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1.  - I n t r o d u c t i o n .  

When energetic atomic projectiles collide with a solid, the coUisional energy 
loss processes generally result  in both bulk and surface radiation damage. The 
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2 G. F A L C O N E  

microscopic process that produces the ejection of target atomic particles during 
bombardment is called sputtering. This process was first observed in 1852 by 
Grove [1] who noticed that in experiments on electronic discharges in gases a 
metallic deposit was found on the walls of the discharge tube. 

After this first experimental observation we must wait about a century 
before interest, both experimental and theoretical, for this phenomenon 
reawakes: the pionier works of Wehner [2, 3] have given a substantial support to 
this reawakes. An increase in interest has been constant for many years, while 
during the last decade we have noticed a great improvement. More precise 
conclusions can be deduced from a recent analysis made by Oliva [4], on scientific 
production concerning sputtering during the period 1965-1985. His analysis is 
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Fig. 1. - Statistics of scientific publications in the field of sputtering covering roughly 20 
years. A distinction is made between theoretical, experimental and application oriented 
works (by courtesy of the author): [] total, [] applications, �9 experimental, �9 theory. 
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summarized in fig. 1. He has divided the papers on sputtering into three 
categories. The first category contains theoretical works and computer simula- 
tion studies. The second category contains papers dealing with experimental 
data and measurements oriented towards the explanation of a model or 
supporting a theory. In the last category he placed works where the sputtering 
technique is used as a general application. The most ~vident result of this 
analysis is the enormous number of papers on pratical applications of sputtering, 
whereas the works on basic research seem to be in a stationary state. Moreover, 
if we gain more insight into the first two categories we notice that, during the 
last decade, most of published papers in these categories are computer 
simulation studies. In other words, theoretical works and experimental 
measurements oriented towards the explanation of a model or supporting a 
theory have almost disappeared. The reasons for that are, of course, different, 
but we can also reasonably include a lack of theoretical approaches with a unitary 
vision of the phenomenon. In reality, in contrast with traditional trends in other 
fields of physics research, where unified approaches constitute the rule and not 
the exception, the theoretical sputtering community has produced models or 
theories oriented towards specific aspects of the phenomenon. At present it is 
not clear whether this aspect of sputtering production is an intrinsic 
characteristic of the phenomenon or is a consequence of the relative recentness 
of research in this field. However, it is evident that a new effort to achieve new 
theoretical approaches and experiments supporting theories is mandatory. 

Starting from these premises, an  analysis of the evblution of theoretical 
models, with a precise attempt to stress conceptual innovations that have 
stimulated substantial improvements of theoretical approaches, may be very 
useful. This paper is an attempt, of course partial and subjective, to analyse the 
evolution of analytical theories concerning collisional sputtering. To be precise, 
the paper is oriented towards theoretical aspects of the Sputtering phenomenon 
produced by ion bombardment of amorphous and polycrystalline monoatomic 
targets (the size of the physical targets is assumed to be always larger than the 
mean penetration depth of the incident ion). Moreover, among the different 
types of sputtered particles (neutral atoms, excited neutral atoms, ions, 
molecules excited or not, clusters and so on) we shall analyse the most abundant, 
the neutral atoms. This category of particles has been the most studied, and the 
general opinion is that  other types of sputtered particles can be deduced by an 
adequate modification of models describing neutral atoms. The choice to restrict 
our paper to collisional sputtering is motivated by the present theoretical 
situation, where only this type of sputtering can be included in a unified theory. 

It  is evident that from our choice we have left out several interesting aspects 
of the sputtering phenomenon, and the interested reader is referred to several 
recent review papers or books on the subject [5-13]. 

In sect. 2 we present the historical development and the evolution of both 
matematical and physical concepts that have produced the standard transport 
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theory [14, 15]. The surface aspect of the sputtering and its consequences as 
originated from the development of the Falcone and Sigmund theory [16] are 
described in sect. 3. Finally, in sect. 4, a unified sputtering theory [17-20] is 
presented, and some comments are outlined. 

2. - H i s t o r i c a l  o v e r v i e w  and  t h e o r e t i c a l  t o o l s .  

The main attempt of this chapter is to describe the theoretical evolution of 
the basic concepts that are necessary to obtain a modern analytical sputtering 
theory. We emphasize that, although most of the physical ideas originated long 
ago, the realization of a modern analytical theory is essentially related to the 
development of the Li~dhard theoretical apparat~ts. 

2"1. Theforer~tn~ers." Keywell and Harrison. - From a microscopic point of 
view, in order for a sputtering event to take place, part of the kinetic energy of 
the incident particle must be transferred to target particles that only subse- 
q~te~tly may leave the target as sputtered particles. In other words, we can 
distinguish in a sputtering event two steps: in the first step the incoming particle 
transfers, in its slowing-down in the solid, energy and momentum to the target 
atoms and moving target atoms, called recoils, are generated; in the second step 
a part of the recoils are able to leave the solid. The description of a sputtering 
event through two steps can be found, for the first time, in the papers of 
Keywell [21, 22]. 

Keywell, starting from a similarity with neutron cooling theory, considers 
the incident particle as hard sphere which loses energy through collisions with 
the target atoms as moderators: the incident particle can transfer a considerable 
fraction of its energy to a target atom in one collision; the latter is thus an 
energetic recoiling atom which can strike other target atoms to produce 
secondary, tertiary, etc., recoil atoms. Once energetic recoils are produced, 
according to the above description, one must choose those that leave the surface. 
Since Keywell recognizes that sputtering is a radiation damage phenomenon, he 
assumes all displaced particles near the s~t~face to be sputtered. To be precise, 
Keywell uses the neutron cooling theory to calculate the energy attenuation of 
the incident particle in the solid, then he transforms this attenuation in a number 
of displaced atoms and finally he chooses among the displaced atoms those near 
the surface by introducing an adequate escape probability. 

Since it is the opinion of this author that Keywell's sputtering theory 
contains an almost complete characterization of the basic aspects of the 
phenomenon we shall describe in detail his formulation. 

Let us take an ion with initial energy E and mass M1 that penetrates into a 
solid target which atoms have mass M2. After n collisions, by using the 
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elementary neutron cooling theory [23], the initial energy will be reduced to 

(2.1) E~ = Eexp [ -  n~], 

where 

(2.2) ~= 1 (M1-M2)21n[ M1 + M2.~ 
2MIM2 ~ M1-Me]" 

Since the maximum fraction of projectile's energy that.can be transferred to a 
target atom, initially at rest, in a single collision is 

4M1 M2 
(2.3) ~' = (M1 +M2) 2' 

the average energy of the (n + 1)-th recoil atom will be given by 

(2.4) (En+l) = ],E exp [ -  n~]. 

If the average number of displaced atoms produced by a recoiling atom of energy 
(E) in a solid, having an atomic displaced energy Eo, is assumed to be [24] 

= ( (E)~  1~ ' 
(2.5) no [ Eo ] 

then, the number of displaced atoms produced by the recoil at the n-th collision 
of the primary will be 

(2.6) n~ (---E~d) =/E-~d) exp[---(n2 " 

Of these ns displaced atoms, according to Keywell, only the subsequent part will 
be sputtered 

(2.7) ny = ns exp [ -  a ~ ] ,  

where ~ is a parameter. Equation (2.7), which represents the ejection function of 
the model, was derived [22] by assuming that the average depth from which 
sputtered atoms originate is determined by an atom that progresses by a random 
walk. 

Finally the number of sputtered atoms will be 

(2.8) Y=~Ed] ~ exp [ -  a Vn-] exp ( n - l )  
n=l "2 ' 
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where 

(2.9) l( d) n~ -~ -:ln 
q 

defines the last collision which produces a displaced atom. 
More details and further generalizations of the previous equations can be 

found in the original paper [22J. 
The analysis of the above formulation is very instructive. The Keywell 

theory refers to sputtering produced by the penetration of low-velocity atomic 
particles through matter. Nevertheless he assumes that a theory, valid for the 
slowing-down of fast neutrons in a moderator, is also adequate to describe the 
low-velocity atomic slowing-down. It is clear that the analogy between the 
slowing-down of fast neutrons and low-velocity ions through matter  is suspicious 
and must be given up in a more adequate sputtering theory. 

The theory completely neglects the interaction between the incident ion and 
the electrons of the atomic target: the collisions are of biliard-ball type. This 
aspect of the penetration of low-velocity atomic particles into matter  is shared by 
other authors contemporary with Keywell and represents a further aspect of the 
Keywell theory that must be modified. 

The results of the theory depend on the radiation damage model used to 
transform the energy lost by the incident particle in displaced atomic target 
particles (see eq. (2.5)). In this case it is also clear that an improvement of the 
radiation damage model can improve the theory. 

At the time when Keywell presented his theory the experimental data were 
quite limited and in particular no data were available on the depth of origin of 
sputtered atoms. Nevertheless, Keywell realized that sputtered atoms originate 
from a depth very near the surface and used the random walk to obtain an 
adequate expression. This approach has also been used by almost all subsequent 
authors and the general philosophy of this approach is tha~ recoiling atoms that 
will be sputtered will undergo several elastic collisions during the motion from 
the original position in the solid up to the surface. The recent experimental data 
on the depth of origin of sputtered atoms (see later) tell us that this vision of the 
sputtering phenomenon is incorrect. 

Finally, we conclude the analysis of the Keywell theory by mentioning that 
this theory predicts a sputtering threshold, Eth, for ions" hitting the target at 
normal incidence, equal to 

Ed 
(2.10) Eth = - - ,  

Y 

which was considered by the author as upper limit value. 
An attempt to improve the conceptual approach of Keywell was made by 

Harrison [25]. In fact, Harrison gave up the cooling neutron theory and assumed 
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that the sputtering mechanism is adequately described by proper linear 
Boltzmann transport equations. Since this theory has not provided analytical 
results, we do not discuss this formulation in details, and we mention that the 
use of Boltzmann's transport equations, when properly carried out (Sigmund's 
transport theory [15]), turns out to be very adequate to describe several aspect 
of the sputtering phenomenon. Harrison's is the original intuition of this 
approach, whereas the lack of analytical result in his formulation is probably 
related to a lack of adequate development of parallel concepts for particle 
penetration through matter. In other words, a proper description of the 
sputtering phenomenon needs the development of new general concepts about 
the penetration of low-velocity atomic particles through matter, that at the time 
when Harrison presented his formulation were not yet available. In the 
subsequent section we shall discuss this new physical and mathematical 
apparatus in details. 

2"2. The Lindhard theoretical apparatus. - The penetration of low-velocity 
atomic particles through matter is in general a very broad field and in this paper 
we shall limit our discussion to those aspects that are essentially related to the 
modern analytical formulations of the sputtering phenomenon. 

