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Since Dirae's pioneer work (z) i t  has been known that  Einstein 's  relativity theory 
(and Michelson's experiment) are perfectly compatible with an underlying relativistic 
stochastic , aether ~> model. Inherent  to this model is Einstein 's  idea that  quantum 
statistics reflects a real subquantal  physical vacuum alive with fluctuations and ran- 
domness. This concept of a nonempty vacuum has been recently revived not only to 
yield a foundation to the stochastic interpretation of quantum mechanics (~-4), bu t  
also to explain causally possible nonloeal superluminal interactions resulting from the 
Einstein-Podolsky-Rosen paradox (5.e). Indeed, if a forthcoming experiment of Aspect (7) 
confirms their existence, the only way out of the resulting contradiction between rela- 
t ivi ty and the quantum theory of measurement (7) seems to lie in the direction of an 
extension of the causal stochastic interpretation of quantum mechanics (s). This 
assumes the existence of causal subquantal  random fluctuations induced by a stoch- 
a s t i c ,  hidden ~> thermostat proposed by BOHM, VIGIER and I)~. BROGLIE (3,10). By 
<~ causal ,  we imply 

a) tha t  no individual particle can leave the light-cone; 

b) tha t  the sequence of causes and effects on any timelike particle motion is 
observer independent;  

c) tha t  one can deduce the form of de Broglic ~ pilot ~ quantum waves (and 
the corresponding particle motions) from the assumption that  they represent real col- 
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leetivc drift and random motions on the top of Dirac (4 aether ~ in which the quan tum 
jumps occur at the velocity of light (2,11); 

d) tha t  possible superluminal interactions can be interpreted in terms of a quantum 
potential  Q (reflecting the particle interaction with the thermostat) which also carries 
their associated de Broglie waves; this potential 's motion is not carried by individual  
particles, but  results from the superluminal phaselike collective motion carried by 
the vacuum. 

The aim of the present letter is 

A) To extend Dirac (~ aether ~> to include the concept of spin. 

B) To demonstrate that  the corresponding wave equations and quantum-mech- 
anical diffusion coefficient D : ~,/2m (common to all present stochastic interpreta- 
tions of quan tum mechanics) can now be theoretically deduced from Dirac-aether 
zero-point fluctuations at the velocity of light. 

C) To discuss Dirac's aether (with spin) as a common realistic basis for various 
stochastic models successively proposed in the l i terature:  such as Bohm and Vigier's 
initial subquantum thermostat (9), the zero-point electromagnetic model of stochastic 
electrodynamics (SED) of de la Pefa ,  Marschallet al. (12,~a) and Sudarshan et al. (1~). 
All are subvarieties of Dirac covariant mixture of J = 0, J : �89 and J : 1 particle- 
antiparticle pairs: the total defining a background sea, at absolute zero temperature, 
on which the de Broglie waves of quantum mechanics travel. 

Before discussing A) let us recall that  Dirac (( aether ~) rests on the idea that  
through any point 0 there passes a flow of stochastic particles and antiparticles (de- 
scribed in fig. 1 as particle moving backwards in time), whose momenta have the 
extremities of their four-vectors G~ (with G~G~ = - - m 2 c  ~) distributed with a uniform 
surface density on the two three-dimensional surfaces of the hyperboloids H + and H- .  
They will thus remain invariant  under  all Lorentz transformations. 

This stochastic relativistic distribution constitutes the only possible model for a 
physicM undetectable thermostat for spin-zero particles into which we can study the 
relativistic analog of the classical nonrelativistie Brownian motion. DIRAC has derived 
this from the indeterminacy principle. However, i t  differs from it  by two new physical 
properties. 

a) Since the light-cone behaves like an asymptotic accumulation manifold of 
Dirac's stochastic distribution, we can assume that  the corresponding stochastic jumps 
of a Brownian particle, submitted to its random action, occur practically at  the velocity 
of light. Indeed, any given exchanged energy is statistically superseded by  more 
energetic interactions. 

b) This ultrarelativistic Brownian motion includes the possibility of pair crea- 
tion and/or annihilation. This is important ,  since the mixture of particles and anti- 
particles has been shown to provide a realisirio interpretat ion (~) of possible negative 
probabili ty distributions. 

