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Summary.  p This paper is a historical review of the development of the notion of 
superselection rule starting from the recognition in 1952 of the charge and 
univalence superselection rules. Some applications to environmentally induced 
superselection rules in the last decade are briefly described. 
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1. - I n t r o d u c t i o n .  

Mesoscopic physics offers us the delicious prospect of experimental situations 
half-way between the microscopic and the macroscopic in which quantum-mechanical 
interference effects are important, but also other situations in which decoherence 
processes destroy the relative phases of states so as to produce classical behavior. 

We may expect to fred in mesoscopic physics a rich family of tests of the basic 
ideas of quantum mechanics and of its interpretation. In particular, the question of 
what is observable and what is unobservable will be salient; it is here that the notion 
of superselection rule emerges. 

In this paper, I will review some of the history of the notion of a superselection 
rule. Some of the material is so old that it may have been forgotten. That is one 
excuse for presenting i t --a  more significant reason is that this old stuff provides the 
background for exciting recent developments and a framework for the discussion of 
future experiments. 

2. - v o n  N e u m a n n ' s  b o o k  a n d  W i g n e r ' s  r e m a r k .  

von Neumann's book, Mathematische Grandlagen der Quantenmechanik published 
in 1932 made many contributions to its subject: 

(*) Paper presented at the International Conference ,,Mesoscopic Physics and Fundamental 
Problems in Quantum Mechanics-, Rome, February 1447, 1994. 
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a) It  gave an ab initio treatment of abstract Hilbert space, and the linear 
operators acting on it. This put non-relativistic quantum mechanics on a sound 
mathematical footing. 

b) It gave a precise mathematical interpretation to the notion of quantum- 
mechanical observable: To each observable there corresponds a self-adjoint operator 
in the Hilbert space of states. 

c) It  gave a careful discussion of the statistical interpretation of quantum- 
mechanics and undertook to prove, under certain assumptions, the impossibility of a 
hidden-variables interpretation of quantum mechanics (von Neumann's Impossibility 
Theorem). 

d) It  analyzed the process of measurement in quantum mechanics under the 
assumption that the measuring apparatus is also governed by the laws of quantum 
mechanics. 

What is of primary interest for the purposes of this article is the set of assumptions 
made by von Neumann for the proof of the Impossibility Theorem. Almost casually he 
says, ,,... it is appropriate to assume,, that every self-adjoint operator is the operator 
of some observable [1]. To emphasize: not only does he assume that every observable 
determines a self-adjoint operator, but also that every self-adjoint operator is the 
self-adjoint operator of some observable. So far as I know, this latter assumption was 
not questioned publicly in the two decades that followed the publication of von 
Neumann's book. However, at the end of the 1940's when I was studying Wigner's 
analysis of symmetry in quantum mechanics under the tutelage of Bargmann and 
Wigner, Wigner was already considering the possibility that operators such as Q, the 
total electric charge, might commute with all observables, thus invalidating yon 
Neumann's assumption. It  was characteristic of the situation envisaged by Wigner 
that the Hilbert space of states, ~ ,  would be a direct sum of subspaces, 9Vj: 

~ = ~  
J 

(later called coherent subspaces or superselection sectors) in which the superposition 
principle is valid but that a linear combination, a~l + fl~b2, of states ~bl and ~2 from 
two distinct coherent subspaces would not be physically realizable except as a 
mixture with the density matrix 

An alternative equivalent description is that the relative phase of 3 and a in a~bl +/3~2 
is not observable. 

WBW checked that the Wignerian analysis of symmetry generalizes to such a 
situation. Recall that Wigner's analysis of quantum-mechanical theories invariant 
under the Poincar~ (= inhomogeneous Lorentz) group_~+ t led to representations up 
to a factor { a, A } --~ U(a, A) satisfying the multiplication law 

U(aa, A1) U(a2, A2) = o(al,  A1; a2, A2) U(al + AI ~ ,  A1A2), 

where ] os(al, A 1, ae, A2) I = 1. In the more general situation envisaged by Wigner, oJ 
can differ in different coherent subspaces, so the reduction from representations up 
to a factor to true representations of the covering group has to be carried out on each 
coherent subspace separately. 
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The first public occasion on which von Neumann's assumption was discussed was a 
conference organized by Enrico Fermi in Chicago in September 1951. There was at 
that time a considerable interest in the possible transformation laws of spinors under 
inversions and in the question whether such transformation laws could give meaning 
to a notion of intrinsic parity of spin-(I/2) elementary particles. A year earlier Yang 
and Tiomno [2] and Zharkov [3] had proposed that one should distinguish four 
different transformation laws for a Dirac spinor under space-inversion i~: 

(2.1) (is~b)(t, x) = _+ y~ - x ) ,  i~ = + 1, 

(2.2) ( is~)( t ,  x )  = +_ i y ~  - x ) ,  i~ = - 1 .  

The idea was that if the spinor fields for p, n, t~ + , e -+ , v,~ are assigned one of these 
transformation laws under space-inversion and then combined to form interaction 
terms either among themselves or with other fields, some interaction terms would be 
excluded by parity conservation. 

