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Since Dirac’s pioneer work (*) it has been known that Einstein’s relativity theory
(and Michelson’s experiment) are perfectly compatible with an underlying relativistic
stochastic « aether » model. Inherent to this model is Einstein’s idea that quantum
statistics reflects a real subquantal physical vacuum alive with fluctuations and ran-
domness. This concept of a nonempty vacuum has been recently revived not only to
yield a foundation to the stochastic interpretation of quantum mechanics (34), but
also to explain causally possible nonlocal superluminal interactions resulting from the
Einstein-Podolsky-Rosen paradox (5-¢). Indeed, if a forthcoming experiment of Aspect (7)
confirms their existence, the only way out of the resulting contradiction between rela-
tivity and the quantum theory of measurement (?) seems to lie in the direction of an
extension of the causal stochastic interpretation of quantum mechanics (8). This
assumes the existence of causal subquantal random fluctuations induced by a stoch-
astic «hidden » thermostat proposed by Bomm, Vieier and pE BRoOGLIE (*!°). By
« causal » we imply

a) that no individual particle can leave the light-cone;

b) that the sequence of causes and effects on any timelike particle motion is
observer independent;

¢) that one can deduce the form of de Broglie «pilot » quantum waves (and
the corresponding particle motions) from the assumption that they represent real col-
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lective drift and random motions on the top of Dirac ¢ aether » in which the quantum
jumps occur at the velocity of light (2-11);

d) that possible superluminal interactions can be interpreted in terms of a quantum
potential @ (reflecting the particle interaction with the thermostat) which also carries
their associated de Broglie waves; this potential’s motion is not carried by individual
particles, but results from the superluminal phaselike collective motion carried by
the vacuum.

The aim of the present letter is

A) To extend Dirac « aether » to include the concept of spin.

B) To demonstrate that the corresponding wave equations and gquantum-meech-
anical diffusion coefficient D = #%/2m (common to all present stochastie interpreta-
tions of quantum mechanics) can now be theoretically deduced from Dirac-aether
zero-point fluctuations at the velocity of light.

¢y To disenss Dirac’s aether (with spin) as a common realistic basis for various
stochastic models sueccessively proposed in the literature: such as Bohm and Vigier’s
initial subquantum thermostat (%), the zero-point electromagnetic model of stochastic
electrodynamies (SED) of de la Pefia, Marschall ef al. (12-13) and Sudarshan et al. (*%).
All are subvarieties of Dirae covariant mixture of J=0, J=1% and J=1 particle-
antiparticle pairs: the total defining a background sea, at absolute zero temperature,
on which the de Broglie waves of quantum mechanies travel.

Before discussing 4) let us recall that Dirac « aether» rests on the idea that
through any point 0 there passes a flow of stochastic particles and antiparticles (de-
seribed in fig. 1 as particle moving backwards in time), whose momenta have the
extremities of their four-vectors G (with G,G# = —m?2¢?) distributed with a uniform
surface density on the two three-dimensional surfaces of the hyperboloids H* and H".
They will thus remain invariant under all Lorentz transformations.

This stochastie relativistic distribution constitutes the only possible moedel for a
physical undetectable thermostat for spin-zero particles into which we can study the
relativistic analog of the classical nonrelativistic Brownian motion. Dirac has derived
this from the indeterminacy principle. However, it differs from it by two new physical
properties.

a) Since the light-cone behaves like an. asymptotic accumulation manifold of
Dirac’s stochastie distribution, we can assume that the corresponding stochastic jumps
of a Brownian particle, submifted to its random action, occur practically at the velocity
of light. Indeed, any given exchanged energy is statistically superseded by more
energetic interactions.

b) This ultrarelativistic Brownian motion ineludes the possibility of pair crea-
tion and/or annihilation. This is important, since the mixture of particles and anti-
particles has been shown to provide a realistic interpretation (15} of possible negative
probability distributions.

(*) W. Lear and J. Park: J. Math. Phys. (N. ¥.), 18, 1235 (1977).

(1?) L., DE LA PENA-AUERBACH and A. M. CETTO: Phys. Rev. D, 3, 795 (1971).