(11) W .  LEHR a n d  J. PARK: J. Math. Phys.  (N. Y.) ,  18, 1235 (1977) .  
(12) L. DE L~. PEI~A-AUERBACH a n d  A.  ]~/]:. CETTO: Phys. Roy. D,  3,  795 (1971).  
(lJ) T.  MARSHALL: Prec. R. Soc. London Set. A,  276 ,  475 (1963) .  
( ~ )  E . C . G .  StrDARSHA~, K.  P .  SINHA a n d  C. S I V ~ A M :  Found Phys. ,  6, 65, 717 (1976);  8 ,  823 (1978) .  
(Is) u  P .  TERIa0TZ~:~ a n d  J.  P .  VIGIER: ~ .  l~kap. Toot. F/z~., 13,  356 (1961) .  
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The  preceding  mode l  can ev iden t ly  be  ex tended  to inc lude  spin if  (following B o ~  
et aL (~) and S o u ~ A v  e$ al. (~)) we endow our  ex tended  Dirae-(~ ae the r  ~ elements ,  w a v e  
elements  and  concent ra ted-par t ic le  e lements  w i th  in te rna l  ro ta t ions  which represent  
spin classical counterpar~ (is). 

' , ~  P~ 

~0 

~C 

~ / ~  . ' p1 ~ 

Fig .  1 . -  T h e  she l l s  c o r r e s p o n d  t o  t h e  t w o  C a s i m i r  ] n v a r i a n t s  of  t h e  P o i n c a r b  g r o u p ,  i.e. 
G~ ~ z  = _ ~ c ~  a n d  ~ u  ~ c o n s t a n t .  

In  th is  mode l  all  ex tended  e lements  are  character ized by  an in te rna l  angular  mo- 
m e n t u m  S~Z added  to the i r  fo t t r -momentum G~ and un i t a ry  four-ve loc i ty  ~g = dxg/dz  
(i.e. ~g5v~ = - - c 2 ) ,  which are no longer  co-linear.  The  conserva t ion  equat ions  yield 
G~, = 0 (i.e. G~G~ = - - m 2 c  ~) and G~v~v--Gv~ = ~ wi th  S~vS~ = - -a~ .  

On this  basis one can in t roduce  th ree  classical ex tended  models  corresponding to 
the  three  spin s ta tes  (i.e. J := 0, J = �89 and  J = 1) by  the  th ree  const ra in ts  ~ v ~ v  = 0, 
S ~  ~ = a 0 ~  and  S ~  v =: 0. One then  obta ins  S~S~ = const  and  s~s~ =: const  w i th  
,g~ = ~q~vG v and  s~ = Sgv~ ~. I n  part icles ,  in te rna l  mot ions  then  inc lude  circular  rota-  
t ions of a cen t re -o f -mat te r  dens i ty  (denoted  by  (c, c), x~(z)) a round  a centre-of-mass 
(denoted  by  (C, M) and y~(O)) m o v i n g  para l le l  to G~ wi th  a cons tan t  radius  ~ (defined 
by  m%ZR~ = gm.G *') and  de Brogl ie  f r equency  ho~ = mc ~ w i t h  respect  to i ts  p roper  
t ime.  This  corresponds to a classical coun te rpa r t  of t he  q u a n t u m  (, z i t t c rbewegung )~. 
The  (c, c) 's i n t e rna l  D a r b o u x - F r e n e t  f rames  which  now represen t  in te rna l  spin do no t  
ro ta t e  ( J =  0), r o t a t e  twice  ( J = � 8 9  or  once ( J =  1), whi le  the  (c,c) ro ta tes  once 
a round the  (C, M). Ant ipar t ic les  h a v e  opposi te  (mirror) in t e rna l  motions .  Along the  
(C, M) mot ion  one thus  recovers  classically P lanck  fo rmula  A = mcO (where A re- 
presents  t he  re la t iv i s t i c  act ion and  0 the  p a t h  interval)  which  can also be wr i t t en  
as A = mcO= h~;  ~ denot ing  our  new in te rna l  de Brogl ie  phase  and  ~ i ts  conjugate  
momenr The  corresponding in te rna l  ro ta t ions  (oscillations) also yield 0 = ( ~ / m c ) =  
= 2~, where  2 = (h/mc) is Compton  classical radius, i.e. the  (C, M) in terna l  mot ion  as- 
sociated wi th  one (2~t) in terna l  ro ta t ion .  

