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Summary. - -  In this paper we study various properties of the prototype 
squeeze operator in a uniform magnetic field in two dimensions. The 
corresponding creation and annihilation operators are of the Yuen form and 
describe squeezed states. The case of the free electron in a time-varying 
magnetic field leads also to the squeezed states. 

PACS 03.65 - Quantum theory; quantum mechanics. 
PACS 42.50.Dv - Nonclassical photon states (including antibunched, 
squeezed, sub-Poissonian). 

1 .  - I n t r o d u c t i o n .  

A pro to type  for the generat ion of the so-called squeezed s ta tes  is the 
Hamil tonian (1-3) 

(1.1) H = h(o a* a - ih x(~a 2 - ~* a~2), 

(i) D. WALLS: Squeezed states of the electromagnetic field, in Coherence and Quantum 
Optics V, edited by L. MANDEL and E. WOLF (Plenum Press, New York, N.Y., 1984), p. 
609; Nature (London) 306, 141 (1983). 
(2) H. YUEN: Phys. Rev. A, 13, 2226 (1976). 
(3) D. STOLER: Phys. Rev. D, 1, 3217 (1970). 
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where Z is a nonlinear optical susceptibility, ~ is the amplitude of a classical 
driving field and a, a* are the usual annihilation and creation operators. 

Recently Jannussis and Skaltsas (4) have transformed the prototype operator 
(1.1) into an equivalent operator of the following form: 

(1.2) H 1 2 . 1  2 2  ~" 
= ~-~m p +-~moJ q + -~(pq + qp) , 

where ], = 2Xl~ j is a real parameter or the friction coefficient. 
In ref. (5,8) we have shown that the operator exp [ir(pq + qp)/2] is exactly the 

squeeze operator. 
In the present paper we extend the prototype operator (1.2) for the case of a 

uniform magnetic field in two dimensions, as follows: 

(1.3) 1 7 

In the next sections we study various properties of the above operator and we 
determine the corresponding annihilation and creation operators which are of the 
Yuen (~) form and describe squeezed states. 

The new Yuen operators are exactly of the same form in the phase space. In 
fact, this has been expected because the operator of the free electron in a 
uniform magnetic field is equivalent to the operator of the harmonic oscillator in 
the phase space. 

Lately, the squeezed states are suited in the phase space(.1') with the 
determination of the corresponding Wigner distribution of the squeezed 
functions. 

The corresponding prototype Wigner operator which results from operator 

(4) A. JANNUSSIS and D. SKALTSAS: Squeezed states in the Caldirola-Montaldi 
procedure, Preprint 1988, Dept. of Physics, University of Patras (Greece). 
(5) A. JANNUSSIS and V. BARTZIS: Nuovo Cimento B, 102, 33 (1988) and references 
therein. 
(~) n. JANNUSSIS and V. BARTZIS: Phys. Lett. A, 132, 324 (1988). 
(7) W. SCHLEID and J. WHEELER: Nature, 326, 574 (1987); The physics of phase space, 
in Lectures Notes in Physics, edited by Y. KIM and W. ZACCHARY VO1. 278 (Springer 
Verlag, 1986), p. 200; W. SCHLEICH, D. WALLS and J. WHEELER: Phys. Rev. A, 38, 
1177 (1988). 
(8) y. KIM and E. WIGNER: Phys. Rev. A, 38, 1159 (1988). 
(9) A. JANNUSSIS, V. BARTZIS and E. VLACHOS: Coherent and squeezed states in phase 
space, presented in the Fourth Workshop on Hadronic Mechanics, Skopje, Yugoslavia, 
August 22-27, 1988, to appear in the proceedings of the workshop. 
(10) A. JANNUSSIS and N. PATARGIAS: Phys. Lett. A, 53, 357 (1975); A. JANNUSSIS, P. 
FILIPAKIS and TH. FILIPAKIS: Physica A, 102, 561 (1980). 
(,1) A. JANNUSSIS, N. PATARGIAS and G. BRODIMAS: J. Phys. Soc. Jpn., 45, 336 (1978). 
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(1.2) with the help of transformation 

(1.4) 

