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S u m m a r y .  - -  We examine the Newtonian equilibrium configurations of a system of 
bosons undergoing quantum condensation, with a distribution function with a cut- 
off in the momentum space. Bounded configurations with a core of condensed 
particles surrounded by an uncondensed phase are obtained. The results are 
compared and contrasted with the ones in which the spatial divergences are 
removed by a cut-off in density. The well-known solution corresponding to fully 
condensed configurations is obtained for suitable values of the central density. 

PACS 05.30.Jp - Boson systems. 
PACS 04.40 - Continuous media: electromagnetic and other mixed gravitational 
systems. 

1. - I n t r o d u c t i o n .  

A quantum system of self-gravitating bosons admits a configuration of equilibrium 
for a number of particles less than the critical value (mel/m) ~, the pressure caused by 
the quantum-mechanical uncertainty principle keeping the system from collapsing 
under its gravity [1]. 

At the opposite limit, the classical systems of self-gravitating bosons or fermions 
admit configurations of equilibrium for any value of the number of particles [2], but in 
order to obtain finite values of the masses and radii, a direct cut-off in the density must 
be introduced. This method leads to the usual definition of an i so thermal  core. 

(*) Presented at the Second Italian-Korean Meeting on Relativistic Astrophysics held at the 
University of Rome and in Limone Piemonte in July 1989. 
(**) To speed up publication, proofs were not sent to the authors and were supervised by the 
Scientific Committee. 
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The spatial divergences of the classical systems can be also removed by introducing 
a cut-off in the velocity distribution function in phase space [3, 4]. This corresponds to 
the request that the particles with kinetic energy exceeding an escape energy are lost 
to the system. 

More recently a distribution function with energy cut-off has been proposed for 
particles fulfilling Fermi-Dirac and Bose-Einstein statistics [5]. In the fermionic case, 
the existence and stability of self-gravitating configurations have been analysed in a 
series of papers, from the classical regime [6] to the semi-degenerate and fully 
degenerate regime [7], both in Newtonian and relativistic regime. 

In this work we present a Newtonian treatment of self-gravitating systems of 
bosons with an energy cut-off in the distribution function: we consider isothermal and 
spherically symmetric systems, from the classical to the fully condensed regime. As a 
result we obtain configurations where a core of condensed bosons is surrounded by an 
envelope of uncondensed bosons. This treatment is compared and contrasted with the 
one in which the spatial divergence is removed by a direct cut-off in the density [8]. 

2. - D i s t r i b u t i o n  f u n c t i o n s  w i t h  a c u t - o f f  in m o m e n t u m  space .  

We consider a system of bosons, with the same mass m and an isotropic velocity 
distribution function. We assume in complete generality that the distribution function 
of such particles in momentum space is given by [5] 

f g 1 - exp [(~ - ~r d n =  h3 e~p [(-~_ ~ ) - - ~ - - i  dSp(D for ~< er 
(1) 

d n = 0  for ~ > ~ ,  

where g = 2s + I is the spin multiplicity of quantum states, h the Planck constant, t~ the 
chemical potential and T the temperature of the Bose gas. In the limit ~co ~ ,  which 
corresponds to the absence of a cut-off, we have 

(2) dn = g 1 
h 3 exp [(~- ~)/kT] - 1 d3P(D ' 

which is the well-known distribution function in the Bose-Einstein statistics. 
We are interested in the nonrelativistic regime of the gas, where kT<<mc 2. 

Therefore starting from the general distribution of eq. (1), the pressure p and the mass 
density p can be expressed by 

(3) 

and 

(4) 

where 

(5) 

8V"2r:gm4cS~ 2 f 1 -  exp [ x -  W] 
P =  3 h 3 ~ ~ exl~[X---0]--1 x~2dx 

g m4 c3 -~2 ~' 1 - exp [x - W] 
p = 4 V ~ ,  ~ / ~  0j exp [x - o] - 1 xl/2 dx, 

~r kT  
O= ~/kT , W =  k T  and f l -  . 

m c  2 
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The thermodynamic functions defined in eqs. (3), (4) depend on four different 
parameters: the mass of the particle m, the temperature parameter fl, the degeneracy 
parameter 0 and the dimensionless energy cut-off parameter W. In the limit W--~ 0% 
which corresponds to the absence of a cut-off, eq. (4) with 0 = 0 defines, as a function of 
the temperature fl, the mass density pr at which the condensation sets in for a gas of 
bosons [9]. Thus, we obtain 

~m a ~3 
(6) ~cond = 4 V~X ~ f13/2F(3/2) ~(3/2), 

where P and ~ are, respectively, the gamma-function and the Riemann zeta-function. 
Equation (6) also defines, for a given density p, the condensation temperature flr of a 
Bose gas. 