Fermi scheduled a special session at the conference devoted to these ideas and 
began it by emphasizing that the distinctions among the four kinds of spinors can be 
regarded as analogues of the distinction between scalars and pseudo-scalars and 
between vectors and pseudo-vectors. He also posed the question how the different 
classes of spinors might be distinguished experimentally. The proceedings of the 
conference give some further details of Fermi's talk as well as brief summaries of 
what Yang and Wigner said. However, I am left with the impression that not 
everyone understood what Wigner had to say about von Neumann's assumption. That 
is fortified by the last paragraph of the session summary [4]: 

,,Requiem was read by E. Teller who cited the apropos anecdote of a candidate 
for a doctor's in philosophy who made a statement he presumed to be true. Upon 
being asked by a professor on the examining board, "In which universe?" he 
responded, 'qlChich which?">,. 

Fortunately, there was at least one person in the audience who got the message: 
Gian Carlo Wick. I have been told that he said to Eugene: <,Eugene, these arguments 
have to be published and I volunteer to write the first draft>>. So was born, W 3 [5]. 
Before I embark on a description of what W 8 contained and what it did not contain, 
another historical remark is in order. 

For mathematical reasons, Cartan had already introduced the distinction between 
(2.1) and (2.2) in 1938 in his lectures on spinors [6]. Cartan proposed to extend the 
notion of covering group from S0(3) to 0(3). For SO(3), the universal covering group 
is SU(2), where A e SU(2) corresponds to R ( A ) e  SO(3), with 

R ( A )  = R ( - A ) .  

When the operation of space-inversion represented by the 3 • 3 matrix, - 1 ,  is 
adjoined to S0(3) to give O(3), one can construct a covering group that agrees with 
SU(2) over SO(3) in two ways: if is is an element of the covering group such that 
R(i~)  = - 1 ,  then there are two non-isomorphic possibilities: i t  = -+ 1; this is the 
distinction between (2.1) and (2.2) expressed in terms of covering groups. Cartan 
called the quantities transforming in these distinct manners spinors of the first and 
second kinds. 
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Wigner had shocked the Chicago conference by discussing the possibility that 
certain relative phases of quantum-mechanical states are unobservable. W ~ 
systematized the discussion of this possibility by introducing the notion of a 
superselection rule, an exact conservation law for a self-adjoint operator, A, with the 
property that the relative phase of eigenfunctions belonging to any pair of distinct 
eigenvalues of A is unobservable. What they actually said was: 

,,We shall say that a superselection rule operates between subspaces if there are 
neither spontaneous transitions between their state vectors (/~e. if a selection rule 
operates between them) and if, in addition to this, there are no measurable quantities 
with finite matrix elements between their state sectors., 

W 8 contained several more things: 

a) arguments that there is a univalence superselection rule and an electric- 
charge superselection rule. 

b) A suggestion that baryon number might also define a superselection rule. 

c) A discussion of the notions of parity and relative parity for particles under 
the assumption that only the univalence superselection nile operates or that both 
univalence and charge superselection rules operate. 

I use the term univalence superselection rule to mean that there is an operator 
commuting with all observables that is + 1 on the subspace of states where the 
representation of the rotation group is single-valued (integer angular momentum) 
and - 1  on the subspace where it is double-valued (half-odd integer angular 
momentum). I was not very successful in convincing W 2 that this is good terminology 
but I persist. (They preferred ,,fermion-boson superselection rule,.) 

W ~ offered a proof of the univalence superselection rule under the assumption that 
the system is invariant under time inversion /t: {t, x}--* { - t ,  x} and that the 
anti-unitary operator of time inversion U(/t) satisfies 

U ( / t )  2 = ( - 1)2J. 

The argument could not be simpler. 
The iteration of time inversion on a state M should yield a physically equivalent 

state U(/t)~ M, but if (--1)VMA = MA and ( -  1)~J MB = -- ~FB, then MA ---- MA + MB has 
to be physically equivalent to MA - ~/rB and MA + iMB to MA - i M B .  Then if C is any 
observable 

( rA  + r B ,  C(~A + MB)) = (MA -- MB, C(~A -- ~)) ,  

so (TA, C~'B) + (MB, C~.4 ) = 0 or Re (TA, CT8 ) = O. Similarly, 

(~A + imp,  C(MA + iMB)) = (MA -- iMS, C(MA - iMB)), 

so i[(MA, CMB) -- (Me, CMA)] = 0 sO Im(TA, CMs) = 0. 
Thus, all off-diagonal matrix elements of the observable C vanish and ( - 1 )  2j 

defines a superselection rule. W ~ would have preferred to base the proof on invariance 
under S0(3) alone, without making an assumption of time inversion invariance, but 
that would have required an extended discussion of the arbitrary phases occurring in 
the representation of S0(3). Later on such an alternative proof was published 
in [7]. 
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There were those who questioned the univalence superselection rule[8]. They 
pointed out that, if you split a system into two parts and rotate one of the parts 
through an angle of 2r:, the resulting state of the composite system may have quite 
different properties from the original state of the composite system. A version of this 
idea was given an experimental test with two sub-beams of a beam of slow neutrons. 
The rotation of the spin of the neutron through an~angle 2r: was obtained by passing 
one of the two sub-beams through an appropriate magnetic field. The interference of 
the two fmal sub-beams was spectacularly different with and without the magnetic 
fields. These beautiful slow-neutron experiments are reviewed in [9] where further 
references may be found. As far as the relevance of these experiments to the 
univalence superselection rule is concerned, the standard response is that the 
experiments are beautiful, but they are not the ones involved in the univalence 
superselection rule where you must rotate the entire isolated system. 