Iq___~q+ ih 5 ih 
2 3p '  P - ) P  2 3q '  

q,_.__, ih 3 ih 5 
q p*-- ,  p + 

2 5p '  2 5q 

is of the form 

(1.5) 

i h y l a  , S 3 - q ~ q )  ih S . i h m ~ q ~ p +  - = 

= - i h ~  p~(mo~q) ~ ' q ~ p - ~  P + p - T q  q -  q " 

For moJq = p' the above operator takes the form 

(1.6) ap ~ ~P+P~-ap' T 

and for 

(1.7) p, ~ / ~  (a + at), 5 m~ = - ( a  - a t ) ,  
5p' 

• /h  (b+ U) (1.8) P = 2m~ ' 
~.~._ = m ~ [ L  ap ~-~-~o-  b'), 

the Wigner operator can be written as 

(1.9) 
ih~, z 

W = - ih~ (ab ~ - a* b) + ~ -  (b - b t2 - a 2 + at2). 

The above operator is exactly a prototype two-mode operator and describes 
squeezed states in the phase space. 

In the following we study the equations of motion of operator (1.9) in the 
Heisenberg picture. 
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2. - Squeezed states in phase space. 

The Heisenberg equations of motion for operator (1.9) are the following: 

(2.1) 
d a / d t  = ~ob + ya*, 

db /d t  = - (oa - ~,b*, 

dat /d t  = ob* + 7a ,  

db*/dt = - o~a* - 7b .  

The time evolution of the operators a(t), a t (t), b(t) and b e (t) are given after  
some algebra by the expressions 

+ 1 ~  , 
(2.2) a(t)  = a(0) cos~t  -~ t ra  (0) + cob(0)]sin~t, 

(2.3) a t (t) = a* (0) cos ~gt + 1 [ya(0) + o~b* (0)] s ini) t ,  

(2.4) b(t) = b(0) cost~t - 1 [~oa (0) + ],b* (0)] sint~t, 

(2.5) b* (t) = b* (0) cos ~gt - 1 [oJa* (0) + rb(0)] s in~ t ,  

where 

(2.6) ~r~2 __ tO2 __ ] ,2 .  

The above operators satisfy the commutation relations 

(2.7) t 
'[a(t), a t (t)] = 1, [a(t), b(t)] = 0 [a t (t), b(t)] = 0, 

�9 [a ( t ) ,  b* (t)]  = 0, [a t (t) ,  b* (t)]  = 0,  [b(t) ,  b* (t)]  = 1 

and describe squeezed states. 
According to ref. (4), for the case D > 0, the eigenfunctions of the prototype 

operator (1.2), in the q-representation, have the following form: 

(2.8) 1 ex i 

where H~ (x) are the Hermite polynomials. 
The corresponding eigenvalues are 

(2.9) E ~ = h t g ( n + l / 2 ) ,  n = O ,  1, 2, . . . .  
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It is known (10) that the operator which describes the phase space, in a similar 
way to the Hamiltonian operator in the SchrSdinger theory, is the Wigner 
operator (1.5) and the eigenfunctions and eigenvalues are, respectively, 

(2.10) 
1 F [2ip 

f~'~(q'P)= ~.h J dy~*~(q + y ) ~ ( q -  y) exp [ - ~ - y ] ,  

(2.11) EN = k(2N, N = n - l = O ,  1,2,.... 

The eigenfunctions fN+t,~(q,P) are /-fold degenerate. 
By the same way, if we know the squeezed states in the q-representation, the 

corresponding squeezed states in the phase space are given from the Wigner 
distribution function (~,6,9). 

As has been referred in the introduction, the case of the free electron in a 
uniform magnetic field is equivalent to harmonic oscillator of Bopp (,1) form in 
phase space. 

In the following we study the operator (1.3) with symmetrical vector potential 

/ 1 1 \ 
(2.12) A(q) = I -  -~ Hqz,-~ Hql, O) 

] 

in the Heisenberg picture. 

3. - Squeezed states in uniform magnetic field. 

The Heisenberg equations of motion for the operator (1.3) with the vector 
potential (2.12) are the following: 

(3.1) d q l / d t = l (  pl+eHq2 ) - ~ c  

1( e.) (3.2) dq2/dt = -~ Pz - ~c ql 

(3.3) 

(3.4) 

with ~L = ell~inc. 

