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Summary. - -  The general analytical solutions for charged fluid distribution with 
anisotropic pressure are obtained. These solutions depend on an arbitrary 
generating function and the choice of an anisotropic function which measures the 
degree of anisotropy. As an illustration of the procedure some physically important 
examples are considered. 

PACS 04.20 - General relativity. 
PACS 04.20.Jb - Solutions to equations. 
PACS 04.50 - Unified field theories and other theories of gravitation. 
PACS 04.90 - Other topics in relativity and gravitation. 

1. - Introduction. 

In recent years the solutions of Einstein's field equations corresponding to fluid 
distribution with anisotropic pressure have generated great interest among 
physicists [1-10]. These solutions are relevant in the study of relativistic astrophysics 
as model of compact object which has anisotropic pressure [11]. Recently, Rago [12] 
has presented an anisotropic solution which is a generalization of the static solution of 
isotropic fluid spheres [13]. Singh et al. [14,15] have studied static anisotropic fluid 
spheres with non-uniform density and in higher-dimensional space-time. The 
charged-matter distribution problems in general relativity also have received 
considerable attention. Patino and Rago [16] have found some new solutions for 
charged fluid spheres. Singh et al. [17,18] have extended Bayin's work [19] to the 
case of charged fluid spheres and Gaete and Hojman's work [20] to the case of 
magnetofluids. 

The object of this paper is to extend the work of Rago [12] in the presence of an 
electromagnetic field. 
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2. - Field equations and conventions. 

We will consider the standard coordinate and the line element as given by 

(1) ds 2 = exp [v] dt 2 - exp [2] dr  2 - r 2 (d02 + sin 20dr 

Here v and 2 are functions of the radial coordinate r alone. 
Einstein's field equations have the following well-known form: 

I 
(2) Rji - ~ Rgij = - 8~(Tij + E i j ) ,  

where the energy-momentum tensor Tij for anisotropic fluid distribution is defined 
by 

(3) T~j = (~m + p r ) u i u ~  - P l g~i (Pr  -- P.L ) XiX~ , 

where u i is the fluid four-velocity vector u ~= ~ e x p [ -  v/2], x i is unit space-like 
vector in the radial direction x i = ~I exp[ - 2/2], Pm is the energy density of matter, Pr 
is the pressure in the direction of xi and p• is the pressure on the two-space 
orthogonal to xi. 

The energy-momentum tensor of electromagnetic field is given by 

1 ks (4) E~j-- ~--~[gklF~kFj~--~gijFk~F l , 

where Fij is the electromagnetic-field tensor defined in terms of the four-potential Ai 
a s  

(5) Fi~  = A~; ~ - A~; j . 

The electromagnetic-field equations are given by 

(6) rij;k +rjk; i  + rki;j = 0, 

(7) Fij; j = - 47:J i . 

Here j i  is the four-current density. The combined Einstein-Maxwell equations for 
line element (1) can be expressed as 

0 9 ( 1  2 ' )  1 + - -  
(8) 87rpm+ ~ = e x p [ - 2 ]  r2 r r 2 '  

(9) 8rrp~ r4 exp [ - 21 + + r~ , 

02 = e x p [ - 2 ] ( v , , +  v'2 2'v' + ~ ' - 2 ' ) ,  
(10)  8=~1 + r a 2 2 2 r 

v" 2 1 dQ 2 
- -  = - - ( P i - P r ) +  - - ,  (11) P" + (Pr + Pro) 2 r 8rcr 4 dr 
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where 

(12) 
r 

Q(r) = 47: f r2 p~ dr, 
o 

is the charge within a sphere of radius r and the charge density p~ is related to the 
proper charge density ~ by 

(13) Pe = ~e exp [2/2]. 

Equation (8) can be integrated to give 

Q2 
(14) exp [ -  2] = 1 2re(r) + _ _  

r r 2 ' 

where we have introduced the mass function m(r) of the fluid distribution defined 
a s  

}. 

f(4 mr2+ QQ)drr 
0 

By use of eqs. (11) and (14) from eq. (9), we have 

Q2 1 
(16) 8r:pr ~ -  + 7 = 

= 1 2m + - 2  p ' - - ( p •  
r ~-~ r 4rzr 4 

Now, we define a generating function 

[1 - 2m/r + Q2 /r2] 
(17) G(r) = 

[I + 87ZPr r2 -- Q2/r2] 

and an anisotropic function 

- - - } ] / r ( p r  + pro). 

4 ( p r  --  p •  
(18) W(r) = G(r). 

(Pro + P r )  

With the help of eqs. (15), (17) and (18), eq. (16) can be written as 

( 1  - G + W ) ( 1  - 3 G  - G'r) QQ' 
(19) P" + Pr = 

Gr(1 + G - W) 2tort(1 + G - W) 

_ (1-G+W)2rcra(I+G_W) [ 1 - G - G ' r - ( I + G - G ' ) Q 2  + 2QQ'G] ~ r 

It is clear that for given G(r), W(r) and Q(r) as known functions of r the linear 
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differential equation (19) can be integrated to give the general solution 

( 2 0 )  p~=exp[ - IBdr][po  + ICexp[  ~Bdr ]d r ] ,  

where P0 is an arbitrary integration constant and functions B(r) and C(r) are given 
by 

(1  - 3 G  - G ' r ) ( 1  - G + VO 
(21) B(r) = , 

rG(1 + G -  W) 

(22) c(r) = 
QQ' 

2 r ~ ( 1  + G - W) 

( 1 - G + W )  [ Q2 ( Q2 

- 8r ] G~ + G ----W) 1 r~ " 1 + r2 
2 ) (  2 

QQ G -  1- QI"/ 'rl. 
r r ~ I . ]  

Once Pr is known, the matter density Pm can be easily calculated from eqs. (15) and 
(17) thus obtaining 

1 
(23) 87r~m ~ - -  

T 2 

[ ( 2__ ~176 
�9 1 - G  l+24rCpr 'r2+8wp;r 3 QQr + - ~  r + 8 r r p r r 3 -  r-~ - " ~  " 

After obtaining pr(r) and pm(r), the tangential pressure p• can be found from 
eq. (18), 

W(pm + pr) 
(24) P • = Pr -- 

4G 

Finally, taking into account eqs. (11), (14)-(17), the metric coefficients can be 
expressed as 

( (25) exp [ -2 ]  = G 1 + 87rPr ~'2 - - ~  , 

(26) e x p [ - v ] =  r exp - ~  . 

