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1. NONCONVEX NONSMOOTH STOCHASTIC P R O G R A M M / N G  PROBLEMS 

Nonconvex nonsmooth stochastic optimization problems for discrete-event systems considered in [ 1] can be stated in 

general form as 

minimize IF(x) = Ef(x, 0)1 (1) 

subject to 

x E X C R  n (2) 

where x is the solution vector (a variable), 0 is a random parameter deffmed on the probability space (O, E, P), fix, 0) is a 

random function evaluating the quality of the solution x given the random parameter 0, E is the expectation symbol, X is the 

feasible set. 
An essential feature of the problem is that the function J(., 0) is not endowed with good analytical properties. In 

particular, it may be nonconvex, nonsmooth, and even discontinuous. 

A standard approach to the solution of the problem involves approximation of F(x) by its empirical mean: 

N 

minimize [F~x) = 1/N ~_, fix, Oi)] (3) 
i=1 

subject to 

x • X C R n, (4) 

where 0 i, i = 1, 2 . . . . .  N, are independent identically distributed observations of 0. As shown in [1], this standard approach 

is often meaningless, because the functions f(x, O) and thus FN(X) may have a poor analytical structure even if F(x) is a 

smooth function. Moreover, the function F(x) may be nonconvex and nonsmooth, which leads to a highly nonsmooth or 

discontinuous FN(X) whose multiple local minima have nothing in common with the true minima of F(x): In this case, our 

only choice is to use stochastic search procedures based on direct evaluation of the function F(x) and its derivatives. 

Application of the smoothing method for this purpose is considered in [2]. 

If the (generalized) differentiation and expectation operators are interchangeable 

0~" (x) = 0E 0 / (x, 0) = e 0 0! (.,-, 0), 
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then for the stochastic generalized gradients of F(x) we may use the subgradients I~ k = g(.r ~, O) E. af(x k, 0). The case when 

the function F(x) is continuously differentiable although fix, O) are nonsmooth is considered in [3-7]. 

The case when the expectation function F(x) is locally Lipschitzian is considered in [6, 8, 9]. Moreover, as shown in 

[I], we are often dealing not with general Lipschitzian functions, but with functions formed from some basic (continuously 

differentiable) functions by the operations of taking maximum or minimum and smooth transformations. They are included in 

the class of so-called generalized differentiable functions [10]. 

Section 2 briefly discusses the main practical problems with such functions. Section 3 formally introduces the class 

of generalized differentiable functions and examines its properties. Sections 4 and 5 prove convergence of deterministic and 

stochastic generalized gradient methods (with projection of the current approximation on a nonconvex feasible set). These 

procedures generalize the results of Dorofeev [11, 12] obtained for the case of quasi-differentiable functions F(x), which are 

not applicable to the problems of Section 2. 

2. E X A M P L E S  OF N O N S M O O T H  STOCHASTIC SYSTEMS 

Let us consider some examples of stochastic systems with nonconvex and nonsmooth performance functions. In these 

examples, the system is exposed to the action of discrete events (a discrete-event system, DES). 

2.1. Control led Risk Processes 

Consider the simplest model describing the evolution of capital of an insurance company. Assume that the initial 

capital of the insurance company is x t, the insurance claims are received at random time moments r t, 7" 2 . . . .  and for random 

amounts L 1, L 2 . . . . .  The reserve R(x, t) of the insurance company at time t is the difference between the initial capital x l 

plus accumulated premiums P(x 2, t) and the aggregated claims C(x 3, t) plus reinsurance payments c(x3)t: 

R (x, 0 = (x~ + P (x 2, 0 )  - ( c  (x 3, t) + c (x a) t), 0 ~ t ~ r ,  

The parameters x 2, x 3 are specifies in the insurance and reinsurance contracts. 

The premium P(x 2, t) collected during the time interval [0, t) is x2t. The sum of claims is 

N (t) 
c (x3, t ) =  ~ mtn {z,~, x3}, 

k = !  

where N(t) is the random number of claims during the time interval [0, t); x 3 is the reinsurance threshold specified in the 

reinsurance contract. Bankruptcy occurs at the moment 7.(x) = min{0 < t <_ T: R(x, t) < 0}; if R(x, t) >__ 0 for all t E [0, 

7], then we take -r(x) = T + I. This event can be averted by selecting appropriate values of the variables x = (x 1, x 2, x 3) 

from the feasible set. Assume that r l, 7.2 . . . .  and L,, L 2 . . . .  are defined on some probability space (O, E, P). An important 

indicator of this process is the risk function F(x) = E min{0, R(x, 7.)}. 

The function f ix,  0) = min {0, R(x, 7.)} is obviously constructed using the operations of taking minimum and 

maximum. 
Now assume that Prob{R(x, t) = 0} = 0 for all x and t (this always can be achieved by adding a random noise to the 

parameters of the process R(x, t)). Then with probability 1 the function fix, 0) is generalized differentiable (see Section 3) 

with the subgradients 
1 

g(x ,  0 ) =  d , r ( x ) ~ < T ,  
- ,t (x3)  - r 2~x3 c (xa)  

r (x) 

0 E R  3 r (~) > r ,  

where n(x3) is the number of cases when L t > x 3, 0 < t < 7.(x). 
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2.2. Communication Networks with Failure 

Consider a network of interconnected elements, which may be in a "normally operating" state or in a "faulty" state. 

The network has an input and an output and is regarded as normally operating if there exists a path from input to output 

consisting of normally operating elements. Denote by ~'i(x, 0) the time of fault-free operation of element i, where x E R n is 

the vectcr of controlled parameters and 0 the vector of uncontrolled random parameters. Then the network lifetime f ix ,  0) is 

expressed as the maxmin of 7"i(X, 0): 

/" (x, 0) = max rain re(X, 0), 
p E ~ e ~ P  

t 

where 9' is the set of paths from network input to output; the subscript e identifies a path element. 

