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1 .  - I n t r o d u c t i o n .  

In  a previous paper  (i), to which we s h a l l h e r e a f t e r  refer as (A), we have 

developed a causal in te rpre ta t ion  of the Pauli  equation, in terms of the model 

of a fluid composed of spinning bodies, in which the spin angular momen tum 

of each body is directed along its first principal axis (i.e., its axis of symmetry) .  
The object  of the present  paper  is two-fold, firstl to generalize the  above model 
to show how the Pauli  equat ion results as a special case of a theory  in which 
the  angular momen tum may  point  in an a rb i t ra ry  direction, and secondly, 
to i l lustrate our model of the Pauli  theory  in terms of the simple example 
of a s ta t ionary state  of an electron in an atom, and to apply this example 
i n ' t h e  theory  of measurements .  

In  Sees. 2 and 3 we shall develop our more general model and show tha t  
in terms of it, the Pauli  equat ion follows as a consistent subsidiary condition. 

In  other words', if the  angular momentum points along the  first principal axis 

at  any instant ,  say t = 0, then  the torques will be such tha t  this condition 

will be maintained for all time. Moreover, small deviations from this con- 

dit ion lead to a rapid oscillation of the motion about  a mean, in which the  

(1) D .  BoIt~r R. SCI-IILLER and R. TIOMNO: ~ u o v o  Cimento, 1, 48 (1955). 
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condition is satisfied. Physically,  such an oscillatory motion corresponds to  
a precession of the angular momen tum abotl~ the  direction of the axis of 

symmetry ,  in which the component  of the  angular m o m e n t u m  perpendicular  

to this axis averages out to zero. Thus, even in the  ease Of a general or ientat ion 
of the angular momentum vector,  the Pauli  equation would still  b e a good 
approximation for processes tha t  are slow compared with the  ra te  of pre- 
cession described above, whi le  for more rapid processes, it would cease to be  
a good approximation.  Instead,  a more general equat ion (which will be seen 

to be non-linear) would have to be used. Thus, we are led to a specific example  
in which the  causal in terpre ta t ion of the quantum theory  implies new kinds 
of equations in connect ion  with high frequencies (and therefore  high energies), 

equations which would reduce approximate ly  to those of the usual quan tum 

theory  only at  those relat ively low energies for which the usual theory  is 
known to be valid. 

In  See. 4, we then  i l lustrate our model of the  Pauli  equat ion in terms of 
a s ta t ionary state  of an electron in an atom. This i l lustrat ion serves not  only 
to bring out impor tan t  topological propert ies of a field of body orientations,  
such as is implied by  our model, but  it  also shows how a continuous distri- 
but ion of spin angular momentum throughout  the fluid can lead to discrete  
or <~ quantized ~) possible values for the angular m o m en tu m  of the  fluid as a 

whole. Quantizat ion of angular m o m e n t u m  (and of other  variables) is there-  

f o r e  seen to arise as an over-M1 proper ty  of the fluid, on the basis of a lower 

level of continuous motion, much as discrete frequencies of s ta t ionary  modes 
of vibrat ion arise in connection with the  motions of continuous fields in 
classical mechanics. 

In  Sec. 5, we indicate how the  process of measurement  is to be t rea ted  in 
terms of our model. Wha t  is observed in a measurement  of the angular mo- 
me n tum  <~ observable >> will be seen to be just  one of the discrete possible 
s ta t ionary values for the to ta l  angular momen tum of the system, and not the 
continuously dis t r ibuted angular momenta  existing in the  various par ts  of 
the fluid. 

Finally,  in Sec. 6, we summarize the  essential features of the model, and 

suggest possible fu r ther  directions of research. 

2. - Treatment of Arbitrary Direction of Spin Motion for a Fixed Rigid Body.  

Our first step will be to extend to the ease of a rb i t ra ry  spin motions the 
hamil tonian formalism in terms of spinor variables developed in paper  (A). 

To do this, we begin with the  case of a rigid body at rest.  In  the nex t  
section, we shall then  ex tend  the  theory  to the more general case of a field 

of rigid spinning bodies ~dth t ranslat ional  motions.  
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The lagrangian of a rigid body with no translat ional  motion is just  t he  
kinetic energy dtm to its spin, which is (3) 

(1) L = �89 ~ Iigoi~k, 
i f i  

where the 0)  i represent  the components  of the angular velocity, and I ~  is 
the tensor  for the moment  of inert ia  of the body. T h e  components  of the  
angular  m o m e n t u m  are then  given by  

(2) s~ = ~ Lk(o~ 
k 

so tha t  

( 3 )  L = �89 ~ ~iO)i . 
i 

The nex t  problem is to express the (1) i in terms of spinors. Now, the 
relat ionship between the o~ and the Euler  angles is (~) 

(4) o:,~ == ~ sin 0 sin W + 0 cos F ,  

o~ : ~ sin 0 cos ~ - -  0 sin ~ .  

o ~ o) 
 ,_-oxp + + ) c o s  - [ 2' ] ' 2  ~ ~ sin 

We have 

Now let us consider the quan t i ty  

~*~o~-~*~o~ = ~ cos ~ (~ + ~ ) - s m  ~ ( ~ -  ~) = ~(r cos0 + ~). 

Hence we obtain 

(3) In the present, paper, we leave out the electromagnetic field, which makes no 
essential change in the formulation of the theory. 

(g) H. GOLDSTEIN: Classical Mechanics (Cambridge Mass., 1950). See Chap. 4. 
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And more  generally,  because of rotat ionM s y m m e t r y  

(5) ~ = ~0"~ ~*-~) �9 

The k ine t ic  energy then  takes  the  fo rm 

i (~) ~ = T = ~ 0'("" ~)~-- ~*("" ~)~). 

We now define the  m o m e n t a  canonical ly conjugate to the  components  of 

the  spinors fi und fl*, which are 

~L ~L ~L 3L 
(~) p l - . ~ ,  p ~ - @ ,  p ~ * - ~ , ,  p ~ -  

We also define the  spinors 

so t ha t  fo rmal ly  speaking 

~L ~L 
(s-b) ~ = ~ ~ ,  

We then  obtain  f rom (6) 

(9-a) = - - i ( ~ . s ) f i * ,  

(9-b) z* = i (a .s)~.  

Note  t h a t  in eq. (6), s is a funct ion of/~ given b y  eqs. (2) and  (5). As can 

easilly be verified, however,  this  dependence mere ly  leads to a inult ipl ication 
b y  a fac tor  of two of the  result  t ha t  would be obta ined if s were not  a 

funct ion of ft. 
We readi l ly  see t ha t  under  rotat ions,  z t ransforms cont ragredient ly  to ft. 

To p rove  this, we form the  quan t i ty  ~rfi. F r o m  eq. (9-a), we obtMn 

~fi=-i(~*(~.~)~), 

which is ev ident ly  ~ scalar, so t ha t  ~r mus t  t rans form in the same way  as fi*, 
or in o ther  words, contragredient ly  to fi. 
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To  solve for s~, we mul t ip ly  (9-a) by  fia~, and (9-b) by  fi*a~. We obtain 

(10) s = ~  

We shall now find it  convenient  to obta in  the  expressions for the  projections 

of the  angular  m o m e n t u m  vec tor  on the  principal  axes of the  body.  I t  is evident  

t h a t  each of these project ions is a scalar  with regard to rota t ions  of the  space 
axes, since b y  definition, these components  will not  depend on which space 

axes we choose for the  expression of s. We can therefore  evaluate  the  com- 

ponen t s  of the  angular  m o m e n t u m  along the body  axes b y  choosing our space- 

axes to agree wi th  the  body  axes. In  this case, according to paper  (A), eq. (7), 

we have  f i - ---(~) ,  and for the components  of the  angular  momen ta ,  we get 

( 1 1 - a )  T~ = i ( ~ - -  u?)  T2 = i ( z 2 - - U 2 * )  Ta - -  (z -~ ~*) 
2 ' 2 ' 2 

We also in t roduce  for convenience, the  quant i ty ,  To, which as we shall 

see present ly  is ze ro  in our problem,  

(11-b) To - -  ~1 ~- ~* 
2 

We  wish now to express the  T i in t e rms  of the  spinor quantities,  t aken  

in an a rb i t r a ry  f r ame  of reference. To do this, we seek a set of scalar functions 

of the  spinors z and fi which reduce to the  T~ when we chose the  space f r a m e  
to be the same as the  body  frame.  