(**) T. MARSHALL: Proe. RB. Soc. London Ser. 4, 276, 475 (1963),

(}) E.C. G. SUDARSHAN, K. P. SIiNEA and C. Sivaram: Found Phys., 6, 65, 717 (1876); &, 823 (1978).
(**) ¥Ya. P. TerLeTZKI and J. P. Vicier: Z. Eksp. Teor. Fiz., 13, 356 (1961).
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The preceding model can evidently be extended to include spin if (following Borm
et al. (15) and SOURIAU et al. (1)) we endow our extended Dirae-¢ acther » elements, wave
elements and concentrated-particle elements with internal rotations which represent
spin elassical counterpart (*%).
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Fig. 1. — The shells correspond to the two Casimir invariants of the Poincaré group, f.e.
G, G* = —m?¢® and §,8" = constant.

In this model all extended elements are characterized by an internal angular mo-
mentum 8,5 added to their four-momentum &, and unitary four-velocity &, = dw/dr
(d.e. &y ¥4 = —c?), which are no longer co-linear. The conservation equations yield
Gy = 0 (i.e. GuGH = —m2e?) and Guay— Gydy = Sy with 84Sy = — 0f.

On this basis one can introduce three classical extended models corresponding to
the three spin states (i.e. J = 0, J = % and J =1) by the three constraints S, = 0,
Suvd? = oydy and Syd” = 0. One then obtains §,8# = const and s,s* = const with
8y = S,yG¥ and s, = 8,37, In particles, internal motions then ineclude cireular rota-
tions of a centre-of-matter density (denoted by (e, ¢), #4(v)) around a centre-of-mass
{denoted by (C, M) and y,(6)) moving parallel to G, with a constant radius B, (defined
by m?c?R, = 8,,G%) and de Broglie frequency fiw = me? with respect to its proper
time. This corresponds to a classical counterpart of the quantum «zitterbewegung ».
The {¢, ¢)’s internal Darboux-Frenet frames which now represent internal spin do not
rotate (J = 0), rotate twice (J=13) or onee (J=1), while the (¢, ¢) rotates onee
around the (O, M). Antiparticles have opposite (mirror) internal motions. Along the
{0, M) motion one thus recovers elassgically Planck formula 4 = mef (where 4 re-
presents the relativistic action and 6 the path interval) which can also be written
as A =mef =#ha; o denoting our new internal de Broglie phase and # its conjugate
momenta. The corresponding internal rotations (oscillations) also yield § = {#i/me) =
= Ao, where A = (fijme) is Compton classical radius, ¢.e. the (O, M) internal motion as-
sociated with one (27) internal rotation.

(1Y D, BorMm and J. P. Vicigr: Phys. Rev., 109, 882 (1958).
(1) F. HALBWACHS, J, M. S8ouriav and J. P. VIGIER: J. Phys. Radium, 22, 26 (1961).
(**) . FENECH, M. MoLEs and J. P. VIeIER: Left. Nuove Cimenio, 24, 56 (1979),



470 J. P. VIGIER

On the preceding basis we can eclearly introduce spin info Dirae-aether model.
To every particle or antiparticle’s &4 in fig. 1 is associated the orthogonal spacelike
spin veector 8, whose extremities will have a constant surface density on the «spin
shell », 4.e. timelike continuous «spin shell » surface §,8# = const. Such a stochastic
distribution complements the constant surface distribution of the Gy’s on the « mass
ghell » G,G# = —m?¢? and is evidently invariant under any Lorentz transformation:
so that the stochastic distribution of the (G4, Sy} pairs now represent a J =0, J=}
or J =1 Dirac aether. The same result of course is obtained if we replace in fig. 1
the Gy's by 4, (since d@ui# = —¢?) and the S,’8 by s,.

Dirae’s aether is thus now assumed to consist of a covariant mixture of J= 0,
J = § and J = 1 particle-antiparticle pairs: the tetality clearly defining a background
sea which encompasses {(as we shall later discuss) Bohm and Vigier subquantum lev-
el (*) de Broglie subquantum thermostat (**) Sudarsham et al. aether (14) or (in the
J =1 limit for zero mass) the zero-point electromagnetic model of stochastic electro-
dynamics (SED) of de la Pefia (*2) and Marshall (13).