For the charge superselection rule a somewhat more involved argument is 
needed, but the conclusion is that the apparatus proposed to produce superposition 
states of different charges requires for its construction superposition states of 
different charges[10]. 

Next I would like to call attention to some geometrical constructions which 
exhibit a behavior like that seen for spinors under rotations through an angle 27:n. 
Therefore, to some extent, these constructions make spinors less mysterious. So far 
as I know, it all began with a pedagogical demonstration used by Dirac in his lectures 
on quantum mechanics to illustrate the fact that the group SO(3) is not simply 
connected. I first learned of it from a paper of Newman published in London in 1942 
[11]. According to Newman, Dirac took two pieces of string which he attached to the 
arms of a chair, threading them through to handles of a pair of scissors as shown in 
fig. 1. 

(This is my interpretation; for quite a different one see fig. B2.1, p. 228 in 
ref. [12].) He rotated the scissors about a horizontal axis, AB, by an angle 47, and 
found that holding the scissors and the attachments to the chair fixed, he could 
disentangle the strings and restore them to their original configuration without 
cutting them. When the rotation was taken through an angle 2r: instead of 4=, the 
disentanglement was impossible. 

~ / ,  B / / / I  I 

/ / /  
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Fig. 2. 

Newraan also considered another configuration without scissors and proved a 
theorem about it. Given two convex bodies B1 and B2 connected by vertical parallel 
lines as shown in fig. 2. Rotate B2 about a vertical axis by an angle 2=k where k 
is a positive integer, holding B1 fixed and treating the lines as flexible strings attached 
to fixed points on B1 and Bg. The strings are not ~owed to pass through one another. 

Theorem (Newman). If the number of strings n ~> 3 and k is even, the strings can 
be disentangled. If n I> 3 and k is odd, they ~annot. 

When, in 1973, Misner, Thorne and Wheeler wrote the chapter on spinors for their 
grand treatise on gravitation they too abandoned chairs and scissors, but retained the 
strings which connect the object with its surroundings. In particular, they have a 
cube, some of whose corners are attached to the corners of the room in which it sits. I 
have followed [12] and attached a string to every corner. Newman's theorem holds in 
all these cases, and Misner, Thorne and Wheeler display how the disentanglement 
can be carried out for n = 8 [13]. (See fig. 3.) 

Thus, for n ~> 3, these geometrical contraptions have one of the crudal features of 
a spinor: rotation through 2= does not give an equivalent configuration, but rotation 
through 4= does. The attachment provided by the strings somehow plays an 
analogous role to the coherent-phase relationships between the sub-beams in the 
neutron experiment described above. 

W 3 did not offer a proof of the charge selection rule and their claim for 
experimental support was modest. They noted that: 

,,... multiplication of the state vector F by the operator exp [/aQ] produces no 
physically observable modification of the state of a system of (mutually interacting) 
charged fields. 

We can give no conclusive evidence for this assertion, and such evidence may in 
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fact depend on a deeper understanding of the meaning of electric charges which we 
still lack. Assuming that the assertion is correct, it follows that the parities of states 
of different charges cannot be compared.>> 

That understanding was achieved a decade later by Haag and Swieca as I will 
relate. 

3. - The hypothesis of  commuting superselection rules and Jauch's theorem; 
Wigner and Yanase's skew information. 

In the course of the 1950's, some additional candidates for superselection rules 
were added to those mentioned in W a, defmed by the operators ( - 1) 22 (univalence), Q 
(electric charge), and B (baryon number). The possibility that a lepton number exists 
and defines a superselection rule was discussed. On the other hand, a superselection 
rule (Bargmann's mass superselection rule) was derived for quantum theories 
invar-iant under the Galilei group [14]. Furthermore, it was recognized that in 
addition to the irreducible representations of the Poincar~ group for which U(/t)2 __ 
= ( -  1) 22, it is mathematically possible to construct irreducible representations for 
which V(it) 2 =  - ( - 1 )  2j and that this distinction defines a superselection rule. 
An analogous argument can be made for space-time inversion /st where i s t ( t , x }  = 
= { - t ,  - x } ,  and so there are altogether four types of particles of given mass and 
spin. There is an associated superselection rule which Michel and I called the Type 
Superselection Rule [15,16]. 

Ten years later the Type Superselection Rule was no longer of fundamental 
interest since experiment had shown that time inversion and space-time inversion are 
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not exact symmetries of Nature. The surviving exact symmetry represented by an 
antiunitary operator was and is CPT. 

The existence of CPT symmetry is, as is well known, a general theorem of local 
relativistic quantum field theory[17]. The proof constructs an anti-unitary operator, 
0, which acts on a charged scalar field, r for example, as follows: 

(3.1) 0-1r162 

If the fields of the theory are tensors and spinors, then one can show that 

(32) 02 = ( - 1) 2./ 

and the logical possibility 

(3 .3 )  0 z = 

is exchded[18]. The distinction between (3.2) and (3~3), if both occurred in a 
quantum theory, would give rise to a surviving version of the Type Superselection 
Rule. 