(1~) D.  BOH~ a n d  3.  P .  VIGIER: Phys.  Rev. ,  109,  882 (1958). 
(17) F .  ]~ALBWACHS, J .  ~VL SOURI•U' a n d  J .  ~o. VIGIER: Z. Phys.  Rttdi~tm, 22,  26 (1961).  
(la) G. FENECH, M. MOLES a n d  5. P .  VIGIER: Left. Nuovo Cimento, 24,  56 (1979),  
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On the preceding basis we can clearly introduce spin into Dirac-acther model. 
To every particle or antiparticle 's G~ in fig. 1 is associated the orthogonal spacelike 
spin vector Sa, whose extremities will have a constant surface density on the (~ spin 
shell ,~, i.e. timelike continuous (~ spin shell ~ surface S~SI' = const. Such a stochastic 
distr ibution complements the constant  surface distribution of the G~'s on the ~ mass 
shell ~ GaG~ = - - m 3 c 3  and is evidently invariant  under  any  Lorentz transformation: 
so that  the stochastic distribution of the ((~, S~) pairs now represent a J ~ 0, J = �89 
or J ~ 1 Dirac aether. The same result of course is obtained if we replace in fig. 1 
the G~'s by  ~a (since &~Y~ = ~ c  2) and the S~'s by s,.  

Dirac's aether is thus now assumed to consist of a covariant mixture of J = 0, 
J = �89 and J = 1 particle-antiparticle pairs: the total i ty  clearly defining a background 
sea which encompasses (as we shall later discuss) Bohm and Vigier subquantum lev- 
el (9) de Broglie subquantum thermostat  (lo) Sudarsham et at. aether (14) or (in the 
J = 1 l imit  for zero mass) the zero-point electromagnetic model of stochastic electro- 
dynamics (SED) of de la Pe~a (13) and Marshall (~a). 

Before calculating D, let us briefly recall the connection between de Broglie waves 
and Dirac aether. As already shown in the li terature (3.~8.20), Dirac-aether model 
with spin implies the correct form of the J---- 0, J---- �89 and J = 1 wave equations if 
they are considered as describing the behaviour of organized collective excitations 
(spin waves) on the top of our eovariant subquantal  vacuum. This results from the 
preceding hypothesis a) and b) combined with the assumption that  all our stochastic 
motions have only short range (i.e. contact particle-particle collision-type interactions), 
so tha t  random velocities and accelerations only result from direct short-range averaging 
over l imited four-dimensional volume elements (3). 

The wave equations can then be deduced along the two lines of demonstration util- 
ized in nourelativistic stochastio theory, i.e. Einstein and Smoluchowski Brownian. 
motion theory (~) and Chandrasekhar random walk (at the velocity of light) on 
discrete covariant four-dimensional lattices (3). For  example in the first line, assuming 
that  our extended particles associated with our collective perturbat ion 1) are carried 
along the lines of flow of a regular drift motion v associated with a collective motion 
on the top of Dirac thermostat (characters in bold-face type denoting four-vectors), 
2) jump stochastically at  the velocity of light from one average drift line of flow 
to another and thus (for a conserved set of identical particles with arbitrary initial  
positions) reach an average mean conserved distribution P(x) = y* % one can imme- 
diately demonstrate Nelson law (3), i.e. 