Y + ~ q l ,  

Y + ~ q 2 ,  

OJL( _~C ql)__~pl, dp,/dt = -~ Pz eH ~" 

dp2/dt~--y [Pl +~c q2)--2P2, 

We use the corresponding annihilation and creation operators for the pair of 
the operators 

(ql, P,)-~ (al, a~) and (qz, P2) ~ (az, at). 
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F o r  oJ = col and a f te r  some a lgebra  we obtain the  express ions  

a~ (t) =f~ (t) al (0) +j~ (t) a} (0) +f3 (t) a2 (0) +f4 (t) a~ (0), 

a~ (t) = f*  (t) a~ (0) +f2 (t) a~ (0) + f ~  (t) a~ (0) +f4 (t) a2 (0), 

a2 (t) = - f 3  (t) a~ (0) - f 4  (t) a~ (0) +f~ (t) a2 (0) +f2 (t) a~ (0), 

a~ (t) = - f *  (t) al (0) - f t  (t) a~ (0) + f *  (t) a~ (0) + f i  (t) a2 (0), 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

w h e r e  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and 

(3.15) 

ioJ �9 
f~ (t) = (cos191 t + cos t)2 t)/2 - ~ (smt~1 t - sin~2 t) ,  

f2 (t) = ~ (sin ~ t - sin t)2 t),  

f3 (t) = (sin t~l t + sin t)~ t)/2 + ~ (cos t)~ t - cos t~  t) 
2~ 

f4 (t) = - ~ -  (cos t)~ t - cos t)2 t) ,  

~ = (~o + ~ ~,2)/2 = (r + t9)/2, 

t)2 = (~ - ~ ~'2)/2 = (oJ - D)/2, 

~ ~//(.02 __ ~ 2 .  

The opera to rs  (3.5)-(3.8) sat isfy the  following commuta t ion  relations:  

(3.16) [al (t), a~ (t)] = 1, [a2 (t), a~ (t)] = 1, 

(3.17) [al (t), a2 (t)] = [a~ (t), a~ (t)] = [al (t), a~ + (t)] = [a~ (t), a2 (t)] = 0, 

which are  similar  to the  commuta t ion  relat ions (2.7). 
As  has been  shown by Jannuss is  et al. (12) for the  Yuen  (2) opera tors  in the  

(,2) A. JANNUSSIS, N. PATARGIAS and L. PAPALOUCAS: Lett. Nuovo Cimento, 29, 87 
(1980); A. PAJAGORAL and J. MARSAL: Phys. Rev. A, 26, 2977 (1982); M. SHULDERT and 
W. VOGEL: Phys. Rev. A, 28, 3668 (1983). 
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phase space, the operators (3.5)-(3.8) are of the Yuen form and describe 
squeezed states. The s tudy of the operator (1.3) in the SchrSdinger picture is out 
of our concern here because it has been studied by Dodonov and Man'ko ('~) for 
quadratic operators in N-dimensions. 

The case y = 0 is very interesting because it leads to the Yuen operators too. 
In fact, from operators (3.5)-(3.8), for • = 0, we obtain ~1 = ~, ~92 = 0: 

(3.18) 

i F �9 cotl ~t 
f l  (t) -- (1 + cos ~ot )/2 - ~ sin oJt = exp [ - z  -~-] cos 

f2(t)=O, f4 ( t )=O,  

f3(t)-sin~~ 2 ( 1 - c ~ 1 7 6  

So, operators (3.5)-(3.8) can be writ ten as 

(3.19) al (t) = exp [ -  ioJt/2] cos - ~  al (0) -~- exp [-- i~ot/2] sin 2 a2 (0), 

(3.20) a~ (t) = exp [i~ot/2] cos 2~ a~ (0) + exp [icot/2] sin 2 a~ (0), 

(3.21) a2 (t) = exp [ -  ioJt/2] cos - ~  a2 (0) - exp [ -  ioJt/2] sin - ~  al (0), 

(3.22) a~ (t) = exp [i~ot/2] cos ~ a~ (0) - exp [io)t/2] sm -~- a{ W) 

and satisfy the commutation relations (3.16) and (3.17). 
In the following we note that  the operator of the free electron in a uniform 

magnetic field (1.3) for ~, = 0, with symmetrical vector potential of the form 
A = (-H/2q2,  H/2ql, 0), ~ = eH/2mc = ~L/2 and with the use of the operators 

