IL NUOVO CIMENTO VoL. 104 B, N. 1 Luglio 1989

Squeezed States in the Presence of a Time-Dependent
Magnetic Field.

A. JANNUSSIS

Department of Physics, University of Patras - Patras 26110, Greece
Institute for Basic Research - 96 Prescott Str., Cambridge, Mass., 02138

E. VLAHOS, D. SKALTSAS, G. KLIROS and V. BARTZIS
Department of Physics, University of Patras - Patras 26110, Greece

(ricevuto il 6 Marzo 1989)

Summary. — In this paper we study various properties of the prototype
squeeze operator in a uniform magnetic field in two dimensions. The
corresponding creation and annihilation operators are of the Yuen form and
describe squeezed states. The case of the free electron in a time-varying
magnetic field leads also to the squeezed states.

PACS 08.65 — Quantum theory; quantum mechanics.
PACS 42.50.Dv - Nonclassical photon states (including antibunched,
squeezed, sub-Poissonian).

1. - Introduction.

A prototype for the generation of the so-called squeezed states is the
Hamiltonian (*¥)

(1.1) H=hwa'a—ihy(ca®—c*a™?),

() D. WaLLs: Squeezed states of the electromagnetic field, in Coherence and Quantum
Optics V, edited by L. MANDEL and E. WOLF (Plenum Press, New York, N.Y., 1984), p.
609; Nature (London) 306, 141 (1983).

(®» H. YUEN: Phys. Rev. A, 13, 2226 (1976).

() D. STOLER: Phys. Rev. D, 1, 3217 (1970).
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where x is a nonlinear optical susceptibility, ¢ is the amplitude of a classical
driving field and a, a' are the usual annihilation and creation operators.

Recently Jannussis and Skaltsas () have transformed the prototype operator
(1.1) into an equivalent operator of the following form:

=1
(1.2) H=sLps

1 22,7
5 ma’q +2(pq+qp),

where y=2y|e| is a real parameter or the friction coefficient.

In ref. (°%) we have shown that the operator exp [iy(pg + gqp)/2] is exactly the
squeeze operator.

In the present paper we extend the prototype operator (1.2) for the case of a
uniform magnetic field in two dimensions, as follows:

=1 (,_¢ 24 X
a3) H=g(p - 4@} + @0 +0).

In the next sections we study various properties of the above operator and we
determine the corresponding annihilation and creation operators which are of the
Yuen (®) form and describe squeezed states.

The new Yuen operators are exactly of the same form in the phase space. In
fact, this has been expected because the operator of the free electron in a
uniform magnetie field is equivalent to the operator of the harmonic oscillator in
the phase space.

Lately, the squeezed states are suited in the phase space(*") with the
determination of the corresponding Wigner distribution of the squeezed
functions.

The corresponding prototype Wigner operator which results from operator

(* A. JaNNussis and D. SKALTSAS: Squeezed states in the Caldirola-Montaldi
procedure, Preprint 1988, Dept. of Physies, University of Patras (Greece).

() A. JANNuSsIs and V. BARTZIS: Nuovo Cimento B, 102, 33 (1988) and references
therein.

(®) A. JANNussIS and V. BARTZIS: Phys. Lett. A, 132, 324 (1988).

() W. SCHLEID and J. WHEELER: Nature, 326, 574 (1987); The physics of phase space,
in Lectures Notes in Physics, edited by Y. KM and W. ZACCHARY vol. 278 (Springer
Verlag, 1986), p. 200; W. SCHLEICH, D. WALLS and J. WHEELER: Phys. Rev. A, 38,
1177 (1988).

® Y. KM and E. WIGNER: Phys. Rev. A, 38, 1159 (1988).

(® A. JANNUSSIS, V. BARTZIS and E. VLACHOS: Coherent and squeezed states in phase
space, presented in the Fourth Workshop on Hadronic Mechanics, Skopje, Yugoslavia,
August 22-27, 1988, to appear in the proceedings of the workshop.