(1) m ( D a v  - -  D e n )  = F + , 

where the stochastic four-velocities Dd and D~ represent the covariant derivatives along 
the drift and stochastic lines of flow (i.e. D a / =  a]/dT • ( v . V ) F  and D~I ---- ( u ' V ) f  -{- 
+ D{V" V ) ] ) F  + and F + the external force: the constant D now denoting the diffusion 
coefficient 

(2) 

where ((~r)~ = ~'~. ~r~ Sr~ denotes the average square spacelike distance of our 
t 

random jumps and v the proper t ime along the drift lines of flow. From (1) which has 
thus been shown to describe particular Markov processes a t  the velocity of light one 
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deduoes the  Klein-Gordon (2,21), Feynman-Gell-~Kann (2o) and Proea equations (18). Their 
corresponding (de Broglie <~ pilot ~>) wavelike solutions all  satisfy de Broglie ~ phase 
correlation principle ~>: a principle characterized by  the fact tha t  all  internal  (zitter- 
bewegung plus spin) rotat ions of the  associated extended" part ic le  inhomogeneities 
(or nonlinear solitons) which follow the drift  lines of their  surrounding , pi lot  ~> wave 
rotate  in phase wi th  the fluid elements which surround them. One can compare this 
process with a plane flying at  Maoh 1 within its own sound wave:  the  waves themselves 
(thus very different in nature  from ordinary sound waves) can be best  described as 
organized ~ spin waves ~> propagat ing on a chaos of the  spinning classical J ~ 0, 
J ---- ~ and J ~ 1 tops whioh now const i tute  Dirac aether wi th  spin. As one knows (2~), 
all wave equations can be mapped into relat ivist ic  hydrodynamiea l  representations 
where part icles move (on the average) from one line of flow to another  and jump (at 
the velocity of light) from one drif t  line to another. The quantum potent ial  (which 
now also includes quantum torques) represent  stochastic interact ions (action and reac- 
tion) between our <~ particles ~> and the waves, both  carried by  Dirac aether. De Broglie 
phase correlation clearly expresses the  well-known proper ty  (~3) tha t  oscillators can 
only transfer  energy by  contact  to thei r  immediate  neighbours, provided they oscillate 
in phase. This p roper ty  is true for example for neighbouring closed vortex tubes in 
classical f l u i d s -  or for connected spring systems (23). I t  implies tha t  the stochastic 
jumps do not  dis turb the regular ordering of de Broglie clocks in de Broglie waves and 
justifies de Broglie 's  idea (~0) tha t  the  subquantum thermosta t  is bui l t  with a super- 
position of independent  J ~ 0, J ~ �89 and J ~-1 co-variant  thermostats .  This last 
point  (plus the  results summarized a t  the  beginning of this  letter) can now be used 
to clarify a long-standing problem common to all  stochastic interpreta t ions  of quantum 
mechanics (including stochastic elcctrodynamics),  i.e. what  is the connection between h, 
which is physical ly  associated with internal  frequency and/or  spin, and D which rep- 
resents random jumps~ 

To do this,  we will l imit  the demonstrat ion to the Klein-Gordon case, since spin 
(as can easily be shown) complicates, bu t  does not  modify substant ial ly,  our demonstra- 
tion. 

To calculate D we now assume 

a) That  in our stochastic jumps  D describes (on the average) one jump only. 

b) That  in each individual  jump the particles '  (c, c) undergoes one rotat ion only 
around the (C, M). This is na tura l  since jumps do not cancel rotat ion.  

