
place, with the endpoints of the pathheld fixed; for the direction of one of the
rotations of 27 could change continuously relatively to that of the other.
But when we arrived at a path in which each rotation had an opposite sense,
to that of the other then the two rotations would cancel each other; and we
would have no rotation at all. Thus, we have given an example of how a
circuit involving two rotations of 2z can be deformed continuously into one
involving no rotation at all. As we have shown, however, this cannot be done,
with a circuit involving a single rotation of 2x.

We see then how the two-valued character of the C.K. parameters (and-
therefore of the spinors) reflects the topological connectivity properties of the
rotation group. Of course, if we had to deal only with a single body, these
topological properties would not be relevant, because a single rotation of 2z
would, after all, bring the body to an equivalent orientation in space, so that
at a given time, no physical difference could exist between a body that had
suffered only a single rotation of 2z, and one that had suffered two such ro-
tations. On the other hand, because we are dealing with a field of body
orientations, the relative amounts of rotation suffered by bodies in different
parts of the field become relevant; in the sense that if the orientation changes
by an odd number of rotations of 27 along a circuit, then this circuit cannot
continuously be shrunk to one with no rotation at all, while if it changes by
an even number of rotations of 27, it can so be shrunk. Thus, the two-valued
character of the spinors (and of the C.K. parameters) describe physically gigni-
ficant properties of a field of body orientations. In this way, we obtain &
reason why the basic quantum-mechanical theory of the electron which eon-
cerns itself with such a field of body orientations, should be expressed in terms
of spinors.

We now apply the above conditions on the continuity of the angles of
rotation to a stationary state of a hydrogen atom, which in the usual inter-
pretation is deseribed as having an orbital angular momentum, I, and a Z
component of the total angular momentum (spin plus orbital) of & = (I + %).
For this state, the wave funetion is (8)

Vi+ kPP p[itk—3%)¢'
R Naai N

o = P — — 1
VA I\VI T B L1 PPy explitk -+ De']

(®) See D. Bomm: Quantum Theory (New York, 1951); Chap. 17, eq. (73).
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where 0" and ¢’ are the polar angles of the position vector, x, of the center of
the body, while P*~P(8') is a suitably normalized associated Legendre poly-
nomial.

Comparison with eq. (34) and (35) then indicates that

wo o 6  VIiEtk PrRO)
(38) E"kfp y 9=, tg2 _\/m Porp@)

Since =1 4, and since ¢’ changes by 27 as we go around a circuit,
we see that Ay,= (21 + 1)2x and Ap =-—2x. Thus, the topological rela-
tionship that ¢ - and ¢ — g change by even multiples of 2x on going around
a circuit is satisfied.

We are now ready to compute the action integral (75) for this case. To
do this, we note that the velocity, v=(% 2m)(Vy -+ cos0Vp), has only a eom-
ponent in the direction of ¢’. Thus, the body moves in a circle, the plane of
which is normal to the Z axis. From (77), we see that 0 is constant along
this circle. Thus we obtain

(39) T:h(k»—c—(;—s—e>:h(n+—;—(l-—cos0)),

where n is an integer lying between 1 and — 1.
The Z component of the orbital angular momentum of the body is

(40) pwzlzﬁ(k_“_";_").

2n
The combined Z component of spin and orbital angular momentum is

(41) Py +h‘cgi0= .

Thus, we find that the total angular momentum is just equal to that pre-
dicted in the usual theory. This angular momentum divides itself, however,
between the spin and orbital angular momentum in accordance. with the co-
latitude angle 6 of the radius vector of the body relative to the center of the
atom (which determines 6 through eq. (38)).

The result (39) for the action variable is analogous to that obtained from
the Bohr-Sommerfeld quantum condition (of the «classical » quantum theory)
in which even the feature of fractional quantum numbers is present, because
these are often found to give better agreement with experiment than can be
obtained with integral quantum numbers. There are, however, three important
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differences from the Bohr-Sommerfeld theory. First, eq. (39) is an exact
equation, and not an approximate one. Secondly, in the evaluation of J, the
momentum, p, must be calculated taking into account the quantum-potential
and the spin energy, and not just the classical potential as was done in the
Bohr-Sommerfeld theory. Finally, the action variable, J, for the particle
motion alone depends in the location of the orbit. Only the sum of this action
variable and the one corresponding to the spin angular momentum is quantized
in a way that is independent of the location of the orbit.