(" A. JANNUSSIS and N. PATARGIAS: Phys. Lett. A, 53, 357 (1975); A. JANNuUSsSIS, P.
Fiuipakis and TH. FILIPAKIS: Physica A, 102, 561 (1980).

() A. JANNUSsSIS, N. PATARGIAS and G. BRODIMAS: J. Phys. Soc. Jpn., 45, 336 (1978).
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(1.2) with the help of transformation

Lih 3 o th S
9945 5, P=P =% 3¢
(1.4)
l*ﬁ i a3
T8 9 5 PPt Y ag
is of the form
3 * %) =
(1.5) W(q 2 ap) H(q, p) - H(g*, p®)
8, o8 tr(a 3 8 3\_
mPag T et az, g <8pp Pap  3¢? q8q>

= —1tho S q——l ap P aq qa
p A(mwq) dp 2w\op oq dq
For mwq =p’ the above operator takes the form

=3 9 _ 8 _r(s S8 _98 ,_.,9
(1.6) W= zhm[pap, pap Zw(app+p8p ap’p pap’ﬂ

and for

. h B 3 mw +
a.mn p = V_me (a+ah, —ap, o -—(a—a",
_ h 5 8 ’n’Lw
(1.8) p—\/—zmw(b+b), 3~ \on —-(b-5,

the Wigner operator can be written as
; Pt hy 1o e ol w
(1.9) W= —ihew (ab -a‘b)+—2—(b -b?*—a*+a".

The above operator is exactly a prototype two-mode operator and describes
squeezed states in the phase space.

In the following we study the equations of motion of operator (1.9) in the
Heisenberg picture.
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2. - Squeezed states in phase space.
The Heisenberg equations of motion for operator (1.9) are the following:
da/dt = wb + ya', da'/dt = wb" + ya,
2.1
db/dt = — wa — yb', db'/dt = —wa' — vb.

The time evolution of the operators a(f), a' (¢), b(t) and b’ (¢) are given after
some algebra by the expressions

2.2) a(t) = a(0) cos Ot + % [ya' (0) + wb(0)] sinQt,
@2.3) a' (t) = a' (0) cos 2t + % [ya(0) + wb' (0)]sinQt,
2.4) b(t) = b(0) cos 2t — é [wa (0) + vb' (0)]sinQt,
@.5) b' ()= b (0) cos 2t — 2 [wa’ (0) + yb(0)]sint,
where

2.6) Q=a?— o,

The above operators satisfy the commutation relations
la(®),a’ D] =1, [a(®), b(®)]=0 [a’ (), b(H)] =0,
2.7
[a(t), o' (D] =0, la’ (), b )] =0, [b(), b’ ()] =1
and describe squeezed states.

According to ref. (%), for the case >0, the eigenfunctions of the prototype
operator (1.2), in the g-representation, have the following form:

mQ 1 m . mi
(2.8) Un (@) = ‘\/— exp[——({) +ly)q2:|‘Hn(-\/——q),
nh \/2"—n‘ 2h h

where H,(x) are the Hermite polynomials.
The corresponding eigenvalues are

2.9) E,=h(n+1/2), n=01,2,....



SQUEEZED STATES IN THE PRESENCE OF A TIME-DEPENDENT MAGNETIC FIELD 57

It is known () that the operator which describes the phase space, in a similar
way to the Hamiltonian operator in the Schriodinger theory, is the Wigner
operator (1.5) and the eigenfunctions and eigenvalues are, respectively,

o
(2.10) fui(g, p) =% f dy ¢ (@ + ) dilg —y) exp [% }
(2.11) Ey=haN, N=n-1=0,1,2,....

The eigenfunctions fy,,;(q,p) are [-fold degenerate.

By the same way, if we know the squeezed states in the g-representation, the
corresponding squeezed states in the phase space are given from the Wigner
distribution function (*9).