Le t  us first consider the  scalar ~fi. In  the f r ame  in which fi = (~) , this 

reduces to 

7efi = xcl = T o - -  iT1  , 

so t ha t  

(12-a) T1 = 2 ( ~ -  z*fi*) 
2 

(12-b) To - -  
~ + ~*~* 

~ o w  f rom eq. (9-b), ~e  see (since s is real) t ha t  To = 0. This relat ionship 

is a subsidiary condit ion whose meaning  can be seen b y  writ ing fl and ~ in 
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fl  = b~ + ib~]  ' ~ = Pa - -  *Pa] 

where  p~ is canonical ly conjugate  to b~. We  then  get 

(1)3 nfl + ~*fi* = blpl -~ b2p2 4- b3p3 -~ b4p4 . 

I f  we consider the  space of the  Cayley-Kle in  p a r a m e t e r s  in t roduced in 

pape r  (A), eq. (8-b), we see t ha t  f rom the relat ion ~ 2 ~ b 1 -~ b~ -~ b 8 ~- b4 = 1, it follows 
t h a t  we mus t  remain  on a uni t  hyper -sphere  in this four dimensional  space. 

Now eq. (13) then  expresses the  fact  t ha t  the  (( radial  m o m e n t u m  ~) in th is  

hyper -spaee  is zero. Such a resul t  is to be  expected,  since the  kinetic energy 

is a funct ion only of the  angular  velocities , which do not  involve the  <( radial  ~ 
componen t  of the  veloci ty  in the  C.K. space, so t ha t  the  corresponding mo- 
m e n t u m  m u s t  be  zero. 

F r o m  ( l l -a )  and ( l l -b) ,  we readi l ly  obta in  for the  to ta l  spin 

(14) S 2 = T ~ = (:r*~) ~ -  T~ = (~,~)2 (since To = 0). 

We now wish to obtain  expressions corresponding to (12-a) and  (12-b) for  

T2 and /'8. To do this,  we first consider the  spinor 

(15) ~*)" 

The spinor fi has the  same t r ans fo rmat ion  propert ies  under  ro ta t ion  as 

does fi itself, as can be readil ly verified by  direct  computa t ion  with  the  t rans-  

fo rmat ion  m a t r i x  exp [ i (R .a)/2]. Indeed,  we have  fl  = ia~fl*, which  is jus t  

the  non-rela t ivis t ic  fo rm of the  so-cMled charge conjugate  spinor (~) which, 

as is well-known, has the  same t rans format ion  propert ies  as the  spinor fi itself. 

We now consider the  invar ian t  ~fl. I f  we eva lua te  this in a f r ame  in which 

(using eq. (11-a)) 

(16-a) 

(4) W. t)AULI: Rev. Mod. Phys., 13, 203 (1941). 
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o r  

2 ' " 2 " 

I t  is readi l ty  verified b y  direct computa t ion  t ha t  (TI, T2, T3) satisfy the 

character is t ic  P .B.  relat ionships of angular  momentu~ (T~,T2) ~ Ta, etc.. 

One also readi ly  verifies t ha t  the  P.B.  of any  componen t  of T, with any  com- 

ponen t  of S are zero, as t hey  h~ve to b% since S is the  genera tor  of the  inf ini -  

tes imal  ro ta t ion  of the  space axes and since the  T~ a re  scalars with respect  

to  such rotat ions.  

We shall now go to the  hami l ton ian  formal ism.  The hami l tonian  is 

(17) 1 1 =  ~ s~w~ - -  L = ~: siwi = L . 
i ~ - '  2 

We mus t  now el iminate  the  (o~ f rom the  hamil tonian.  This is most  con- 

ven ien t ly  done by  expressing the  angular  m o m e n t u m  in t e rms  of its projection 

T~ on the  principal  axes of the  body.  This gives 

08) 

where  11, 12, 13, are the  m om en t s  of iner t ia  re lat ive to the  principal axes. 

F o r  the  case of a symmet r i ca l  top,  which interests  us here~ 13 ---- I3= I. Let  
us write I 1 ~  1/s. Eq. (18) t hen  becomes 

(19) 

To obta in  the  equations of mot ion  for S, we note  t ha t  the  P .B. ' s  of S with 

the  Ti are zero. Thus the  components  of the  angular  m o m e n t u m ,  t aken  with 

respec t  to axes fixed in space, are constants  of the  motion.  As for the  Ti, 
we note t h a t  T1 is also a cons tant  of the  motion.  For  T2 and T3, we readil ly 
ob t a in  the  equat ion of mot ion  

(20) d ( T 3 - -  i t s )  = i ( s - -  1) T , ( T 3 - -  iT2)  
_ _  _ _  o 

dt I 

Thus, the  componen t  of the  angular  m o m e n t u m  normal  to the  first princ- 

ipal  axis ro ta tes  wi th  angular  velocity,  oJ--~ ( ( e - - 1 ) / I ) T 1 .  This means tha t  

the  first pr incipal  axis ro ta tes  around the  direction of the  vector,  s, with the 

angular  ve loci ty  co. Thus,  on the  average  the  first prineipa~l axis points in 
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the direction of s; ~nd insofar as phenomena  tha t  do not  change much in the 
t ime ~- -1 /co  are concerned, the body acts as if its angular m o m en tu m  were 

paral lel  to this principal axis. 
We note  tha t  when ~ <:: 1 (disc-shaped object),  the  energy is a minimum 

(for a given to ta l  angular momen tum ]TI) when T ~ = T ~ ;  i.e., when the 

principal axis points along the direction of s. Thus, for this case, the mot ion 

in which the principal axis is parallel  to s will be stable.  I f  s > 1, (cigar- 

shaped object),  such motion becomes unstable.  
Finally,  we shall express in terms of spinors the condition tha t  the motion 

reduces to the type  implied by  the  Pauli  equation, in which the  spin points 

along the principal axis. I f  this condition is satisfied , we have T~ ~ T~ ~ 0; 

or ~ f l = 0 .  This le~ds to 

so tha t  

(21) ~ z ik~fl* , 

where k is a constant ,  and where we have chosen the factor  of i to simplify 

subsequent expressions. But  in order tha t  To = (Trflff-Tr*fl*)/2 ~ O, k S mus t  
be a real  number.  I f  this is the  ease, however,  then  we see tha t  i f i* is canon- 
ically conjugate to fi, which is what  is essentially the same relat ion as 
paper  (A)eq .  (]4), which holds in the  Pauli  theory.  To demonst ra te  in more 

detail  the  relationship between rr, fl, and the Pauli  spinor, we make the  fol- 
lowing canonical t ransformat ion to the spinors A and B 

(22) 
[ B = (k~--  ~ * / k ) l / V 2 .  

From the above, we re ,d i l ly  prove the  Poisson-bracket  relations 

(23) [A, B] = [A*, B*] = 0 ; [A*, A] = [ B * ,  B ]  = i .  