Before calculating D, let us briefly recall the connection between de Broglie waves
and Dirac aether. As already shown in the literature (31%29), Dirac-aether model
with spin implies the correet form of the J=0, J=4% and J =1 wave equations if
they are considered as describing the behaviour of organized collective excitations
(spin waves) on the top of our covariant subquantal vacuum. This results from the
preceding hypothesis a) and b) combined with the assumption that all our stochastic
motions have only short range (i.e. contact particle-particle collision-type interactions),
so that random velocities and accelerations only result from direct short-range averaging
over limited four-dimensional volume elements (2).

The wave equations can then be deduced along the two lines of demonstration util-
ized in nonrelativistic stochastic theory, ¢.e. Einstein and Smoluchowski Brownian-
motion theory (2) and Chandrasekhar random walk (at the velocity of light) on
discrete covariant four-dimensional lattices (3). For example in the first line, assuming
that our extended particles agsociated with our collective perturbation 1) are carried
along the lines of flow of a regular drift motion v associated with a collective motion
on the top of Dirac thermostat (characters in bold-face type denoting four-vectors),
2) jump stochastically at the veloeity of light from one average drift line of flow
to another and thus (for a conserved set of identical particles with arbitrary initial
positions) reach an average mean conserved distribution P(x) = ¥*vy, one can imme-
diately demonstrate Nelson law (2), 7.e.

(1) m(Dyw— D) = F+,

where the stochastic four-velocities D, and D, represent the covariant derivatives along
the drift and stochastic lines of flow (i.e. Dyf = 8f/dr + (v-V)F and D,f = (u-V)f +
+ D(V-V}f)F* and F* the external force: the constant D now denoting the diffusion
coefficient

(2 {81y, 3ry/2 Ad = Doy, = ({(3r)%/2 At)d,;,

where {(37)2) = <E 37, 813) denotes the average square spacelike distance of our
i

random jumps and v the proper time along the drift lines of flow. From (1) which has
thus been shown to describe particular Markov processes at the velocity of light one
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deduces the Klein-Gordon (2:2!), Feynman—Gell-Mann (2°) and Proca equations (?). Their
corresponding (de Broglie « pilot ») wavelike solutions all satisfy de Broglie « phase
correlation principle »: a principle characterized by the fact that all internal (zitter-
bewegung plus spin) rotations of the associated extended parficle inhomogeneities
(or nonlinear solitons) which follow the drift lines of their surrounding « pilot » wave
rotate in phase with the fluid elements which surround them. One can compare this
process with a plane flying at Mach 1 within its own sound wave: the waves themselves
(thus very different in nature from ordinary sound waves) can be best described as
organized «spin waves» propagating on a chaos of the spinning eclassical J =0,
J = } and J = 1 tops which now constitute Dirac aether with spin. As one knows (22),
all wave equations can be mapped into relativistic hydrodynamical representations
where particles move (on the average) from one line of flow to another and jump (at
the velocity of light) from one drift line to another. The quantum potential (which
now also includes quantum torques) represent stochastic interactions (action and reac-
tion) between our « particles » and the waves, both carried by Dirac aether. De Broglie
phase correlation clearly expresses the well-known property (%) that oscillators can
only transfer energy by contact to their immediate neighbours, provided they oscillate
in phase. This property is true for example for neighbouring closed vortex tubes in
classical fluids — or for connected spring systems (23). It implies that the stochastic
jumps do not disturb the regular ordering of de Broglie clocks in de Broglie waves and
justifies de Broglie’s idea (1°) that the subquantum thermostat is built with a super-
position of independent J =0, J=4% and J=1 co-variant thermostats. This last
point (plus the results summarized at the beginning of this letter) can now be used
to clarify a long-standing problem common to all stochastic interpretations of quantum
mechanies (including stochastic electrodynamics), z.e. what is the connection between &,
which is physically associated with internal frequency and/or spin, and D which rep-
resents random jumps?

To do this, we will limit the demonstration to the Klein-Gordon case, since spin
(as can easily be shown) complicates, but does not modify substantially, our demonstra-
tion.