It  was a striking feature of all these quantities defining candidates for super- 
selection rules, even including the ones that have not survived, that they all commute 
so that one can diagonalize them simultaneously. Then the Hilbert space decomposes 
into a direct sum of coherent subspaces, in each of which all the superselected 
integrals of motion take definite values. That this tidy situation occurs in Nature was 
called the Hypothesis of Commuting Superselection Rules. 

Now I want to quote a theorem by Jauch that relates this high-flying Hypothesis 
to a concept that is introduced in every first-year quantum mechanics course: the 
notion of a complete set of commuting observables. However, before I can state 
Jauch's result, I have to say a word about a change in the formalism of relativistic 
quantum theory that was taking place at the end of the 1950's. In an effort to bring 
the resources of algebra to bear on the general problems of the subject, people began 
to work with bounded observables and the algebras they generate rather than with 
unbounded field operators. (This can be regarded as the analogue of working with the 
bounded operator of multiplication by e x p [ - a q  2] for a > 0, a bounded operator, 
rather than with multiplication by q2 an unbounded operator.) This choice of 
language makes it awkward to express the content of Lagrangian field theory, but it 
is natural for the discussion of superselection rules as we shall see. 

Let ~ be the algebra generated by the bounded observables of a quantum theory. 
It is by definition the smallest algebra which contains all the bounded observables 
and all operators obtained from them by taking linear combinations, products and 
adjoints as well as suitably defined limits. An algebra closed under these operations 
is called a von Neumann algebra when the notion of limit is the so-called weak limit in 
which a sequence of operators Ai, i ---- 1, 2, 3 . . . .  converges when all matrix elements 
(r Air converge for every pair of vectors r ~ in the Hilbert space, ~C, of states. 
Then ~ ' ,  the commutant of~r consists of all bounded operators in : ~  that commute 
with every operator in ~ .  When, as is assumed here, ~ is the algebra generated by 
the observables, then ~ '  is the algebra generated by the superselection rules. Now 
an algebra B is commutative if B r ~ '  and avon  Neumann algebra, according to a 
basic theorem of von Neumann, satisfies ~ = (B ' ) ' .  Thus, the Hypothesis of 
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Commutative Superselection Rules can be stated: 

c = 

This condition can be restated in terms of the center, 2 : ( ~ ) ,  of d .  which is defined 
8.8 

n z'. 

The Hypothesis of Commutative Superselection Rules then says 

z( t) = 

Now for the notion of a complete set of commuting observables. We interpret this 
phrase to mean a maximal commutative subalgebra of ~,t, i.e. a subalgebra B of 
that is commutative 

B c B '  

and maximal in ~r 

We then have 

Theorem (Jauch[19]). The von Neumann algebra ~r generated by the 
observables contains a complete commuting set of observables if and only if the 
Hypothesis of Commutative Superselection Rules is satisfied. Then Z ( d ) =  d ' .  

Thus, the Hypothesis of Commutative Superselection Rules is not so outlandish. 
On the other hand, at the time there was no systematic rationale for the existence of 
the partictflar set of superselection rules that appeared to be present in Nature. Such 
a systematic theory came later with the work over several decades of Haag, Araki, 
Kastler, Doplicher, and Roberts as I will relate. 

Another development at the end of the 1950's was the introduction by Wigner and 
Yanase of a quantity, the skew information, which in some sense measures how 
off-diagonal a state is relative to a self-adjoint operator [20]. Such a quantity can be 
used to characterize physical states in the presence of superselection rules: a 
physically realizable state will have zero skew information relative to an operator 
that defines a superselection rule. Suppose the state in question is defined by a 
density matrix, p, i.e. a positive operator of finite trace which we normalize to 1: 

trp = 1.  

Then p has a uniquely determined positive square root ~1/2. Suppose the self-adjoint 
operator is A. Then the skew information of p relative to A is defined as 

~ ( p ,  A) = t r ( [A,  p1/2][91/2, A]) = tr(~A e) - tr(Ap1/2A~l/2) .  

Wigner and Yanase showed that :~(~,A): 

a) is positive and vanishes for p a vector state, i.e. for p of rank one satisfying 
~2 = t~; 
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b) is invariant under the temporal evolution 

A - .  At = e x p [ i H t ] A e x p [ - i H t ] ,  

to --~ t0t ---- exp [/Ht] to exp [ - iHt] ; 

c) is convex in to, 

Y~(ap1 + (1 - a ) t o 2 )  ~ a ,  ~ ' ( t o i ,  A) -~- iX - -  a) Y~(to2, A) 

for 0 ~< a ~< 1; 

d) if  to --= tol~to2 and A = A I |  + l |  then 

J ( t o l @ t o 2 , A I @  1 - { - l @ A 2 ) - -  ff ' ( tol ,A1)-[-  ~T(to2,A2). 

b) can be interpreted to mean that skew information does not decay as the state 
evolves in time. c) is characteristic not only of skew information but also of 
information defined as negative entropy. Thus, alternative definitions of skew 
information are possible, for example, as suggested by Dyson, 

J ~  (to, A)  -- t r  (to, A 2) - t r  (Ato~Ato (1 -~)) 

for 0 < ~ < 1. This line of argument played an important role in the evolution of the 
theory and application of entropy in quantum statistical mechanics as one can read in 
the review article of Wehrl [21]. d) is important in the theory of measurement as 
developed by Wigner, Araki, and Yanase [22, 23] in which the composite system 
consisting of the measuring apparatus and the measured system is studied. 