For a sufficiently large general network, the function f ix,  0) cannot be computed analytically (it is difficult to 

enumerate all the paths Pi from O'). This rules out the deterministic approximation (3), (4). However, a simple (wave-front) 

algorithm exists that evaluates the function f ix,  0) and its stochastic (quasi)gradients g(x, 0) for each observation of the vector 

0. 
Simple conditions (see, e.g., [7, 13, 14]) guarantee differentiability of F(x) = Ef(x, 0) and the equality VF(x) = 

Earl, x, 0) even for nondifferentiable f ix ,  0). These conditions, however, do not ensure continuous differentiability of F(x), and 

this function may be nondifferentiable even in very simple practical cases (see [ 1, 13, 14]) 

2.3. Simple Conveyer Line 

A conveyer line [15] consists of n serially connected machines. A part moving down the line is sequentially served 

by each machine, if it is powered. Denote by x i the time when machine i is powered; by Yi the time when the part leaves 

machine i'; by Yo(O) the time of arrival of the part in the conveyer line; by ri(O) the (random) processing time of the part by 

machine i. Let a i be the unit cost incurred when a part is waiting for machine i to be powered, b i the cost incurred when a 

powered machine i is waiting for a part to arrive. Then the random cost associated with waiting for a machine to be powered 

or for a part to arrive for processing is calculated by the following recurrences: 

/~ = 0, 3 b = 0 ,  

f i ( x ,  y, O) = f i - 1  (X, y, O) + max {bi(Yi_ I - xi),  ai(x i - Yi-I )}' 

Yi = max {Yi-t '  xi} + r i(0), i =  1 ,2  . . . .  

The functions fi(x, y, O) are again constructed using the operations of taking maximum and minimum, and are nonconvex and 

nonsmooth. 

2.4. Systems with Queues 

Consider a network consisting of m servers handling messages or streams of messages. At each instant, a server may 

process only one message, which is then passed to another server in accordance with a known routing rule. If the next server 

is busy, the message is enqueued to be served according to the first-in, first-out rule. 
For each server i = t, 2 . . . . .  m, we introduce the following notation" n i is the initial queue length; rij(x, O) is the 

(random) processing time of message j dependent on the controlled parameter x and the uncontrolled (random) parameter 0; 

ot/j(x, 0) is the time of arrival of message j in sever i; ~ij(x, O) is the time when server i starts processing message j; ~,ij(x, O) 

is the time when server i finishes processing message j. 
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The algorithm for server i is described by the following recurrences: 

a l . . . . .  a,,, = 0 ,  /3a = 0 ,  
i 

k-I  k 

f l ik--  ~ r i j ,  Yik = ~T: i j ,  k = 1 . . . . .  rti, 
j=l j= l  

tSij = max {Yi (y- t )' aii}' 

~'ii = flij + rLi = max {Yi ~j-l )' aij} + rii' j = I, 2 . . . .  

Message streams are modeled in this system by introducing special servers that do not receive new messages, have an infinite 

message queue, and emit (processed) messages at appropriate intervals. 

Note that each instant c~ when a message arrives at a server or each instant B when a server starts processing a new 

message coincides with the instant 3: when some message completes processing on some server. It is therefore sufficient to 

consider only the processing completion moments .,1,. 

The message routing procedure is defined by integer-valued functions #0(x, 0) that define the destination of message 

j processed by server i. 

Note that many important efficiency measures of this network are nondifferentiable functions of x, despite the 

continuous differentiability of the functions to(x, 0). 
T H E O R E M  2.1 [13, 14]. Assume that/~6,.(x, 0) = I~ij. Then the function Vo(x, 0) is expressible in terms of rij(x, 0) 

by the operations of taking maximum and minimum and forming positive linear combinations. 

Consider a particular case of the theorem, when the message paths ~ij are fixed, ~0 = #i- Denote by I i = {servers 

r[pt r = i} the set of correspondents of server i. Then 

yii = max (Yi ( i -  t )' rain max (a i q l )' ~'i ')) + i ' ~ t , / '  ~ /  - 7 rip 

which explains the assertion of Theorem 2.1. 

The main operating measures (criteria) of this network are expressible in terms of the times ~,i,(x, 0). For instance, 

the mean queue length of server i is 

the utilization rate of server i is 

k 

/ (~, 0) = ~ 6ai/(.~, 0) - ,~i/(x, o)) / y k(x, o); 
/=1 

k 

: = i  

and so on. 

For a sufficiently general network configuration it is difficult to express the efficiency measures f ix ,  O) explicitly in 

terms of the functions to{x, 0). In general, these efficiency measures are obviously complex nonconvex nonsmooth functions 

of the network parameters. 

3. G E N E R A L I Z E D  D I F F E R E N T I A B L E  FUNCTIONS 

So-called generalized differentiable functions provide an appropriate model for the performance functions of discrete- 

event systems considered in the previous section. 

Def'mition 3.1 [10]. The function f." R n --- R is called generalized differentiable (GD) at the point x E R n if in some 

neighborhood of x there exists an upper semicontinuous multivalued mapping af  with closed convex values Oflx) such that 
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r (y) = / (x) + (g, y - x) + o (x, y, g), (5) 

where (-, -) is the scalar product of two vectors in R n, g E 0ff, y), and the residual term satisfies the condition 

Io (x, y~ k) 
lira ' g I = 0 (6) 
k ]ly jr - xil 

for every sequence yk ..., x, gk E afl3~. The function f is called generalized differentiable if it is generalized differentiable at 

every point x E Rn; af(x) is the subdifferential o f f  at the point x. 

Example 3.1. The function Ix I, x ~ R, is generalized differentiable with the subdifferential 

c ) l x l  = 

+ I, x > 0 ,  

1 - I ,  + I1, x = 0 ,  

- I ,  x < 0 .  

Its decomposition (5) at the point x = 0 is given by 

lyl = I OI + sign ( y ) . ( y -  O) + O. 