To calculate D we now assume

a) That in our stochastic jumps D describes (on the average) one jump only.

b) That in each individual jump the particles’ (¢, ¢) undergoes one rotation only
around the (O, M). This is natural since jumps do not cancel rotation.

Assumptions a) and b) evidently represent the simplest possible Brownian-motion
scheme which preserves both the average drift motion and the local phase correlation
and average ordering of the de Broglie-clock zitterbewegung. If no interaction occurs
during one stochastic jump, we can consider it as the » — ¢ limit of a free-particle
motion described by the Lagrangian 3. = —me v— %u%y dv, where dr represents the
corresponding drift interval. As stated above, during the corresponding free jump the
(e, ¢) rotates of a quantity 2s, so that the corresponding distance {(3x)*>t must be equal
to Compton wave-length 4 = (%/me). When going to the v = ¢ limit we thus write
{(3%)%> = ¢2 Av?, which yields (since D = {(32)2)/2 Ar) the diffusion constant D = #/2m.

(**) N. CUFARO PETRONI and J. P. VIGIER: Phys. Letf. A, 73, 289 (1979).

(3*) L. DE LA PENA-AUERBACH: J. Math. Phys. (N. Y.), 12, 453 (1971).

(*!) F. GUERRA and P. RUGGIERO: Leff. Nuovo Cimento, 23, 529 (1978).

(3*) F. HALBWACHS: Théorie relativiste des fluides & spin (Paris, 1960).

(**) Cf. P. HiLLION: Inlerprélation causale de la limite non relativisie pour Valome d’hydrogéne de la
repr tation hydrody ique de Uequation de Dirac, Thése, Paris (1957).
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These results shed interesting light on the problem of the behaviour of Dirac
vacuum. We limit our observations to four points.

I) The preceding model of Dirac aether evidently recovers the main results
of SED with one difference: the vacuum now always contains a mixture of waves
and particles so that one cannot reduce SED electromagnetic vacuum to a super-
position of classical Maxwell waves. Indeed one sees it is now built with a distribu-
tion of plane Proca waves with Poynting vectors uniformly distributed on the pho-
ton mass shell. Indeed if we go to a negligible mass limit of Proca equations we
see, following MARSHALL (?%), that Dirac isotropic covariant distribution goes into
I(v) = (4mh/c®)v3,—Dbut that we cannot suppress discrete photons—a fact confirmed
by experiment. Of course electron waves in Dirac J=34 aether are also submitted
to the Braffort Tzara zero-point e.m. vacuum as shown directly by SUDARSHAM et al. (1%).

II) One can utilize the real internal rotations in our vacuum and wave elements
to complete (and justify) some essential properties of de Broglie « hidden thermo-
stat ». Indeed we first see that Dirac-aether absolute temperature is necessarily
zero. This clearly results from the Langevin equation associated with our Brownian
motion, i.e.

(3) mv = fv + (F> + <Fg>,

where f is the frietion (%°) coefficient of the Brownian particle: <Fy> and (Fg)> repre-
genting averages of the quantum (stochastic) and external force. Since we can define
the vacuum temperature 7° by D = (k7% -t/m, where t represents the usual relaxa-
tion time, t.e. T = m/B, we get D = #/2m = k(T°p), so that only T°= 0 yields
B = 0—i.e. a frictionless vacuum. On this vacuum our fluid elements and/or particles
undergo a Brownian Markov process at the velocity of light depicted by the relativistic
Fokker-Planck equation.

0
(4) a—"+V(wie>¢ Co =0,
T

where w. = v + u.

IITI) The conservation of the average number p of extended oscillators within
our drift tubes of flow (an essential point in our demonstration of Nelson’s equa-
tions (%)) also allows an immediate definition of the temperature, entropy and heat
carried by de Broglie’s pilot Klein-Gordon wave. To that effect, we first recall Boltz-
mann’s (26) famous analysis of the stochastic behaviour of distributions of periodic
mechanical systems. Let us consider a mechanical system characterized 1) by micro-
scopic variables ¢; (¢ = 1, ...) which oscillates rapidly with a period = = 1/»; 2) by
macroscopic co-ordinates @, which remain constant when the system is in a given
stable state, but changes slowly when it passes from a state to another in a reversible
way. One sees immediately that this is exactly the situation in the (average) rest
frame of a three-dimensional slice v, of a drift tube (see fig. 1 of ref. (2)): the variables ¢;
corresponds to the vectors Ry: the reversible character in time resulting from the
particle-antiparticle mixture. The a, now represent the variable surface conditions
on the tube surface which describe its external conditions (surface tension ete. (22))
and their variation corresponds to the work performed on the tube from the outside (32).
Boltzmann’s result can be summarized as follows (26).