To satisfy eq. (21), we choose B : 0. Then  the spinor A* has the same 

P.B. 's  with A as does the  Pauli  spinor (see paper  (A), eq. (14)). Moreover, 
we also have A : kfi ,  so t ha t  fl is proport ional  to the Pauli  spinor. To express 

the angular momentum,  we eliminate ~ and fi f rom eq. (10), obtaining 

(24) s ~- k ( A  * a A  ) . 
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Thus, the  theory  is able to  t r ea t  an  a rb i t ra ry  value of the  spin angular  mo- 
mentum.  To obtain the  same value as in the  Pauli  theory  we must  set k=h/2. 
In  this way, we complete  our demonst ra t ion  showing how the  canonical for- 
malism for an a rb i t ra ry  direction of spin reduces to tha t  of the Pauli  theory  
when the  spin points along the  principal axis. 

3. - Extens ion  to Rigid Bodies wi th  Translat ional  Motion.  

In  the  previous section, we developed a hamil tonian formalism tha t  permits  

a t r ea tment  in terms of spinors of a rb i t ra ry  motions of a rigid body fixed in 
space. We shall now extend  this formalism to permi t  the t r ea tment  of a field 

of such rigid bodies, undergoing t ranslat ion through space. 
To do this, we shall first write the kinetic energy of translation of the 

bodies in terms of Clebsch parameters  as we did in the  case of the Pauli  theory.  
Now, in the Pauli  theory,  we found tha t  one ra ther  natura l ly  obtained the 
expression given in paper  (A), eq. (25) for the velocity, v = h /2(VF+cos  OVqJ), 
which involved only the  pair  of Clebsch parameters ,  cos 0 and ~/2, along with 
the veloci ty  potential ,  ~f/2. I t  is possible, however,  to introduce as many  
addit ional  pairs of Clebsch pa lameters  as we please in the definition of the 
velocity.  Thus we m a y  write 

(25) v : V2 + ~ ~{Vvi. 
i 

~ow,  i t  is t rue  tha t  the  most  general veloci ty field can in principle always 
be expressed without  these additional pairs of Clebsch parameters .  ~ever the-  
less, the physical conditions of the problem m a y  of ten make i t  convenient  to 
introduce such addit ional  pairs. Indeed,  as we shall see presently,  the t r ea tment  
of the problem of the  mot ion of a body with a general or ientat ion of its angular 
momen tum relat ive to its principal axes is an example of just  such a problem. 

In  terms of the  expression (25) for the  velocity, the kinetic energy of trans- 
lation of the bodies then  becomes 

(26) T = ~ (v~ + ~ _~, V~,)~d~. 
2m 

~ow, introducing the  P.B.  relat ions 

(27) [~(x), ~(x')]  = [ (~(~)~(~) ) ,  ~i(~')]  = ~(~--x') 
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with all other P.B?s zero, we get for the equations of motion 

(28-a) 
~o 
~-~ + div (~)v) = o,  

{28-b) ~ ~i v ~ ~t ~ ( v . V )  Vn + ~ = ~  
i 

d~i _ d~]i _ 0. 
{28-c) dt dt 

Eq. (28-a) expresses just the conservation of bodies, while (28-b) is an 
extension of the Hamilton-Jacobi equation. Eq. (28-c) expresses the constancy 
of the Clebsch parameters as we follow a moving body. I t  is this property 
of the Clebsch parameters that is most interesting to us here; for eq. (28-c) 
means that  the $~ and the ~ may represent internal properties of bodies (such 
as angle or spin variables). While these variables remain constant in eq. (28-e), 
if we add terms to the hamiltonian involving the $~ and the ~]~, then the 
equation that  takes the place of (28-e) will tell how these properties change 
as we ]ollow the moving body. 

The Clebsch parameters therefore provide a natural canonical treatment 
vf the motions of a field of parameters that  represent internal properties of 
moving bodies. 

Now, in the Pauli theory~ the current vector was expressed as 

with 

j = ~ Vi + (p~)Vq. 

~ =  cos 0/2, ~ = - - ~ / 2 ,  ~ = - - ~ / 2 .  

Let us recall that  ~e was canonically conjugate to --y~/2, ]g~Z to --~v/2. 
Thus writing /i9/2 = Jr, ~ cos 0/2 ~ J~, we have (remembering that  Jv is 
density of the component of the angular momentum in the direction of the 
principal axis, and Jv the density of the Z component of the angula,r mo- 

mentum) 

j -= J~ VyJ -~ Jr V~. 

But now we arc going to give up the restriction that  S is directed along the 
principal axis. To complete the description of the angular momentum, we 
shall introduce, J0, the momentum canonically conjugate to the Euler angle, 0. 
This is equal to the density of angular momentum about an axis perpendicular 
to the plane containing the Z axis and the principal axis (1) of the body. 
In  order that  the P.B.'s of the kinetic energy of translation with Js and 0 
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shall give dJo/dt and dO~dr respectively, it is clearly necessary, however, that 
j shall be the same functions of Jo and 0 as it is of Jr and ~, and of Jv and ~. 
This, we write 

j = J~ vv + J~ vv + Jo vo. 

~ow, in - order to obtain a simple model that  approaches the t)auli case, 
we set the density o f  bodies equal to 2Jv,/~ , which is proportional to the 
density of the component of the angular momentum along the first principM 
~xis. This implies that  all bodies have the same value of this component of 
the angular momentum. We shall see presently that  this assumption is con- 
sistent with the equations of motion that  we are going to adopt. We then get 

(27) v j h J r  

The next step is to add the kinetic energy of spin to the hamiltonian. 
To do this, we introduce the quantities Q~ = r which are the densities 
of the components of the angular momenta taken along the principal axes. 
From the results of the previous section, this is 

(2s) R1 = (Q~ + (6- -  1)Q[) dx 

(note that  by definition, Q~ = Jr). 
Finally, we must add an appropriate generalization of the quantum 

mechanical part of the energy ((( quantum potential ~) plus spin potential), 
which, for the Pauli case is expressed in paper (A), eq. (35-b). We write for 
the term 

(29) \~xj] 

The complete hamiltonian is then 

,(30) H---- H: + H, + hr: . 

Let us now obtain some of the equations of motion. First of all, since Q~ 
has zero P.B.'s with St, we get for Q1 ~ Jr ,  

,(31) 3Q1 ~-y + div (Qi  ~)) = 0 .  

6 - S u p p l e m e n t o  al N u o v o  Cimento.  
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This is just  ~ conservation equation, for the component  of the angular 
momentum along the first principal axis. Since the density of bodies, Q, 
satisfies the same equation, we see tha t  if we choose ]~/2 = Q1 at any  
instant,  say t ~ 0, they  will remain equal for all t ime. Bu t  he/2 = Q~ 
implies tha t  all of the bodies have the same va lue  of the component  of the  
angular momen tum along the principal axis. Since this component  is a constant  

of the motion, the condition t ha t  it  has the same value for all the  bodies will 
evident ly likewise be maintained for all t ime, i f  it  is~ satisfied a t  any  time. 

As for Q2 and Qs, we get 

(32) 

Thus, as in the case of the freely rota t ing body, the component  of the 
angular momentum perpendicular  to the  first principal axis rotates  with ang- 

ular veloci ty oo = ( ( e - -1 )01 ) /1  Q. We may  evident ly  then adopt  Q5 Q5 = 0 
as a consistent  subsidiary condition, so tha t  if the body is set with S ori- 
ginally in the direction of its first principal axis, then the torques ~vi]l be such 

tha t  this condition is mainta ined for all time. Moreover, if the principal axis 

is near ly  in the direction of the angular momentum,  then  Q2 and Qa will ro ta te  
with angular velocity, ~, so tha t  for phenomena  involving characterist ic t imes ~, 
which are much less than  1/o9, the body will act as if S were parallel  to the 

first principal axis. 
Since Q~ = Qa = o is a consistent subsidiary condition, we m ay  obtain 

the equations of motion of the remainder  of the variables by  sett ing O~=Oa=o 
in the hamiltonian.  The parts ,  H r + H 2 ,  then  reduce to the Pauli  hamil tonian 

(see paper  (A) eqs. (31) and (35)). 

where we have wri t ten (21 = h~/2. 