As has been referred in the introduction, the case of the free electron in a
uniform magnetic field is equivalent to harmonic oscillator of Bopp (") form in
phase space.

In the following we study the operator (1.3) with symmetrical vector potential

@12) A@ =~ g Hae, 3 Has,0)

in the Heisenberg picture.

3. - Squeezed states in uniform magnetic field.

The Heisenberg equations of motion for the operator (1.3) with the vector
potential (2.12) are the following:

_1 Y
3.1 d(I1/dt—m<P1+ o0 ‘I2>+ 2(11,
_1
(3.2) dg,/dt —E(pz ql) +59,
(3.3 dput = (pe=F00) - T,
- ed \_Y
3.9 dpy/dt = > (pl + o0 Q2> 2p2’

with wy, = eH/mec.

We use the corresponding annihilation and creation operators for the pair of
the operators

(g1, pv— (ay, a)) and (g2, p2) — (as, az) .
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For w=w;, and after some algebra we obtain the expressions

3.5) a;(t) =f1 (1) 0, (0) + £z (£) 4] (0) + f3:(8) 02 (0) +£4 (1) a2 (0),
3.6) ai(t) =1 ) ai ) + &) a,(0) +f§ () az(0) + fs (D) a2 (0),
3.7 0> (1) = — f3 (1) 0, (0) — £y () a1 (0) + /(D) a2 (0) + f () @3(0)

3.8 ai(t) = —f§ ) ai(0) — £ (®) a, (0) + fF () a5 (0) + fo () @2 (0),

where

3.9) £1(8) = (cos Q1+ cos Dy 8)/2 — %(sing1 t—sinQy1),
(3.10) £t = —2%(sin()1 t— sinQy1),

3.11) f3() = (sinQ;t + sinQ,8)/2 + %(cos 0t — cosQ,1),
(3.12) filt)=— %(cosg1 t— cosQyt),

(3.13) 0, = (w+Veol— 2= (w+02)2,

(3.14) Q,={(w— \/w2 — }’2)/2 =(w—0)2,

and

(3.15) Q=Vaol— .

The operators (3.5)-(3.8) satisfy the following commutation relations:
(3.16) [a;(®),ai®]=1, [a:(1),a2®)]=1,
(3.17) [a, @), az O] = [ai @), a3 ()] = [a, D), G} O] = [a1 (), @, ()] =0,

which are similar to the eommutation relations (2.7).
As has been shown by Jannussis et al. () for the Yuen (*) operators in the

() A. JANNUSSIS, N. PATARGIAS and L. PAPALOUCAS: Lett. Nuovo Cimento, 29, 87
(1980); A. PAJAGORAL and J. MARSAL: Phys. Rev. A, 26, 2977 (1982); M. SHULDERT and
W. VOGEL: Phys. Rev. A, 28, 3668 (1983).
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phase space, the operators (3.5)-(3.8) are of the Yuen form and describe
squeezed states. The study of the operator (1.3) in the Schrodinger picture is out
of our concern here because it has been studied by Dodonov and Man'ko (**) for
quadratic operators in N-dimensions.
The case y =0 is very interesting because it leads to the Yuen operators too.
In fact, from operators (3.5)-(3.8), for y =0, we obtain Q;=w, 2,=0:

fi@®) =1+ cos wt)/2 —%Sinwt= exp[— 1%’5} cos%t,

(3.18) 10)=0, fi(H)=0,

sin wt
2

f:@) =

i = exol— i9t] gin et
5(1 cos«;t)—exp[ 1 2]sm 5 -

So, operators (3.5)-(3.8) can be written as

(3.19) a1 (t) = exp [— iwt/2] cos%t— a, (0) + exp [— iwt/2] gin %t az(0),

(3.20) a} (t) = exp [iwt/2] cosﬂzt-a; (0) + exp [iwt/2] sin %t a;(0),

(3.21) as (t) = exp[— twt/2] cosﬂzéaz (0) — exp[— iwt/2] sin%t a,(0),

(3.22) ab (8) = exp [iwt/2] cos%fa; (0) — exp [ist/2] sini;iai ©0)

and satisfy the commutation relations (3.16) and (3.17).