The importance of the skew information for the theory of superselection rules is 
that it gives a necessary condition for a state to be physically admissible in the 
presence of a superselection rule A: if to is to be physically admissible it must possess 
zero skew information relative to A. 

4. - Quantum electrodynamics and the charge superselection rule. 

In the mid 1960's Haag and Swieca found an argument which seemed to show that 
the charge superselection rule is a consequence of Ganss's Law for the electric charge 
density 

(4.1) V. 8 = p. 

(See [24] and the introduction of[25].) They noted that the charge in a sphere of 
radius R can be written: 

(4.2) QR = ~ daxp(t,x) = ~ d S . 8 ( t , x ) .  
Ixl ~<R Ixl =R 

Now if A is an observable from a region inside the sphere of radius R and x lies on the 
sphere Ix] = R, 

(4.3) [A, 8(t, x)] = 0, 
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SO 

(4.4) [A, QR]= f 
Ixl ~R 

and 

dS. [A, 8(t, x)] = 0 

(4.5) [A, Q] = lim [A, QR] = O. 
R-~r162 

I believe that this argument is essentially correct but that the proof is not. The 
objections come in two parts: 

a) Gauss law (4.1) is not valid as an operator identity in local or covariant 
gauges. 

b) In the Coulomb gauge where Gauss law is an operator identity, 
renormalization constants appear in (4.2), and the charge-carrying fields are not local 
so that there are difficulties in constructing the local observables. 

These objections are overcome in [25] by a systematic use of a local gauge in the 
indefinite metric (Gupta-Bleuler) formulation of quantum electrodynamics. Thus, the 
charge superselection rule has to be regarded as a consequence of the laws of 
quantum electrodynamics. 

5. - The Haag-Kastler quasi-local algebra and superselection rules. 

In the decade that succeeded the introduction of the notion of superselection rule, 
the possibility that the algebra of observables of a quantum-mechanical theory might 
have a non-trivial center became familiar but, apart from the argument in W a that 
time inversion invariance implies the univalence superselection rule, there was no 
theory of superselection rules, no principles which would determine which particular 
set of superselection rules should occur in a particular theory. This situation was 
changed fundamentally in 1964 by the Haag-Kastler theory of local algebras of 
observables [26]. 

Haag and Kastler built several general ideas into their theory: 

a) It  should be based on the algebraic structure of the observables; 

b) It should work with local observables, that is observables describing events 
in bounded regions of space-time; 

c) The states of the theory should determine the representations that appear in 
the different superselection sectors. 

a) can be regarded as a variation on a theme which appeared in the early days of 
quantum mechanics where the canonical commutation relations of the coordinates and 
moments generate an algebra which determines the structure of non-relativistic 
quantum mechanics, b) was surely influenced by experience in quantum field theory 
where the basic objects are operator-valued distributions. For example, the electric 
charge density, ~(x), has to be smeared with a smooth test function, f, on space-time 
to form fdIx f (x)p( t~)  = ~( f )  before one gets a well-defined operator in the Hilbert 
space of states. One can associate such an operator with a space-time region, ~,  if the 
support off,  the region where it is nonvanishing, is contained in ~.  One can think of 
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the Haag-Kastler algebra of the region O as consisting of bounded functions of such 
observables as p(f). c) is the key to the Haag-Kastler theory of superselection rules. 

So Haag and Kastler assumed that  for each bounded space-time region G there is 
an associated algebra ~ (O) and ~ r ~z implies d (O1) r d ( 02 ). By taking the union 
over all O one gets the local algebra U J ( o ) .  Now comes a key technical point. HK 

o 

assumed their algebras ~4(O) are C*-algebras. C*-algebras have a norm II II and are 
complete in the topology defined by the norm. The closure of U ~4(o )  in the norm is a 

o 
C*-algebra, ~r called the quasi-local algebra. Although the limit points in d may 
not belong to the ~ ( O )  of any particular bounded region O, they can be regarded as 
<,essentially,~ local. 

To these geometrical assumptions HK added what they called Einstein causality 
(= local commutativity of observables): 

If ~cO', then ~(~)c~(O)'. 

Here O' is the space-like complement of ~, the set of all points y such that y - x is 
space-like for every x E 0. 

This structure consisting of the quasi-local algebra, J, and its family of local 
subalgebras, ~4(O), is referred to as a net of local algebras. 

Now a word about C*-algebras. What is a C*-algebra? It  is a Banach *-algebra 
satisfying the identity IIA*All = tiA[~. That is, it is a set ~r with a definition of 
addition: A, B ~ A  + B ~ 4 ,  and scalar multiplication: A - * a A  (a, a complex 
number). That makes it a vector space over the complex numbers. It  has an 
associative and distributive law of multiplication 

A(BC) = (AB) C, 

A(B + C )  = A B  + B C  , 

(aA)B = A(aB) = a(AB) ; 

that makes it an associative algebra over the complex numbers. It  has a * -operation 
such that  

( A * ) * = A ,  ( A + B ) * = A * + B * ,  

(aA)* = ~A* ,  (AB)* = B ' A * ;  

that makes it a *-algebra. It  has a norm II ]l satisfying 

IIA + BII ~< ttAII + tlBII, 

IIABll ~< IIAII I~[I, 

Ila* II = IIAll, 

IIoAll = I IllAll 

and it is complete in that  norm; that  makes it a Banach �9 -algebra. Finally, its norm 
satisfies IIA*II= IIAII2; that  together with all the preceding makes it a 
C*-algebra. 