When a particle penetrates a solid target the interaction between the 
incident particle and the target atoms, according to Lindhard's works [26-28], 
can be divided, with a good approximation, in two uncorrelated contributions: 
binary elastic collisions between the incident particle and the atomic targets 
(elastic or nuclear energy loss and scattering) and a separated electronic energy 
loss which is a continuous slowing-down process that does not affect the direction 
of the incident particle. While in a high-velocity regime the decoupling between 
electronic and nuclear processes [29], around the 60 s, was accepted by almost all 
the scientific community, in the low-velocity regime the decoqpling was hardly to 
share. In fact, difficulty to accept the Lindhard decoupling can be justified by the 
observation that, in the low-velocity regime, in each collisional event and at the 
same time, a scattering process takes place as well as electronic and nuclear 
energy loss. Nevertheless, as Lindhard showed [26, 27], in a penetration theory 
of low-velocity atomic particles through matter the electronic processes enter 
into the theory via a continuous stopping term, whereas the statistics of elastic 
energy loss and scattering determine the general stmecture of equations. 

In the subsequent~part of this chapter we shall describe the essential 
characteristics of the Lindhard theoretical apparatus. 

2"2.1. The i n t e r a t o m i c  po ten t i a l .  The interaction between the incident 
particle and a target atom is a typical many-body problem and a possible 
description of the interaction can be made by using the Hartree-Fock self- 
consistent potential method [30, 31]. Since the motion of l~articles in a self- 
consistent potential can be assumed to be quasi-classical in most of space, the 
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quasi-classical (or Thomas-Fermi) approximation of the Hartree-Fock method 
can be used [32, 33]. In other words, the interaction between two particles of 
charge Z1 e and Z2 e, with e the electron charge and Z1 and Z2 the atomic numbers 
of the colliding particles, can be adequately described by the Thomas-Fermi 
statistical model. Within the accuracy of this model, the interatomic potential 
between two particles can be described by the following screened Coulomb 
potential [34, 35]: 

(2.11) V(r)-Z1Z~e~f(r I 
r " \ a l '  

where r is the distance between the two particles, f(r/a) is the Thomas-Fermi 
function [36] and a is the screening radius. Lindhard and coworkers [28] arrive at 
the same conclusion and the only difference between the two final expressions of 
the interatomic potentials is in the expression for the screening radius. The 
choice between the Firsov or Lindhard screening radius cannot be motivated by 
any scientific argument. In this paper we adopt the Lindhard screening radius 
which has the following form: 

0.8853ao 
(2.12) a - 

~/Z~l ~'~ + Z~ ,':~ 

where a0 = 0.529 • is the Bohr radius. 

2"2.2. The p o w e r  c r o s s - s e c t i o n .  Let us analyse the scattering process 
between two particles in the classical picture. We restrict to the case in which 
the struck particle (M2) in the laboratory system is, before the collision, at rest. 
I f  ,~1 and r are the scattering angles of the two particles, in the laboratory 
system, and 0 is the scattering angle in the centre-of-mass system, the relation 
among these quantities can be written [37] as 

M1 sin 0 
(2.13) t g  r - M1 + M2 cos 0 

and 

~ - - 0  
(2.14) ~ - 2 

In the penetration of particles through matter and in particular in the 
radiation damage field, the energy transferred, T from the incident particle to 
the struck atom is an important quantity. Simple calculations show that the 
following relation is valid: 

0 0 (2.15) T = :,E sin 2 ~ = T,~ sin 2 ~ .  
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It  appears clear that all basic quantities involved in a scattering process can 
be derived if the expression of the scattering angle 0 is known. Unfortunately, 
the general expression [37] of the scattering angle 0, for spherical potential, 
when screened Coulomb potentials are considered, cannot be calculated analyti- 
cally [38]. Some improvements can be achieved, if the scattering angle is small. 
In this case we can write [28, 34] 

7 ~-- 1 (2.16) o -  r V(Vb'~ + z2)dz 
~v 2 ~b J - - ~  

where ~ is the reduced mass, v the velocity of the incident particle, b the impact 
parameter and z the direction of the incident particle. 

If we insert eq. (2.11) in eq. (2.16), we obtain [28] 
t 

(2.17) 

where 

0 = -  dz (b 2+z2)3/2 f a + a 

(2.18) d = - -  
2 Z 1  Z 2  e 2 

~v ~ 

is called collisional diameter [29]. Moreoverf '  is the derivative of f with respect 
to the impact parameter. 

If we introduce the new variable 

(2.19) 

we get 

b 
~x ---- a r c c o s  

r~ ..[_ Z2 

d b (2.20) o=-~g(a ) 

with 

Following Lindhard [26-28] we introduce the dimensionless energy variable, 

a a M1 (2.22) ~ . . . . .  E 
d ZIZee 2 M l + M 2  
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and we write eq. (2.20) as follows: 

a b (2.23) 0s = - s g ( a  ) . 

The product of 0 and c is a function of only one variable: O/a. This enables us, by 
inversion, to obtain a differential cross-section which is a function of only one 
variable and this result  is valid for all screened Coulomb potentials. Numerical  
calculations of the cross-section can be found in the original paper  [28]. Since we 
are interested in analytical expressions we proceed by choosing the following 
form for the screening function [28]: 

(2.24) f(-~)=k"(al~-' 
Tt7  ! , 

where ks is a constant and s = 1 ,  2 ,  . . . ,  ~. For  this particular choice, we can write  
the scattering angle in a simple form 

(a)s 
(2.25) o=ks , , , s  -5 ' 

with 

r F(1/2) F( (s + 1 )/2) 
(2.26) ~,s = J d~ cosS~ 2F(s/2 + 1) 

0 

where F(z)  is the Euler  gamma-function [39]. 
Equation (2.25) enables an analytical differential cross-section, d~(0) to be 

derived. In fact, by definition [37] 

(2.27) d~(0) = 2r, b db dO 

and we obtain, by using, eq. (2.25) 

(2.28) 
/ k  ,, \2,,~ VI 1\2/~7 

which writ ten in terms of energy t ransferred T becomes 

(2.29) d~(T) - = _2. -2;s rinl~s rp-l-lis ..lrP 
- - 7 ( I ,  ],s ~ I m I U l  , 

where 
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In deriving eq. (2.29) we have used the expression of eq. (2.15) in the limit of 
small scattering angle. 

Equation (2.29) is called L i n d h a r d ' s  p o w e r  cross - sec t ion  and, although it has 
been derived for soft collisions (small scattering angle approximation), it can be 
shown to be quite accurate even for violent collisions. Usually this power cross- 
section is used in the form proposed by Sigmund [40] 

(2.31) da(T) = C m E  -m T -1-m d T  , 

where 

iN] 
with m = 1/s. In table I are shown several used values of the constant I,~ for 
different m values. 

TABLE I. - Values o f  ~,, f o r  different values of  m. 

m 1 1/2 1/3 1/4 1/5 0 
~m 0.5 0.327 1.309 1.4 2.92 24 

, 2"2.3. P e n e t r a t i o n  in r a n d o m  media .  In this paper we shall always 
assume that the motion of particles penetrating a material can be adequately 
described by classical mechanics [29, 37]. If  we also assume that all elastic 
collisions in the solid are binary, then as in the previous sections we can derive all 
basic quantities necessary for a description of the scattering process. The 
subsequent step is the derivation of the theoretical tools describing the nuclear 
and electronic energy loss. In the slowing-down of particles in materials, 

particles are point particles that undergo their collisions through specified cross- 
sections. It is then necessary to specify a statistic of collisions. We shall assume 
that the probability that a particle, which slows down in a solid, undergo a 
collision during a small travelled path AR is proportional to AR and is 
independent of the past story of the particle. This statistic of collisions is 
adequate to describe the slowing-down of particles through random media and it 
is to these materials that we shall refer in this paper. From the last assumption it 
can then be shown that the probability for a particle to undergo a collision in AR 
is equal to 

(2.33) N dz AR, 

where N is the density of target atoms (atoms/cm 8) and d~ is the cross-section 
which characterizes the collisional event. 
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If the cross-section in eq. (2.33) is the differential cross-section in terms of 
the energy transferred T, then the average energy loss in elastic collisions can be 
calculated [29] 

(2.34) (AE) = N_~R J Td:(T). 
o 

For infinitesimal travelled path, we can write [26, 29, 40] 

dE t =NSn(E ) (2.35) ~ n 

with 

(2.36) 

Tm 

Sty(E) = f Tdz(T). 
0 

Expression (2.36) represents the mtclear stopping cross-section, whereas eq. 
(2.35) is the nuclear stopping power. Both quantities play a central role in 
modern theories of penetration of particles in materials and particularly in the 
low-velocity region. Both quantities refer to the elastic energy loss problem. 

If we introduce in eq. (2.35) the power cross-section, eq. (2.31), then we 
obtain [26, 40] 

1 Cm ],l-m E1-2,~ (2.37) Sn(E)= i m " 

Similar considerations can be developed for the electronic energy loss. In 
fact, if we indicate with d~-e the differential cross-section per energy transferred 

Te, i to the electronic system (each electron is labelled by i), then by using the 

previous procedure we get 

(2.38) ~ e -- NSo(E) 

with 

(2.39) 

Equation (2.39) is the electronic stopping cross-section and eq. (2.38) is the 
electronic stopping power. 

The precise form of the electronic stopping cross-section depends on the 
incident velocity region considered [41]. In the low-velocity region, which is 
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defined by the condition 

(2.40) v < voZ'~ 3 , 

where v0 is the Bohr velocity, almost all theories predict [41] the following form 
for S~: 

(2.41) SeocvP, 

where p is a number between 1 and 2. The Lindhard-Scharff theory [42], which is 
that which we shall use in this paper, predicts a value of ~ equal to 1 and a 
proportionality constant, K, equal to 

(2.42) K =  ~8=e 2 a~ ZI  Z2 , 
Vo + 

with ~e ~ Z]/6. Despite the large use made of the proportionality of the electronic 
stopping cross-section to the incident velocity, it must be stressed that the 
experimentally observed dependence of Se on v only approximately follows this 
behaviour. The theoretical results will be always affected by this approximation. 

Taking together the electronic and nuclear stopping power, we can write 

(2.43) dE _ N[S , (E)  + Se(E)] 
dR 

which well represents the basic separation of the energy loss in the electronic 
and nuclear part. As already discussed, the two parts of the energy loss are not 
equivalent in the Lindhard theoretical apparatus, because the electronic 
stopping cross-section enters into the theory as an additional term, whereas the 
choice of the statistic of collisions determines the form and the way that the 
elastic energy loss enters into a theory. This aspect will be clarified in the 
subsequent part of this section. 

Equation (2.43) also enables the path length, R(E) ,  travelled by a particle 
before coming to rest in material, to be estimated. In fact, we can write [26, 40] 

E 

(2.44) R ( E )  = N[S , (E ' )  + Se(E')]" 

For Se = 0 and power cross-section eq. (2.44) becomes 

(2.45) 
E 2m 

1 - m . m - 1  , 

R ( E ) = -  2 m  7 NCm" 
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To complete and better clarify the Lindhard apparatus it is mandatory to 
introduce the reader to his integral-differential equations [26,27] for the 
description of the penetration of low-velocity atomic particles into matter. We 
start with the path length theory [26, 40]. 