The term, H~ becomes 

d x : ~ -  @dx, 

This par t  of the hamil tonian will have 

the same effect as adding to the Hami l ton- Jaeoby  equation (paper (A), eq. 
(34-b)) a <~ rest  mass 7> te rm such as would be obta ined by  deducing the  Pauli  
equation as the non-relativistic l imit  of the Dirac equation. To bring out  
this p roper ty  of H~ more directly,  we may  make the canonical t ransformat ion 

to the Pauli  spinor, A, given in eq. (22), which yields the <~ rest  mass 7> term, 

(33) H1 : 8 / - / ( A j  A ) d x  . 

We conclude then tha t  if the subsidiary condition, Q2 = Q3 = 0 is saris-: 
fled, our set of equations represent ing the motion of a field of spinning bodies  
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will reduce essentially to the  Pauli  equation, which is a linear equat ion for 

a spinor, [P. Moreover,  even if the spin does no~ point  along the principal 

axis, the components  Q2 and Qs will in general tu rn  with some angular ve- 
locity, (9~ so tha t  for  processes involving characterist ic  times, ~ }~l/w, the 

Pauli  equat ion will still serve as an adequate  approximation,  since the effects 

of the components  Q2 and Q3 will average out to zero in such processes. But  
in processes so rapid tha t  ~ ~ 1/~o, the  Paul/  equat ion would in such cases 

cease to be a good approximation,  and one would have to go back to our 
basically non-linear set of equations for the various spin and angle variables. 

Of course, in the present  theory,  there  is nothing to determine the value of w. 
We may, however,  consistently suppose tha t  1/w is of the order of the times 
involved in the  high energy processes connected with the <( creation )>, (~ des- 

t ruc t ion  ~> and <~ t ransformat ion >) of so-called <~ e lementary  ~> particles. In  this 
ease, the l inear Pauli  equat ion would be a good approximat ion for atomic 

processes, but  would break down completely with regard to the high energy 
processes described above. Of course, to t rea t  such processes correctly, we 
should need a relativistic theory,  and this Will require a causal in terpre ta t ion 
of the Dirae equation. Bu t  we can already see tha t  the generalization Of the 
Paul i  equat ion adopted here  leads in a na tura l  way to a breakdown in con- 
nect ion with high energy processes of the hypothesis  of linear superposition, 
which is one of the basic postulates underlying the present  form of the quantum 

theory.  When this postulate  fails, then the usual in terpre ta t ion of the quantum 

theory  cannot  consistently be applied. This is an example of how ~ causal 

in te rpre ta t ion  of the quantum theory  permits  the consideration of new kinds 

of theories, not  pe rmi t t ed  if one restricts oneself to the theories ~hat arc con- 
sistent with the usual in terpre ta t ion.  

Finally,  we note  tha t  in the present  theory,  the basic meaning of ~ is 
tha t  ]~/2 is the angular  m o m e n t u m  per  body in the fluid. Thus, in the theory  
proposed here, the s ta tement  t h a t  ?i is a universal  constant  of na ture  implies 
tha t  all bodies have the same spin angular momentum.  This requi rement  is, as 
we have seen, a subsidiary condition tha t  is consistent with the equations of 
mot ion tha t  we have adopted.  Of course, we have not  ye t  explained why 
the subsidiary condition should be universal ly satisfied but  this m ay  perhaps 
be done later  in connection with more extensive theories, such as, for example, 

those concerned with a causal in terpre ta t ion of the Dirac equation and second 

quantization. 

4. - A n  I l lustrat ion in Terms of Orbits in  a Hydrogen  Atom.  

We shall now il lustrate the causal in terpre ta t ion  of t h e  P a u l i  equation 
in terms of the example of an electron in a hydrogen atom. This ilh~stration 
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will also permit us to draw some interesting conclusions concerning the meaning 
of the quantization conditions in the hydrodynamic  model with spin. 

We begin by considering a s ta t ionary state, in which the spinor wave 
function ~, is given by 

(34) ~ : R(x) exp [-- iEt/?t] (~l~ (x)t 

=R(x)expE  (x, )/21(cosO/2 expE  /2J I' 
\ i  sin 0/2 exp [-- i~/2]] 

where R ( x ) :  ~1~1[~§ 1~2] ~ is the normalized spinor of eq. (7) and 

2Et 
(35) ~(x, t) -- ?/ -~ ~po(X), with ~p0(x) : [~v(x, t)] .  

(Iqote tha t  here F(x, t) refers to the Euler angles of the body which is a function 
of position, while ~ is. the wave-function spinor). 

We see then  tha t  in a s ta t ionary state the orientation angles 0 and 00 are 
in general functions of position, but  are constants in time. However, the 
angle ~ of rotat ion about the first principal axis increases linearly with the time, 
when evaluated at a given position, x. 

If, however, we look at a part icular  moving body, then it will follow some 
orbit in space, in which the various Euler angles and spin directions may  
change with time. But  the motion must  be periodic, in the sense tha t  after 
the body returns to its original position in space, the Euler angles 0 and 
must  re turn t o  their  original values (plus perhaps some multiple of 2z for 
the Euler angle ~v) while y) must  have changed by --2EAt/I~ (plus a suitable 
multiple of 2z0. If  these conditions were not satisfied, then we could not have 
a s ta t ionary state in which the only change with t ime of the state of the fluid 
at  a given point is at  most  a rotat ion of each body around its axis of symmetry .  

To show how this wave function leads to quantization of angular momentum,  

we shall now evaluate the action integral, T =  ~ p.dx, where p is the mo- 

mentum of the motion of the center of mass of the body in its periodic orbit. 
Expressing p with the aid of paper (A) eq. (23), we obtain 

h p.dx  = ~ (~7~0 -~ cos 0 Vq ) .d x .  

Now dx represents the change of x as we follow the moving body in its orbit. 
Le t  us then  introduce the differential, ~x, which represents the change of x 
at  a fixed instant  of time. Now, from eq. (35), we have ~7y; : V~Vo(X). Since 
neither 0, ~ nor 9o are functions of t, we can then replace dx in the action 
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integral  b y  ~x~ obta ining 

(36-a) p .  dx = ~ (V~, + cos 0 V~v). 6x : ~ (~Y'o ~- cos 0 ~q~) 

and  

Q~) (6~, § cos ~q~), (36-5) p .  d~c : 0 
J 

where on the  r ight  hand side of (36-b), the  in tegra t ion  is carried out around 

a circuit in space t aken  at  a par t icular  t ime,  bu t  the  same circuit as is made  
by  the  ac tual  orbi t  of the  body.  

We mus t  now find out how 90 and ~ change as we go a around the  circuit .  

Obviously  we mus t  have  A~0 ~ 2 n ~  and A~0 ~ 2 n ~  where nl and n~ are 

integers, in general  different f rom each other.  Bu t  now we shall show t h a t  

nl and n2 mus t  sat isfy the  fu r the r  conditions t ha t  nlq-n~ and n l - - n ~  shall 
be even numbers .  