Generalized differentiable functions have the following properties (see [10, 16]): 

--  generalized differentiable functions are locally Lipschitzian, but in general are directionaliy nondifferentiable; 

- -  continuously differentiable, convex and concave functions are generalized differentiable; the gradients and 

subgradients of these functions can be used as generalized gradients; 

--  the class of generalized differentiable functions is closed under the finite operations of taking maximum and 

minimum and under superposition; 

- -  we have the calculus of generalized gradients 

(7) 

u 

where cony{- } is the convex hull of the set {- }, and the subdifferential Ofo(fl . . . . .  fro) of the compound function fo(fl . . . . .  fro) 
is evaluated by the standard chain rule; 

- -  the class of generalized differentiable functions is closed under the expectation operation, and OF(x) = EaJ~x, ca) 

for F(x) = EJ(x, ca), where fl-,  ca) is a generalized differentiable function; 

- -  the subdifferential Of(x) is nonuniquely def'med by Definition 3.1, but the Clarke subdifferential [ 17] c3J(x) always 
w ~ m 

satisfies Definition 3.1" for every a./(x) we have ajax) E_ Oflx); Of(x) is a point almost everywhere in R n" 

--  some elements Oflx) for compound functions of the form f(x) = max(fl(x), f2(x)), fix) = min(f  1 (x), f2(x)), and fix) 
= fo(fl(x) . . . . .  fm(X)) can be computed by Nesterov's lexicographic method [18]; 

- -  we have the following analogue of the Newton-Leibniz  formula: 

1 

f (y )  - f (x)  = f (g ((1 - t ) x  + ty), y -  x) ,it, 
o 

where g((1 - -  t) x + ty) E 0fl(1 - -  t) x + ty). 

These properties of generalized differentiable functions suggest that they are an appropriate model for performance 

functions of various nonsmooth stochastic systems (see Section 2). 

4. D E T E R M I N I S T I C  G E N E R A L I Z E D  GRADIENT M E T H O D  W I T H  

P R O J E C T I O N  O N T O  A N O N C O N V E X  FEASIBLE SET 

Let us consider a deterministic analogue of the stochastic problem (I), (2) to demonstrate the technique that we use 

to prove convergence of the generalized gradient method. 
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Consider the problem 

where 

/" (x) - min, (8) 
x E x  

x = (x ~ R '~ I 't' (x) ~< 0}, (9) 

m 

fix) and if(x) are generalized differentiable functions. Let aflx) and a~(x) be subdifferentials of fix) and r at the point x, 

respectively. In particular, they may be identical with the Clarke subdifferentials aflx) and a~(x). 
Assume that constraint (9) is regular, i.e., 

p (0, 0r (x)) = inf ilgll > 0 (10) 
g ~ ~ (x) 

for all x such that ~k(x) = 0. A necessary condition of optimality for this problem has the form (see [16]) 

o ~ ,~j' (x) + Nx(X ), 

where 

Nx(X ) = {~. o~  (x) i ,l ;,  01, 
0, 

~, (x) = o ,  

~ , ( x )  < 0 .  

Denote the solution set by X* = {x E X I 0 E Of(x) + Nx(x)} and the set of optimal values by f*  = {fix) I x E X*}. 

Consider the following conceptual iterative method: 

o x E X, (11) 

x El-I X x - p ~  , (12) 

g ~ - a f ( x  , k = 0 , 1  . . . . .  (13) 

where II x is the (multivalued) projector on the set X, i.e., z E IIx~) if and only if y -- z E Nx(Z)" the nonnegative numbers 

pk.are def'med by the conditions 

o o  

l i m p k = 0 ,  Z P k = ~ "  
k -,, ** k=0 

(14) 

Remark  4.1. Method (11)-(13) is a generalization to the nonconvex case of the subgradient methods of Shor [19], 

Ermol'ev [20], and Polyak [21] (originally developed for convex functions fix) and a convex set X). A similar method is 

considered in [11, 12] for the class of subdifferentially regular (quasidifferentiable) functions, which are not applicable for the 

important applications of Section 2 (for instance, they include convex and weakly convex [22] functions and the maximum 

function, but do not include concave functions and the minimum function). 

T H E O R E M  4.1. The sequence {x k} generated by method (11)-(14) converges to the solution of problem (8) in the 

function, i.e., the minimum (by the function f )  limit points of {x k} are contained in X*, and all the limit points of the 

numerical sequence {flx~} constitute an interval in the set f*  = {fix) I x E X*}. If the set f*  does not contain intervals (for 

instance, f* is finite or countable), then {x k} converges to the solution of the problem, i.e., all the limit points of {x k} 

constitute a connected subset of the set X* and {fix g)} has a limit in f*.  
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The convergence theorem is proved by contradiction using a nonconvex nonsmooth Lyapunov function fix) for the 

sequence {x k} (as in [11, 12, 16, 20, 22]). The proof repeatedly uses the following assertion concerning the sequence {x k} 

generated by the algorithm (11)-(14). 

LEMMA 4.1. If lira x*, = y E X*, then for every ~ > 0 there exist indices I s > k s such that II ~ - y II -< ~ for 

all k E [k s, I s) and 

lim sup f (x t)  < f (Y) = lira f (x ~'). (15) 
$ ~ e o  $ 

Proof. Let ~ + l  = x * -  p ,gk  and write 

where 

= FIx(x - p k g  = x - p k ( g  + h = x - p k  Q , 

h k. 

O k=gk +h k, 

= hk(~ k + ' )  = ~ ( ~ * + '  - f i x ( y * + ' ) )  ~ Nx(xk+'). (16) 

We have the bounds 

l k + l  k + l  l k + l  k gk 
Ilhkil = ~ 1 1 ~  - rlx(Y )11 -< ~ l l Y  - x II = !1 II, 

l k + l  k [ k + l  k k 
II (2 ~ il -- ~ II x - x II -< ~ Ii X - x II - llg I!. 

Two cases have to be considered: @(y) < 0 and @(y) = 0. In the first case, for k >__ k s the method (12)-(14) 

functions in a sufficiently small neighborhood of the point y as a subgradient method in the unconstrained problem, and the 

assertion of the lemma is well known (see [10, 16]). 

We will consider the case r = 0 (the case r < 0 can be treated as a simpler repetition of the case @(y) = 0). 