According to Lindhard, we introduce the path length distribution P(E, R) 
such that P(E, R)dR represents the probability that an ion, with initial energy 
E, come to rest after travelling a path length (R, dR). The argument [26, 27] 
which enables the integro-differential equation for P(E, R) to be derived can be 
summarized. The energy lost by a particle travelling a path length R can be 
assumed to take place during n arbitrary collisions; a balance equation can be 
written by assuming that the n collisions can be obtained in two separated ways: 
in the first, the n collisional processes all take place as the particle travels the 
path length R -  AR; in the second, the particle undergoes ( n - 1 )  collisional 
processes during the path length R - AR and the last one in the remaining AR. 
Since both situations are possible, the balance equation takes the following 
form [26, 40]: 

(2.46) P(E, R ) = ( 1 -  N.-~ f d~n.e) P(E , R - AR ) + 

where N,~R dvn.e is the probability of a collisional process specified by energy 
transfer F, Te.~ to electrons and by an energy transfer T to the translational 

motion of the struck atom. 
In the limit of A R o 0 ,  eq. (2.46) becomes 

(2.47) 

If d~ refers to the elastic collisions and d~ to the corresponding inelastic 
collisions, then the assumption of uncorrelated contributions between elastic and 
inelastic collisions enables eq. (2.47) to be transformed in 

(2.48) ~ P(E,  R) = 
DR 

-- + .... " ) 7  

Finally, if we assume that the electronic energy loss ~ Te,~ is always small 

compared with the incident energy and with the elastic energy loss we obtain the 
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well-known integro-differential equation for P [26, 40]: 

(2.49) P(E, R) = N[dv[P(E, R) - P(E - T, R)] + NSe(E)-~-~P(E, R). 
DR J O P J  

Equation (2.49) has the announced structure: the electronic processes enter  in 
the equation only via the stopping cross-section, whereas the statistic of elastic 
energy loss a n d  scattering determines the form of the integral-differential 
equation. 

Equation (2.49) can be analytically solved [26, 40]. Here, we only discuss the 
relation of this equation with eq. (2.44). 

By definition, the distribution P(E,R) is normalized as follows: 

(2.50) f dRP(E, R) = 1. 
o 

If  we introduce the spatial moments of the distribution P(E, R) 

(2.51) R'(E) = ; dRR~P(E, R) , 
o 

eq. (2.49) becomes 

(2.52) nR'-I(E) = N ~ dz [ R ' ( E ) -  Rn(E - T)] + NSe(E) d Rn(E). 

For  n = 1, the use of eq. (2.50) enables the following equation to be obtained: 

(2.53) 1 -- n f da [RI (E) -  RI(E - T)] + NSe (E)dRI (E ) ,  

where RI(E)= (R(E)) is the average path length. 
Finally, if T<<E, we obtain the following solution: 

E 

(2.54) (R(E)) = N[S,(E') +Se(E')]" 

Since this solution is equal to eq. (2.44), we conclude that  in the limit of soft 
collisions, R(E), defined by eq. (2.44) is equal to the average path length 
(eq. (2.54)). 

Particularly useful for the subsequent discussion is the energy attenuation as 
a function of the travelled path that  can be derived from eq. (2.54), in the case 
& ( E )  = O. 

If  Eo is the initial energy of a particle moving in a solid in a straight line along 
the x-axis, the relation between the travelled path length x and the energy E(x) 
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at x, can be written as 

(2.55) x =  
Eo 

f EI~) NSn(E)" 

By taking into account eq. (2.45) we obtain 

(2.56) 

In the limit m-- .0  we get 

E(x) = Eo [1 - x ~  1/2'~ R(E)J 

(2.57) E(x) = Eo exp [ -  NCox] . 

In eq. (2.57), the physical meaning of the quantity 

1 
(2.58) R0 - 

NCo 

is that of average path length for particles moving at very low velocity in 
materials. In fact, within the Lindhard formulation, for Se(E)= 0 and power 
cross-section the spatial moments scale with the following law: 

(2.59) 

where the proportionality constant depends only on the ratio M2/M1 and on m. 
For particles moving at the energies of the order of the energies of sputtered 
particles (few eV) the adequate value for m is assumed [15] to be m = 0. 

Two further quantities are necessary for future calculations: the average 
penetration depth and the projected range. 

A substantial improvement in the study of penetration of low-velocity atomic 
particles through matter can be achieved by introducing a distribution of end 
positions of stopped particles [26, 40]. In particular, we can define [40] the 
function F(E, e, x) such that Fdx represents the probability that an ion with 
initial velocity v = (E, e) at x -- 0 comes to rest at depth (x, dx). If the medium is 
assumed to be infinity, we find [40] by using the balance method and the same 
procedure described before, 

(2.60) - cos 0 ~-~ F(E, e, x) -- N f d~(v, Vl) [F(E, e, x) - F(E - T, el, x)] + 

+ NS~(E) ~ F(E, e, x),  
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where 0 is the angle between v and the surface normal, e~ the velocity unit vector 
of the scattered ion and 

(2.61) d~(v, vl) = d ~ T ) ~  ~(e -et - cos r 

the differential scattering cross-section for scattering from v into (vl, d3v~). The 
normalization condition is now 

(2.62) f dxF(E, e, x) = 1. 

When the azimuthal symmetry in scattering processes is assumed, a standard 
technique to solve eq. (2.60) goes over the Legendre expansion of the angular 
part and the moment distribution over the depth [43]. From the equation for the 
first moment 

r162 

(2.68) ( x ) = ~ dx xF(E , e, x) = FI(E , e) 
- a r  

which defines the average penetration depth, we can derive the following 
equation for the projected range, Rp(E): 

(2.64) 1 = N ~ de(T)[R,(E) - cos r - T)] + NSe(E)--~Rp(E). 

The relation between the two last quantities is 

(2.65) (x )  = Rp(E) cos 0. 

For Se(E) = 0 and power cross-section, the solution for the projected range can 
be written as 

E2m 
(2.66) Rp(E) = Ap 

NC~'  

where Ap depends only on the ratio M2/M1 and on m. The ratio Rp(E)/(R(E)), 
which depends only on the ratio M2/M1 and on m is called path length correction. 
In fig. 2 are shown the penetration parameters described in this section. More 
details of the Lindhard theoretical apparatus can be found in the original 
papers [26-28] (see also ref. [40, 43, 44]. 

2'3. The Brandt and Laubert theory. - The sputtering theory presented in 
1967 by Brandt and Laubert [45] represents the first attempt to introduce part of 
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incieLent 
v = ( E ~ e )  ..., p~rticLe 

. . . .  x . . . . . .  ~ - , ~  . . . .  ~, 
\ / 

Fig. 2. - Penetration parameters: R is the path length; Rp is the projected range and x the 
penetration depth. 

the Lindhard concepts in a sputtering formulation, where, nevertheless, the 
basic approach is the same as Keywell (explicit separation between the function 
describing the displaced atoms and the function describing the escape from the 
target). The mention of the Brandt and Laubert theory in this paper is due to the 
following considerations: although their formulation proves to be too simple 
when compared with subsequent formulations, they have proved that the use, 
even partial, of the Lindhard concepts may be enough to reproduce some of the 
basic results of more elaborated theories. In fact, their sputtering yield can be 
written as 

(2.67) 1 l o N S n ( E )  _ ~, 
Y = 4 cos 0i ~ [ ]~y )  - g ( S e ( E ) ) ]  

where 0 i is the angle between the incident direction and the outgoing surface 
normal, l0 is a constant characteristic of the target material, Ed the displacement 
energy, g a function which accounts for the energy lost to electronic excitations 
and f a function of the dimensionless variable 

E 
(2.68) Y - l o N S n ( E ) "  
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The most relevant aspect of the Brandt-Laubert  yield is its proportionality 
to the nuclear stopping power. This result, common to more elaborated 
theories [15-17], is well proved, under properly physical conditions, by many 
experiments [46]. In the case of negligible electronic energy loss eq. (2.67) 
becomes 

1 loNSn(E) 
(2.69) Y - - -  f ( y ) .  

4 cos 0i Ed 

In this form, the yield is more suitable for a subsequent comparison, because this 
general form of yield, when correctly derived, is suitable for many experimental 
data. Here we stress that, in the low-energy region and for not light incident 
ions, when the electronic energy loss is negligible, the sputtering yield is 
proportional to the nuclear stopping power and to a universal function. 

2"4. The S igmund theory. - The Sigmund theory [15], like the Harrison 
theory, is based on a properly linear Boltzmann transport  equation. Neverthe- 
less the comparison between the two theories cannot be forced further. In fact, 
while Harrison has adapted the neutron diffusion theory to the sputtering 
phenomenon and uses a forward form of linear Boltzmann transport  equation, 
Sigmund directly writes his basic equations in a backward form. Moreover, the 
Sigmund transport  equations have no nonlinear analogue [47] and are suitable 
for a complete use of the Lindhard theoretical apparatus. This last property 
enables the theory to give analytical results, as well. 

Owing to the central position of the Sigmund theory in the outline of the 
sputtering theories, many aspects of this ~theory can be found in several review 
articles (the study of the original paper may also be a source of useful 
suggestions about several aspects of the sputtering). In this section we only 
discuss his sputtering yield in relation to previous authors. Fur ther  discussions 
can be found in the subsequent part of the paper. 

The basic quantity of the Sigmund transport  theory is the velocity 
distribution function G(r, v, vo,t) that  specifies the density of moving atoms in 
the real space r and in the velocity space Vo. To be precise, the quantity Gd3vo dx 
represents the average number of atoms moving at time t in a layer (x, dx) with 
velocity (v0, d%0) if at time t = 0 an atom starts its motion in the plane x = 0 (in 
x = 0 it is also assumed to be the surface). Since the number of atoms with 
velocity (v0, dSv0) penetrating the plane x in a time interval dt is given by 

(2.70) G(x, v, Vo, t)d~vo[vo~l dt,  

where v0x is the x component of the vector v0, the sputtering yield can be writ ten 
a s  

(2.71) Y =  f dSvo[Vox[ f dtG(0, V, Vo, t). 
0 
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The integration over the recoiling velocity is extended over all values with a 
negative x component large enough to overcome the surface binding potential. 
For an infS~ite medium and in the isotropic limit the expression of the Sigmund 
sputtering yield is written as 

FFD(E, e, x = O) 
(2.72) Yo - , 

8NCo U 

where P is a constant equal to 0.608, Fvdx  is [43] the average energy deposited 
into recoils at depth (x, dx) by the incident ion, with initial energy E and 
direction e, and U is the height of a planar surface potential barrier; moreover, 
Co the constant of the pouter cross-section for m = 0 is set equal to 1.808 ~2 [15]. 