To p rove  this, we mus t  ' first briefly review some of the  topological propert ies  
of the  ro ta t ion  group (5.6). Consider, for example,  a series of infinitesimal 

space displacements  in our field of body  orientat ions,  which add up to  give 

some finite displacement .  Such a series of space displacements  will lead to 
a corresponding series of infinitesimal rotat ions,  which add up to give the  

to ta l  ro ta t ion  needed to br ing the  body  f rom the or ienta t ion t ha t  it had  a t  

the  beginning of the  series to the  one t ha t  i t  has a t  the  end. Iqow,  if the  

series takes  the  fo rm of a closed circuit, it is ev ident ly  necessary tha t  the  body  

finally re turn  to its original orientation,  so tha t ,  as we have  a l ready pointed  

out, an integral  n u m b e r  of ro ta t ions  of 2z  mus t  have  t aken  place along the  

circuit. Bu t  now, le t  us suppose t h a t  we make  the  circuit smaller  and smaller,  

pe rmi t t ing  i t  to shrink cont inuously down to a cer ta in  point.  The to ta l  ro- 
ta t ion  t ha t  takes  place as we follow the  circuit mus t  then  decrease continuously 
to zero. Otherwise,  we should have  a finite ro ta t ion  connected with an infi- 

ni tesimal  d isplacement  in space, and  this would not  be  consistent  with the  
requ i rement  t h a t  the  field of body  or ienta t ions  be  continuous.  

I n  the  m a t h e m a t i c a l  expression of the  above  requ i rement  of cont inui ty  

in the  field of body  orientat ions,  the  Euler  angles do not  p rov ide  a convenient  

paramet r iza t ion ,  because when 0 ~ - 0 ,  singulari t ies can appea r  in the  para-  

(5) H. WEYL: Theory o/ Groups and Quantum Mechanics (New York, 1928). See 
p. 180. 

(6) 1~. D. MURNAGIIAM: The Theory o/ Group Representations (Baltimore, 1938). 
See p. 318. 
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metr izut ion tha t  do not  correspond to any re~l physical singulari ty in the  

field of orientations.  Indeed , when 0 = 0, the only quant i ty  defined by  the 

actual  ro ta t ion  of the  body is the  sum of the angles, ~ + ~ ,  while the difference, 
q0- -~  is comple te ly  arbi t rary .  Thus, if we deform our circuit past  ~ point  
where 0 =- 0, i t  is possible for ~ and F separate ly  to undergo large changes, 
even when the actual  ro ta t ion  (and therefore  along with it  the  sum, 9 + F )  
changes only by  infinitesimal amounts .  Hence  continuous changes in the 
orientations of the  bodies need not  always be reflected as continuous changes 
in the  Euler  angles; and for this reason, there  is no guarantee  tha t  as we shrink 
a circuit in a field of rotat ions down to a iooint, the  corresponding circuit in 
the  space of the  Euler  angles will also shrink down to a point.  As a result,  

the  expression of the requi rement  tha t  the field of body orientations be every- 

where continuous would be ra ther  complicated if done in terms of Euler  angles. 
To avoid the  kind of difficulty described above, we may  paramet r ize  the 

rOtation group, not  in terms of Eu le r  angles, bu t  ra ther ,  in terms of the Cayley- 

Klein  parameters ,  which are (according to paper  (A), eq. (8-b)): 

b~ : cos 0/2 cos (~f + q~)/2, 

b~ --  ~-- sin 0/2 sin (~v-  ~) /2 ,  

b2 =- cos 0/2 sin (~v + ~v)/2, 

b~ = sin 0/2 cos ( ~ - -  ~) /2 .  

For  the  Cayley-Klein parameters  have the advantage tha t  t hey  provide 
everywhere a locally unique and continuous representa t ion of the ro ta t ion 
group, in the  sense t ha t  an infinitesimal ro ta t ion  always implies a corresponding 
infinitesimal change in these parameters .  To demons t rn t e  this p roper ty  o~ 

the representat ion,  we note  tha t  t h e  unit  spinor (which is in a one-to-one 
correspondence with the  Cayley-Klein parameters)  t ransforms under  the intl- 
nitcsima.1 rotat ion,  r as 6[~i(dt /2)( to .a)# .  Thus, an infinitesimal ro- 
ra t ion must  always produce a corresponding infinitesimal change in /~ (and 

therefore  in the  C.K. parameters) .  
I t  must  be remembered ,  however,  tha t  the unique character  of the C.K. 

pa ramete r  representat ion applies only to small rotations.  Indeed,  with regard 
to the propert ies of the ro ta t ion  group (~in the  large ~, this representa t ion is 

two-valued.  For  corres]~onding to a n y  given rotat ion,  there  always exist  two 
sets of the b~, one o~ which is the negative of the other.  Bu t  even the  two-valued 

character  of the  C.K. parameters  in the  large is significant; for it provides 

mathemat ica l  description of the fact  tha t  the rotat ion-group is doubly- 
connected, a f~ct tha t  is, ~s we shall see presently,  ve ry  impor tan t  in the  de- 
te rmina t ion  of the  changes of angle tha t  ~re permissible in going around a 

circuit. 
To see the meaning of the two-valued character  of the representa t ion of 

the ro ta t ion group in terms of the C.K. parameters  (and therefore  in terms 
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of the  spinors),  let  us consider a circuit in space t h a t  leads to a continuous 

ser ies  of infinitesimal ro ta t ions  of the body  orientat ions.  There is of course 

a n  ~mbigui ty  in the  point  in the C.K. space at  which we mus t  s tar t ,  because, 

corresponding to the  initial  or ienta t ion of the  body,  there  a r e  two possible 
sets of v~lues of the  C.K. paramete rs .  Bu t  af ter  we have  chosen one of these 
sets, t hen  the  p a t h  in C.K. space t ha t  corresponds to our series of rotat ions 

is de te rmined  uniquely  because of the  locally continuous charac ter  of the 

representa t ion  of the  ro ta t ion  group in t e rms  of the  C.K. paramete rs .  Le t  us 

now consider a circuit  leading to a ro ta t ion  of 2z  abou t  some a x i s .  I t  is clear 

f rom the definition of the  b~ tha t  such a ro ta t ion  carries us f rom a given set, 

(bi, b~, b3, b4) of C.K. pa r ame te r s  to the corresponding set (=- b~, - -  b2, - -  b3, 

- -  b4). Thus,  even though the  body  has come back  to its original orientation,  

the  C.K. pa rame te r s  have  not  come back  to t he i r  original values. Indeed,  
geometr ica l ly  speaking, this ro ta t ion  carries us only half way  around the hyper-  

spherical  surface on which we mus t  remain  in the  four dimensional  space of 

the  b~. As in the  case of a great  circle on a sphere in three  dimensional  space, 

there  is no w a y  to continuously deform such a curve to a point  while keeping 
the endpoints ]ixed (7). As a result,  when we make  a closed circuit in the field 

of l~ody orientat ions,  if the  b c d y  ro ta tes  th rough  2n along this circuit, t hen  

as the  circuit is shrunk down to a point,  the  to ta l  ro ta t ion  t ha t  takes  place 

along this curve will have  to remain  equal  to 2z, no m a t t e r  how small the 

circuit  becomes,  so t h a t  the  field Of b o d y  orientat ions cannot  be continuous. 

On the other  hand,  if the  circuit carries us th rough  two rota t ions  of 2~, we 

are b rought  back  to the  original values of the C.K. pa rame te r s ;  and in the 

space of these  paramete rs ,  the  corresponding p a t h  goes all the  way  around 
the  hypersphere .  Then, as in the  case of a comple te  great  circle on a Sphere 

in three  dimensional  space, this curve can be deformed continuously t o  a 
point,  while keeping the  endpoints  fixed. F r o m  this, we conclude t ha t  a 

circuit involving two ro ta t ions  of 2~ can be shrunk cont inuously  to one having 

no ro ta t ion  at  all, while a circuit  involving a single ro ta t ibn  of 2~ cannot.  