If we consider a system of bosons not interacting and in an infinite volume, for 
/~ <&o~d (P > Pco~d) a finite number of particles undergoes condensation into a level of 
zero momentum p = 0. This phenomenon is known as the Bose-Einstein condensation 
in momentum space [10]. 

We assume that the Bose-Einstein condensation exists in systems of bosons with 
cut-off in the distribution function in momentum space. Therefore eq. (4) with 0 = 0 
defines, for any value of the energy cut-off parameter W, a condensation density 
Peona(W) and a condensation temperature ~oona(W). For a given value of W, the condition 
fl >>fleo~d(W) [p << pco~a(W)] corresponds to the classical regime of a Bose system. This 
regime is reached in the limit 0 o  - ~. The condition fl >i fl~o~a(W) [p ~< pr defines 
an intermediate regime with 0 <~ 0. For/~ <flco~d(W) [p > pco~a(W)] the Bose gas with 
energy cut-off in the distribution function presents a mixture of two thermodynamic 
phases: an uncondensed phase, composed of particles with momentum p r 0, and a 
condensed phase, composed of particles with p = 0. In the limit/~--. 0, all bosons are 
condensed in the ground state with p = 0 and the pressure of the gas vanishes. 

All the above considerations clearly apply only to a gas of bosons occupying an 
infinite volume. If we now turn to a system of self-gravitating bosons, the situation is 
different: the gravitation induces a confinement on the system and the concept of 
equation of state fails when applied to the condensed phase. 

A new method of studing the fully condensed system of self-gravitating bosons was 
introduced by Bonazzola and Ruffini [1]. This method is considered here in order to 
obtain a more general case of a system of partially condensed bosons. 

3. - Equilibrium equations for uncondensed systems. 

We consider a static, isothermal and spherically symmetric system. In the 
equilibrium configurations of such a system the mass density is a radial function 
decreasing from the centre to the border of the configuration. As a consequence, for 
fixed values of the central density P0 and the temperature parameter fl, we have 
uncondensed configurations with p0~<Pcond or partially condensed systems with 
~0 > pco,a. This classification describes, respectively, systems in which a inner region of 
uncondensed bosons is surrounded by particles in the classical regime and systems in 
which a core of partially condensed bosons is surrounded by uncondensed particles. In 
the limit 0--*- ~ we recover the well-known classical isothermal spheres and, for 
~--* 0, systems of fully condensed particles are approached. 
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In the Newtonian limit the equations for gravitational equilibrium are given by 

(7) d V _  GMr 
dr r 2 

and 

(8) dMr 
dr - 4~r2P' 

where V is the gravitational potential, Mr the mass within a given radius r and p the 
mass density. For uncondensed systems eq. (7) can be rewritten in the form 

(9) dp= GMrp 
dr r 2 ' 

with the pressure p and the density p given by eqs. (3), (4) with 0 ~< 0. 
Due to the presence of the gravitational potential V, we can impose constraints on 

the energy cut-off parameter W and the degeneracy parameter 0. For  the energy cut- 
off parameter W we have 

(10) w = - - - Y  
~C 2 ' 

while for the degeneracy parameter 0 we have [6] 

(11) 0 = W + OR, 

where OR is the degeneracy parameter at the surface of the configuration. Clearly for 
any given equilibrium configuration, the temperature parameter fl is a constant, while 
0 and W are functions of the radial coordinate r. On the other hand, since 0 and W are 
related by eq. (11), we can express the pressure p and the mass density p in terms of 
W. In this way we obtain quantities which depend on the radial coordinate r only 
through the parameter W. Equation (9) then becomes 

(12) d W =  G Mr 
dr tic 2 r 2 

and eqs. (8)-(12) must be integrated with the boundary conditions 

(13) M0 = 0 and W(0) = W0 

up to the radius R at which W(R)= 0 or, equivalently, p(R)= 0. 

4. - Equilibrium equations for partially condensed systems. 

In this section we consider systems of bosons with a central density po > ~cond �9 We 
indicate by Rc the radial coordinate at which the density becomes equal to the 
condensation density: for r ~< Re the configuration is composed of a condensed phase of 
Nr bosons in their ground state in gravitational equilibrium with a phase of 
uncondensed bosons; for r > Rc the system is only composed of an uncondensed phase. 
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For Nr << (mpl/m) 2 the condensed phase can be treated following the Newtonian 
t reatment  of [1]. The uncondensed phase, instead, can be treated with the Newtonian 
formalism of sect. 3. In this approximation the equations for the gravitational 
equilibrium are given by eqs. (7), (8), with the mass density ~ here rewrit ten as 

(14) 
{ P=P~r for O<r<~R~, 

=P,r for R c < r < . R ,  

where ~nr is given by eq. (4) with the condition (10), and the degeneracy parameter  0 
varying as 

(15) I ~ for O<r<.Rc,  

[ O=W+OR for Rc<r<~R.  