To make a comparison of eq. (2.72) with previous theories more transparent 
we write function Fv in the case where the incident ion hits the target at normal 
incidence and the elastic energy loss is the predominat mechanism: 

(2.73) FD(E) = ~NS~(E) , 

where = is a factor that depends only on m and Me/M:. 
In this ease, as for the Brandt-Laubert theory, the sputtering yield is 

proportional to the nuclear stopping power. Nevertheless, in this ease also the 
comparison cannot be forced any further. To understand the basic differences 
between these two formulations we shall discuss the dependence of the yield on 
the incident angle. Within a linear cascade theory of the sputtering phenomenon 
a simple path length argument, as in the Brandt-Laubert theory, leads to a 
1/cos o~ angular dependence. This result, valid only for M~ << Mz, is based on the 
assumption that the energy deposited in primary collisions (direct collision 
between the incident ion and the target atoms) is not transported away from the 
particle trajectory by energetic recoil atoms. Since recoil atoms may have 
considerable ranges, it is clear that the substitution of the function Fv with Sn is 
not possible under general conditions. 

The proportionality of the sputtering yield to the function Fv also represents 
the better  proof of the strong connection between transport and collisional 
approaches to the sputtering phenomenon: Fv although is a typical damage 
function, has appeared in a transport equation. This means that independently of 
the starting approach to the sputtering, transport or eollisional formulation, 
under the same physical conditions, must give the same results. And more 
important for future analysis, within the region of validity of the Sigmund 
results any future eollisional sputtering theory must reproduce the Sigmund 
transport results. 

Possible improvements of the Sigmund theory are of technical aspects and 
have been discussed by the same author [47,48]. Where the approach seems 
historically conditioned is in the surface analysis of the phenomenon. The 
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Sigmund approach reflects the Lindhard structure, which in its turn is oriented 
only towards the penetration aspects of particles moving through matter. Recoil 
atoms that will be sputtered and recoil atoms moving in the-bulk of materials 
follow the same physics: the depth of origin of sputtered atoms is related, in the 
Sigmund interpretation, to the range of low-velocity particles in matter. In 
subsequent chapters we shall show that a correct interpretation of the surface 
aspects of the sputtering can avoid some misunderstanding of the transport 
formulation and develop new ideas about the sputtering phenomenon. 

2"5. The Thompson energy spectrum. - To explain his pioneer experiments 
on energy spectra of sputtered particles, Thompson developed in 1968 a 
collisional sputtering theory [14]. Within this formulation, and by using a 
notation[16] useful for the subsequent discussion, the energy spectrum of 
sputtered particles can be written [16] as 

(2.74) g0(E1) -- 
FFD(E, e, x = O) E1 

4NCo (El + U) 3' 

where E1 is the energy of sputtered particles. 
The essential characteristics of this spectrum are easily-summarized. The 

spectrum predicts a position for the peak, Ep, which depends only on the value of 
the surface binding energy U 

U (2.75) Ep = ~-. 

For E1 >> U, the Thompson spectrum gives an energy dependence which is 
inversely proportional to the square of the energy and this dependence 
reproduces essentially the energy distribution of recoiling_atoms in a linear 
collisional cascade [40]. Moreover, the form of the surface potential barrier, as in 
the Sigmund theory, is assumed to be planar. 

Finally, the Thompson energy spectrum is related to the Sigmund sputtering 
yield by the well-known relation 

(2.76) Yo = f Jo(E1) dE1. 
0 

On the basis of the last relation we shall refer to the transport theory as the 
Sigmund-Thompson theory. Nevertheless, we want to stress that the two 
formulations have been derived by using different approches (transport and 
collisional approaches), although they refer to identical physical situations. 

2"6. A suspicious lack. - As mentioned in the introduction the number of 
papers or review articles concerning the sputtering phenomenon is remarkable. 
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Nevertheless, except for a Kelly review [12] or more recently by Eckstein [49] 
the problem of the derivation of the theoretical expression of the average energy 
of sputtered atoms, <El}, in the Sigmund-Thompson theory has never been 
solved [20]. In fact, two decades after the publication of the theory no expression 
of (El> for the transport theory exists. Let us look more closely at the reason for 
this. In principle there is no difficulty in defining the average energy of 
sputtered atoms in the Sigmund-Thompson theory. In fact, by using eq. (2.76), 
we immediately find 

(2.77) (El} = Yo I f dE1E1Jo(E1). 
0 

Nevertheless, a rapid inspection of eq. (2.77) shows that this average energy 
cannot be calculated because the integral is divergent. 

In the subsequent section we shall show that this problem can be properly 
solved only with a precise definition of the surface aspect of the sputtering 
phenomenon. 

3. - S p u t t e r i n g  a s  a s u r f a c e  p h e n o m e n o n .  

In recent years several experiments [50-55] have been aimed at widening our 
knowledge of the depth of origin of sputtered particles. This subject plays an im- 
portant role in multiple interaction and binary collision simulations [11, 13, 56-58] 
and in the angular distribution of atoms sputtered from segregate alloys [59-63]. A 
theoretical formulation of the sputtering phenomenon which contains explicit 
information on the depth of origin of sputtered particles was proposed, for the first 
time, only in 1981 by Falcone and Sigmund [16]. In this chapter we shall discuss 
this theory and the forced modifications that a correct interpretation of the surface 
aspect of the sputtering introduces in the same formulation. 

3"1. The Falco~e and Sigismund theomj. - In describing the sputtering 
mechanism we have clearly distinguished two steps. In the first step is described 
the process that transfers energy and momentum from the incident particle to 
the target atoms, and that produces the displaced atoms. In the second step a 
part of the displaced atoms, under suitable conditions, leave the surface. The 
most general formulation of the sputtering phenomenon, in which the explicit 
separation of the two described steps is proposed, is in Falcone and Sigmund 
paper [16]. 

Following these authors, when an incident particle, starting from the plane 
x = 0 with energy E and direction e, penetrates into a solid target, it generates a 
linear collisional cascade and it is possible to define the function D(E, e; Eo, co, x) 
such that DdxdEod2eo represents the average number of target atoms set in 
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motion, by the incident particle, at depth (x, dx) with initial energy (Eo, dEo) in 
the solid angle (co, d2eo). We shall call this function damage function. 

Moreover, if we indicate with P(Eo, co, x; El,  el) d E  1 d2e~ the probability that 
a recoiling atom (Eo, Co, x) will be ejected from the surface with energy (El, dE1) 
in the solid angle (e~, d2ei ) ,  then the double differential sputtering yield can be 
written as 

(3.1) J(E1, el) = f dxdEod2eoD(E, e;Eo, Co, x)P(Eo, Co, x;E1, el). 

We shall call the function P ejection function. From eq. (3.1) the sputtering yield 
can be obtained by further integrations 

(3.2) Y = f dEld2elJ(E1, el). 

Since eq. (3.1) is equivalent to a pertinent linear transport eq. [64]; the 
assumption that eq. (3.1) can describe the sputtering phenomenon is equivalent 
to the assumption that this phenomenon can be described by a proper linear 
transport equation. Once eq. (3.1) has been established the subsequent problem 
is the determination of adequate expressions for both D and P. In ref. [16], to 
describe the sputtering in the region of validity of the Sigmund-Thompson 
theory, the authors assumed for D and P the following expressions: 

(3.3) 

and 

D(E , e;Eo, Co, x) - 
FFD(E, e, x) 

(3.4) P(Eo, 0o, Zo, x ; E 1 ,  01, ~1) = 

[ I--N "ll 
---- ~ E 1  --  Eo exp L cos 0o JJ   (zl - zo) ~(cos 01 - -  COS 00) , 

where Eo, Oo and x0 are, respectevely, the energy, polar angle and azimuth with 
respect to the surface normal of a target atom set in motion at depth (x, dx), 
whereas El, 01, Zl are the corresponding quantities at the surface. Moreover ~ is 
the Dirac delta. 

The expression of the damage function in the form expressed by eq. (3.3) was 
derived by Sigmund [15, 44] and represents a well-founded result of linear 
collisional theory, when the power cross-section is used. The basic technique of 
its derivation, namely the search for an asymptotic solution of the balance 
equations, is due to Robinson [65]. In appendix A we have derived a general 
equation and some solutions for D. 

Equation (3.4), on the contrary, is based on the derivation of eq. (2.57), 



2 4  G.  F A L C O N E  

namely it is based on the assumption that the motion of a recoil to be sputtered is 
along a straight line and that the recoil suffers a continuous loss of energy during 
its motion towards the surface. 

If the assumption of a planar surface potential barrier is included in the 
expression of P, then eq. (3.4) becomes 

(3.5) P -~- o 1 
[- NCox]] 

+ U -  Eoexp | co--~o -~o).  
L J ~  

�9 ~ cos01- 1-~-~ cos200-~11 �9 

Equations (3.1)-(3.5) enable the following sputtering yield to be obtained: 

(3.6) Y = 8-~ dxFv(E, e, x) 4E4(NCox), 

where 

exp [ -  zt] 
(3.7) En(z) = dt t" 

1 

is the exponential integral function [39]. 
To obtain exactly the Sigmund sputtering yield from eq. (3.6) we must 

disregard the depth dependence in F• by setting [16] 

(3.8) Fo(E, e, x) ~- FD(E, e, x = 0). 

This assumption is, of course not essential, for more general expressions of the 
yield, nevertheless its use and validity are well established in sputtering 
calculations: the sputtering yield is determined by the energy deposited near the 
surface. 

Within the same approximation the above formulation also enables the 
Thompson energy spectrum to be obtained [16]. Finally, from eq. (3.6) the 
average depth of sputtered atoms can be obtained: 

(3.9) 

fi dxx FFo(O) 
8U (x) =0 

4E4(NCox) 
4 1 

f 5 NCo" 
ITo(O___~) 4E4(NCo) 

8U 
o 

Among the several applications of the above theory, we just mention the 
extension to compound targets [66] and segregation phenomena [67]. 
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3"2. The surface character of the sputtering phenomenon. - In the previous 
section we have mentioned that in deriving the expression of function P we have 
made the assumption that a recoil to be sputtered loses its energy in a continuous 
process. Nevertheless, it is well known [26-28] that the elastic energy loss 
process in the low-velocity regime is essentially a statistical process. Moreover, 
in the same derivation of P it has been assumed that recoils to be sputtered move 
along a straight line (the authors [16] supported this assumption by the 
observation that for a homogeneous and isotropic source, as was the used 
expression of D, any loss of particles due to scattering from a given direction of 
motion is compensated by an equivalent gain). The correcteness of both 
assumptions is hardly to be accepted and more important both assumptions are 
not present in the standard transport theory [15]. These difficulties can be solved 
with a correct interpretation of the surface character of the sputtering. 