(*4) T. W. MARSHAL: Proc. Cambridge Philos. Soc., 61, 537 (1965).
(2%) V. J. LEE: Found. Phys., 10, 77 (1980).
(*®) Summarized in R. DUGAS: La théorie physique au sens de Boltzmann (Neuchitel, 1959).
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If o« denotes the cyclic integral of the Manpertuisian action on one period of the
internal motion, the quantity of heat, 3@, given to v, (when it undergoes a reversible
change of state in its rest frame) is defined by — 8Q, = v, 84, = T, s, where T, rep-
resents the temperature in its rest frame and s the system entropy. Since 7' and @
must Lorentz transform in the same way, two equivalent possibilities can be used,
i.e. a) Tolman’s (2*28) and Eckart’s (?*) definitions who assume that s, 7, and ¢, are
scalars or b) Planck’s and de Broglie’s (3°) (denoted by ’) which connect them with
the drift motion, ¢.e. Ty = Tou, and @, = Qju, (ug= —1 in the rest frame), so that
Ty and @, transform like Ty +/T—p2and Qg +/T—pF (i.e. exactly like » = v, /T—p2),
s remaining a scalar. As shown by BouM and VIGIER in the stochastic model of the
Klein-Gordon equation (with a wave (s, t) = R exp [¢§/%]) we know (*) that the rest
frame’s particle moving equilibrium distribution is given by R? = p* . Since we also

Ta
know that the action & = § satisfies § = — Me¢? (since o = [Mc? dr), we see that the
T1
maximum of the entropy s corresponds to a minimum of the action &, defined from
the motion of our particles, if M2 = m2 — (5%/c2)[LIR/R). Any isolated particle thus
minimizes the value of the action integral § =f— Me2dr, and we can write as a con-
sequence of Boltzmann’s analysis hvy, = me® = kT, so that —s/k = &/h with 3@, =
= — Mc? and & = — hM/m, where k represents Boltzmann’s constant.

IV) As a consequence

a) The particle internal-oscillation energy E, = hy, = M¢? along the drift lines
is in equilibrium with the wave local temperature 7.

b) The various random paths are weighted by exp [ dr], which means that
Feynman graphs really correspond to possible random motions within Dirac aether, the
¢ factor resulting (®') from the — sign in Nelson’s equation (31).

¢) No information can be carried by the quantum potential from one particle
to another, despite the fact of the superluminal propagation of the stochastic quantum
potential.

d) The Klein-Gordon fluid satisfies the first two laws of thermodynamies. This
can be shown directly from the decomposition of Klein-Gordon energy-momentum
tensor explicitly performed by Harswacus (22). Indeed he has deduced from the
Lagrangian & = 8,9*9,% — (m?c2/#?)y*y the expression

tyy = QUu Uy + Qu vy + Qv U + ouv ’

where ¢, denotes a heat current (orthogonal to the conserved current j, = gv,) with
vy = —c¢%. From o,y = 0 one immediately obtains introducing the scalar we? =
= t,gv*vF and writing o = g(¢ 4+ me®) (where ¢ represents the integral energy) exactly
Eckart’s form (2%) of the first law, d.e.

(5) mDye + (1/e)[0aqx + qabal + wxsdsvs = 0,

{?") R. C. ToLMAN: Theory of the Relativity of Motion, Chap. XI (Berkeley, Cal., 1918).
(?®) R. C. TOLMAN: Relativity Thermodynamics and Cosmology, Chap. III (1934).

(**) C. ECKART: Phys. Rev., 58, 919 (1940).

(*) L. pE BroGuie: C. R. Acad. Sci., 253, 1078 (1961).