‘We are now in a position to see how eur model accounts for the quantization
of the angular momentum. To do this, we first note that the action variable

is proportional to 95 v-dx which is an integral representing the total vorticity

of the fluid inside the circuit in question. Thus, we have obtained a simple
physical interpretation of the action variable. Then, because of the relationship
v = (#/2m)(Vy - cos 0Vy), the connection (36) is established between this
vorticity, and the changes of body angle, Ay, and Ay, which occur as we go
around a circuit. Finally, because we have a continuous field of spinning
bodies, Ay, - Adp and Aw— Ap must be even multiples of 2z. Thus, the
quantization of vorticity and therefore of angular momentum reflects basically
the requirement that we have a continuous and single-valued field of spinning
bodies, whose orbital motion is coordinated to their spin motion in the way
implied by the relationship, v = (#/2m)(Vy -+ cos 6 V).

— On the Proeess of Measurement of the Spin.

We shall now indicate in general terms how the process of measurement
of the spin is to be treated in the model given in this paper. To do this, we
shall first review briefly a similar treatment of the analogous problem of a
non-spinning particle (described by the Schridinger equation and not by the
Pauli equation) going around an atomic nucleus with orbital angular mo-
mentum, #.

Now a common method of measuring the spin of an atom is to place the
atom in a non-homogeneous magnetic field. This field then separates atoms
according to their component of the angular momentum along the direction
of the field. To show how this process of measurement is treated in terms of
the causal interpretation of the quantum theory, we shall use a method de-
veloped in a previous paper (°). Now the general initial wave function of the
electron with orbital angular momentum of # is

(42) V= a_, ¥ .(x) + a,F(x) + o, (x) ,

(®) D. Boum: Phys. Rev., 85, 180 (1952).
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where ¥_,, ¥,, ¥, represent the wave functions of electrons with Z com-
ponents of the angular momentum of respectively, —#%, 0 and #, while a_,,
@y, &, are the corresponding coefficients (in general complex) for the expansion
of the wave function, ¥(x). The complete wave function for the combined
system consisting of electron plus the atomic nucleus (whose coordinates we
denote by y) is then

(43) fo(y)(“—lgyﬂ(x) + a,Wo(x) + a1¥/1(x)) ’

where fo(y) represents & wave packet describing the faet that the atomic
nucleus is fairly well-localized in space.

Now when we apply a maguetic field, §, (the direction of which we take
to be that of the Z axis) then each of the three parts of the wave function
described above will begin to oscillate at a different frequency. Moreover,
if the magnetic field is inhomogeneous, the three parts will begin to separate
in space. Indeed, after some time, the wave function will be transformed into

(44) D = fo(y — D)a_, exp [to_ ] (%) 4 fo(y)ao exp [ia]Po(x) +
T+ fo(y + A)al exp [i‘xljwl(x) s

where «_,, ay, o, are changes of the phase angles which have resulted from the
eftects of the magnetic field, and A is the motion of the nucleus under the
action of this field. Now eventually A becomes much bigger than the width
of the wave packet f,(y), so that the three parts of the wave function cease
to interfere with each other, and obtain a classically distinet separation. When
this happens, then as has been shown (%), the particle-like inhomogeneity
agsociated with the electron must have entered one of the separate packets.
The probability that it is ‘any one of them is given by

(45) Po=la,|, Py=|al’, Pi=|a].

Thereafter, the other packets play no role, so that they can be neglected.

We see then that what really happens in a measurement is that the meas-
uring apparatus provides s general environment (in this case,.the inhomo-
geneous magnetic field) in which the wave function is transformed from what-
ever it may have been initially into an eigen-function of the ¢ observable »
that is being measured (in this case, the Z component of the angular mo-
mentum).

Thus, in the case under discussion, the actual orbital angular momentumni
of the electron can vary continuously but only certain stable quantized values
are possible, which can exist indefinitely without change, in the environment
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supplied by the inhomogeneous magnetic field. Which of the three possible
stable values will actually be obtained is not determined in an individual case,
if we merely specify the initial wave function, ¥(x). To determine, the actual
result, we should have to specify also the initial location, £(%,), of the particle,
and the general irregular motions in the ¥ field which lead to a statistical
behavior that is described by the probability distribution, P —=|¥|2 for the
particles. But as we have seen, the probability of obtaining any particular
result in a statistical aggregate of cases is determined in terms of the coeffi-
cients of the initial wave function with the aid of eq. (45).