3"2.1. The co r rec t  form of t he  e jec t ion  funct ion:  The first problem 
to solve is to show the equivalence between the standard transport theory and 
the Falcone-Sigmund theory. To do this, we must show that eq. (3.5) can be 
derived using the same assumptions of the transport theory. This proof has been 
given in ref. [68] and the key result is that the equivalence is possible if the 
interpretation of the quantity 

(3.10) L0 = __11 
NCo 

is changed from the range of particles moving at low velocity in solids (see eq. 
2.58) to the low-velocity collisional mean free path [69]. To be precise, it was 
shown [68] that eq. (3.5) could be derived with the same assumptions of the 
transport theory (penetration in random media and binary elastic collisions 
always occur between moving and fixed atoms). Moreover as in the transport 
formulation, it was assumed that during the ejection motion (the motion from the 
original position in the solid up to the surface) recoils to be sputtered could loss 
energy in elastic processes (the energy lost in overcoming the surface potential 
barrier is always an extra loss). 

In fig. 3 is shown a possible sputtering event based on this new inter- 
pretation. The picture shows that sputtered particles originate essentially from 
the first monolayer as also indicated by experiments [50-55] and simulation 
studies [11, 13, 56, 57] on the depth of origin of sputtered atoms. 

Nevertheless a contradiction immediately appears: if particles to be 
sputtered originate from the first monolayer, how is possible that they lose 
energy in elastic processes? Within the physical apparatus described in the 
previous chapter this loss is not possible and we arrive at the conclusion that the 
most probable ejection motion is in a straight line (no scattering) and without any 
loss of energy in elastic processes. In other words, the surface character of the 
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Fig. 3. - Sputtering process in the linear regime. Black balls are recoils partecipating in 
sputtering. 

sputtering phenomenon is only compatible with an ejection function which 
states the energy conservation for recoiling atoms during the ejection process. 

The energy attenuation (see eq. (2.57)) underlying the derivation of eq. (3.5), 
while compatible with the motion of atoms in the bulk of materials, is not 
adequate to describe the ejection process in the sputtering phenomenon. The 
correct expression of the ejection function in the sputtering phenomenon must 
be [17] 

X "[ 8(E1 + U - E0) 8(Zl -- Z0)" 
7 

(3.11) P(Eo, eo, x;E1, el) = exp L0 cos 0o 

"~ (cos 01 - ~ ( 1  - ~ , )  c~ - ~11), 

where Lo is given by eq. (3.10). Numerical differences between L0 and Ro will be 
discussed later. In the subsequent part of the paper for ejection function we 
always indicate eq. (3.11). 

3"2.2. Max imum s p u t t e r e d  e n e r g y  and t h r e s h o l d  for s p u t t e r i n g .  
Equation (3.11) is the mathematical expression of the surface character of a 
sputtering theory based on binary elastic collisions and represents a key 
innovation with respect to all previous theories. This innovation is well 
characterized by the results that we are going to discuss in this section. 

If we indicate with A (we remark that this quantity cannot be confused with 
7 defined in eq. (2.3) the maximum fraction of the projectile's energy that can be 
transferred to a recoil to be sputtered in a single collision, independently of the 
explicit expression for function D, the maximum sputtered energy, EM is always 
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expresses by the following relation: 

(3.12) EM = AE - U. 

Equation (3.12) is the more general equation for a binary collisional sputtering 
theory that can be compared with experimental data. This equation states that, 
with identical initial conditions, except for the incident energy, all couples 
(E, EM) must be over the same straight line: the slope of this straight line gives 
information on the binary collisions between the incident ion and the surface- 
target atoms and the value of the intersection of this straight line with the E M 

axis gives the value of U. In other words, eq. (3.12) contains several spectro- 
scopic information. Moreover, due to its general character, eq. (3.12) can be used 
to establish the limit of validity of the binary collisional approximation (see next 
chapter). 

Finally, by definition, we derive from eq. (3.12), the general form of the 
threshold, Eth for sputtering: 

U (3.13) Eta -- ~-. 

The sputtering threshold, in all theories that are able to derive it, is calculated 
from the sputtering yield expression and in this sense depends (see also later) on 
the expression used for D. Here we have shown that the form of the threshold is 
only a consequence of the binary collision approximation and of the surface 
character of the sputtering. Further discussion about the two last quantities will 
be given in the subsequent chapter. The next section will be devoted to the 
modifications induced by the correct expression of the ejection function in the 
standard transport theory. 

3"3. Standard transport results: a revision. - In this section we shall 
calculate some basic quantities that we shall subsequently compare with the 
Sigmund-Thompson transport theory. To do this we shall assume, in all 
calculations, for D the expression given by eq. (3.3) and for P eq. (3.11). 

3"3.1. Dep th  d e p e n d e n c e  of s p u t t e r  eros ion.  If we introduce eqs. 
(3.3) and (3.11) in eq. (3.1), the double differential sputtering yield, including the 
spatial distribution, can be written as 

i x ]  (3.14) J(El,01,x)= iEl ~- U) ~]f dxd(c~176 LocoS0o 

 (cos0i  )cos200 
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A further integration over the angular variables gives the depth dependence of 
the energy spectrum 

J(E1, x) - (3.15) 

with 

2(E1 + U) 2 dxFD(X) G(x/Lo, U, El)  

(3.16) G(x/L0, v, EI) : E~(x/L0) - ~/~---~--~ 2~---~], 

where E4z) is the exponential integral function (see eq. (3.7)). 
A further integration, by taking into account eq. (3.12), gives 

(3.17) Y = ~-~; dxFD(X) Y(x/Lo, w), 

where 

(3.18) Y(x/Lo, w) = YI(x/Lo) + Y~(x/Lo, w) , 

with 

(3.19) 4[E~{x/ ~ E I ~  L0 tLo;j YI (x lL~  -tLo] + - , 

(3.20) 

and 

Y2(x/Lo, w )  = 

A E  E (3.21) w =  = - - .  
U Eth 

If we disregard the spatial dependence in FD the function Y(x/Lo,w) represents 
the depth dependence of sputter erosion. With respect to the previous 
expression of this quantity [16], there is an extra term Ys w) which depends 
also on w. For E>>Eth, Y_~= 0 and Y(x/Lo, w) reduces to Yl(x/Lo). This latter 
quantity is equal to 4E4(x/Lo) which is, if we set Lo = Ro, the depth dependence of 
sputter erosion according to Falcone-Sigmund calculations [16] (see eq. (3.6)). 
Then, at large incident energies, the average escape depth is 

4 (3.22) ( x } -- -~ Lo . 
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It  appears from the previous analysis that  the standard transport  results are 
strictly valid only at incident energies that  are very large when compared with 
the threshold energy. This result is also confirmed by the yield calculations of the 
next section. 

3"3.2. G e n e r a l i z e d  s p u t t e r i n g  y ie ld .  If  we disregard the spatial 
dependence in FD and we make the approximation used in eq. (3.8), then, after a 
final integration, we get the following sputtering yield [20, 69]: 

where Y0 is the Sigmund sputtering yield (see eq. (2.72)). 
Equation (3.23) contains the extension of the standard sputtering yield in the 

low-energy region [20, 69]. To show this property, we compare in fig. 4 the 
experimental results [70] of Ni bombarded, at normal incidence, with Ar ions, 
with the Sigmund sputtering yield and eq. (3.23). The chosen value of Eth has 
been 60 eV and is equal to the lowest ion energy for which sputtering of Ni 
bombarded, at normal incidence, with Ar ions has been measured [71]. 
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Fig. 4. - Sputtering yield of Ni targets bombarded with Ar ions v s .  the incident energy. 
The experimental data are taken from ref. [70]. The dashed line is the Sigmund yield. The 
solid line is eq. (3.23), with E t h  = 60 eV. 
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The picture shows a clear improvement of the standard transport theory in 
the low-energy region. Similar results can be found for other ion-target com- 
binations [20, 69]. 

At large incident energies (E>>Eth) eq. (3.23) reduces to Sigmund's 
sputtering yield. 

3"3.3. A v e r a g e  e n e r g y  of s p u t t e r e d  a toms .  The previous results 
enable us to derive the expression of the average energy of sputtered atoms for 
the standard transport theory. In fact, by definition we write 

AE-U 

(3.24) (El} = y-1 f dE~EIJo(E~), 
0 

where Y is given by eq. (3.23) and J0 is the Thompson energy spectrum. After 
the substitution of the proper quantities and a simple integration, we get [20] 

(3.25) (El)  = 2Ug(w) 

with 

(3.26) g(w) = In w + 2 1 1 - . 
w 2w 2 

For E>>Eth, eq. (3.25) reduces to 

(3.27) 

Equation (3.27) is the theoretical expression of the average energy of 
sputtered atoms associated with the Sigmund-Thompson theory. The result has 
been a direct consequence of the precise maximum sputtered energy, which in 
turn, is related to the surface character of the sputtering and with the binary 
collision approximation. 

4. - U n i f i e d  s p u t t e r i n g  t h e o r y .  

The theory described in the previous chapter has been used to reproduce and 
extend the results of the Sigmund and Thompson theory. The formalism refers 
to collisional cascades, generated by the incident ions, that are characterized by 
two physical conditions (conditions.for linearity): the first is that the density of 
moving atoms in a cascade, at any single time, is small compared with the solid 
density and the second that in each binary collision the struck atom is always at 
rest before the collision. All theories described in the previous chapters refer to 
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the assumption that collisional cascades always develop. We shall call this regime 
the Sigmund-Thompson regime. Since this regime verifies the above two 
properties, this regime is also linear. 

It is not difficult to convince oneself that there are several physical 
conditions that cannot be included in the previous description. For example, in 
the case of sputtering of heavy targets by light-ion bombardment the mass ratio 
M2/M1 is so large that, for low and medium keV incident energy, cascades cannot 
be generated and only target atoms set in motion by direct collisions with the 
incident ion (primary recoils) can be sputtered. Even in the case of very low 
incident energy cascades cannot develop and only primary recoils can be 
candidates for sputtering. We shall call the regime where only primary recoils 
are candidates for sputtering the single collisional regime. It is clear that the 
single collisional regime is also a linear regime, because the two physical 
conditions for linearity are still present. In other words, the single collisional 
regime and the Sigmund-Thompson regime are both part of a more general 
regime (the linear regime). This connection is very transparent when the 
equations describing linear regimes are derived (see appendix A). 

Different is the situation where one or both conditions of linearity are not 
present. All physical situations where one or both conditions of linearity are not 
present will be referred to as nonlinear regimes. In this paper we do not discuss 
these regimes. 

We shall now show the extension of the theory presented in the previous 
section to other linear collisional regimes: the unsolved problems will appear 
technical rather than basic. 

4" 1. General formulation. - The problem of a sputtering theory valid for all 
sputtering processes does not seem at the moment to be conceptually 
practicable. Nevertheless the attempt to formulate a theory which enables all 
linear regimes to be explained within the same formalism seems realizable. In 
this chapter we present a generalization of the formalism already discussed that 
at present appears as a possible unified theory for linear collisional sputtering. 

We first state the basic picture of the formalism that we are going to present. 
Our theory refers to targets whose atoms are randomly distributed and can be 
represented together with the incident ion as point-particles. The motion of each 
atomic particle can be described by classical mechanics and the elastic collisions 
among atomic particles are assumed to be binary. 