More generally,  this  will happen  wherever  ~-~-~v and  ~v--y, change b y  even 

mult iples  of 2Jr on going around a circuit ;  or whenever  n~-n2 and nx--n~ 
are even integers.  Thus,  we  jus t i fy  the  conditions which we gave earlier, re- 

garding the  permissible  changes of value t ha t  the  wave  funct ion m a y  suffer 

on going around a circuit. 
We m a y  i l lus t ra te  the  conclusions of the  preeeeding pa rag raph  in te rms  

of an example  in which a given circuit carries us th rough  two rota t ions  of 2~ 

(7) The fixing of the end points corresponds to the fact tha~ we are choosing a 
circuit that  passes through a certain point in space. Since the orientation of the body 
is fixed at this point, the C.K. parameters cannot change at the endpoints of the 
circuit, no matter how this circuit is shrunk o r  otherwise changed. 
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in any  specified direction. Now, as the  circuit is shrunk, it  would be possible 
for  the ro ta t ion to become equivalent  to two separate rotat ions of 2~, each 
carried out in a different direction;  for  in this case, the  initial and final orien- 
ta t ion  of the body  would still remain u n c h a n g e d w h e n  the circuit was altered.  

Thus, a continuous deformation of the pa th  in the C.K. space would t ake  
place, with the endpoints of the pa th  held fixed ; for the direction of one of the  

rotat ions of 2z  could change continuously relat ively to tha t  of the  other.  

Bu t  when we arr ived at  a pa th  in which each r o t a t i o n  had an oppos i te  sense, 

to tha t  of the other  then  the  two rota t ions  would cancel each other ;  and we 
would have no ro ta t ion  at  all. Thus, we have given an example of how a 
circuit involving two rotat ions of 2Jr can be deformed continuously into one 
involving no ro ta t ion  at  all. As we have shown, however,  this cannot  be done, 

with a circuit involving a single ro ta t ion  of 2z. 
We see then  how the  two-valued charac ter  of the  C.K. paramete rs  (and 

therefore  of the  spinors) reflects the  topological connect iv i ty  propert ies  of the  
ro ta t ion  group. Of course, if we had to deal only with a single body~ these 

topological propert ies  would not  be relevant ,  because a single ro ta t ion  of 2Jr 

would, af ter  all~ bring the  body  to an equivalent  or ientat ion in space~ so t h a t  

at  a given t ime, no physical  difference could exist  between a body  tha t  had 
suffered only a single ro ta t ion of 2~r, and one tha t  had suffered two such ro- 
tations.  On the other  hand, because we are dealing with a /ield of body  
orientations, the  relat ive amounts  of ro ta t ion  suffered by  bodies in different 
par ts  of the  field become re levant ;  in the  sense tha t  if the orientat ion changes 
by  an odd number  of rota t ions  of 2z  along a circuit, then  this circuit cannot  
cont inuously be shrunk to one with no ro ta t ion  at  all, while if it  changes b y  
an even number  of rotat ions of 2z~ i t  can so be shrunk. Thus, the two-valued 
charac ter  of the  spinors (and of the  C.K. parameters)  describe physical ly signi- 
ficant propert ies  of a field of body  orientat ions.  In  this way, we obtain a 
reaso n why  the  basic quantum-mechanica l  t heo ry  of the electron which con- 

cerns itself with such a field of body  orientations,  should be expressed in t e rm s  

of spinors. 
We now apply  the  above conditions on the  cont inui ty  of the  angles of 

ro ta t ion  to a s ta t ionary  s ta te  of a hydrogen  a tom,  which in the usual inter-  

p re ta t ion  is described as having an orbi ta l  angular  momentum,  l~ and a Z 
component  of the  to ta l  angular  m o m e n t u m  (spin plus orbital) of k ~- (1 ~- �89 

For  this state,  the wave func t i on  is (s) 

(37) 
R(x) [~l  q- k p(k-~) O' 

(~+~) O' V2~ + l \ V i ~ _ k  + l p,  ( ) exp [i(k + ~)~ ]/ 

(s) See D. Boiler: Quantttm Theory (New 3York, 1951); Chap. 17, eq. (73). 
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where 0' and ~' are the polar angles of the position vector, x, of th~ center of 

the body, while (~-�89 ' P~ (0) is a sui tably normalized associated Legendre poly- 
nomial. 

Comparison with eq. (34) and (35) then  indicates t ha t  

(38) ,~,o _ ~ / l  + k P~(~- ~!(0') 
2 --  k~ ' ,  ~ : - - ~ ' ,  t g~  -- v / { ~  k + 1 P~(~+�89 " 

Since ~"----l + �89 and since q~' changes by 2z as we go around a circuit, 
we see t ha t  AF0----(21 § 1)2~ and A ~ - - - 2 z .  Thus, the topological rela- 
tionship t ha t  ~0 ? ~o and ~ - -  ~o change by even multiples of 2~ on going around 
a circuit is satisfied. 

We are now ready to compute the action integral  (75) for this ease. To 
do this, we note tha t  the velocity, v=(~ ,2m)(VyJ  § cos0V~0), has only a com- 
ponent in the direction of ~'. Thus, the body moves in a circle, the plane of 
which is normal to the Z axis. F rom (77), we see tha t  0 is constant  along 
this  circle. Thus we obtain 

(39) T : h  k - -  : h  n -~ ~ (1- -  cos 0) , 

where n is an integer lying between 1 and - - 1 .  
The Z component of the orbital angular momen tum of the body is 

( 4 0 )  P~ - -  2 z  - - / i  k - -  . 

The combined Z component of spin and orbital  angular momentum is 

h cos 0 
(41) PC + 2 --  ~k.  

Thus, we find tha t  the tota l  angular  momen tum is just  equal to tha t  pre- 
dicted in t h e  usual theory. This angular momen tum divides itself, however, 
between the spin and orbital angular momentum in accordance-with the co- 
la t i tude angle 0' of the radius vector of the body relative to the center of the 
a tom (which determines 0 through eq. (38)). 

The result (39) for the action variable is analogous to tha t  obtained from 
the Bohr-Sommerfeld quantum condition (of the <( classical )~ quantum theory) 
in which even the featm'e of fractional  quan tum numbers is present, because 
these are often found to give bet ter  agreement  with experiment than  can be 
obtained with integral quan tum numbers.  There are, however, three important  
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differences f rom the  Bohr-Sommcrfe ld  theory.  Firs t ,  eq. (39) is an exact 
equat ion , and not  an approximate  one. Secondly,  in the evaluat ion of J ,  ghe 
momentum,  p, must  be calculated taking into account  the  quantum-potent ia l  

and the  spin energy, and not  just  the  classical potent ia l  as was done in the 

Bohr-Sommerfeld  theory.  Finally,  the  action variable,  J, for the  particle 
mot ion alone depends in the location of the orbit.  Only the sum of this action 

variable and the one corresponding to the  spin angular  m o m en tu m  is quant ized 
in a way t ha t  is independent  of the location of the orbit. 

We are now in a position to see how our model  accounts for the quant izat ion 
of the angular momentum.  To do this, we first note  tha t  the  action variable 

is proport ional  to (~)  v .  dx which is an integral  represent ing the  to ta l  vortiCity 

of the fluid inside the  circuit in question. Thus, we have obta ined a simple 
physical  in terpre ta t ion  of the act ion variable.  Then, because of the  relat ionship 

v = (h/2m)(V~ + cos0Vv) , the  connect ion (36) is established between this 

vor t ic i ty ,  and tile changes of body angle, A~o 0 and A~v, which occur as we go 
around a circuit. Finally,  because we have a continuous field of spinning 
bodies, A~,o+A~v and A,j,--zlq~ must  be even multiples of 2z. Thus, the 
quantizat ion of vor t ic i ty  and therefore  of angular  momen tum reflects basically 
the requi rement  tha t  we have a continuous and single-valued field of spinning 
bodies, whose orbital  motion is coordinated to their  spin motion in the way 

implied by  the relationship, v = (h/2m)(~7~f + cos 0 VT). 