In the causal interpretation of the quantum theory, a typical measurement
process of the kind that can be carried out in connection with the atomic
level is therefore not really a measurement of the detailed properties of the
underlying system (which is assumed to consist of the ¥ field plus the particle
that moves in it). Rather, it represents a kind of statistical response to certain
over-all properties of the ¥ field and of the particle. In this sense, the «ob-
servables » are rather analogous to the pressure and temperature of macro-
scopic physies or to the macroscopic variables used in hydrodynamics, since
these likewise do not describe any detailed properties of the underlying mo-
lecular motions, but rather general statistical properties of the system as a
whole.

Let us now consider how this theory of measurements could be extended
to the Pauli spin theory. To do this, we should need a theory of the many-
body problem, corresponding to our theory of the many-body-Schriédinger
equation (°), because as we have seen, we have had to discuss the interaction
of the electron with the atomic nucleus in order to develop a theory of measu-
rements. Such a theory is now being developed in terms of an extension of
our model to include second quantization; and preliminary results suggest
that such an extension will be possible, although many of the details remain
to be worked out. For the present, however, we shall merely state that it
appears that the theory of measurements can be carried out for the spin theory
in a way that is essentially the same as what has been done for the Schro-
dinger equation without spin. For example, in the case of a spinning electron
in an atom in an «s» state, there will be two possible basic solutions, one
corresponding to spin up, and the other to spin down, with the spin measured
in any desired direction. Hence, the initial wave function can be expressed as

Y= u.,.?ﬁ.(x) -+ a_lp_(x) .

Then, as in the case that we have already discussed of a particle of angular
momentum, #, obeying Schrodinger’s equation, the effect of the inhomogeneous
magnetic field will be to transform this wave function either into ¥, or into
¥_, with respective probabilities, P,=|a4|? and P_=a_|?, of obtaining
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either result. Hence, as in the Schrodinger theory, the appearance of quantized
possible values for the spin in a measurement will be the result of a reaction
to the magnetic field of the system as a whole, (consisting of fluid with spinning
bodies, and the particle-like inhomogeneity, described in Seec. 1, which is the
counter part of the particle appearing in Schrédinger’s equation). Thus, what
i8 obtained in what is now called a measurement of the spin will have no
direct and simple relationship to the spins of the bodies constituting the fluid.
Indeed, as we have seen, the components of the latter can vary continuously,
but nevertheless, in a magnetic field, the overall motion of the whole system
is such that the total angular momentum eventually settles down either to
#/2 or to —#/2. (We may make here an analogy to certain kinds of classical
non-linear oscillators, which after being disturbed eventually settle down to
one of a number of possible stable modes of oscillation). It is clear then that
the spin as it is now measured should be considered as a higher-level property,
having a relationship to the assumed spinning bodies that is somewhat ana-
logous to the relationship between macroscopic variables, such as pressure
and temperature, and the underlying atomic variables.

6. — Summary and Conclusions.

In this paper and in the previous paper (A) we have developed a model
for the Pauli equation in terms of a fluid eomposed of spinning bodies, which
contribute an «intrinsic angular momentum » to the total angular momentum
of the system. This model has the property that if the bodies are at any time
all spinning with their angular momenta parallel to their principal axis of
symmetry, then they will continue to satisfy this condition for all time. On
the other hand, it is possible for the angular momentum S to have a general
orientation; and in this case, the component of S normal to the principal axis
will turn with an angular velocity, w, that depends on how fast the body
happens to be spinning and in the torques acting on the body. For processes
with characteristic times, 73> 1/w, the component of S normal to the prin-
cipal axis will average out to zero, and the Pauli theory will provide a good
approximation. But for processes in which 7 is of the order of 1/w or less,
the Pauli equation will no longer apply, and the full general set of non-linear
equations will be needed. This means that our model already implies the
possibility of a break down in connection with sufficiently high frequencies,
and therefore with sufficiently high energies, of the whole general scheme
connected with the usual interpretation of the quantum theory, which is based
in an essential way on the assumption that the fundamental equations of the
theory will always be linear.

In connection with our discussion of the theory of measurements in Sec. 5,
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it was seen that the spinning bodies of which our fluid is assumed to be
constituted are not identical with the spin « observables » of the usual quantum
theory, but that rather, they constitute a lower level, in terms of which the
spin « observables » are determined as overall and in general statistical pro-
perties of the fiuid. For example, the characteristic quantized way in which
the spin angular momentum manifests itself at the atomic level was seen in
Sec. 4 to follow from conditions of single-valuedness applying to the motion
of the fluid as a whole, which are such that even though the spin motions of
the bodies are continuous, the overall motion has certain discrete possible
stationary values for the angular momentum.