If this is the general scheme, which is in common with the standard transport 
or collisional theories, we shall introduce a first restriction: an atomic target in 
order to be sputtered must always overcome a surface potential barrier which is 
planar and of height U. This assumption cannot be proved valid for all physical 
systems, but it seems adequate to describe the cases discussed in this paper. 
However, in general this assumption is unnecessary. 

The general mathematical apparatus is equivalent to that described in the 
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previous chapter. In fact, we assume that all sputtering events can be 
adequately described by the following double differential sputtering yield: 

(4.1) J(E1, e l )  = f dxdEod2eoD(E, e;Eo, Co, x)P(Eo, eo, x;E1, el), 

where the ejection function P is cdways given by eq. (3.11) 

f ~ / ~ ( E 1  + U - Eo) r - Zo)" 
7 

(4.2) P(Eo, Co, x; El, e:) = exp Lo cos 0o 

�9 ~ cos01- 1-~-~1 cos200-~11 , 

whereas the expressio~ qf the damage f~tuctiort D depends on the regime 
cow, sidereal. Following this formulation, the sputtering phenomenon has a 
universal characteristic that is its surface aspect, which mathematical represen- 
tation is given by eq. (4.2). In other words, all recoils to be sputtered fSllow the 
same motion: no scattering and no elastic energy loss after they start from the 
original position in the solid. Sputtered particles originate from the first 
monolayer. Deviations from this picture are statistical irrelevant or if present 
depend on the lack in the theory of the evolution and modification of the surface 
topografy [72]. 

All possible regimes can be described by using different expressions of D. At 
present only a limited number of expressions of D are available. 

The theory is now ready to obtain the first and more general results. For all 
collisional regimes where moving particles can only slow down (cooling 
collision,s: no gain of energy in collisions), if A is the maximum fraction of the 
projectile's energy that can by transferred to a target atom to be sputtered in 
a single collison, then the maximum sputtered energy, EM can be always writ- 
ten as 

(4.3) E.~I = A E  - U. 

This result is a consequence of the surface character of the sputtering and of 
the binary collision approximation used. To understand this result it must be 
realized that, under the conditions of cooling collisions, the collision with the 
maximum energy transferred is always between the incident ion and ,a target 
particle and this collision is present in all linear regimes. For this category of 
experiments, since eq. (4.3) is not affected by multiple interaction,the latter 
equation is a powerful tool for spectroscopic information: eq. (4.3) gives 
information on both binary collisions at the surface and surface potential barrier. 
In fact, as announced in sect. 3, within the same initial conditions except for the 
incident energ3r, all couples (E, EM) must be over the same straight line. The 



SPUTTERING THEORY 33 

slope of the straight line is A and contains information on the binary elastic 
collisions between the incident ion and the surface target atoms. According to 
the theory of binary elastic collisions, A must depend on M,, M2 and some 
geometrical variables [37, 38]. By changing the ion-target combination and the 
geometrical conditions, the functional dependence of A on the different 
parameters can be studied. 

The intersection of the same straight line with the EM axis gives the value of 
U. The determination of the correct value of U is an important unsolved problem 
for the sputtering phenomenon. Usually the sublimation energy [14, 15] is used, 
but there is no proof for this choice. In recent years several authors [73, 74] have 
considered the possibility of using alternative values. Since eq. (4.3) is 
independent of the collisional regime considered, it represents a more adequate 
tool for studying the precise physical meaning of U. Finally, since from (4.3) we 
can derive, by definition, the threshold for sputtering 

(4.4) Eth = U ,  

the results of the studies of eq. (4.3) can be used to calculate the threshold for 
sputtering under very different physical conditions. 

4"2. The double differential sputtering yield. - To proceed further in the 
analysis of the theory we need expressions of D. The related physical quantities, 
namely energy spectrum, sputtering yield and so on, can be obtained by relative 
simple integrations. Nevertheless, to preserve the general structure of the 
theory, we shall try to obtain, whenever possible, expressions that are 
independent of the form of D. However, this choice means introducing from the 
very beginning further assumptions regarding the theory. 

Suggested by the surface character of the sputtering and supported by the 
results of the Sigmund-Thompson regime, we assume to be adequate, in 
sputtering calculations, the following approximation: 

(4.5) D(E, e; Eo, eo, x) ~- D(E, e;E0, e0, x = 0). 

By using this approximation a general expression for the double differential 
sputtering yield can be obtained from eqs. (1) and (2): 

(4.6) J(EI,el)=LoEI~uCOSOID(E,e;Eo=EI + U, zl=zo,COSOo--g,x=O), 

where 

(4.7) 

! 
g = g(E1, 01, U)=  -~/Elc~ + U 

E l +  U 
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Equation (4.6) gives a simple prescription to obtain the distribution of 
ejected atoms once the distribution of recoils inside the solid is known, and vice 
versa, by means of eq. (4.6) sputtered atoms give direct information about the 
cascades in the solid. In other words, the sputtering phenomenon opens a 

wb~dow on the several properties of the bombarded solid. 

4"3. The isotropic case. - The most studied expression of D is that describing 
the isotropic velocity distribution of recoils, namely the case where D can be 
simplified as follows: 

(4.8) Di~(E, e; Eo, eo, x = O) = 1D(E,= e; Eo, x = 0). 

In this case, the double differential sputtering yield reduces to [17] 

L,  E~uCOSO~D(E,e;Eo=E~ + U , x = O ) ,  (4.9) J~(E:, el) - 4:E1 + ' 

whereas the energy spectrum becomes 

(4. lO) Jj~(E1) = Lo E1 D(E, e; Eo = E~ + U, x = O) 
4 E ~ + U  

Moreover, the position of the peak in the energy spectrum is at energy E1 
solution of the following eq. [17]: 

( 4 . 1 1 )  D _ E~(E~ + U) 
D' U ' 

where D' is the derivative olD with respect to El. Equation (4.11) tell us that, in 
general, the position of the peak in the energy spectrum depends on the type of 
damage produced in the materials, namely, depends on function D. 

Finally, by using eq. (4.3) we obtain the following form of the sputtering 
yield [17]: 

(4.12) 
A E  

Two applications of the results of this section will be now presented. 

4"3.1. The S i g m u n d - T h o m p s o n  r eg ime .  This regime is characterized 
by the Sigmund expression of D (cf. eq. (3.3)) 

FFD(E, e, x) 
(4.13) D - 

E~ 
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In this case eq. (4.10) reduces to Thompson energy spectrum 

rLoFo(E, e, x = O) E1 
(4.14) J~(E1) -- Jo(E1) - 4 (El + U) 3' 

with the peak in the usual position: 

(4.15) Ep-_ v 
2" 

Finally, the sputtering yield eq. (4.12) becomes 

where Y0 is the Sigmund sputtering yield and w is given by eq. (3.21). The 
results of this section have been discussed in details in the previous chapter. 

4"3.2. S p u t t e r i n g  by l ight - ion  b o m b a r d m e n t .  When light ions hit 
heavy solid targets the incident ions loose their energy predominantly by 
nonelastic electronic excitations, whereas elastic collisional cross-sections are 
relatively small. The consequence is that cascades cannot develop, or, more 
precisely, the linear extension of the collisional cascades is always small 
compared with the range of the incident ions. With a good approximation, 
sputtering by light-ion bombardment belongs to the category of the single 
collisional regime. 

The first major interst in the sputtering of solids due to low-energy light-ion 
bombardment arose from the need to study this process in connection with 
plasma surface interaction in fusion devices[75]. In fact, the solid walls 
sorrounding a magnetically confined hot plasma are continuously bombarded by 
low-energy deuterium-tritium and helium ions and neutrals from the plasma. 
Sputtering caused by such bombardment can be a major source of impurities 
which contaminate the plasma. Theories and experiments will be useful to 
establish plasma and surface conditions where sputtering is minimized. Further 
interest comes from the need to understand the erosion of solid surfaces outside 
the earth's atmosphere which are bombarded by solar wind predominantly 
consisting in protons in the energy range of a few keV [76]. 

Theoretical attempts to explain the sputtering by light-ion bombardment 
within the framework of the standard transport theory have always failed. On 
the contrary, the models [77-79] based on the backscattering mechanism have 
achieved some success. The physical picture underlying this mechanism is the 
following: after ion bombardment some ions are reflected back, and during their 
motion towards the surface they can generate primary recoiling target atoms 
which can be ejected from the surface if they have enough energy to overcome 
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the surface potential barrier. The above mechanism seems to suggest, for the 
sputtering by light ions, a formulation that has to be different from that used for 
other linear regimes. 

We shall also show that this type of sputtering can also be described within 
our formulation and that the only difference between the different linear regimes 
is the expression for D [18]. 

An approximate expression for D, at normal incidence and in the case of low- 
energy light-ion bombardment of heavy targets has been proposed in 1983 by 
Falcone and Oliva [80, 81] (see also appendix A): 

C1,~2 1 ln[AE~ 
(4.17) D -  4~.KR(E) E3o/~ ~-~o ) '  

with (cf. eq. (2,32)) 

(4.18) 

and 

(4.19) 

Cr2 = 2  ),1/2a 2Z1Z2e 
2 

2E R(E) = 
NS~(E) " 

Moreover, K is given by eq. (2.42) and a by eq. (2.12). 
According to eq. (4.10) we get immediately the following energy spec- 

trum [17]: 

(4.20) J(E1) ~ (El + U) "~/2 In . 

To obtain the explicit expression of the sputtering yield, we must specify the 
expression for A. Since we refer to the normal incidence, there is a general 
agreement about the following threshold for sputtering [18]: 

(4,21) Eth -- U 
: , ( 1  - ~,)' 

where v is given by eq. (2.3). Then according to eqs. (4.3) and (4.4), we derive the 
following expression for A: 

(4.22) A = ~ , ( 1 - y ) .  

By using the value of A given by eq. (4.22), the energy integration of eq. 
(4.20) gives the following sputtering yield: 

(4.23) y _  6.031 �9 10 -3 Vo M1 LoNS~(E) F(wl) 
~ Vu M2 E 
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3 1 8 (4.24) F(wl) = lnw~ § 
3" 

Moreover 

7(1 - 7 )  E 
(4.25) wl = U 

and 

(4.26) vu = 2 ~ .  

Figure 5 compares the experbnental data [70] of W targets  bombarded with 
He ions and the results obtained from eq. (4.23) with U= 8.68 eV. The picture 
(see also ref. [18]) shows a good matching between theory and experiments. 
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Fig. 5. - Sputtering yield of W targets bombarded with He ions vs. the incident energy. 
The experimental data are taken from ref. [70]. The solid line is eq. (4.23). 