In the following we note that the operator of the free electron in a uniform
magnetic field (1.3) for y =0, with symmetrical vector potential of the form
A=(-H/2q,,H/2q;,0), w=eH/2me = w;/2 and with the use of the operators

(3.23) a1=—1—<\/7muq1+i b ), a}=i<\/qu1—i D ),
\/ \/’Mcu

\/Zh \/WLw
(3.24) a2=L<\/anq2+i pe >, ay= 1 (\/mqu—i i ),

Van ma Van Vme

(*} V. Doponov, [. MALKIN and V. MAN'Ko: Physica, 59, 241 (1972); V. Dobonov, V.
MAN'KO and V. SKARZHINSKY: Nuovo Cimento B, 69, 185 (1982); V. DoboNoV and V.
MAN'KO: Inwariants and Evolution of Nonstationary Quantum Systems, Vol. 183
(Moscow, 1987), Lebedev Institute of Physics and references therein.
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takes the form
(3.25) H=hol@la, +asas + 1) + thel(aal — a,ad),

i.e. it has the form of a two-mode squeeze operator.

From the above results we conclude that the time evolution of the
corresponding annihilation and creation operators of the free electrons in a
uniform magnetic field are of the Yuen form and describe squeezed states. Since
the corresponding Hamilton operator is a two-mode squeeze operator ().

In the following we study the case of the free electrons in a uniform magnetic
field for the Caldirola Hamiltonian. '

4. — Caldirola Hamiltonian for electrons in a uniform magnetic field.

According to Jannussis et al. (®) the Caldirola Hamiltonian for the vector
potential A(g,t)# 0 has the following expression:

2

=P &
4.1) H= o exp[— rt] e (Ap + pA)+ [V(q, t) +

2

e
2mc?

A2(q, t)} exp [yt],

where V(q, ) is the potential energy. For A =0 we obtain the usual Caldirola
Hamiltonian (*%)

4.2) H = (p*2m)exp[— yt] + V(g, t) exp[rt].

For the case of the free electrons in a uniform magnetic field, in two-
dimensions, with the symmetrical vector potential A = (—H/2q., H/2¢;,0)
Hamiltonian (4.1) takes the form

2
2

2
+
43 H=E eyl +upa-ap)+Gut@l+ hexply]

with o = eH/2mc = wy /2.
For Hamiltonian (4.3) the Heisenberg equations of motion are the

() C. CAVES and B. SCHUMAKER: Phys. Rev. A, 31, 3068 (1985); B. SCHUMAKER:
Phys. Rep., 135, 317 (1986).

(*) A. JANNUSSIS, G. BRoDIMAS, V. PAPATHEOU, G. KARAYANNIS, P. PANAGOPOULOS
and H. IoANNIDOU: Hadronic J., 6, 1434 (1989).

(%) P. CALDIROLA: Hadronic J., 6, 1400 (1983).
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following:

P _ P
4.4) dg,/dt = o exp[— ytl + wqs, dg./dt= o exp[— yt] — wq,

(4.5)  dp,/dt = wp, — mwiqexplyt], dp./dt = — wp, — mw?gexplyt].

The above equations with the help of the contact transformation

Jq1=exp[—%t}Q1, qz=exp[—%t]Qz,

(4.6)
_ Y _ Y
Lol = exp {E t} P, P2 = €Xp [E t] P,

take the form

@.7 dQl/dt=P1/m+wQ2+%Q1, sz/dt=P2/m—le+%Q2,
4.8) dP,/dt = wP; ~ mw*Q, ——%Ply dP,/dt = —wlpl_mw2Q2_%P27

which are exactly egs. (3.1)-(3.4) with w; =2w and they follow from the new
Hamiltonian

4.9) H= {P - %A(R)]2 + %(PR +RP),

1
2m
where

R=R(@Q:, Q.