Assumptions a) and b) evidently represent the simplest possible Brownian-motion 
scheme which preserves both the average drif t  motion and  the local phase correlation 
and average ordering of the de Broglie-clock zitterbewegung. If  no interaction occurs 
during one stochastic jump, we can consider i t  as the v--~ c l imit  of a free-particle 

motion described by  the Lagrangian ~ ~ -  mc ~ v / - - ~  d~, where d~ represents the  
corresponding drif t  interval.  As s ta ted  above, during the corresponding free jump the 
(c, c) rotates  of a quant i ty  2~, so tha t  the  corresponding distance ((~$)2~t mus t  be equal 
to Compton wave-length 2 --~ (/~/mc). When going to the  v ~ c l imit  we thus write  
((~x)2~ = c 2 A~ ~, which yields (since D -~ ((8~)2~/2 A~) the diffusion constant  D ~- ?~/2m. 

(a0) N.  CUFARO PETRONI a n d  J .  P .  VXGIER: Phys. Left. A,  73,  289 (1979).  
(10) L.  DE LA PEI~A-AUERBACH: Jo Math. Phys.  (N .  17.), 12, 453 (1971).  
(sl) F .  GUERRA a n d  P .  RUGGIERO: Left. N~ovo G i ~ t t o ,  23, 529 (1978).  
(s~) F .  HALBWACHS: T ~ o r / e  relativists des fluides & spin (Par i s ,  1960) .  
(is) Cf. P .  HILLION: Inte~r~tation ea~sale de la llmtte non relativists 3)our l'atome d'hydrog~ne de la 
repres~ntatio~ hydrodynamiq~ de l'squation de Dtrac, Thbse ,  P a r i s  (1957) .  
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These  resul ts  shed in te res t ing  l ight  on the  p rob lem of the  behaviour  of Di rac  
vacuum.  W e  l imi t  our  observat ions  to four  points.  

I) The  preceding model  of Di rac  ae ther  ev iden t ly  recovers  the  main  resul ts  
of SED w i t h  one difference: t he  v a c u u m  now always conta ins  a mix tu re  of waves  
a n d  par t ic les  so tha t  one cannot  reduce  SED e lec t romagne t ic  vacuum to a super- 
posi t ion of classical Maxwell  waves.  Indeed  one sees i t  is now bui l t  w i th  a dis tr ibu-  
t ion of p lane  Proca  waves  wi th  P o y n t i n g  vectors  un i fo rmly  d i s t r ibu ted  on the  pho- 
ton  mass shell. Indeed  if we go to a negligible mass l imi t  of Proca  equat ions  we 
see, fol lowing M~SHAL~ (24), t h a t  Di rae  isotropio eova r i an t  d is t r ibut ion  goes in to  
I (~)  = ( 4 : z h / c 3 ) v 3 , - - b u t  t ha t  we cannot  suppress discrete  p h o t o n s - - a  fact  conf i rmed 
by  exper iment .  Of course e lec t ron waves  in Dirac  J--~�89 ae the r  are also submi t t ed  
to the  Braffor t  Tzara  zero-point  e.m. v a c u u m  as shown d i rec t ly  by  SVDA~SHAM et al .  (1~). 

I I )  One can ut i l ize the  real  in t e rna l  ro ta t ions  in our  v a c u u m  and w a v e  e lements  
to comple te  (and justify) some essent ial  proper t ies  of de Broglie  (( h idden the rmo-  
s ta t  ~). I n d e e d  we first see t h a t  Di rac-ae ther  absolute  t empe ra tu r e  is necessari ly 
zero. This  clearly resul ts  f rom the  Langev in  equa t ion  associated wi th  our Brownian  
mot ion,  i .e .  

where  fl is t he  f r ic t ion (~5) coefficient of the  Brownian  par t ic le :  (FQ)  and ( F E )  repre-  
sent ing averages  of the  q u a n t u m  (stochastic) and ex te rna l  force. Since we can define 
the  v a c u u m  t empera tu r e  T O by  D : ( k T ~  where v represents  the  usual  re laxa-  
t ion t ime,  i .e .  ~ ~ m/ f i ,  we get  D : h / 2 m  = k(T~ so t h a t  only T ~  0 yields 
fl = O - - i . e .  a frictionless vacuum.  On this  v a c u u m  our  fluid e lements  and/or  par t ic les  
undergo a Brownian  Markov process a t  the  ve loc i ty  of l ight  depic ted  by  the  re la t iv is t ic  
Fokke r -P l anck  equat ion.  