Equation (4.23) is proportional to Se(E) and since the S igmund  yield is 
proportional to S,(E), both results seem to indicate that  linearity will always 
reflect in a sputtering yield proportional to the stopping power (nuclear or 
electronic). 
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4"4. Inclusion of anisotropic effects: a simple case. - As discussed in 
appendix A, a general equation of the damage function, in the linear regime, can 
be derived. Unfortunately, the only available analytical solutions are asymptotic 
and not adequate to describe the low-energy regime. To present analytical 
results, including anisotropic effects and valid at low energy, we shall assume in 
this section the following general form of D [19]: 

(4.27) D = Dis cos k 00, 

where D~ represents the isotropic part of D and the power k gives the degree of 
anisotropy (k = 0 is the isotropic case). Equation (4.27) is a generalization of a D 
expression used [82] with k = 2 with success in order to explain recent energy 
spectra of sputtered particles. Nevertheless, we stress that eq. (4.27) has never 
been proved to be a solution of eq. (A.31). 

According to the general expression of the double differential sputtering 
yield, eq. (4.6), we obtain 

~ (ElCOS201 + U) k12 
(4.28) J(EI,eD=Lo D~(E,e;z~=Zo,x=O)cos(J~ I --~]-~-~ 

and after further integrations we arrive at the following sputtering yield: 

(4.29) Y:-~/dEoDis(EO)2~[]-~V~l§ 
�9 J 

To obtain this latter equation, we have taken into account eq. (4.3). 
To obtain explicit expressions of physical quantities, we must specify the 

form of Di~. According to ref. [82] we assume for Di~ eq. (4.13) and we get 

FLoFD 
(4.30) J(E1, el) - 

4~ 
E1 ~ElCOS~01 + U~ ~/2 

(El + U) 3 cos ol \ El  + U - J 

and 

2+kiw]+2+kiw! J" 

In eq. (4.31) Y0 is the Sigmund sputtering yield and w is given by eq. (3.21). 
At large incident energies (E>>EtD eq. (4.31) becomes 

(4.32) y = y o  4 4 
+k"  
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Let us discuss in detail the case k = 2. For this value of k, the double 
differential sputtering yield becomes 

LolWD E1 U) t cos 01(E~ cos e 01 + U). (4.33) J(E1, el) = 4~ (El + 

Equation (4.33) is in agreement with the expression derived by Garrison [82] and 
used to explain some recent experimental data. 

The peak position for this expression is given by [82] 

(4.34) 
2 cos201 - 3 + ~/4 cos401 - 4 cos201 +9  

Ep ~- 4 cos ~01 ' 

which reduces to the Thompson peak position for 01 = 0 ~ whereas shifts to lower 
energy occur as the polar angle increases, and this trend is independent of the 
choice of U [81]. 

Integrations of eq. (4.33) over the angular variables enable the following 
energy spectrum to be obtained: 

(4.35) + E1 
J(E1) = Jo(El) 2 1 E1 + U)' 

where J0 is the Thompson energy spectrum. 
Integration of eq. (4.33) over the energy variable, by taking into account eq. 

(4.3), gives 

LoFFD 
(4.36) J(01) = 2U cosO1H(OI, w) 

with 

(4.37) H(01, w) = 

_ 1 I ( 1 _ I ~ _ I [ 1 _  1 = c ~ 1 7 6  1 ~ - ~ ) + 1 ( 1 - 5 ) ] + 2  w ~] 3 ,  ~i)" 

At large incident energies, eq. (4.37) can be approximated by the Garrison 
result [81] 

LoPFD ~ [2cos201 + 1] 
(4.38) J(01)- 4= - - c o s ~ l [  ~ -] . 

Finally integration of eq. (4.36) over the angular variable gives the following 
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sputtering yield [19]: 

(4.39) Y = Yo 1 - ~ + , 

where Yo is again the Sigmund sputtering yield. 
The comparison and discussion of eq. (4.39) with experimental data can be 

found in ref. [19]. 

4'5. O u t l o o k  a n d  c o n c l u s i o n s .  - At the beginning of my studies on 
sputtering (around 1980) the current opinion, among colleagues of the sputtering 
community, was that the standard transport theory was able, for linear regimes, 
to describe all physics quantities involved in the phenomenon. Some unsolved 
problems were of a technical nature rather than basic (see Sigmund in ref. [6]), 
and the success of this theory has been so large that, despite the same authors, 
the theory has been used with some technical modifications to explain sputtering 
events clearly out of its field of validity. In contrast, the only intrinsic 
contradiction of the theory, namely the divergence in the value of the average 
energy of sputtered atoms, has been completely unnoticed by the scientific 
community. The elimination of this divergence is not only necessary for a 
completly consistent theory, but when properly realized enables new ideas on 
sputtering phenomenon to come to the fire. 

The possibility of a consistent formulation was originated by the Falcone and 
Sigmund theory which made it possible to have direct information on the escape 
depth of sputtered particles. In other words, this latter theory enables to study 
the surface aspect of the phenomenon quantitatively. The first step towards a 
quantitative definition of the surface aspect of the sputtering has been [68] the 
connection between the collisional mean free path and the depth of origin of 
sputtered particles. With this interpretation of the escape depth it is established 
that the most probable motion of a recoiling atom which is to be sputtered is in a 
straight line without collisions. Subsequently, owing to the surface aspect of the 
sputtering (atoms are ejected essentially from the first monolayer), recoiling 
atoms which are to be sputtered cannot lose energy and the general expression 
of the ejection function becomes eq. (4.2) (the assumption of a planar surface 
potential barrier is of secondary importance in the theory). 

We have already noticed that the quantity R0 of the Falcone-Sigmund theory 
is different from the quantity L0 of eq. (4.2) and the difference between them is 
also quantitative. Our present aim is to calculate the difference between the two 
quantities. 

Particles moving through a solid are point particles that undergo their elastic 
collisions through specified cross-sections. Since sputtered particles originate 
from the first monolayer, the s p u t t e r  c ros s - sec t ion ,  namely the cross-section 
between two point-particles that produces as its result a sputtered particle must 
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be constant and equal to 

(4.40) ~o = N -~  

and we can write 

1 
(4.41) L0 = 1~,'~;o -- N-I~" 

In contrast, the quantity Ro is (cf. eq. (2.58)) 

(2.58) R0 = . !  
NCo 

with Co = 1.808/~ ~. Let us calculate Lo and Ro for the case of an iron target (the 
results are similar for all other targets). For Fe, N = 8.48-10-~At//~ ~ and we 
fred L0= 2.276/~ and R0=6.522•. The difference between the two values, of 
order of 3, is relevant for quantitative analysis and it should be important to have 
the possibility to establish which of the two quantities is the correct one. This 
check can be done by comparing theoretical and experimental values of the 
average escape depth of sputtered particles. An analysis of both experiments 
and computer simulation studies [83] has given 

(4.42) (x)/)~ = 0.80 +_ 0.10, 

where )~ is the mean atomic spacing. Since, at least in the Sigmund-Thompson 
regime, we have found (cf. eqs. (3.9) and (3.22)) 

(4.43) (x) = 0.8R0 

and 

(4.44) (x) = 0.8Lo, 

we reach the conclusion that the depth of origin of sputtered atoms in terms of 
the mean free path is the correct physical interpretation. 

If L0 is given by eq. (4.41) all our previous yield calculations are overstimated 
(we have used the value given by eq. (2.58)) and the general agreement found 
between the experiments and theoretical results of transport theory, or of its 
generalization, is less than that claimed. In reality, a definitive conclusion about 
the agreement of the yield calculations that follows from the transport theory (or 
from the theory presented by this author) and the experiment is not yet possible. 
In fact, in the yield expressions there are other quantities, P, Fo, U and 
thresholds that are not yet well calculated [83, 84]. Improvement in the values of 
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F and FD depends on a better determination of the damage function (we do not 
have adequate solutions for semi-infinite targets), whereas the precise 
determination of the surface binding energy and thresholds for sputtering is 
related to surface properties of the sputtering (in table II are given several used 
values of U). For these latter quantities we have derived, on the basis of the 
binary approximation, two general results (cf. eqs. (4.3) and (4.4)) that can be 
used to have more precise information about both quantities. Most of this work 
remains to be done. Moreover, owing to their general character, the range of 
validity of eqs. (4.3) and (4.4) is equivalent to the range of validity of the binary 
approximation in a sputtering theory. 

TABLE II. - Atomic n~tmber Z, atomic weight M, and sublimation energy U (eV) of 
several elements (data from ref. [70]). 

Element Z M U 

Na 11 22.990 1.12 
Mg 12 24.312 1.54 
A1 i3 26.982 3.36 
Ca 20 40.080 1.83 
Ti 22 47.900 4.89 
V 23 50.942 5.33 
Cr 24 51.996 4.12 
Mn 25 54.938 2.92 
Fe 26 55.847 4.34 
Co 27 58.933 4.43 
Ni 28 58.71 4.46 
Cu 29 63.546 3.52 
Zn 30 65.37 1.35 
Ga 31 69.72 2.82 
Ge 32 72.59 3.88 
As 33 74.922 1.26 
Zr 40 91.22 6.33 
Nb 41 92.906 7.59 
Mo 42 95.94 6.83 
Ag 47 107.87 2.97 
Ta 73 180.95 8.10 
W 74 183.85 8.68 
Au 79 196.97 3.80 

As regards the extension of the above unified sputtering theory to some 
nonlinear regime, we remain of the opinion that the question is at present 
completely open. It is the decided opinion of this author that the surface 
character of the sputtering is a universal property of the phenomenon, although 
the mathematical representation of this character may be different from eq. 
(4.2). 
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In conclusion, while a general and consistent formulation of the sputtering 
phenomenon for linear regimes is now available, other interesting surface and 
bulk properties must be further analysed. 
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A P P E N D I X  

General equations for the damage function. 

In this appendix we shall derive the general equation of the damage function 
D under linear conditions. Some solutions will be also shown. 

The formalism that we are going to present is essentially due to the works of 
Robinson [65], Lindhard [26-28], Sanders [85], Sigmund [40, 44, 86] and Winter- 
bond [43]. In particular, in describing the techniques and the definitions we 
follow Sigmund [44]. 

According to this latter author, we can define a function D (the Sigmund 
recoil density function) such that D(E, e; Eo, eo) dE0d 2 e0 is the average number of 
atoms set in motion with initial energy (E0, dE0) and direction in the solid angle 
(e0, d e e0), in a collisional cascade generated by an incident ion with initial energy 
E and direction e. 