The SchrSdinger equation for a particle of mass m in the presence of the 
gravitational potential V is given by 

(16) A~ + (2m/h2)(E - mV) ~ = O. 

The condensed phase of Nc bosons can be considered like a quantum system in its 
ground state with the density ~c expressed by 

(17) Pe = mNe ~b* ~ , 

where ~ is the ground-state eigenfunction of the SchrSdinger equation, depending on 
the radial coordinate r. The wave function is normalized to unity by the condition 

Re 

(18) J 4r~b* r dr = 1. 
0 

We integrate the system of equations (7), (8), (16) and (18) from the centre up to the 
radius Re with the boundary conditions 

(19) M0 = 0 and p(0) = p0. 

As usual the eigenfunction and the eigenvalue of the ground state are determined by 
requiring that  the wave function ~ has no nodes. 

For  r>R~ the gravitational equilibrium is governed by eqs. (8) and (12) with the 
boundary conditions 

Re 

(20) M(Rr -- mNc + J 4~p~r r 2 dr and W(Rc) = - OR. 
0 

5. - R e s u l t s  o f  n u m e r i c a l  in tegra t ions .  

The integration of the equilibrium equations has been performed assuming selected 
values of the temperature parameter  fl, of the central energy cut-off parameter  W0 and 
of the degeneracy parameter  at the surface of the configuration OR. The mass of the 
particles has been fixed at the value m = 1 GeV/c ~, the spin at the value s = 0. 
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Fig. 1. - The number N of self-gravitating bosons of the Newtonian equilibrium configurations is 
given as a function of the central density P0 for values of the temperature parameter fl in the 
range 10 -~~ ~</~< 10 -8. The degeneracy parameter at the surface of the configuration has been 
fixed at the value OR = -- 1, the mass of the particles at the value m = 1 GeV/c 2 and the spin at 
the value s = 0. The dash-dotted line corresponds to configurations with p = p~ond, while the 
continuous line labelled with/~ -- 0 corresponds to the fully condensed solution of Ruffini and 
Bonazzola. 

In fig. 1 the number  N of self-gravitating boson is given as a function of the central 
density Po for selected values of fl, in the case of configurations with OR = - 1. The line 
along which 00--0 gives N as a function of P0 for configurations with Po = peond and 
corresponds to the transition between the uncondensed configurations and the 
configurations with a core of partially condensed bosons. The line with /~ = 0 
corresponds to the fully condensed configurations. 

Along each curve with fixed values offl, there is a sequence of four different families 
of equilibrium configurations. We have a first family of classical configurations where 
N increases for increasing values of the central density until a maximum value of N is 
reached. At  this point a second family of uncondensed configurations occurs where N 
decreases until the condensation value of the density is reached. The behaviour of 
these families corresponding to configurations of uncondensed bosons differs from the 
ones obtained by Ingrosso and Ruffmi [8] due to the choice of the cut-off. In tha t  case, 
where a direct cut-off in density was considered, the number  of particles N of the 
equilibrium configurations is always decreasing with increasing values of the central 
density. 

For  ever-increasing values of the central density we have a third family of partially 
condensed configurations along which N is approximately a constant, while the 
number  of condensed bosons Ne increases up to a value Nc-f l l /2(mp]/m)2.  At this point 
a sharp decrease of N occurs, followed by the last family corresponding to the fully 
condensed configurations, increasing in N for increasing values of the central density. 

For  a number of condensed bosons N~ ~ (mel /m)  2 corresponding to values of the 



SYSTEMS OF SELF-GRAVITATING BOSONS ETC. 983 

temperature parameter fi - 1, the gravitational energy and the thermal energy of the 
particles become of the order of the rest mass energy. In this case correction coming 
from special and general relativistic effects must be taken into account. This has been 
carried out by Bonazzola and Ruffini [1] for a system of fully condensed bosons. The 
results is that no equilibrium configurations exist for fully condensed systems of 
Nc ~ (mp1/m) 2 bosons, while, for a number of particles Nc << (mpJm) 2, the relativistic 
treatment approaches the Newtonian approximation developed in this paper. 

6. - C o n c l u s i o n .  

We have seen in the previous sections the Newtonian treatment of self-gravitating 
systems of bosons with a cut-off in their distribution function. The families of 
equilibrium configurations, for selected values of the temperature parameter fi, are 
finite both in masses and radii. They largely differ from the ones obtained by including 
a direct cut-off in density, for low values of the central density corresponding to the 
uncondensed regime. For large values or the central density the well-known results of 
the fully condensed configurations are recovered. 

The results obtained in the present paper have been generalized to the general 
relativistic regime and the stability analysis of the equilibrium configurations has been 
developed as well. These issues will be published in a forthcoming paper [11]. 
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