In sum, then, it may be said that we have, for the case of the Pauli equation,
explained the quantum theory in terms of the motions of new entities existing
at a sub quantum-mechanical level. We call the new level ¢sub gquantum-
mechanical » because the laws of quantum-mechanics do not apply there.
Rather, thé laws of quantum mechanics emerge as overall and statistical
relationships arising on the basis of the lower level laws, as for example, the
laws of ordinary hydrodynamics arise on the basis of lower level laws governing
the atomic motions.

Naturally, to make an explanation of the quantum theory possible, we
have had to postulate something, viz, the fluid composed of spinning bodies
(since without assuming something we can never explain anything). It may
then be asked what we have gained by making such a postulate. First of all,
we have gained the possibility of seeing in a rational way how all of the phe-
nomena -of atomic physics could be connected by means of a set of general
causally determined motions, so that we do not have to regard atomic pheno-
mena as mysterious processes which take place in a way that could never
even be conceived of. (In this connection, let us recall that there has existed
a widespread general impression that to obtain such a rationally understand-
able explanation of quantum phenomena in general and of the electron spin
in particular would be impossible.) Secondly, whenever one obtains a rational
explanation of a wide range of phenomena past experience in science has shown
that this explanation generally suggests fruitful new avenues of approach to
problems, which would not even have been suspected if the phenomena had
not been thus explained, but rather had simply been accepted as things that
« just happen » for no particular reason whatever. For example, the atomic
theory, snggested originally by the effort to explain the laws of chemical com-
bination and the gas laws in terms of the properties of atoms, was eventually
able to explain many new kinds of phenomena (e.g., Brownian motion, visco-
sity, gaseous discharges, etc.) and suggested important new directions of re-
search (e.g., Rutherford scattering, electron theory of metals, ete.). As for
the question of wether the assumption of a sub quantum-mechanical level
will eventually prove to be fruitful in a similar way, this can of course be
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answered definitively only in the future. Nevertheless, one can already see
good reasons why this approach may be on the right track, even if, perhaps,
not correct in all of its details. Thus, the characteristic new phenomena of
modern high energy physics is the appearance of a whole host of « element-
ary » particles, which can be «created », « destroyed » and transformed into
each other. The very fact that these processes of creation, destruction and
transformation are possible suggests strongly that the so-called elementary
particles are not really elementary, but rather, that they arise on the basis
of motions of new kinds of entities that are still more fundamental. Thus,
what is suggested is a new level, below that of the «elementary » particles, out
of which these particles arise as some kind of moving structures.

Now, we have already seen that to explain the quantum theory causally,
we have already had to postulate a sub-quantum mechanical level, out of
the motions of which the usual quantum mechanical properties of things arose
as overall characteristies (e.g., quantization). Now, as long as the basie
equations governing the system are linear, nothing new can arise in these
overall characteristics, not already treated in the well-known solutions of the
Pauli equation. But as we have seen, it is just in connection with sufficiently
high energy processes that the equations of our model can become non-linear.
Now, it is well known that non-linear equations have, in general, many modes
of stable motion. Each of these modes would manifest itgelf at the atomic
Jevel in connection with new rules for quantization and for the determination
of other overall properties of the system, which we would interpret in terms
of the appearance of a new kind of «particle ». Thus, the way is opened up
for a treatment of the processes of creation, destruction, and transformation
of elementary «particles», as well as for a calculation of which kinds of
« particles » can exist, and of what some of their properties are, since the new
« particles » could correspond to new modes of overall motion of the underly-
ing fluid.

Of course, we do not believe that a model based on an explanation of the
Pauli equation will really be adequate for the purposes described in the previous
paragraph because it is not relativistic. A model based on an explanation of
the Dirac equation (and better still with second quantization) should however
give a much more accurate treatment than would be possible with the model
given in this paper. Present work indicates that models can already be found
which reproduce most of the features of the Dirac equation and many of those
of second quantization. The completion of this work would then lay the
foundation for an attack on the properties of the new level, including those
connected with the creation, destruction and transformation of elementary
particles. In any case, it is clear that new directions of investigation could
thus be opened up, going outside the framework of theories that fit into the
current general scheme of the quantum theory.