V ~ -  q l + i  P' , a~= q l - i  pl 

V ~ -  q2+i  p2 , a t =  q 2 - i  p2 , 

(~3) V. DODONOV, I. MALKIN and V. MAN'KO: Physica, 59, 241 (1972); V. DODONOV, V. 
MAN'KO and V. SKARZHINSKY: Nuovo Cimento B, 69, 185 (1982); V. DODONOV and V. 
MAN'KO: Invariants and Evolution of Nonstationary Quantum Systems, Vol. 183 
(Moscow, 1987), Lebedev Institute of Physics and references therein. 
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takes the form 

(3.25) H = h~(a~ al + a~ a2 + 1) + ibm(a2 a~ - al a~), 

i.e. it has the form of a two-mode squeeze operator. 
From the above results we conclude that the time evolution of the 

corresponding annihilation and creation operators of the free electrons in a 
uniform magnetic field are of the Yuen form and describe squeezed states. Since 
the corresponding Hamilton operator is a two-mode squeeze operator (14). 

In the following we study the case of the free electrons in a uniform magnetic 
field for the Caldirola Hamiltonian. 

4. - Caldirola  Hami l ton ian  for e lectrons in a uni form magnet ic  field. 

According to Jannussis et al. (15) the Caldirola Hamiltonian for the vector 
potential A(q, t ) r  0 has the following expression: 

e [ 1 (4.1) H=~--mmeXp[-rt]--~--m~mc(Ap+pA)+ V ( q , t ) + ~ A 2 ( q , t )  exp[~,t], 
/ . m e  

where V(q, t) is the potential energy. For A = 0 we obtain the usual Caldirola 
Hamiltonian (16) 

(4.2) H = (p 2/2m) exp [ -  ~,t] + V(q, t) exp []4]. 

For  the case of the free electrons in a uniform magnetic field, in two- 
dimensions, with the symmetrical vector potential A = ( -  H/2q2, H/2ql, O) 
Hamiltonian (4.1) takes the form 

(4.3) H - p ~ + p ~  
2m 

m 2 2 - -  exp [ -  ~,t] + (o(p, q2 - q, P2) + ~ (q, + q~) exp [),t] 

with ~ = eH/2mc = o~L/2. 
For Hamiltonian (4.3) the Heisenberg equations of motion are the 

(14) C. CAVES and B. SCHUMAKER: Phys. Rev. A, 31, 3068 (1985); B. SCI-IUMAKER: 
Phys. Rep., 135, 317 (1986). 
(15) A. JANNUSSIS, G. BRODIMAS, V. PAPATHEOU, G. KARAYANNIS, P. PANAGOPOULOS 

and H. IOANNIDOU: Hadronic J., 6, 1434 (1989). 
(16) p. CALDIROLA: Hadronic J., 6, 1400 (1983). 
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following: 

(4.4) dq l /d t  = p~ exp [ -  yt] + ~oq2, dq2/dt = p~ exp [ -  ~ , t ]  - coql, 
m m 

(4.5) d p J d t  = ~op2 - mr 2 ql exp [~,t], dp2/dt  = - ~opl - m~o 2 q2 exp [yt]. 

The above equations with the help of the contact transformation 

(4.6) 

take the form 

Iql=exp[-2t]Q1, q2=exp[-2t]Q2, 
lpl=exP[2tlP1, p2=exP[2tlP2 

7 7 (4.7) dQ1/dt  = P 1 / m  + ~Q2 + ~ Q1, dQ2/dt = P J m  - o~Q1 + -~ Qe, 

(4.8) dP1/d t  = ~oP2 - m~o2Q1 - 7 ~ P 1 ,  dP2/dt  = - ~Ol P1 - m co2 Q~ - -~P2,  Y 

which are exactly eqs. (3.1)-(3.4) with ~L = 2~ and they follow from the new 
Hamiltonian 

where  

R = R(QI ,  Q2). 

Hamiltonian (4.3) in the coordinate representat ion takes the form 

(4.10) H = - 2-~ + exp [ -  yt] - 

- i h ~ o  q2 - q l  +-ffco t~/l~-q~)exp[~,t]. 