- On the  Process  of Measurement  of the  Spin. 

We shall now indicate in general  terms how the process of measurement  

of the spin is to be t r ea ted  in the model given in this paper. To do this, we 
shall first review briefly a simi]ar t r ea tmen t  of the analogous problem of a 
non-spinning part icle (described by  the ,%]'trSdinger eqvation and not  by  the 
Pauli  equation) going around an atomic nucleus with orbital  angular mo- 

mentum,  h. 
Now a common method  of measuring the  spin of an a tom is to place the 

a tom in a non-homogeneous magnetic field. This field then  separates atoms 

according to their  component  of the  angular m o m en tu m  along the direction 

of the field. To show how this process of measurement  is t rea ted  in terms of 

the  causal in terpre ta t ion  of the quan tum theory,  we shall use a me thod  de- 
veloped in a previous paper  (9). ~7ow the  general initial wave funct ion of the 

electron with orbital  angular momen tum of h is 

(42) 't  ~ = a _ ~ _ ~ ( x )  + ao~o(X) + a ~ ( x )  , 

(9) D. Bon~: Phys. Rev., 85, 180 (1952). 
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where T_I ,  W0, T~ represent  the  wave functions of electrons with Z com- 
ponents  of the angular  momen tum of respectively,  --1~, 0 and A, while a_~, 
a0, a~, are the  corresponding coefficients (in general complex) for the expansion 
of the wave function,  T(x).  The complete wave funct ion for the  combined 
system consisting of electron plus the atomic nucleus (whose coordinates we 
denote by  y) is then  

(48) /o(y)(a_~T-~(x) + a0To(X) + a~G(~)), 

where ]o(y) represents  a wave packet  describing the fact  tha t  the atomic 
nucleus is fair ly welldocalized in space. 

~ o w  when we apply  a magnetic  field, ~ ,  (the direction of which we take 
to be tha t  of the Z axis) then  each of the three  parts  of the wave funct ion 
described above will begin to oscillate at a different frequency. Moreover, 
if the magnetic field is inhomogeneous,  the three parts  will begin to separate 
in space. Indeed~ af ter  some t ime, the wave funct ion will be t ransformed into 

- / 0 ( y  ~ a)a_~ exp [i~_l]T_~(x) + ]0(y)ao exp [iO:o]To(X) + 

~- ]o(Y 4-A)al exp[i~]T~(x),  

where CZ_l, ~o, G{*I are changes of the phase angles which have resulted from the 
effects of the  magnetic  field, and /~ is the  mot ion of the nucleus under  the 
action of this field. ~ o w  eventual ly  A becomes much bigger than  the width 
of the wave packet  /o(Y)~ so tha t  the three  parts  of the wave function cease 
to interfere with each other,  and obtain a classically distinct separation. When 

this happens, then  as has been shown ( 5 ,  the  particle-like inhomogenei ty 
associated with the  electron must  have entered one of the separate packets.  
The ,probability tha t  it is a n y  one of them is given by  

Thereafter ,  the  other  packets  play no role, so tha t  t hey  can be neglected. 
We see then  tha t  what  really happens in a measurement  is tha t  the meas- 

uring apparatus  provides a general envi ronment  (in this ease~ the inhomo- 

geneous magnetic field) in which the wave funct ion is t ransformed from what- 

ever i t  ma y  have been ini t ial ly into an eigen-funetion of the ~ observable ~ 

tha t  is being measured (in this case, the Z component  of the  angular mo- 

mentum).  
Thus, in the ease under  discussion, the actual  orbital  angular  momentuni  

of the electron can va ry  continuously but  only certain stable quantized values 
are possible, which can exist  indefinitely without  change, in the environment  
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supplied by  the  inhomogeneous magnetic  field. Which of the  three  possible 
stable values will ac tual ly  be obtained is not  determined in an individual  case~ 
if we merely  specify the  initial wave funct ion,  T(x).  To determine,  the  actual  

result,  we should have to specify also the  initial location, ~(to), of the  particle,  

and the general irregular motions in the T field which lead to a s tat is t ical  
behavior  t ha t  is described by  the probabi l i ty  distribution,  P = ITI ~ for the  

p~rticles. B u t  as we have seen, the probabi l i ty  of obtaining a n y  par t icular  
resul t  in a statist ical  aggregate of cases is de termined  in te rms of the coeffi- 
cients of the initial wave funct ion with the  aid of eq. (45). 

In  the  causal in terpre tu t ion  of the  quan tum theory ,  a typical  measurement  
process of the  kind tha t  can be carried out  in connect ion with the atomic 
level is therefore  not reully a meusurement  of the  detai led propert ies  of the 

underlying system (which is assumed to consist of the  T field plus the  part icle  
t ha t  moves in it). Rather ,  it  represents  a kind of stat is t ical  response to certain 

over-all  propert ies  of the T field and of the  particle.  In  this sense, the (( ob- 

servables ~> are ra the r  analogous to the  pressure and t empera tu re  of macro-  
scopic physics or to the  macroscopic varia.bles used in hydrodynamics ,  since 
these likewise do not  describe any  detai led propert ies  of the underlying mo- 
lecular motions, bu t  r a the r  general stat ist ical  propert ies  of the  system as a 
whole. 

Le t  us now consider how this theory  of measurements  could be ex tended  
to the  Pauli  spin theory .  To do this, we should need a theory  of the  many-  
body problem, corresponding to our theory  of the  many-body-SchrSdinger  
equat ion (9), because as we have seen, we have had to discuss the  in terac t ion  
of the  electron with the  a tomic nucleus in order  to develop a theory  of measu- 
rements .  Such a theory  is now being developed in terms of an extension of 
our mode l  to include second quantizat ion;  and pre l iminary results suggest 
t ha t  such an extension will be possible, a l though m an y  of the  details remain  
to be worked out.  For  the  present ,  however,  we shall mere ly  state  tha t  it  
appears tha t  the theory  of measurements  can be carried ont for the  spin theory  
in a Way tha t  is essentially the same as what  has been done for the  SchrS- 
dinger equat ion without  spin. For  example,  in the  case of a spinning electron 
in an a tom in an (( s ~> state,  there  will be two possible basic solutions, one 

corresponding to spin up, and the other  to spin down, with the spin measured 

in any  desired direction. Hence,  the  initial wave funct ion can be expressed as 

= a+T+(x) + a_T_(x). 

Then, as in the  case tha t  we have alreudy discussed of a part icle of angular  
momentum,  ~, obeying SchrSdinger"s equation, the effect of the  inhomogeneous 
magnetic  field will be to t ransform this wave funct ion ei ther  into T+ or into 
T _ ,  with respective probabilities, P + =  I a+[ ~, and P_  ---- l a_ ] 2 ,  of obtaining 
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either result. Hence, as in the Schr6dinger theory, the appearance of quantized 

possible values for the spin in a measurement will be the result of a reaction 
to the magnetic field of the system as a whole, (consisting of fluid with spinning 
bodies, and the particle-like inhomogeneity, described in Sec. l, which is the 
counter part  of~the particle appearing in Schr6dinger's equation). Thus, what 

is obtained in what is now cMled a measurement of the spin will have no 
direct and simple relationship t o  the spins of the bodies constituting the fluid. 

Indeed, as we have seen, the components of the lat ter  can vary continuously, 
but  nevertheless, in a magnetic field, the overall motion of the whole system 
is such that  the total angular momentum eventually settles down either to 
]~/2 or to --]~/2. (We may make here an analogy to certain kinds of classical 
non-linear oscillators, which after being disturbed eventually settle down to 
one of a number of possible stable modes of oscillation). I t  is clear then that  
the spin as it is now measured should be considered as a higher-level property, 
having a relationship to the assumed spinning bodies that  is somewhat ana- 

logou s to the relationship between macroscopic variables, such as pressure 
and temperature, and the underlying atomic variables. 