~ Hamiltonian (4.3) in the coordinate representation takes the form

n [ 3 32
410) H=-J22 (8 4 &) enl—yil-
(4.10) 27 (8q§ aqg) exp[— yt]

_ 9O 8\ M a2 o2
the (qz 7 ¢ 8q2>+ i (97 + g3 explyt].

By the use of the contact transformation

_ Y Y
4.11) Q1 =exp |:§ t} ¢, Q:=exp {E t} 92
the time-dependent Schrodinger equation

(4.12) ihaa—‘:' —H¥q, g, 0,



62 A. JANNUSSIS, E. VLAHOS, D. SKALTSAS, G. KLIROS and V. BARTZIS

because of the correspondence

413 2.,8,1(% 5 5 % & 3 5 oG
' at ot 2\ 3t 9Q, 9@, ot at 8Q, oQ, at )

takes the form:
4.14) ih%—t"f=HW(Ql,Qz,t)—

’Lhy (Q

SQ an Ql + QZ Q Q QZ) T‘(QI’ QZ’ t) )

or
#¥ | L (p_esam\+X
4.15) mgt—_[m (P CA(R)) +Xer +RP)] VR, 1),

i.e. we obtain the new Hamiltonian (4.9) which is equivalent to (4.3). Therefore,
Hamiltonian (4.9) describes also squeezed states.

A more general case for time-dependent magnetic field is referred in a recent
paper by Abdalla(*) which studies the Hamiltonian

(4.16) H®) = —(pl +pd+= Qz(t)(fh +q3) — X0 (Q1P2 192
with
4.17 Q)= \/w2 @ + 22(t)/4.

In the following we will determine the time evolution of the corresponding
creation and annihilation operators.
5. — Creation and annihilation operators for Hamiltonian (4.16).

According to Abdalla (*) the solution of the Heisenberg equations of motion is
the following:

(5.1) ¢ (&) =r(®)q:(0)cosf(t) + 2 (0) sinf(¢)] + s(V)p, (0) cos f(t) + p2 (0) sinf(H)],

(6.2) g (&) =7r(Dlg2(0) cosf () — ¢: (0) sinf(D)] + s(t)pz (0) cos f(¢) — p1 () sinf(D)],

() M. SEBAWE ABDALLA: Nuovo Cimento B, 101, 267 (1988) and references therein.
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(5.3) p: (&) = v(®p:1(0) cos () + p2(0) sin f(D)] + w()g, (0) cos f(E) + ¢z (0) sinf (B)},

(5.4) p(t) = v®Ip2(0) cosf ) — p1(0) sinf ()] + w(®)ga (0) cos f(t) — g, (B sinf (H)],

where
(5.5) fy=12 [ xHde,
(5.6) (t) = “((t)) sot) + EQ2O o),
Vu(t) 2(0)
6.7 s(fy= S
Vul?) 2(0)
(5.8) p(t) = %cosn(t)—Msinn(t)
# Vi) w(0)
and

_ u(t) [ 2(0) w(0)/ u(® _
5.9 w(t)—!:ﬂ#(o (2£(0)> \/ 2M(t))}cosn(t)

Va0 [1 N (fi(t)/zft(t))(.i(O)/&(O))} sinn(®),

() u(0)

while
(5.10) 7ty = [ u(t)at

and p(?) is given by
(6.11) p®=1p2®), 3(t)+Q%(1)e(t) = 1/0°(®).

By introduction of the corresponding creation and annihilation operators, i.e.