By the use of the contact transformation 

 4.11  

the t ime-dependent  SchrSdinger equation 

OT (4.12) i h - ~  = H ~F(ql, q2, t ) ,  
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because of the correspondence 

a __~ ~tt ~. ! ~/~__QQ1 a a aQ1 aQ2 a a ~__Q~2."~ 
(4.13) ~ 2 ~ at ~1 "~ aql  -[ ~ ~2  [" ~2  at ] '  

takes the form: 

a T  (4.14) i h - ~  = H T(Q,, Q2, t) - 

( a+a  a a ) ihY4 Q1--~1 --~1Ql + Q2-~-~2 +-~2  Q2 T(Q1, Q2, t) , 

or 

(4.15) aM ih - -5 -~=[2-~(p-eA(R) )~+4 ( P R + R P ) ] T ( R , t ) ,  

i.e. we obtain the new Hamiltonian (4.9) which is equivalent to (4.3). Therefore, 
Hamiltonian (4.9) describes also squeezed states. 

A more general case for time-dependent magnetic field is referred in a recent 
paper by Abdalla (17) which studies the Hamiltonian 

(4.16) 

with 

(4.17) 

1 2 +1,92(t)(q~+ 2(t). H( t) = ~ (P l + P 2) q~) - -~-  [ qi t,2 - Pl q2) 

~(t)  = V ~  2 (t) + ~2 (t)/4. 

In the following we will determine the time evolution of the corresponding 
creation and annihilation operators. 

5. - Creation and annihilation operators for Hamiltonian (4.16). 

According to Abdalla (17) the solution of the Heisenberg equations of motion is 
the following: 

(5.1) ql (t) = r(t)[ql (0) cosf(t) + q2 (0) sinf(t)] + s(t)[pl (0) cosf(t) + P2 (0) sinf(t)], 

(5.2) q2 (t) = r(t)[q2 (0) cosf(t) - ql (0) sinf(t)] + s(t)[p2 (0) cosf(t) - pl (0) sinf(t)],  

(t7) M. SEBAWE ABDALLA: Nuovo Cimento B, 101, 267 (1988) and references therein. 
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(5.3) pl (t) = v(t)[p~ (0) cosf(t) + P2 (0) sinf(t)] + w(t)[ql (0) cosf(t) + q~ (0) sinf(t)] ,  

(5.4) P2 (t) = v(t)[p2 (0) cosf(t) - Pl (0) sinf(t)] + w(t)[q2 (0) cosf(t) - ql (0) sinf(t)] ,  

where 

t 

(5.5) f ( t )  = 1/2 f ~(t') d t ' ,  
0 

/~(o) t;(o)/2~(o) 
(5.6) r(t) = - ~ / ~  cos v(t) + sin v(t), 

(5.7) s ( t ) -  
sin v(t) 

~ ( o )  

(5.8) 

and 

/~(t) ti(t)/2~(t) sin v(t) v ( t )  = 

(5.9) w(t)=[ ~]-~-~] ~l ~(t)[-~-~]jcosv(t)- 

(fi(t)/2~(t))(fi(O)/2~(O))~ 
] sin ~(t), 

while 

(5.10) 
t 

v(t) = f ~,(t') dt' 
0 

and ~(t) is given by 

(5.11) ~,(t) = 1/p2 (t), ~(t) +t92(t)p(t) = 1/pa (t). 

By introduction of the corresponding creation and annihilation operators, i.e. 

(5.12) 

(5.13) 

ql (t) = ~ ( t )  [al (t) + a~ (t)], 

q2 (t) = ~ f ~ ( t )  [az (t) + a~ (t)], 

Pl (t) -- - i ~ - - - ~  [al (t) - a~ (t)], 

P2 (t) = - i ~f-~t___~) [a~ (t) - a~ (t)], 
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and after  some minor algebra we obtain the following expressions for the above 
operators: 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

where  

(5.18) 