6. - S u m m a r y  and Conclusions .  

In this paper and in the previous paper (A) we have developed a model 
~or the Pauli equation in terms of a fluid composed of spinning bodies, which 
contribute an (( intrinsic angular momentum ,) to the total angular momentum 
of the system. This model has the property that  if the bodies are at any time 

all spinning with their angular momenta parallel to their principal axis of 
symmetry, then they will continue to satisfy this condition for all time. On 
the other hand, it is possible for the angular momentum S to have a general 
orientation; and in this case, the component of S normal to the principal axis 
will turn with an angular velocity, (o, that  depends on how fast the body 
happens to be spinning and in the torques acting on the body. For processes 
with characteristic times, z ~> 1/o), the component of S normal to the prin- 
cipal axis will average out to zero, and the Pauli theory will provide a good 
approximation. But for processes in which z is of the order of 1/o) or less, 
the Pauli equation will no longer apply, and the full general set of non-linear 

equations will be needed. This means that our model already implies the 
possibility of a break down in connection with sufficiently high frequencies, 

and therefore with sufficiently high energies, of the whole general scheme 

connected with the usual interpretation of the quantum theory, which is based 

in an essential way on the assumption that the fundamental equations of the 
theory will always be linear. 

In connection with our discussion of the theory of measurements in Sec. 5, 
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jt was seen tha t  the spinning bodies of which our fluid is assumed to be 
const i tuted are not identical with the spin (, observables ~> of the usual quan tum 

theory,  but  tha t  rather ,  they  const i tute a lower level, in terms of which the 

spin ~ observables ~> are determined as overall and in general statistical pro- 
perties of the fluid. For  example,  the characterist ic  quantized way in which 
the spin angulsr  momentum manifests itself at the atomic level was seen in 
See. 4 to follow from conditions of single-vMuedness applying to the motion 
of the fluid as a whole, which are such tha t  even though the spin motions of 
the bodies are continuous, the overall motion has certain discrete possible 
s ta t ionary values for the angular momentum.  

In sum, then, i t  may  be s~id tha t  we have, for the  ease of the Pauli  equation,  
explained the quantum theory  in terms of the motions of new entities existing 

at a sub quantum-mechanical  level. We call the new level <~ sub quantum- 

mechanical ~> because the laws of quantum-mechanics  do not apply  there.  
Rather ,  the laws of quantum mechanics emerge as overall and statistical 
relationships .arising on the basis of the lower level laws~ as for example,  the 
laws of ordinary hydrodynamics  arise on the basis of lower level laws governing 

the atomic motions. 
Naturally,  to make an explanat ion of the quantum theory  possible, we 

have had to postulate something, viz, the fluid composed of spinning bodies 
(since without  assuming something we can never  explain anything).  I t  m ay  

tt~en be asked what  we have gained by  making such a postclate .  Fi rs t  of all, 

we have gained the possibility of seeing in a rat ional  way how all of the phe- 
n o m e n a  of atomic physics could be connected by  means of a set of general  
causally determined motions, so tha t  we do not have to regard atomic pheno- 
mena as mysterious processes which take place in a way tha t  could never  
even be conceived of. (In this connection, let  us recall tha t  there  has existed 
a widespread general impression tha t  to obtain such a rat ional ly unders tand-  
ab le  explanat ion of quantum phenomena in general and of the electron spin 
in part icular  would be impossible.) Secondly, whenever  one obtains a rat ional  
explanat ion of a wide range of phenomena past  experience in science has shown 

tha t  this explanat ion generally suggests frnitful  new avenues of approach to 
problems, which would not  even have been suspected if the phenomena  had 

not  been thus explained i but  ra ther  had simply been accepted as things tha t  

(( just  happen )> for no par t icular  reason whatever .  F o r  example, the atomic 

theory,  suggested originally by  the effort to explain the laws of chemical com- 

bination and the gas laws in terms of the propert ies of atoms, was eventual ly  
able to explain m~ny new kinds of phenomena  (e.g., Bi'ownian motion,  visco- 
sity, gaseous discharges, etc.) and suggested impor tan t  new directions of re- 
search (e.g., Ruther ford  scattering, electron theory  of metals, etc.). As for 
the question of wether  the assumption of a sub quantum-mechanical  level 
will eventual ly  prove to be fruitful  in a similar way, this can of course be 
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answered definitively only in the  future.  Nevertheless ,  one can a l ready see 
good reasons why this approach m a y  be on the  r ight  t rack,  even if, perhaps ,  

not  correct in all of its details. Thus, the  character is t ic  new phenomena  of 

modern  high energy physics is the  appearance  of a whole host  of (~ e lement-  

a ry  ~ particles,  which can be (~ created ~, (( des t royed ~ and t r ans fo rmed  into 

each other. The ve ry  fact  t ha t  these processes of creation, des t ruct ion and 

t ransformat ion  are possible suggests s t rongly t ha t  the  so-called e l emen ta ry  

part icles are not real ly  e lementary ,  but  ra ther ,  t ha t  t hey  arise on the  basis 

of motions of new kinds of entit ies t ha t  are still more  fundamenta l .  Thus, 
what  is suggested is a new level, below tha t  of the  (~ e l emen ta ry  ~ particles,  out 

of which these part icles arise as some kind of moving  s tructures .  
Iqow, we have  a l ready seen t ha t  to explain the  q u a n t u m  theory  causally,  

we have  a l ready had  to postula te  a sub-quan tum mechanica l  level, out of 

the  motions of which the  usual quan t um  mechanical  proper t ies  of things arose 

as overall  characteris t ics  (e.g., quantization).  Now, as long as the  basic 

equations governing the  sys tem are linear, nothing new can arise in these 

overall  characterist ics,  not  a l ready t rea ted  in the  well-known solutions of the 

Pauli  equation. But  as we have  seen, i t  is just  in connect ion with sufficiently 

high energy processes t ha t  the equations of our model  can become non-li~,,ear. 
l~ow, it is well known tha t  non-linear equations have,  in general,  m a n y  modes 

of s table  motion.  Each  of these modes would manifes t  itself a t  the a tomic  

level in connection with new rules for quant izat ion and for the de te rmina t ion  

of other  overall  proper t ies  of the  system,  which we would in te rpre t  in t e rms  

of the  appearance  of a new kind of (~ par t ic le  ~. Thus,  the  way  is opened up 

for a t r e a t m e n t  of the  processes of creation, destruct ion,  and t rans format ion  

of e lementary  ~ part icles ~, as well as for a calculation of which kinds of 

(~ particles ~ can exist, and of wha t  some of their  proper t ies  are, since the new 

(~ part icles ~ could correspond to new modes of overall  mot ion  of the under ly-  
ing fluid. 

Of course, we do not  believe t ha t  a model  based on an explanat ion of the 

Pauli  equat ion will real ly  be adequate  for the  purposes described in the previous 
pa ragraph  because it  is not relativistic.  A model  based on an explanat ion  of 
the Dirac equat ion (and be t t e r  still with second quantizat ion) should however  
give a mueh more  accura te  t r e a t m e n t  than  would be possible with the  model  

given in this paper.  Present  work indicates t ha t  models can a l ready be found 

which reproduce mos t  of the  features  of the  Dirae  equat ion and m a n y  of those 

of second quantizat ion.  The complet ion of this work would then  lay the  

foundat ion for an a t t a ck  on the  propert ies  of the  new level, including those 

connected with the  creation, destruct ion and t ransformat ion  of e lementa ry  

particles. I n  any  ease, i t  is clear tha t  new direeti0ns of invest igat ion could 

thus be opened up, going outside the f ramework  of theories tha t  fit into the  
current  general  scheme of the  quan tum theory.  