For y = lim x k, let 
$ . . , ,  a 

~ u 

/~ = p (0, a~, (y)) = inf {llgll * g E ~ (y)}, (17) 
g 

v = p (0, a / (y )  + Nx(Y))  = inf {Uglt I g ~ (of (y) + ~Vx(y))}, 
g 

(18) 

7 = su0 { !! g II I g ~ of  (y)}. 
g 

w 

By upper semicontinuity of 3f, 3~,  there exists an el-neighborhood of the point y such that 

sup {llgii I g ~ ~f (z), IIz - yll ~< fi } ~< 27 = r ,  
g , z  

(19) 

(20) 

Let 

sup {l lgl l f g ~ a~, (z ) ,  i i = -  vii ~< e,} < 27 = F. 
g,Z 

i 

N (z) = {g ~ Nx(z ) t Ilgll ~ r},  

G(z) = 0 f ( z )  + N ( z ) .  

(21) 
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Clearly, 
m 

p (o, a (y ) )  = irtf ( 11 g II ~ g ~ (7 (y)I  ~' v. 
g 

By upper semicontinuiry of &k and G there exists an e2-neighborhood (~:2 <- 81)  of the point y such that for all z, [i z - -  y 11 

--< ~ : 2 ,  

p (Og, (z), O~ (y)) ~< # / 2, (22) 

where o( ' ,  ") is the Hausdorff  distance between two sets. 

By generalized differentiability o f f  and ~b, for the constant c = 1,2/(64 1"(1 + 2 1-V/z)) there exists e 3 < e 2 such that 

given II z -  y~ < e 3 we have 

l (z) ~< f (y) § (g, z - y) § c II z - y II, (23) 

~, (z) g g' (y) + ( d , -  - y) + c ilz - YI[ = (d, z - y) + c [[z - Yll (24) 

for all g E Oflz), d E Off(z). 

Now let e = e 3, ot = e / (a r )  and take some e < e. Let I 1 ~ , -  y II -< ~/4 and Ps < Pl for all s >__ S. 

Let 
k 

m s = s u p  {m I [I x - y l l  ~ ~ / 2  V k  E [k s ,m) } .  

We will show that m s < oo for all s _>_ S. Indeed; if for all k we have Uxk _ y il <- e/2, we  get a contradiction: 

when k --,. m .  Now, 

Since 

k - I  

�9 / 2 �9 II x k _ y il ; '  II x ~ - x II - llx - y II ~ 1' / 2 ~ p ~ - -  e / 4 -'- =,  
r - - k  

I 

n t  s n !  - ! t n  - -  l 

Ilx - y l l ~ <  IIx �9 - y l l + p , , , _ t l l Q , '  l l < 3 e / 4 .  
l 

we have 

m - ! n t  - l 

e / 4 ~< !1 pk Q kll -< r PC' 
k = k  k = k  

$ $ 

m - ! 
I 

k = k  
I 

For k E [k s, ms],  s > S, substitute the approximations x k and the subgradients gk E Oflxk),  generated by algorithm 

(11)-(13) in decomposition (23): 

r (x k) ~< ! (y) + (gk J, , x  - ~ , ) + c l l x  - y l l  

, - x  + c l l x  - x  ' l l + ( r + c )  l l x ' - Y l l - -  

= / (y )  + ( g  k + h k, x k - x - , x - x _ + c l l x  - x  "ll + ( r ' + c ) l l x  ' - y l l ,  
i 

where h k is defined by Eq. (16). Let us bound the term u k = - -  (h k, x k - -  x~s). 

(25) 
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If ~ (~)  ___ 0, then h k = 0 and u k = 0. Consider the case ~(~k) > 0, i.e., h k : 0. Since 

h T M  E N x ( x k + i ) =  {2gl  g E S ~ p ( x k + l ) , , ~  ~ 0 } ,  

we obtain 

hk= / lkdk  d k E 0 q , , ( x k + l ) ,  /l k > 0  

and 

o < ,~  = il h ~ !1 / II d ~ II ~ r / (u / 2) = 2r" / /~ .  

Substitute in Eq. (24) x k+l = IIx(x k+i) for z and d k for d: 

0 = 7 , ( x k + ~ ) . < ( d  k , x ~ + l  - y) + c IIx 
k + l  

- yil. (26) 

Now, multiplying Eq. (26) by X k we obtain 

-(hk, x~-y) <-a: IIx k+t -Yll  + Zlix ~+t - x ~ l l  -< (2crl/~)llx~-yll + 
k+l k 

+ r ( l  + :~c//~ ) l lx  - x  11 ~< 

k k s k+l k 
�9 ( 2 c r ' & ) l l  x * - x  II + ( 2 c r / / 0 l l  x - y l l  + r(1 + 2 c 1 / ~ )  II x - x  II. 

(27) 

Using inequality (27), we rewrite Eq. (25) in the form 

/ (x i) ~ I (y) + (gk + h k, x k _ x ~,) + r(l + 2cI~ ) llx i+~ - x ~ II + 

+ (1 + 2I" //~) c IIx ~ x II + ( r  + c + 2c r" //~) Ilx ~. - - yil. 

(28) 

We now have to bound the scalar product 

(gk + h k, x k -- x 
k - I  

k,) = (gk q. h k, E (gi.l_ hi)) .  

i = k  
$ 

To this end, we use the following lemma. 

L E M M A  4.2 [16]. Let P be a convex set in R n such that 0 < 3'0 <-- Ilpli -< ro < + oo for all p E P. Then for an 

arbitrary set of vectors {pr U_ P [ r = k . . . . .  m} and every set of nonnegative numbers {pr E R 1 [ r = k . . . . .  m --  1} such 

that 

m - !  2 
X-' r r % ~  

p ~ a  o > 0 ,  sup p ~< 
r= k :g r <_ m 6F o 

there exists an index 1 E (k, m] for which 

l - I  / -1  2 
* l  

r t ( )  2 : ' .  / 
r=k  r=k  

l - I  

, . -k 3Fo 
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We now continue the proof of Lemma 4.1. Let 

p = cony  {G (z) I IIz - Yll ~< E}, 

�9 r r < ~ r ~ m = r n  p = g  + h ,  k = k  s s' 

7 0 = v / 2 ,  F 0 = F .  