Following the Lindhard procedure for balance equations, we can obtain for D 
the following eq. [87]: 

+ fd~(v ,  v', v")[D(E, e;Eo, eo) - D(E - T, e ';Eo, eo) - H(T,  e"; E0, e0)], 

where d~(E, E0) is the energy loss cross-section, d~(v, v', v") the differential 
cross-section for elastic collisions between an incident particle with initial 
velocity v = (E, e) and final velocity v' = (E - T, e') and a recoiling particle with 
zero initial velocity and final velocity v" = (T, e"); H is a function similar to D, but 
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referred to a system with equal ion-target mass; the equation for H is 

1 d : (E ,Eo)~  e 'eo-  =Se(E)-j-EH+ d~(v,v, - 
(A.2) 2= dE0 

where  H = H(E, e;Eo, eo), H '  = H(E - T, e' ;E0,  e0) and H" = H(T, e";Eo, eo). 
To solve eq. (A.1) we must  first solve eq. (A.2). The techniques for solving 

these types of equations are described in details in ref. [43]. The first step is to 
expand the angular part  in terms of Legendre polynomes 

(A.3) H(E, e; Eo, eo) = H(E, Eo; e.  eo) = ~ (2l + 1) Hi(E, Eo) Pl(e" eo). 
/=0 

The use of eq. (A.3) in eq. (A.2) enables one to derive the equations for the 
coefficients. For  Se(E)= 0, we get 

(A.4) (dz(E,  T) [Hi(E, eo) - HI(E - T, eo) P~(cos r - H~(T, Eo) P~(cos ~2)] = 

_14= dz(E'E~ P l ( ~ )  

w h e r e  ,~1 and ~.) are the scattering angles, in the laboratory system, of the 
incident and recoiling particles, respectively. The expressions of these angles, in 
terms of the t ransferred energy T, are [85] 

(A.5) cos r = A ~v/1 - t -~ B 
V ~ - t  

and 

(A.6) 

where 

COS r = ~ ,  

M2 M2 
(A.7) A = M1 + - -  B = M 1 - - -  

2M1 ' 2M1 

and 

T (A.8) t = ~. 

To obtain eq. (A.4), we have used eq. (2.61) and a similar equation 

(A.9) 
d2eo 

do-(v, v") = do-(E, T ~ ~e. e2 - cos r 
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together with the following representation of the delta-function: 

(A. 10) ~(x - y) = ~, ~l____.~, pz(x) Pl(y) + 

Equation (A.4) can be now solved for the Lindhard power cross-section (cfr. eq. 
(2.31)); one obtains 

(A.11) 

where 

(A.12) 

1 

k~(E, Eo) = f dt t- l-~[Hl - H[Pt(cos r - H" Pt(cos r 
0 

Equation (A.11) can be solved by the Laplace transform. We introduce the 
variable 

(A. 13) u =- In (E/Eo) 

and we take the Laplace transform of both sides of eq. (A. 11), according to the 
following defmition: 

(A.14) 

We get 

Ht(s) = f du  exp[-  su] H~(u). 
0 

(A.15) Ht(s) = 
k~(s) 

- m -1 - gz(s) - f t ( s ) '  

where g~(s) and fi(s) are the Laplace Transform of 

(A.16) g~(u) = [1 - exp [ -  u]] -I-~ exp [ -  u] Pz(exp [ -  u]), 

(A.17) f i (u)  = exp [u] Pl(exp [ -  u/2]). 

We shall use eq. (A. 15) to solve eq. (A. 1). By using a procedure similar to that 
used for eq. (A.2), we find for the Legendre coefficients of D, the following 
equation: 

(A.18) k~(E, Eo) = 

= f dt t-i-~[Dz(E, Eo) - Dt(E - T, Eo)Pt(cos ~1) - D~(T, Eo)P~(cos ~2)], 
0 



46 G. FALCONE 

where 

(A.19) k~(E, E o ) -  1 dzd(E, Eo) E em 
4= dE0 C, 

The index d refers to a system where the incident and the target particles are 
different. 

Equation (A.18), in terms of the variable u, can be written as 

(A.20) / i' k~ = D~ dvg~(u - v)Dl(v) - dv f~(u - v)Hl(v) ,  

with 

(A.21) g ~ = e x p [ - u ] ( 1 - e x p [ - u ] ) - l - m O ( e x p [ -  u ] -  l + 7) �9 

�9 Pl(A exp [ -  u/2] + B exp [u/2]) 

and 

(A.22) f~(u) = e x p [ m ] O ( ~ , - e x p [ - ' u ] ) P l ( - ~ / e x p [ - u / 2 ] ) ,  

where O(x) is the unit step function and v = In T/Eo. After the use of the Laplace 
transform, eq. (A.20) becomes 

(A.23) Dl(s) - 
k~t(s) + f~(s)Hi(s)  

- y-~Tm - g~(s) ' 

where H~(s) is given by eq. (A.15). 
Evaluation of the inverse Laplace transform of eq. (A.23) in a closed form 

has never been obtained. Nevertheless, as indicated by Robinson[65] and 
Sigmund [44, 86], asymptotic solutions for D~(E, Eo) can be obtained from eq. 
(A.23). In general, for a function F(s), whose poles are s~,, one can write [88] 

(A.24) F(u) = ~ exp [s,u] Res{F(s = s~)}, 
~z 

where Res {F} means residues of F calculated at the poles. Moreover, the poles 
are taken in a decreasing order�9 An asymptotic expansion of coefficients 
D~(E, Eo) can be written as 

( E l  s~ Res {D,(s = So)} (A.25) D~(E, Eo) ~- [Eo ) 

where So is the highest positive pole. 
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In particular, in eq. (A.23), for l = 0 the highest positive pole is at s = 1, 
whereas for l = 1 is at s = 1/2. The explicit calculations give the following 
expressions for the first two coefficients: 

(A.26) Do(E, Eo) ~" Ho(E , Eo) = - -  

I ' v E  
4= E~ 

and 

(A.27) D~(E, Eo) r~ 1 f~ lE  
47 EZ ' 

where 

(A.28) F.~ = m 
~ ( 1 ) - ~ ( 1 - m )  

with ~(x) the logarithmic derivative of the Eulero gamma-function [39]. 
Thus, an asymptotic solution of eq. (A.1) can be written as 

(A.29) D(E, e; E0, e0) ~ Do(E, Eo) + 3 Co" e DI(E, Eo) ~- 

F.~ [E + 3 eo'eP] 
LE~ v ;:o 

with P = M~v the linear momentum of the incident particle. 
If we also include the electronic stopping cross-section in eq. (A.1), then as 

shown by Sigmund [44, 48] eq. (A.29) becomes 

(A.aO) D(E, e; Eo, Co) ~ ~ L--~- ~ -I- V2M2Eo eo" ePj ,  

where v(E) is the energy deposited in atomic motion [27]. 
Equation (A. 1) can be further generalized by including the spatial depend- 

ence. We define a function D(E, e; Eo, Co, x) such that DdEod2eodx is the average 
number of atoms set in motion at depth (x, dx) with initial energy (Eo, dE0) and 
direction in the solid angle (e0, d2eo), in a collisional cascade generated by an 
incident ion with initial energy E and direction e. The balance method enables 
the following equation to be derived [87] 

= NSe(E) ~E D(E, e; Eo, Co, x) + Nfd~(v, v', v") [D(E~,e;E~r, Co, x) - 

- D ( E  - T,  e'; Eo, Co, x) - H ( T ,  e"; Eo ,  Co, x)]. 
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By first taking, the momentum distribution over the depth and by using the 
previous techniques eq. (A.31) can be solved [43, 48] and its ensuing result is 

(A.32) D(E, e;Eo, eo, x) 4=E0 [ Eo 3 eo" Fp(E, e, x ) l ,  

J 
where Fp(E, e, x) dx is the mean momentum deposited in (x, dx) per incoming ion 
of initial energy E and direction e [89,90]. Equation (A.32) is the only available 
solution of eq. (A.31). 

A.1. Eq~atio~ .tbr pr ima~j  recoils. - Equation (A.1) with H = 0 is the 
equation for recoiling atoms generated directly by the incident ion, namely for 
the primary recoils. To be precise, if we indicate with D~dEodZeo the average 
number of primary recoiling atoms, set in motion with initial energy (E0, dEo) 
and direction in the solid angle (e0, d~e0) by an incident ion with initial energy E 
and direction e, the equation for this quantity will be 

1 
(A.33) 2= d e e m  ~ e. eo - = S~(E) Dp(E, e; Eo, eo) + 

f ' v") "Eo, e0)]. + d.:(v,v , [DI~(E,e ;Eo ,eo) -D~(E,T ,e  , 

By using the same procedure as before, we get the following equation for the 
Legendre coefficients: 

(A.34) 4= dEo 

+ f d~-(E, Eo) [DI~/(E, Eo) - P/cos ~-1) Dp.l(E - T, Eo)], 

where we write cos r as [91] 

(A.35) cos r = 

with 

(A.36) 

1 

M2 

,~A - M 1 .  

A.2. Low-energy light ion in heavy targets. - When light-ions hit heavy 
targets, the mass ratio ,~ is so large that the energy transfer in a binary elastic 
collision is small compared with the energy of the projectile. Then a T- 
expansion [91] can be used in (A.34) 

(A.37) Dp.ffE - T, Eo) ~ Dp/(E, Eo) - T ~EDp/(E,  Eo). 



SPUTTERING THEORY 49 

In addition, always for low-energy light-ions in heavy targets, the nuclear 
stopping cross-section S,(E) can be assumed [91] to be much smaller than the 
electronic stopping cross-section S~(E). 

This last assumption, together with the expansion (A.37), enables the 
following solution of eq. (A.34) to be derived: 

(A.38) Dp,l(E, Eo) = 

where 

(A.39) 

and 

ht(E, Eo) = 
4= dEo \ ~ r E ]  

(A.40) = f d=(E, [1 - P l ( c o s  r 

In particular, for 1 = 0, we find 

f dz(E', Eo) 1 1 dE' (A.41) Dp,o(E, Eo) = 4-~=E dEo S~(E') 

which is the isotropic solution derived by Sigmund [44]. 
Explicit expressions of eq. (A.41) depend on the choice of the ion-target 

elastic cross-section and on the electronic stopping power used. 
Following Schi(ttt [91], we assume for Se(E) the Lindhard electronic stopping 

cross-section (cf. eq. (2.41)) and for d~ the Lindhard power cross-section with 
m =  1/2 

(A.42) 1 dE0 
d~(E, E0) = C l / 2 -  

With these choices, eq. (A.41) can be written as [44] 

(A.43) Dp,o(E, Eo) ~ 4r:k E~e \ Eo }" 

According to Falcone-Oliva [80, 81], an approximate solution, including the 
spatial dependence is 

D~,o(E, Eo) 
(A.44) Dp,o(E, eo, x) ~ Xmax , 

where X,~x = Rp cos 0~ is the maximum damage depth. Moreover, since eq. (4.44) 
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includes multiple scattering through the plane x = 0 (the surface), the solution 
has been corrected [81] by the path length correction 

Rp Dp,o(E, E0) 
(A.45) D~,.o(E, ~-~o, x) ~ R Xma x 

Thus, an approximate solution, in the isotropic limit, for low-energy light-ions in 
heavy targets,  can be writ ten [81] as 

(A.46) 
C~,2 1 1 1 I__~/)'E\ 

Dp(E, e; Eo, eo, x) ~- 4= k cos0, R(E)E  2 ln Eo)" 

Equation (A.46), for candidates for sputter ing and referred to normal incidence, 
reduces to eq. (4.17). 
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