(4) ~e ~-~ + V (w~ e) :F [Be = 0 ,  

where  w•  = v • u. 

I I I )  The  conservat ion  of the  average  number  ~ of ex tended  oscillators wi th in  
our  dr i f t  tubes  of flow (an essent ial  po in t  in our  demons t r a t ion  of Nelson 's  equa-  
t ions (2)) also aliows an i m m e d i a t e  definition of the  t empera tu re ,  en t ropy  and  hea t  
carr ied by  de Brogl ie 's  pi lot  Kle in-Gordon wave.  To t h a t  effect, we first recall  Boltz-  
mann ' s  (26) famous  analysis of the  s tochast ic  behav iour  of dis t r ibut ions  of per iodic  
mechanica l  systems. L e t  us consider  a mechanica l  sys tem charac ter ized  1) by  micro- 
scopic var iab les  qi (i = 1 . . . .  ) which  oscillates rapidly  wi th  a per iod T ~ l /v ;  2) by  
macroscopic  co-ordinates  a~ which  remain  cons tant  when  the  system is in a g iven  
stable s tate ,  b u t  changes slowly when  i t  passes f rom a s ta te  to another  in a revers ible  
way. One sees immed ia t e ly  t h a t  th is  is exact ly  the  s i tua t ion  in the  (average) res t  
f rame of a three-dimensional  slice v o of a drif t  tube  (see fig. 1 of ref. (2)): the  var iables  q~ 
corresponds to the  vectors  R u :  t he  revers ible  charac te r  in t ime  resul t ing f rom the  
par t ic le -an t ipar t ic le  mixture .  The  a t now represent  the  var iab le  surface condi t ions  
on the  t u b e  surface which describe i ts  ex terna l  condi t ions  (surface tension etc. (2~)) 
and the i r  va r i a t ion  corresponds to the  work  per formed on the  tube  f rom the  outs ide (2e). 
B o l t z m a n n ' s  resul t  can be summar ized  as follows (2% 

(24) T. W .  ~r Proc.  Cambridge Philos.  Soc.,  61, 537 (1965).  
(~)  V. J .  LEE:  Found .  Phys . ,  10, 77 (1980).  
(26) S u m m a r i z e d  in  1%. DUMAS" L a  th4orie physique au sons de Bo l l zmanu  (Nea th&te l ,  1959).  
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I f  ~r denotes  t he  cyclic in tegra l  of the  Manper tu is ian  ac t ion  on one per iod of the  
in terna l  mot ion ,  the  quan t i t y  of heat ,  SQ, g iven to v o (when i t  undergoes  a revers ible  
change of s t a te  in i ts  rest  frame) is defined by  - -8Qo = v o 8 d  o = T O 6s, where T O rep- 
resents  the  t e m p e r a t u r e  in i ts  rest  f r ame  and  s the  sys tem ent ropy .  Since T and Q 
mus t  Loren tz  t r ans fo rm in the  same way,  two equ iva len t  possibi l i t ies  can be  used, 
i .e .  a) Tolman ' s  (~7,~s) and Eeka r t ' s  (~9) definit ions who assume t h a t  s, T O and Qo are 
scalars or b) P l anek ' s  and de Brogl ie ' s  (8o) (denoted by  ') which  connect  t h e m  wi th  
the  dr i f t  mot ion ,  i .e .  T O : T o'u o and  Qo : Qouo (u o : - -  1 in the  res t  frame),  so tha t  
T~ and  Q~ t rans fo rm like To ~/1----=~ and Q~ ~/1--fl------~ ( i .e .  exac t ly  l ike  v = ~0 ~ / ~ ) ,  
s remaining  a scalar. As shown by  BOHM and VmI~R in t he  s tochast ic  model  of the  
Kle in-Gordon equa t ion  (with a w a v e  ~(~, t) = / ~  exp [iS/~]) we know (~) tha t  t he  rest  
f rame 's  par t ic le  mov ing  equi l ibr ium dis t r ibu t ion  is g iven by  / ~  = ~* ~. Since we also 