We have the inequalities 

and 

m m - -  l ms 

F 
k - k  k = k  

�9 l 

e 

~ T f = % > 0  

lim suppk=O. 
s - *  oo k ~ k 

By Lemma 4.2, for all sufficiently large s there are indices I s, k s < I s <<_ m s, such that 

( g l  + a t ,  
l - I  1 - !  
J i 2 

V 

k = k  k = k  
I s 

l - !  
$ 

, v  
p ; ~  

~=~ 24 F 2 

Substituting these bounds in inequality (28) for k = l s,  we obtain the final bound 

2 / - 1  1 - i  $ 

V --  /(xlO ~ :(Y) - T6 ~p~ + r(l + 2 r I ~) c ~Pk + (r + c + 2c r I ~)llx k, 
k = k  k = k  

�9 s 

yll + 

+ F2(1 + 2 c / t ~  )lot ~; (29) 

2 
_ v k s 2 (  

l (y) 600 r - - - - - r  e 1, + ( r  + c + 2c  r / ~ , ) IIx  - yll + r 1 + 2elF, )Pt, 

where c = v2/(64F(1 + 2F//~)). 
We have thus proved that for all sufficiently small e _< e and sufficiently large s there exist indices I s such that 

xk --  Y I[ <- e for k E [k s, l s) and/(xl,) satisfies Eq. (29). This completes the proof of Lemma 4.1. Q.E.D. 
Proof  of  Theorem 4.1. The proof involves multiple applications of Lemma 4.1. in the framework of the convergence 

proof procedure described in [22] and generalized in [ 11, 16, 20]. The proof consists of the following steps. 

10. The sequence {x k} is obviously contained in the compact set X. 

2 ~ By boundedness of the generalized gradients Of(x)  on the compact set X, we obtain 

lim IIx ~ + t - x kil ~ s u p  Ilgll limp k = 0 .  
k -, , ,  g ~ ~f  (x), x ~ X k -, , ,  

Hence it follows that the limit points of the sequence {x k} form a connected set in X. 
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3 ~ The sequence {xk}, for example, from the compact set X has a compact set of limit points X'. The continuous 

function fix) attains its minimum on X' at the point x'. Note that the point x' = lim Xks is contained in X ~ because 

otherwise by Lemma 4.1 it is not a minimum point off .  Thus, lim inf fix ~) E f ' .  
k...~ 

4 ~ Let us show that the limit points of the sequence {](xk)} form an interval in f*. If lim sup fix "to) = lira inf 

flxk'), then the assertion follows from 3 ~ Let k--  k-- 

lim .sup / (x ~) > lira inf / (x ~") = fO E / * .  
k - - - ~  k - - ~ ,  

Assume that the assertion of the theorem is false. Then there exists a number fl  E f* such that fl  < lim sup 

flx~:(co)). Choose the number f2 so that k-" 

lira i n f / (x  ~:) = fo < ft < f2 < lira sup/(x ~:). 
k -,. ~, k --,. ~, 

The sequence {flx#)} intersects the interval (/'I, f2) from bottom up infinitely many times. Thus there exists 
subsequences {xks} and {xns} such that 

I (x k) ~</l < / (x ~) < /2  ~< / (x n), k < /c < ,~ s = Z 2, $ $~ , . . .  

Without loss of generality we may assume that x k, --- x'. By 2 o and continuity o f f  we have 

(30) 

T h u s ,  

such that 

k 
l i m f ( x  ' ) = / ( x ' ) = . ~  U / "  

lim x~:s = x' E X*. We can now apply Lemma 4.1 to the subsequences {xk}~>~:, s = 1, 2 . . . . .  Take e 
$,..~ $ 

sup I (Y) < -/'2" 
{y- l y - x  'l -~ ~} 

Then property (15) contradicts inequalities (30). The contradiction proves that 

lim i n f / ( x  1"), lim s u p / ( x ~ ) /  c__ 1". 
k - * ~  k - ~  ) 

Since X* and f* are closed sets, we have 

I lim inf / (x k), lim sup f (x ~:)] C / * .  
k -*** k -.,o, J 

5 ~ Now assume that f*  does not contain intervals, for instance, f *  is finite or countable. From 40 we obtain 

lira f (x k) = fo E f*. (31) 
k " * ~  

If some limit point x' = lim x~s is not contained in X*, then by Lemma 4. I we obtain a contradiction with the 

convergence of the sequence {flx#)} stated in (31). Q.E.D. 

Remark  4.2. Theorem 4.1 remains valid also for the randomized generalized gradient method of the type (11)-(14), 

where the gradient g~ is evaluated not at the current point x k, but instead at a close point ~ ,  i.e., 

- t li~nb~ =0. g ~ ~/(.~k), ll.~'~ x II -< dk, 
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In this case, Lemma 4.1 follows from the stability property of the method stated in Lemma 5.4 below. If the points 

,fk are chosen at random, then a f l~)  = af l~) ,  with probability 1 and the method converges to the stationary (in Clarke's 

sense [17]) points X* = {x [ 0 E aflx) + Nx(x)}. In the last case we may apply formula (7) and the chain rule to evaluate gk 

e aj(~). 

5. STOCHASTIC G E N E R A L I Z E D  GRADIENT M E T H O D  W I T H  

P R O J E C T I O N  ONTO A NONCONVEX FEASIBLE SET 

Consider the stochastic programming problem (1), (2), where the objective function F(x) is generalized differentiable 

and the set X = {x I if(x) ___ 0} is defined by a generalized differentiable function if(x) that satisfies the regularity condition 
m 

(10). Let X* = {x ! 0 E OF(x) + Nx(x) } and F* = {F(x) l x  E X*}. 
Let us consider a generalization of the stochastic quasigradient method of [20] to the case when the objective function 

F(x) = Ef(x, O) and the constraint set X are nonconvex: 

0 x E X, (32) 

k + l  ~. x (,,,~ ~ i-Ix(X_ -p~.sk(~,,~. k = O, 1 . . . . .  (33) 

k 
I ~ ei(w), n k = k - r  t+ 1 >I0, (34) " - -  'r_ 

$ k(co) ~ki  = 
k 

Here the random variables xt(co), l~k(~o), s~(~0), k = O, 1 . . . . .  are defined on some probability space (f~, I~, P); (i(co), i = O, 

1 . . . . .  are random vectors (stochastic generalized gradients) such that the conditional means are 