6.12) (0= /ghslm®+al0], pO=-i 20 - g,

.19 GO=\gaslmO+d0], 6 =-i\" 2 w0 -4,
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and after some minor algebra we obtain the following expressions for the above
operators:

(5.14)  a,(t)=F, (®)a, 0)cosf(t) + az(0) sinf ()] +

+ Fy(t)a; (0) cosf(t) + a£ (0) sinf (B)1,
(5.15)  aj(t) = F¥ (®)lai(0) cosf(t) + af (0)sinf(t)] +

+ F§ Ola, (0) cos f (D) + az (0) sinf (B)],
(5.16)  ay(t) = F () (0) cosf(¢) — a1 (0) sinf ()] +

+ Fy (D)} (0) cosf(t) — ai (0) sinf (D],
(.17 ai ()= Ff ®)af(0) cosf(t) — a1 (0) sinf ()] +

+ F§ (0)[az (0) cosf(t) — a, (0) sinf (D],

where
(5.18) F,(®) = 1/2)[r() — Q@) s@) + v(t) + iw@®)/Q@)],
(5.19) F, (@) = 1/2)[r(t) + iQ() s(t) — v(t) + tw(t)/Q(D)].

The above operators satisfy the commutation relations:
[a; (1), aj ] =1, ji=12,
(5.20)
[a; (), i (H)]=0, for j#k.
If we introduce the linear transformation
A () =a,(0)cosf(t) + ay (0)sinf(t),
(5.21)
Al (@) =ai(0)cosf () + a3 (0)sinf(?),
with
[Al 3 AI] = 1 ’
operators (5.14) and (5.15) take the form

(6.22) a®)=Fi)A+F®A], d@®)=FFOAI+Ff®A
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and it is easy to show that the functions F';(t) and F,(f) satisfy the relation
(5.23) I, (0 = [F2 (B =1.
The same is valid for the other pair of operators a.(f), ai(t), i.e.
(5.24) a,)=F A+ F,() A, ai()=FFQA;+F§) A,
with
[A;, Ajl=1.

From the above results we conclude that the operators a;(t), aj(t), j=1,2 are
of the Yuen form and describe squeezed states.

6. — Conclusion.

In the present paper the prototype squeeze operator (1.2) is studied in phase
space.

We find the corresponding Wigner operator which is exactly a prototype two-
mode operator and describes squeezed states in phase space.

The extended prototype operator (1.3), for the case of an electron in a uniform
magnetic field, describes also squeezed states. The case y = 0, i.e. the case of the
free electron in a uniform magnetic field is very interesting because it is proved
that we have squeezed states in this case.

Also, the case of the free electrons in uniform magnetic field for the Caldirola
Hamiltonian is studied. This Hamiltonian describes squeezed states too.

Finally, for the general case of time-varying magnetic field, the time
evolution of the corresponding creation and annihilation operators leads to Yuen
operators and therefore to squeezed states.

@® RIASSUNTO (%)

In questo lavoro si studiano varie proprieta dell’operatore squeeze prototipo in un campo
magnetico uniforme in due dimensioni. Gli operatori di creazione e di annichilazione
corrispondenti sono della forma di Yen e descrivono stati squeezed. Ii caso dell’elettrone
libero in un campo magnetico che varia nel tempo porta anche a stati squeezed.

(%) Traduzione a cura della Redazione.

5 - Il Nuovo Cimento B.
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Cxarsie COCTOSHHA B HAPHECYTCTBHMH 38BHCAINErO OT BPEeMCHM MATHMTHOTrC HOJA.

Pesiome (*). — B 3103 cTaThe MbI HCClIeAYEM pa3IMyHbIe CBOHCTBA IPOTOTHIIA OllEpaTOpa
CKaTHf B ONHOPOJHOM MATHHTHOM HOJNE B JBYX u3MepeHmsx. COOTBETCTBYIOLHE
ONepaTopsl POXACHUS H YHHUITOKEHMS NPEACTABIAIOT ONeparopsl FOeHa W ONMHCHIBAIOT
cxaTbie cocrosHuill. Ciy4ail cCBOGONHOrO 31EKTPOHA B 3aBUCIIIEM OT BPEMEHN MarHNTHOM
IOJIe TaKXE HPHBOJAT K CHKATHIM COCTOSHHAM.

(*) [epesedeno pedaxyueil.