(5.19) 

a l  (t) = F~ (t)[al (0) cosf(t)  + a~ (0) sinf(t)] + 

+ F2 (t)[a~ (0) cosf(t)  + 4 (0) s inf( t)] ,  

a~ (t) = F* (t)[a~ (0) cosf(t)  + a~ (0) sinf(t)] + 

+ F* (t)[al (0) cosf(t)  + a2 (0) s inf( t)] ,  

a2 (t) = F,  (t)[a2 (0) cosf(t)  - a~ (0) sinf(t)] + 

+ F2 (t)[a~ (0) cosf(t)  - a~ (0) s inf( t)] ,  

a~ (t) = F* (t)[a~ (0) cosf(t)  - a~ (0) sinf(t)] + 

+ F* (t)[a2 (0) cosf(t)  - al (0) s inf( t )] ,  

F1 (t) = (1/2)[r(t) - /Q( t )  s(t) + v(t) + iw(t)/~(t)] , 

F2 (t) = (1/2)[r(t) + ~ ( t )  s(t) - v(t) + iw(t)/D(t)]. 

The above operators satisfy the commutation relations: 

[[aj (t), a~(t)] = 1, 
(5.20) 

[[aj  (t), a~ (t)] = 0, 

If  we introduce the linear transformation 

I A~ (t) = a, (0) cosf(t)  + a~ (0) s inf( t ) ,  

(5.21) [ n ~  (t) = a~ (0) cosf(t)  + a~ (0) s inf( t ) ,  

with 

[A1, AI]  = 1, 

operators (5.14) and (5.15) take the form 

(5.22) a, (t) ---- F1 (t) A1 + F2 (t) A I, al (t) = F* (t) A I + F2* (t) A1 

j =  l , 2 ,  

for j C k .  
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and it is easy to show that  the functions F1 (t) and F2 (t) satisfy the relation 

(5.23) IF1 (t)l 2 - IF2 (t)l 2 -- 1. 

The same is valid for the other pair of operators a2(t), a~(t), i.e. 

a2 (t) = F~ (t) A2 + F2 (t) n ~, a~ (t) = F* (t) A ~ + F* (t) A2 (5.24) 

with 

[A2, A*~] = 1. 

F rom the above results we conclude that  the operators as(t), a~(t), j = 1, 2 are 
of the Yuen form and describe squeezed states. 

6 .  - C o n c l u s i o n .  

In the present  paper the prototype squeeze operator (1.2) is studied in phase 
space. 

We find the corresponding Wigner operator which is exactly a prototype two- 
mode operator and describes squeezed states in phase space. 

The extended prototype operator (1.3), for the case of an electron in a uniform 
magnetic field, describes also squeezed states. The case ~, = 0, i.e. the case of the 
free electron in a uniform magnetic field is very interesting because it is proved 
that  we have squeezed states in this case. 

Also, the case of the free electrons in uniform magnetic field for the Caldirola 
Hamiltonian is studied. This Hamiltonian describes squeezed states too. 

Finally, for the general case of t ime-varying magnetic field, the time 
evolution of the corresponding creation and annihilation operators leads to Yuen 
operators and therefore to squeezed states. 

�9 RIASSUNTO (*) 

In questo lavoro si studiano varie proprieta delroperatore squeeze prototipo in un campo 
magnetico uniforme in due dimensioni. Gli operatori di creazione e di annichilazione 
corrispondenti sono della forma di Yen e descrivono stati squeezed. I1 caso dell'elettrone 
libero in un campo magnetico che varia nel tempo porta anche a stati squeezed. 

(*) Traduzione a cura della Redazione. 

5 - I l  N u o v o  C i m e n t o  B .  
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~ a T u e  c o v r o ~ m u  s n p x c y T c r s m m  3 a s M c ~ m e r o  o T  BpeMeHH MaFIIHTHOFO HOJIR, 

Pe3mMe (*). ~ B ~TO~ c r a T ~  ~bl  acc~e~yeM paanmmbm C~O~CTBa npoToanana onepaTopa 
C~KaTI~ B O~g~HOpO~HOM MaI"HI, ITHOM none  B ~ByX n3Mepem4gx. COOTBeTCTBy~OIn~Ie 
onepaTop~i poa<aenna n ymiwro~rerma IIpe~CTaB.rLqIOT onepaTopbt IOeHa H OrII4CbIBaIOT 
cXaT~,~e COCTOanmL Cny~a~ cao6o~aoro  aneKTpoaa 8 3aBrxCan~eM OT apeMerm MarnnTnOM 
no.tie T ~ e  npHaoanT K c x a ~ n a  cocTosmm~. 

(*) l"lepeseiJeuo pec)axt4ue~t. 