know tha t  t he  ac t ion  ~r = S satisfies N = - -  M e  ~ since ~r = ~ M c  ~ d~ , we see t h a t  the  

m a x i m u m  of t he  en t ropy  s corresponds to a m in imum of t he  act ion ~ ,  defined f rom 
the mot ion  of our  particles,  if  M ~ : m ~ - - ( ~ / c ~ ) [ ~ R / l ~ ) .  A n y  isolated par t ic le  thus  
minimizes  t he  va lue  of the  act ion in tegra l  S = ~ - - M c  ~ dr, and  we can wri te  as a con- 
sequence of Bo l t zmann ' s  analysis h~ o = m c ~ :  k T ,  so tha t  - - s / k  = ~r  with  8Qo = 
= -  M c  ~ and ~r : -  h M / m ,  where  k represents  Bo l t zmann ' s  constant .  

IV) As a consequence 

a) The  par t ic le  internal-osci l la t ion energy E o : h~ o = M c  ~ along the  dr i f t  l ines 
is in equi l ibr ium wi th  the  wave  local t empe ra tu r e  T. 

b) The  var ious  r andom pa ths  are  weighted  by  exp [i~s dv], which means  tha t  
F e y n m a n  graphs  real ly  correspond to possible r andom mot ions  wi th in  Dirac  aether ,  the  
i factor  resu l t ing  (~) f rom the  - -  sign in Nelson ' s  equa t ion  (31). 

c) No in format ion  can be carr ied  by  the  quan tum po ten t ia l  f rom one par t ic le  
to another ,  despi te  the  fact  of the  super lumina l  p ropaga t ion  of t he  s tochast ic  q u a n t u m  
potent ia l .  

d) The  Kle in-Gordon fluid satisfies t he  first two laws of the rmodynamics .  This  
can be shown di rec t ly  f rom the  decompos i t ion  of Kle in-Gordon ene rgy -momen tum 
tensor  expl ic i t ly  pe r fo rmed  by  HALBWACHS (~). Indeed  he  has  deduced f rom the  
Lagrang ian  ~ : ~ ~* ~ ~ - -  ( ~  0~/?~) ~* to t he  expression 

where q~ denotes  a hea t  current  (or thogonal  to the  conserved  cur ren t  ]~ : Ova) wi th  
v~v~  = - - c  2. F r o m  O~t~v = 0 one i m m e d i a t e l y  obtains in t roduc ing  the  scalar ~or ~ = 
= t ~ v ~ v ~  and wr i t ing  w = O(e ~- mc e) (where e represents  the  in tegra l  energy) exac t ly  
Ecka r t ' s  form (29) of the  first law, i . e .  

(5) 

(27) R. C. TOL~AN: Theory o/ the l~elativity o] Motion, Chap.  X I  (Berke ley ,  Cal. ,  1918). 
(28) R. C. TOLMAN: Relativity Thermodynamics and Gosmology, Chap.  I I I  (1934). 
(2,) C. ECKART: Phys. Rev., 58, 919 (1940). 
(80) L. DE BROGLIE: C. R. Aead. Sci., 253, 1078 (1961). 
(sl) • .  BERRONDO: NItovo Cimento B, 18, 95 (1973). 
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where ro~ a = tva~h, ar/a a with ~ = 3~,~ q- (vav~/c~). As noted by  x)~ BRo~L~ the second 
law is a straightforward consequence of --s/k----- M / h ,  since entropy is thus maxi- 
mized along the fluid drift lines. 

e) The heat current qa takes the form q a = - - G ~ z ~ Y ~ O ,  where G represents the 
local thermal  conductivity of the Klein-Gordon fluid and O the local (probabilistie) 
temperature density 0 = T . t ~  ~ : ( m c ~ / k ) B  ~. Indeed its calculated form (~) 

qa = e ( t$2 /M~)u~a  l o g / ~  log R 

can be transformed into 

q~ = ( k ~ 2 / 2 M  �9 m c  ~) v ~ ~ log R ~  ~" O = G ~  0~ O. 