What is so good about C*-algebras? First, every such algebra is isomorphic with 
preservation of norms to an algebra of operators in a Hilbert space with * going over 
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into the ordinary adjoint operation. So the abstract characterization of a C*-algebra 
captures the concrete version exactly. This means that the representations of the 
quasi-local algebra, d ,  occurring in the different superselection sectors can be 
isomorphic as C*-algebras, even though they are not unitarily equivalent. Second, 
the representation theory of C*-algebras is so extraordinarily well adapted to the 
purpose of local quantum field theory that it seems to be a case of pre-established 
harmony. This is a matter of such fundamental importance for the understanding of 
superselection rules that yet another mathematical excursion seems justified. 

A state on a C*-algebra, d ,  is defined to be a positive linear form, p, on ~/[ that is 
normalized to 1 on the unit element, 1, of ~r (we assume it has one): 

(5.1) { p(aA + fiB) = a~(A) + tip(B), 

p(A*A) >. O, 

p(1) = 1. 

A * -representation o f d  in a Hi]bert space 9V is a mapping, ~:, o f d  in to .~~ the 
algebra of bounded linear operators in a Hi]bert space 9V such that 

r:(aA + fiB) = ar:(A) + fl=(B), 

(5.2) rc(AB) = rz(A)r:(B), 

re(A*) = [T:(A)]*. 

The representation = is cyclic with cyclic vector ~ if the set of vectors { re(A)~b; A e ~ } 
is dense in :Kr. There is an intrinsic relation between the  states of ~ and the cyclic 
representations of d :  

G(elfand) N(aimark) S(egal) Construction. 

If p is a state on d ,  there exists a cyclic representation r:~ in a Hflbert space 9Vp with 
cyclic vector, ~bp, such that 

(5.3) ~(A) = (~p, r:~ (A) ~ ) .  

Furthermore, if G: g ~ ag is a representation of a group, G, by automorphisms of ~r 
and p is invariant under G in the sense that 

(5.4) p(ag (A)) = p(A), 

then there exists a unitary representation of G: g ~  U(g) such that 

(5.5) U(g) r:p (A) U(g)-I = ~p (O~g (A)) 

and 

(5.6) U(g)  ~bp = ~p. 

Thus, the theory of superselection rules can be reduced to the study of states on the 
quasi-local algebra. 

The Haag-Kastler theory works in nonrelativistic theories as well as relativistic, 
but in relativistic theories it is natural to require that there exists a representation of 
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the relativity group G: g ~ a g  by automorphisms of the quasi-local algebra ~r such 
that 

~ g ( ~ ( ~ ) )  = ~r 

For G the Poincar6 group an invariant state, Po, then yields via the GNS construction 
a cyclic vector ~b~o , which we call ~bo for short, and a unitary representation of the 
Poincar6 group,_~+ * , g---> U(g) such that 

(5.7) 7~(ag (A)) = U(g) =(A) U(g) -1 , g ~ ~+t 

and 

(5.8) U(g)~bo = ~bo , g E _~+t , 

Le. ~b 0 (or its parent state P0) is what is usually called a vacuum state. 
The problem of determining which states give rise to physically acceptable 

representations is an important one in local quantum theory. For a theory invariant 
under the Poincar6 group a natural condition is to require that for each state, p, there 
is a representation of the Poincar6 group, g ~  U~(g), satisfying 

7%(%(A)) = U~(g)=~(A)Up(g) -1 for all AE~/(  

and the spectral condition: the energy momentum operator associated with Up has 
spectrmn in the fore-cone: {p; p . p  >~ O, pO>~ 0}. This restriction of p is usually 
referred to in Poincar6-invariant local quantum theory as the positive-energy 
condition. There are others such as Haag duality 

(5.9) 7rp (A(gt))  = =~ (~r (gt,) ,)  

but I will not go into that. 
Instead, let me consider a slightly different question. Suppose one is given a 

vacuum state, P0, of a local quantum theory. It  defines a vacuum sector, ~ o -  Are 
there other superselection sectors and, if so, how can one characterize the states that 
define them? This question was taken up in a grand investigation of Doplicher, Haag 
and Roberts [27] and brought to an even grander conclusion by Doplicher and 
Roberts [28]. Doplicher, Haag and Robert's criterion is based on the idea that 
superselection sectors other than the vacuum should be physically indistinguishable 
from the vacuum sector in the following very strict sense. Let A and B be any two 
points of space-time with B in the past cone whose vertex is at A. Let K be the region 
(double-cone) obtained by taking the intersection of the past cone with vertex at A 
and the future cone with vertex at B. If K' is the space-like complement of K, i.e. the 
set of all points space-like separated from every point of K, then a state p on the 
quasi-local algebra ~r satisfies: 

The DHR selection criterion. 

There exists a double cone K such that representation =~ restricted to K' is unitary 
equivalent to =~o restricted to K'. In formulae: given any such K there exists a unitary 
operator V mappingg~rp onto~rC~o such that for all A e d ( K ' ) ,  

r%(A) = v- l rc~o(A)  V .  
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Doplicher, Haag and Roberts arrived at this criterion by starting with a theory in 
which the quasi-local algebra of observables, ~//, is a subalgebra of a field algebra, ~ ,  
on which there acts a compact gauge group, G, and ~r consists precisely of those 
elements of 97 invariant under the action of the gauge group. Doplicher and Roberts 
showed the converse: every theory in which the superselection sectors are obtained 
by the DHR selection criterion can be obtained by the just mentioned DHR 
construction using a compact gauge group. 