E {~i( ,o) I x~  . . . . .  xi(a,)}  = gi(~) e ~[ (x i (~ , ) ) ,  (35) 

I1~'~(~,)11 -,4 C < + ~0; 

I'I x is the (multivalued) projector on X, i.e., z E I Ix~)  if and only if y --  z ~- Nx(Z); the nonnegative numbers rlc, n k and the 

monotone decreasing sequence of nonnegative numbers Pk satisfy the conditions 

nk = k +  l - r k  ~ r n <  +oo; (36) 

E P/, = + ~'' ~] P~ < + ~ (37) 
k = 0  k = 0  

Remark 5.1. The method (32)-(34) combines the ideas of the stochastic quasigradient projection method [20] (for a 

convex function F(x) and a convex set X) and averaged stochastic gradient methods [8, 12, 16, 23-25] (for nonconvex 

functions F(x)). In [ I 1, 12] a similar method is studied for the case of subdifferentially regular (quasidifferentiable) functions 

F(x) and ~(x). This method, however, is not applicable to the examples from Section 2. 
T ~ O R E M  5.1. Assume that F(x) and ~(x) are generalized differentiable functions, and the sequence xk(oJ) is 

generated by method (32)-(34), where r k, n k, Pk satisfy (36), (37). Then the minimum (by the function F) limit points of the 

sequence {xk(o~)} are almost surely contained in X* and all limit points of the numerical sequence {F(xk(o~))} almost surely 

form an interval in the set F*. I f  the set F* contains no intervals (for instance, it is t-mite or countable), then all the limit 

X* points of {xk(o~)} almost surely form a connected subset of the set and the sequence {F(xk(oJ))} has a limit in the set F* 

Proof. Denote ~+1  = x k _ pt, s k and write 
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where 

The norms are bounded as follows" 

k + l  17 x( X k ~) k = - -  p k  s = x - p~(s ~' + h ~) ~ = x - p i Q  , 

l ( k + l  = - -  

Pt: 

Qk k k = s  + h  

_ FIx(2~ +!))  E N x ( x  
k + l ) .  

I k + !  
!1 h/ '  U - 7-11-7 /-'k - rtr(-+ k +~)II + ! l l . + k  + 

�9 t )  k 

i k + l  tl Q x II = 7- l l - r  ~. i - k + l  - x  I 1 - < -  ,~ 
P~ 

k k 
--~" I I -  Ils II, 

II = I! s ~ II. 

Now take a subsequence {xk,(co)}. For k >_ k s, 

k 

k + ! (Co) = A.k , ( r  _ ~Z~ [3~ Q t C c O )  = 

t = k  
I 

k 
k 

= -+ '<:'> - Z ,o, +'( ,+o> - + ~  + '  (,+o) = +,++, (,0) - +++, (+>, 
t =  k ' ' +' 

s 

(38) 

where 

k 

,,+ +' (,.,,)= Z , , ,  +'(,.,,)= ,,+(,,.,)- ~,, +"(,,,), ~, + ,,,+, 
s t = k  ' 

s 

(39) 

y : ' O ' )  = x k'(o~ ), 
! 

(40) 

k 
- -  I 

r ' - ' r  

(41) 

~co) = E(~'rcco) I x0(co) . . . . .  XrCco)} E OF ( x r ( ~ ) ) ,  (42) 

'(r+, ,+, ) 
h e(w) = -~r "~ (w) - ['Ix(~ (co)) ~_ NxCx r + tCw)) ' (43) 

k t 
+k" ~  ̀+ t Co.,) = ~ p, ~-t ~ (+"(,.,,} - +"(+}). (44) 

s t = k  t r - r  
I t 

s 0, .., generated by Instead of the sequence _{xk(co)}k>__ks, consider the close sequence {y (co)}k_>k,_ 1 the 9 o 

deterministic procedure (39)-(44) (with a timed co). This procedure uses the generalized gradients ~r(co) of the function F 

evaluated not at the points y~(co) but at the close points xr(co). Moreover, the v e c t o r  hr(co) is the normal to X not at the point 
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Y~(~o), but at the close point x r + l(~o). As a result, we obtain the bound 

lly~(w) - .,:t(w)II = lltS~(co)II ~< sup ll~(~)II = a~ (co). 
, k > k  s * ' s 

[n Lemma 5.1 we wi l l  show that lira 6ks(C~ ) = 0 almost surely. Note that 

IF (x/':(~o)) - F (y~(~)) I ~< Lrilxk(~,) -- y~(co)II = Lr6 k (~,), (45) 

where L F is the Lipschitz constant of the function F on the set X. Hence it follows that the differences I F(x~(,~)) - 

F(y~(~o)~ I , k >__ k s, may be arbitrarily small when s is sufficiently large. The rest of the proof is divided into several lemmas. 
o. where L E M M A  5.1. The random sequence { I'd(co)} k-O' 

k - !  t 

O k ~ [ ~__~ ( ~ r ( ~ ) _  -~r(~o)xl ill <~ ttl (46) ~; ( ~ ) =  p,,,~ . . . .  
/ = 0  r = r  

t 

almost surely has a limit. 

Proof.  Let 

I 
"~ t r = n-~t ' rt <~ r <~ l ,  

0 otherwise 

Then 

r ~iOt ~ ~.l,r(~'r_~r) = trpl (.~.r_~r.)_ 
t = O  r = r  r = O  

i ~ a  k- , {  = 
. - -  / "  

r 

r.=O r t r p t  (~ - - '~r)  _ t rP t  (~ _ ~r ) .  
r 

The sequence 

~0 = t rP t  ( ~ r  
r = O  t 

oo 

is a martingale with respect to the stream of a-algebras generated by the sequence {x~(~o)} k=o" 

r' = s u p  { l l g l i  t g ~ OF (x) ,  x E X}  < + ao. 