Here A 2 is alSO an integration constant. 

3. - I l l u s t r a t i o n  o f  t h e  m e t h o d .  

We should like to point out that any given functions G(r), W(r) and charge 
distribution Q(r) generate static anisotropic spherically symmetric solutions of 
Einstein-Maxwell equations. For a physically meaningful solution the generating 
function G must satisfy some general requirements. /kssuming a non-divergent 
pressure at the origin, the regularity conditions at the origin r = 0 (m(r)/r--~ 0, 
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Q 2 / r 2 - . o ,  exp[2]--~ 1 as r--~ 0) imply that  lim G(r) = 1. I f  G =  1, W = 0  ( p r = p •  
r-->0 

and Q = 0, one obtain Minkowski flat space-time. 
I f  we consider 

(27) G(r) = 
(1 - 2 M / r  + e2 / r 2 ) r  8 

( 1  - e2 / r  2) 

and 

(28) Q(r) = e ,  

then 

(29) 
( e;)l 

exp [2] = 1 - + 
?, 

( e2) (30) exp [v] = 1 - 2__M_M + 
r ~ "  

By this way one can get, with P0 = 0 in eq. (20), a corresponding Reissner-NSrdstrom 
solution, irrespective of the choice of the anisotropic function. Any interior solution 
must join smoothly to Reissner-NSrdstrom metric at the surface r = ro of the fluid 
distribution. For  this requirement we must  demand continuity of generating function 
at r = ro, 

(1 - 2 M / r  o + e2 /r~)  
(31) G(ro) = G aN (%) = , 

( 1  - e2/r~) 

(32) Q(ro) = e .  

Equation (32) indicates the continuity of the radial electric field assuming no charge 
concentration at the boundary surface. One can easily see that  there is no junction 
condition imposed on the anisotropic function w. 

If  we consider that  charge density is constant, then eq. (12) implies that  Q(r) N rS.  

The appropriate junction condition at  r0 yields 

(33) Q(r) = e(r/ro) a . 

Further ,  we assume 

(34) G(r) = 1 - a r  2 

and 

(35) W(r)  = - ar  2 , 

where a is a constant. This choice is also physically reasonable, because function 
G(r) - 1 as r - 0. The value of the constant is to be calculated in order to satisfy the 
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boundary conditions (31) and (32). Then 

( 3 6 )  a = 
2 ( M / t o  - e2 / r2 )  

( r  0 -- e 2) 

With the help of eqs. (33)-(35), the expression of the solutions, from eqs. (20)-(26), can 
be written as 

(37) 

(38) 

8rgPr ---- 87rP0 -~ 6 K 2 r  2 , 

8=pro = 3a + 8rrPo ( 5 a t  2 - 3) + (36a t  2 - 26 )K2r  2 , 

(39) 8r ip•  = 8n'Po + 6 K 2 r  2 + 

(40) 

a r  2 

4 (  1 - ar  2) 
[ 3 a  + 8rCPo ( 5 a t  2 - 2)  + ( 3 5 a t  2 - 2 0 ) K 2 r 2 ] ,  

e x p [ -  2]  = (1 - a t 2 ) ( 1  + 8r~Po r2  + 5 K 2 r 4 ) ,  

(41) exp [v] - 

where 

A 2 

(1 - a t 2 )  1/2 ' 

K = e / r  3 . 

We will consider again the choice 

(42) G ( r )  = b 

(43) W(r)  = c 

(44) 

Substituting these values into eqs. 
variables as 

(45) 

(46) 

(const), 

(const), 

Q = K r  3 . 

(20)-(26), we get  the expressions for physical 

8ZrPr = 8n7~0 T - D  + V T  -2  -- N K 2 r  2 , 

8=pro = 8=bpo (D - 3 ) r  - D  + (1 - b - b V ) r  -2  - (1 - b - 5 b N ) K 2 r  2 , 

1 (47) 8rcp~ = 8rrPo 1 - ~ (1 + b D  - 3b) r -D + 

+ V - ~ b ( 1 - b ) ( l + V )  r - 2 -  N -  9 

(48) e x p [ -  2] = 8=bpo r 2 - D  - ( N  + b) K 2 r  4 + b + V ,  

(49) exp Iv] = A 2 r  (1-b)/b , 



NEW SOLUTIONS FOR CHARGED ANISOTROPtC FLUID SPHERES ETC. 393 

where 

(1  - 3 b ) ( 1  - b + c) 
(50) D = , 

b(1 + b - c) 

5b 2 -  18b + 5bc § c + 1 
(51) N = , 

5b 2 -  2 b -  5bc + c + 1 

(52) v = 
( b -  1)(1 - b + c) 

b 2 -  6b - bc + c + 1 

This solution represents  the uniformly anisotropic charged fluid distribution which is 
an anisotropic charged analogue of Tolman-V solution [21] with a slight change in 
notation (his n corresponding to ( 1 -  b)/2b). For  a neutral  isotropic sphere (i.e. 
K = 0, c = 0) Tolman's results are recovered. 
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