V) One can recover Sudarshan e t a l . ' s  description of the aether as a superfluid 
state of particle-antiparticle pairs (~4). Indeed if we start  from our eovariant stochastic 
d is t r ibut ion  of fermion-antifermion pairs in the L ---- 0 orbital states with zero values 
of the total  spin S = �89 + a_) (where a+ and a_ are the spin operators of the par- 
ticles in question for example the positron and the electron, respectively) the Hamil- 
tonian can be written in the momentum representation 

t ~k',a_ d-kt,-a, d-k,-a- Ok,a- 

where ~ t (c,,a_, %,a_) and (d,,a+, d~,a+ ) are the particle and an~partiele (creation and anni- 
hilation) operators, respectively, for the momentum state k. With S = 0- we have 
a+ = ~ a_ for the pair and the interaction (third term of (5)) satisfies condition b). 
H has the same form as that  of Bardeen-Cooper and Sehrieffer for superconductivity 
in metals except that  each pair is now electrically neutra l ;  an idea which can be 
generalized to any quantum number  and any particle-antiparticle pair. Denoting 
by ~ (with V r = V 0 = const for Ied <: ~0 and zero otherwise) the Hartree-Foek ener- 
gies of the fermion and of the antifermion we see that  the ground-state energy of our 
vacuum sea will be lowered by AE = � 89  2 where A is the gap parameter 

A = e o exp [-- 1/.N(O). Vo], 

No being the density of states on the Fermi surface. Our aether will now display long- 
range correlations. Particles or collective excitations (de Broglie waves) will not  
exchange momentum (up to a particle momentum) and there will be negligible visco- 
sity. However, when the energies involved exeeed A new phenomena might arise. 
The energy of an elementary quasi-particle excitation E~ is given by E~ = (e~ -b A2) �89 
For a pair  i t  is 2B~ and, if we assume that  masses arise predominantly from interac- 
tions, we get [zl[ = me ~. If A >> e~ = pc (p representing the particle linear momentum 
magnitude) the excitation of a real pair  will cost 21A I and we see tha t  the gap will 
depend on the strength of the interactions in which they take part. 

This model opens many possibilities. The most remarkable is that  superfluid behav- 
iour occurs when fluid velocity is less than the velocity of the elementary excitation. 
The critical velocity of the fluid above which the superfluidity condition will not  be 
satisfied for the aether can be calculated from ~v~ ---- IA1/t~I~ when/~/~ is the momentum 
of the excitation. If we choose as before/c to be the inverse Compton wave-length of 
our excitation we get v~ = me2/,m0 = v, so that  our vacuum implies a l imiting velocity c 
which justifies Einstein's assumption. 
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To conclude we want to stress tha t  the stochastic interpretat ion of quantum mech- 
anics (SIQM) is (despite many unsolved and/or open problems) much more than an 
intellectual curiosity, since it  has now reached a testable stage. To that effect we 
only mention the following points. 

1) SIQM presents one of the two possible interpretations of superluminal inter- 
actions predicted in the EPR paradox (5)__if they are confirmed by Aspect's and 
Rapisarda's experiments. 

2) SIQM predicts as shown by FITCHARD (3~) a possible discrepancy with the 
Copenhaghen interpretat ion of quantum mechanics (CIQM) in a perfectly feasible 
test of wave packet reduction and measurement of the uncer ta inty  principle. 

3) SIQM implies that  one can test direct consequences of the real existence of 
de Broglic waves which are not predicted by CIQM. This is the case in induced super- 
fluorescence (by SELLERI and VIGIER (88)) and in a modified form of the Pfleegor-Mandel 
experiment (~). 
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