Then 

Let 

(47) 

E II~ok(~o)!1 z ~< ( r  + c )  2 ~ , t t rPt  ~< (F  + C)  2 t rP t  
r=0 = r = 0 t 

oo 

. < ( r + c ) 2  2 ~  z m p < + o o ,  

r - - - - 0  

- r:k 2 
E I!~o("~)I! -< I + E Ii.% (~o)II ~< const < + oo 

2 
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The martingale (47) thus almost surely has a limit. For the residual term 

r = O ~ t = k  

we have the following bounds 

k - l / ~  ~ 

'(" ) - < ( r + c )  2 = ( r +  , = 
r = O  t = k  r 

= ( r + c ) 2 p  , a, _<(r+c)  p , - -0  as 
t =  r = r  t = k  

Thus, the sequence {~'ok(~o) = ~(~0) + a,k(o:)} almost surely has a limit. Q.E.D. 

C O R O L L A R Y  5.1. For every sequence of indices {ks} ~ oo we have 

~ (~o) = sup I1~(~'~)11 -" 0 almost surely ass --, 
, k > . k  , 

I 

R e m a r k  5.2. Lemma 5.1 and Corollary 5.1 remain valid if r k = k in Eqs. (34) and (35) is replaced with E I! ~i(c~ II 2 

< C <  +oo .  

tok(.,)} ~* L E M M A  5.2. Let oJ be such that { k=0 has a limit. Assume that lim xk,(w) = x(o) 0 X*. Let 
$ - . - .  

m ( , , , o )  = sup {m J llx~(,o) - x (~,)II -< * fo~ ~l ~ e {k ,  m)} 

Then e'(o:) exists almost surely such that for every e E (0, el there are indices Is(o:) E [ks(o0), ms(e, o:)1, for which 

F (x (r = lira F (xk'(~)) > iim sup F (xl'(co)). (48) 
$ -.t. oo ~" -.* oO 

Lemma 5.2. follows by Eqs. (38), (45) and Corollary 5.1 from a similar property of the sequences {y~(co)}k>_k s, 

generated by Eqs. (39)-(42). Let us state this property in the form Of a separate lemma. 

L E M M A  5.3. Let co be such that {~'ok(~o)} o. has a limit. Assume that lira x~,(~o) = x(~o) E X*. Let 
k=0 

m ( , ,  o~) = sup {m I Ilyff(~o) - x (~o)II ~< e fo~ all 
$ 

k ~ [ k ,  m)}.  

Then e(o:) exists almost surely such that for every e E (0, e] there are indices ls(o:) E [ks(o:), ms(e, o:)], for which 

F (x (w)) = lira F (x k'(co)) > lira sup F (3~'(cv)). 
$ ...~ oO $ .-=. O0 s 

(49) 

Lemma 5.3 in turn follows from a stability property of the deterministic subgradient method (11)-(13). 

L E M M A  5.4. Assume that the sequence of initial points {yS} converges to y = lira yS. For each s consider the 
S - o =  

" k ' n s  such that sequence {Ys ~k=ks 
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k 
y l l ~  u . 

Ys = Ys - P  k. ( g  + h , s <~ k < n s, 

k ~(y~) = co g, ~ a~ _ ( g ~  S i l : t l  l Ily-y~li-<a~} 
i 

hks E {Y- Pk nx0) I Ily-7~ll ~a~ , 

- k  k k k 
Ys = Yi - P i g s  ' 

where co{-} is the convex hull of the set {-}. 

Let 

tt -- I 
$ 

p s =  sup Ps '  6 s =  sup 6 ' a s =  Ps" 
k ~ k < n  k < k < n  k = k  

I s s I ! 

If 0 E Oily) + Nx~)  and a s >_ o >_ 0, then for every sufficiently small e there exist p = P0', e) and 6 = 60', e) 
- k 

such that for {ysk}kn~ks with the parameters 6s k _< ~ and p s k _< ,o there are indices l s for which !1Ys - -  Y II -< e when k E 

[k s, l s) and fly) = lira flyS) > limsup .](ysls). 

Proof  is similar to that of Lemma 4.1. We have to consider two cases" 4'0') < 0 and r = 0. In the first case the 

generalized gradient method operates in a sufficiently small neighborhood of the point y as for an unconstrained problem, and 

the assertion of the lemma is well known (see [16]). In what follows we consider the case when 4,0') = 0 (the case r < 

0 may be treated as a simpler repetition of the case ~(y) = 0). As in the proof of Lemma 4. I, for y = l i m s y  s we define ~, 

~', "i' by relationships (17)-(19) and choose el, e2, e3, c so that relationships (20)-(24) are satisfied. 

Now, set e = min{e 3, old2} and take some e < e. Let 61 = e/a, Pl = e /OF)  and assume that ily: - y II -< e/a, 5s 

< 6 i ,  O s - - - P l f ~  >__ S. 

Define the index 

g 

% = sup {m I ily, - yll <~ e 1 2 V r E [k s, m ) l .  

m S 
We will show that el2  < IlY, - -Y  il <-- 3e l4 .  

First let us prove the left-hand inequality. If Ily: m: - -Y  [I < el2, then m s = n s, and we obtain a contradiction: 

e 2 > 3e / 4 >~ I lY~"-  Y~ I! >I a v / 2.  

Now, 

Since 

. I  - 1 
- yll -< Iiy~. 

m - 1 m - 1 

- y i l  + p ,  ~ ilg~. ' 
+ h l i t  - 1 

~. !1 ~< 3~ / 4. 

we have 

m - 1  m - 1  
$ I 

k = k  k = k  $ 
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m - !  
s 

c 

k = k  

k k 
Let gs E G,sk(y  s ). Then 

n + 1 It + i 
k ki 1l ki ki ki gs = ~ 2ski g ,  ' ~ s = 1, gs E Od r (yski), ilY, --Ys k[I ~<<3:- 

i - I  i=1 

ki ki k k ~s k 
If IlY ~ - - y  II <- e/a ,  8 s <_ e /4 ,  k s < k < m s, 1 < i < n + 1, then Ilys --Yll -< lie, - y s  II + Ily, - y l l  -< 

+ 3e/4 <_ e _ e 3. 

Using decomposition (23) for z = ys ki we write 

- -  5 )  $ $ . f ( y : i )  ~< f (y) + <g:i. y k i  ," + C ][y: '  -- y II + ([" + C) l[y --) ' l l  

Here ys ki (1 _< i _< n + 1) can be approximately replaced with ys k. Thus, 

f (ys k) , f (y) + (gski. ysk _ yS) + c  113,'s ~ -- Yll + ( 217 + c)6 s + (F + c)Ily s -  yll. 