(*1) M. BERRONDO: Nuovo Cimenio B, 18, 95 (1973).
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where wug = tysnyaniop With nuy = 84 + (v4vy/e?). As nobted by DE BROGLIE the second
law is a straightforward consequence of —s/k = «//h, since enfropy is thus maxi-
mized along the fluid drift lines.

e¢) The heat current ¢, takes the form g,=—— Gnss0° O, where G represents the
local thermal conduectivity of the Klein-Gordon fluid and & the local (probabilistic}
temperature density € = T R? = (mc?/k)B% Indeed its calculated form (22)

qu = o(fi*| M2)urd, log Ryuyd® log R
can be transformed into
qu = (kK22 M - me?) 028, log Ryuyd @ = Gnyuy®” O .

V) One can recover Sudarshan ef al.’s description of the aether as a superfluid
state of particle-antiparticle pairs (1¢). Indeed if we start from our covariant stochastic
distribution. of fermion-antifermion pairs in the L = 0 orbital states with zero values
of the total spin § = (o, + o_) (where o, and o_ are the spin operators of the par-
ticles in question for example the positron and the electron, respectively) the Hamil-
tonian can be written in the momentum representation

6) H=Y 0}, o+ exdh g dio,— Volk, K eb o d 5 g s »

where (cg,g_, c;’oﬂ) and (dyq,, dz 4,) are the particle and antiparticle (creation and anni.
hilation) operators, respectively, for the momentum state k. With § = 07 we have
o, == — o_ for the pair and the interaction (third term of (5)) satisfies condition ).
H has the same form as that of Bardeen-Cooper and Schrieffer for superconductivity
in metals except that each pair is now electrically neutral; an idea which can be
generalized to any quantum number and any particle-antiparticle pair. Denoting
by &, (with ¥, = ¥V, = const for |¢,| < g, and zero otherwise) the Hartree-Fock ener-
gies of the fermion and of the antifermion we see that the ground-state energy of our
vacuum sea will be lowered by AE = 3 N(0) 42 where 4 is the gap parameter

4 = gy exp[—1/N(0)- V],

N, being the density of states on the Fermi surface. Our aether will now display long-
range correlations. Particles or collective excitations (de Broglie waves) will not
exchange momentum (up to a particle momentum) and there will be negligible visco-
sity. However, when the energies involved exceed 4 new phenomena might arise.
The energy of an elementary quasi-particle excitation E, is given by E, = (¢ -+ 42)h
For a pair it is 2/, and, if we assume that masses arise predominantly from interac-
tions, we get |4| = me?. If 4 > ¢ = pe (p representing the particle linear momentum
magnitude) the excitation of a real pair will cost 2|4] and we see that the gap will
depend on the strength of the interactions in which they take part.

This model opens many possibilities. The most remarkable is that superfluid behav-
iour occurs when fluid velocity is less than the velocity of the elementary excitation.
The critical velocity of the fluid above which the superfluidity condition will not be
satisfied for the aether ean be calculated from w, = |4)/Ak when Ak is the momentum
of the excitation. If we choose as before k to be the inverse Compton wave-length of
our excitation we get v, = me2/me = ¢, 8o that our vacuum implies a limiting velocity ¢
which justifies Einstein’s assaumption.
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To conclude we want to stress that the stochastic interpretation of quantum mech-
anics (SIQM) is (despite many unsolved and/or open problems) much more than an
intellectual curiosity, since it has now reached a testable stage. To that effect we
only mention the following points.

1) SIQM presents one of the two possible interpretations of superluminal inter-
actions predicted in the EPR paradox (5)—if they are confirmed by Aspect’s and
Rapisarda’s experiments.

2) SIQM predicts as shown by FITCHARD (*2) a possible digcrepancy with the
Copenhaghen interpretation of gquantum mechanics (CIQM) in a perfectly feasible
test of wave packet reduction and measurement of the uncertainty principle.

3) SIQM implies that one can test direct consequences of the real existence of
de Broglie waves which are not predicted by CIQM. This is the case in induced super-
finorescence (by SELLERI and VIGIER (*%)) and in a modified form of the Pfleegor-Mandel
experiment (4).
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