The DHR selection criterion was designed to work for theories with a mass gap 
above the vacuum and it was not expected to work in the quantum-electrodynamics of 
massive charged particles. For such cases Buchholz and Fredenhagen [29] introduced 
a weaker selection criterion and Buchholz [30] went on to make a detailed study of its 
application to quantum electrodynamics. 

The BF selection criterion. 

A state p on the quasi-local algebra of observables ~ satisfies the BF selection 
criterion if there exists a space-like cone, d', such that for some unitary operator, V, 
mapping ~ onto ~ro,  

n~(A) = V-l%o(A) V for all Ae~n~,(~'). 

The set of superselection sectors is labeled by the unitary inequivalent 
representations 7:~ that satisfy the selection criterion. The detailed elaboration of the 
theory leads to particle and antiparticle structure and a treatment of their statistics 
based directly on the algebraic properties of observables [31,32]. 

6. - Superselection rules induced by the environment; the shape of  molecules. 

As I have discussed, a superselection rule is associated with an operator that takes 
a definite value for every vector state of a quantum-mechanical system. The operator 
can therefore be regarded as a classical observable of the system. It  is precisely this 
possibility that is exploited in the original Copenhagen interpretation of 
measurement in quantum mechanics. When a measurement of an observable, Q, of a 
system, S, is made using an apparatus, A, the wave function of the composite system 
S + A evolves according to the SchrSdinger equation in such a way that, for the 
resulting wave function, TS, A, the values of the observable, Q, of S are correlated 
with the readings of a macroscopic observable, the pointer, of A. The original 
Copenhagen interpretation of the act of measurement says that the wave function 
collapses to a mixture in which there is no interference between the different pointer 
readings. In the revised Copenhagen interpretation, recently summarized in[33], 
this collapse is interpreted as a process of decoherence arising from the interaction of 
the system S and the pointer with the rest of the degrees of freedom of the apparatus, 
A. The decoherence is complete and the standard prescription for computing the 
probability of a pointer reading is exact only in the limit in which the number of 
degrees of freedom of the apparatus is infinite. 

The origins of this view of the implications of decoherence for the collapse of the 
wave function go back nearly half a century, but it is only in the last two decades that 
the full significance of it for the validity of classical macroscopic physics have begun 
to be explored [34,35]. For a semipopular survey of the history see [36]. There are 
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plenty of hard problems in quantum statistical mechanics still unsolved in this 
general territory, but I would like to devote the rest of this paper to a physically 
attractive case, the problem of the shape of molecules, and, in particular, of 
pyramidal molecules, like ammonia NH~, phosphine PHs, and arsine AsHs. 

What is at issue here is a clash between the conservation law of parity and the 
occurrence in Nature and in the laboratory of stable molecules that have a definite 
chirality [37]. Parity surely defines an integral of motion for the Hamiltonian which 
describes non-relativistic point electrons and nuclei interacting by Coulomb forces, 
and coupled to a transverse radiation field. Of course, this theoretical model omits the 
parity-violating weak interactions, and I will do so in all the following. More 
explicitly, a neutral molecule is composed of nuclei with position coordinates, 
X1, ..., Xk and charges Z1 e, ..., Zke, respectively, as well as l electrons with position 

k 
coordinates xl ,  ..., x~. Here l = ~ Zj. For simplicity, the spin variables of nuclei and 

j = l  

electrons are suppressed. A qualitative guide to the structure of the eigenstates of 
the Hamiltonian is provided by the first step in the Born-Oppenheimer 
approximation method: compute the energy, E(X1, ..., Xk), of the electrons with the 
nuclei held fixed at X1, ..., Xk. I f  E(X1, ..., Xk) has a local minimum stationary value 
as a function of X1, .... Xk for Xj = Yj, j = 1, ..., k, and the corresponding wave 
function for the electrons is Trl  ..... rk(xl, ..., x~), then (U(Is) T)rl ..... rk(xl, ..., x~) = 
= T - r t  ..... -r~( -Xl  . . . .  , -x~) also yields a local minimum stationary value and has the 
same energy. If  Y1, ..., Irk and -Y1,  . . . , - Y k  are different configurations of the 
nuclei, then the wave functions 

~'1 ..... Yk ( x l  . . . .  ' x k )  = TY1  .....  Yk ( x I '  " ' "  x l )  + ~ - Y 1  ..... Yk ( - - X l ,  " " ,  - - X l )  

have parity +-1, respectively, under the action of the operator U(Is). The modern 
theory of the SchrSdinger operator [37] ,tells us that there are exact eigenfunctions, 
~(• of the molecular Hamiltonian with the same qualitative features. The energy 
gap between the corresponding exact eigenvahes can be estimated by computing 
higher-order corrections in the Born-Oppenheimer method--it  depends on the energy 
barrier separating Y1, ..-, Irk and - Y1, ..., - Irk in the energy surface E(X1, ..., Xk). 
Pairs of states of this kind are customarily referred to as inversion doublets. The 
corresponding chiral states, 1/2 (~r(• T(-1)), are, of course, not eigenstates of the 
molecular Hamiltonian. 