Multiplying these inequalities by )~s ki and summing over i, we obtain 

f (y~) . f (y) + (gsk, ysk _ yS)+  c llY: - yS II + (2I" + C)6 s + (F + c)I ly s -  J'11 = 

k s) (hsk. y :  __ y , )  + = J" 0 ' )  + <~:,~ + t ,~, y~ - y - 

+ c ily~ - y '  II + (2r  + ~.)~ + ( r  + c)Ily ~ - yll, 

(50) 

where 

we have 

r = - , : ) / , , : ,  , ; f  - II r  4 = 

k k k 
Let us bound the term u s = - -  (h s , Ys - -  yS). 

If ff(ys k) < 0, then hs k = 0 and u f  = 0. Consider the case when ~k(ys k) > 0, i.e., Us k # 0. Since 

We have the bounds 

o < ; ~  = Ilh~ 11 / Ila~ il -< r / (~, / 2) = 2 r  /~ , .  

Substitute Zs k and ds k in decomposition (24)- 

k + l  
Note that Ys 

~, ( z~ )  ~ (d  ~, ~ - y) + c ll -3'11 .~i" " 

-- k k k - k k Zs k k+ 1 
= Y s  - -  as hs = Ys - -  Y s  + and thus IlYs k - k  k k 

- z ,  Ii = II Y s - -  Y s I! <-- * , .  

(51) 

212 



Replacing Zs ~ in (51) with the close point y k +l s , we obtain 

(Yd ~ ~<+' 0 = ~, +~) -< ( d .  ,y,. - y)  + ~ I I ) 'k  + ! - y l l  + (2r  + c ) 6 ~ .  

Now multiply Eq. (52) by Xs k _< 2 P / #  

- (h),  y / -  yS) ~< (2Fc / / x ) l l y / -  y S II +r "  (l + 2c //.z)i[3,'/+1 - Y/11 + 

+ r ( l  + 2 c / , )  Ily' - yll + 2F(2F + c ) 6 / / g .  

(52) 

(53) 

Let 

Then 

Using inequality (53), we rewrite Eq. (50) in the form 

k s) s k .f (y / )  :~ [ (y) + ( g / +  h) ,  Ys - y + (c + 2Pc / I t )  I ly) - y  il + ( i  + 2c t,,)H p, 

+ (2F + c + 2rc / y)Ily ~ - yl l  + ( 2 r '  + c ) ( l  + 2Fc / /x)6~.  

Now use Lemma 4.2 to bound the scalar products 

k - !  

,'> = + ,,/, 2 (4  + 
i = k  

$ 

e = con , ,  {G (~) I IIz - yll ~< ~}, 

r r h e 
P = g s  + k = k  < ~ r ~ m = m  

$ '  $ S ) 

" / o = V / 2 ,  F0 = 2F, 

Oil s y$  

P ~ P / ~  2 F  ~ T - ~ = a o > O  
k = k  k = k  

$ s 

f o r  s ;~ S ,  

lim sup p / =  lira ors = O. 
s - *  ** k > k s - *  ~ 

I 

By Lemma 4.2, for all sufficiently large s there are indices l s, k s < l s < m s such that 

1 - 1  / - t  2 Is - 1  

k = k  k - k  k = k  
$ $ l 

3 - - - - - - ' -  
4 8  F 2 " 

Substituting these bounds in inequality (54) for k = l s, we obtain a final bound for c = ~,2/(64P(1 + 2P/#)). 

2 / , - 1  / . -  I 
s v k k 

f(Y ) ~<f(Y) T6 '~" P, + 2F(I + 2 r / u ) c  "\-" - - ,  �9 / . ,  P~- 

k = k  k = k  
$ i 

-3'11 ~< F a (1 + 2c / y)  p s +  (2F + c)(I + 2re / , , , )6  s + (2 r  + c + 2 r e / ~ , )  Ily * 

-< [ (y) - 
2 1/ 

1600 F 2 
ev + 1 -̀ 2 (! + 2 c / . u ) p ,  + (2F + c)(l + 2 F c / y ) 6 .  + 

+ (2F + c + 2Fc //~) IlY s - Yli. 

(54) 

(55) 
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We have thus proved that for all sufficiently small e _< e and sufficiently large s there are indices I s such that II Y? -- Y il -< 

e for k E [k s, Is) and flys/) satisfies condition (55). This proves the lemma. Q.E.D. 

We need another lemma concerning the length of the steps [1 x k + 1 _ .  x ~ [[ in method (32)-(34). 

LEMMA 5.5. For method (32)-(34) almost surely 

lira IIx 
k "," ~ 

+ l (~,)  _ x J ,@)II  = O. 

Proof. Using (32)-(34), we obtain 

k 

IIx k+t @ )  x k @ ) I I - <  il.~ k @ ) I I - < P k l l  1 - - -  g ~ @ )  II + 
r l k r  = 

k 

k k 

g%,) !1 + p~ IlzX~@)I!, 
r =  t t ~ r =  r 

k k 

where 

4%,)  = E (~%,) ! x~ . . . . .  x k(o,)}, 

k 

' t t k r =  r 

m 

Here gr E 0F(xr(o~)) are uniformly bounded and thus 

k 

kl~ mp*ll 1 " - -  g~(~o)  II = 0.  
n k  r = 

k 

By Lemma 5.1, the sequence {~'0k(~o)} (see Eq. (46)) almost surely has a limit. Thus for {OeAk(aa)} we have 

lira Ak(~o) = 0 almost surely, which completes the proof of the lemma. Q.E.D. 
k - - "  

~-0k(~)} ~' Now we can complete the proof of Theorem 5.1. Consider the set ~' _~ f~ such that the series { k=o (46) 

converges. By Lemma 5.1, P(fl') = 1. Take some ~o E f~'. The rest of the proof repeats steps l~ from the proof of 

Theorem 4.1 and uses Lemma 5.2 instead of Lemma 4.1. 
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