So much for the behavior of a single molecule ~u ld  the environment persuade 
the molecule to become chiral? Might the inversion doublet collapse, suffering a kind 
of phase transition, and give rise to degenerate chiral states which if they were 
distinguishable could have an unobservable relative phase? 

The first proposal for such a mechanism was made in the ETH-Zfirich thesis of 
Pfeifer. He argued that the coupling of a single molecule to the soft photons of the 
electromagnetic field could give rise to such a phase transitiom He modeled the 
system as a so-called spin-boson model in which all states of the molecule are ignored 
except those of a single inversion doublet, and a simplified version of the coupling to 
the radiation field is used. Calculating in mean-field approximation, he showed that 
the coupling to the boson field causes a phase transition to two degenerate chiral 
states, for sufficiently small splitting of the inversion doublet of the unperturbed 
molecule. Later on, a rigorous treatment showed that the phase diagram in the 
splitting vs. coupling-constant plane is a bit more complicated but for a large domain 
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of splittings and coupling strengths the states of the system do form a degenerate 
pair of chiral states, and these states are disjoint in the sense that their relative phase 
is unobservable. However, it was also shown later that for any temperature T > 0, no 
such phase transition takes place. Thus, if the spin-boson model provides a reliable 
guide to the behavior of the predictions of the full Hamiltonian for the molecule 
coupled to the radiation field (now that is an example of a hard problem in quantum 
statistical mechanics for you), the Pfeifer mechanism cannot be responsible for the 
existence of isolated stable chiral molecules, except at T = 0. Rather than listing all 
the papers that provide the support for the statements of this paragraph, let me cite 
the rather complete review of Amann [38]. 

Shortly after Pfeifer proposed his mechanism, Jona-Lasinio, Martinelli and 
Scoppola[39] located an alternative mechanism which is based on the great sen- 
sitivity of delocalized eigenfunctions for symmetrical potentials and multiple minima 
to asymmetrical perturbations. Their work made possible a quantitative treatment of 
the effects of the environment on a molecule in an approximation in which the 
surrounding molecules are regarded as creating a perturbing potential[40]. The 
method was worked out in explicit detail by Claverie and Jona-Lasinio for three 
molecules: NH3, PHi, and AsH3 [41]. When unperturbed, these molecules have a 
ground-state wave function invariant under reflection in the plane of the hydrogens. 
They have an excited state nearby which is odd under that reflection. Both these 
states are delocalized in the sense that the heavy nucleus has equal probabilities of 
being on the two sides of the plane of the hydrogens. However, a sufficiently large 
but still small repulsive perturbation potential acting on one side of the plane pushes 
the nuclei into a pyramidal configuration; the molecules have then acquired a definite 
shape. 

Claverie and Jona-Lasinio argue that in the presence of an environment consisting 
of polarizable molecules, the pyramidal configuration is stabilized by the same 
mechanism that causes a dielectric to extu~bit a macroscopic polarization density. 
They make detailed calculations for the three gases at room temperature and one 
atmosphere pressure and show that for arsine the mechanism produces a pyramidal 
configuration, while for ammonia the effective perturbation is not enough and the 
delocalized states survive. Phosphine is somewhere in between but ends up behaving 
like arsine. The predicted behavior for ammonia is in accord with what every 
microwave spectroscopist knows: the ammonia inversion line corresponding to the 
transition between the delocalized ground state and the above-mentioned odd 
delocalized excited state has been studied for fifty years. Pioneering theoretical work 
on the effect of the molecular environment on the inversion line was done in the 
Harvard thesis of Anderson [42]. He showed that the effect of collisions is to broaden 
and distort the line shape and to shift the line to the red [43]. A series of experiments 
on the absorption of microwaves in NH3 and ND3 as a function of frequency and 
pressure eventually led to the result that the level splitting decreases monotonically 
with increasing pressure becoming zero at 1.84 atmospheres for NH3 and 0.125 
atmospheres for NDa [44]. Presumably, above these pressures,  NH3 and NDa are 
gases of pyramidal molecules. These pyramidal molecules and PH3 and AsHs are not 
chiral in Kelvin's sense because the three hydrogens are indistinguishable. However, 
a pyramidal molecule with four distinguishable nuclei is chiral and the chiral variable 
that distinguishes the two enantiomorphs may be chosen to be the orientation of the 
tetrahedron formed by the nuclei [45]. So far as I know, no one has had the patience 
and skill to make the two kinds of NHDT so far. 
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I find this story of the pyramidal molecules and the Jona-Lasinio, Martinelli, 
Scoppola mechanism quite convincing, but it seems to me that there are very 
challenging experimental and theoretical problems left. Even the definition of what 
one means by a superselection rule for a system induced by its environment has not 
been made sufficiently precise. Can the definition always be stated in terms of the 
density matrix of the system or does it involve the state of (system + environment)? 
How can the unobservability of relative phases predicted by such a superselection 
rule be given a clear-cut experimental test? I think that the 150 years tong history of 
theory and experiment for the dielectric constant of a non-conductor and its relation 
to the electric moments of molecules is instructive as providing a perspective on these 
problems, but that is another long story and I am sure that I have already exhausted 
your patience. 
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