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Summary. - -  A complete classification of spherically symmetric space-times 
according to their isometries and metrics (or classes of metrics) is obtained by 
solving the Killing equations. It is demonstrated that a symmetry given by 
Turkowski does not correspond to any metric. 

PACS 0420 - General relativity. 

1. - I n t r o d u c t i o n .  

Spherically symmetric space-times are not only the simplest to deal with 
mathematically, but have great physical relevance. However, there is no easily 
accessible literature available which provides a complete, concise classification of 
such space-times. Such a classification was achieved [1] and has already been useful in 
proving a singularity theorem without reference to a positive-energy condition [2] 
and for discussion of Ricci collineations [3]. More importantly still, the methods 
developed for these space-times have been extended to plane symmetric static 
space-times[4] and to cylindrically symmetric static space-times[5]. There will 
surely be many other applications and developments to arise from this work. 

Ever since Einstein's equations were written down in 1915, there has been much 
interest in investigating the properties of their solutions [6]. Special interest has 
been focused on their symmetry properties. These properties are given locally by the 
solutions, k a, of the Killing equations 

(1.1) g~.ckC + gcakC, b + g~kC, a = O (a, b, c, . . . = 0 , 1 , 2 , 3 ) ,  

where gab is the metric tensor. The solutions, called Killing vectors, can be regarded 
as the generators of a Lie algebra. Normally, the Einstein equations are solved for a 
specific stress-energy tensor, T ~ , to obtain gab. Now, since g~ are known functions of 
x a, eqs. (1.1) form a linear system of first-order partial differential equations for four 
functions, k a, of the four varia%les, x ~. However, if we do not restrict T ~ and hence 
gab are not known functions of x a, the system by eqs. (1.1) is a non-linear system of 
ten first-order partial differential equations for the fourteen functions (10gab's and 
4ka's of the four variables x~). 
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The group-theoretic approach to solving eqs. (1.1) was pioneered by Eisenhart [7] 
who studied 2- and 3-dimensional spaces. In the former ease there are 3 equations for 
5 functions of 2 variables and in the latter 6 equations for 9 functions of 3 variables. 
He classified at/ the metrics along with their symmetry structures for these cases. 
This work was extended by Petrov [8] to 4-dimensional spaces. He claimed to have 
obtained a complete (and exhaustive) classification of gravitational fields admitting 
groups of motion of all possible orders. However, the inverse problem, as to which 
groups of motions correspond to a given type of gravitational field, remains unsolved 
(p. 132 of ref. [8]). By restricting attention to spherical symmetry and staticity, 
Bokhari and Qadir [9] were able to achieve a complete classification and exhaustive 
list of that class of space-times. In this paper we remove the condition of staticity and 
obtain an exhaustive list and complete classification of at/ spherically symmetric 
space-times. 

It is pertinent to point out at this stage that this classification is based upon an 
elimination procedure and gives an exhaustive list of a// possible metrics (or classes 
of metrics) classified according to their isometrics. However, there is a redundancy, 
as many of the metrics appear repeatedly. The curvature invariants are calculated 
and metrics which appear different but are in fact the same, expressed in some other 
coordinates, are eliminated. 

It is found that there are symmetries which have not been given explicitly by 
Petrov, ~e. all GT'S and some G6's. These are given in sect. 2 to sect. 3. Further, we 
have unique metrics (depending only on some parameters) for the higher symmetries 
and classes of metrics for the lower symmetries. The properties of some of these 
space-times are given in table II at the end. 

The plan of the paper is as follows. In sect. 2 the Killing equations will be solved 
analytically to give k ~ in terms of explicit functions of two of the spatial coordinates, 
the metric coefficients and five arbitrary functions of the other two coordinates. Then 
the resulting equations are completely solved in sect. 2 and sect. 3. The results are 
summarised and discussed in the concluding section. 

2. - E x p l i c i t  s o l u t i o n  o f  t h e  K i l l i n g  e q u a t i o n s  in  ~ a n d  ~. 

We will use the following notation: 

x a = (t,  r,  ~, r (a  = 0, 1, 2, 3 ) ;  

the partial derivative will be denoted by a comma , , -  and partial derivatives relative 
to t and r by a dot ,,., and prime , , ' , ,  respectively; 

spherically symmetric metrics will be written as [6] 

(2.1) (is 2 = exp [v] dt z - exp [~] dr  z - r z exp [tL] dD 2 , 

where v, ),, tL are functions of the variables t and r and dt~2( = dO 2 + sin2~ de 2) is the 
usual solid-angle element squared; 

K = ka(3/3x  a) will represent the Killing vector field with components ka; 

G~ will represent [6,8] an r-dimensional group and X0, X1 . . . .  its generators, 
i.e. G, = (Xo, Xl . . . . .  Xr ) ;  
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[Xa, Xb] is the Lie-bracket. Bj ( j  = l ,  2, 3), K, L, will be used to represent  
arbitrary functions of t and r arising from integration; 

| stands for the direct product whereas D stands for the semi-direct 
product. 

It  is worth stressing that the spherically symmetric metric given by eq. (2.1) 
cannot be further simplified in general. For  this metric eqs. (1.1) reduce to 

(2.2) ;k ~ + v'k 1 + 2k~  = 0 ,  

(2.3) exp [v] k~ 1 - exp [~] kl, o = 0, 

(2.4) exp [v] k ~ 2 - re exp [/~] k 2, o = 0,  

(2.5) exp [~] k ~ 3 - r2 sin2~ exp [tz] k 3, o = 0,  

(2.6) ~k ~ + ~ 'kl + 2k ~, 1 = O, 

(2.7) exp[~]kl ,2  + r 2 exp [t~]k2, 1 = 0,  

(2.8) exp [~] k 1, 3 + r2 sin2~ exp [~] k 3, 1 = 0,  

(2.9) [~k~ + (lz' + 2 )k '  + 2k22=O 
j 

(2.10) k~,3 + sineSk32 = 0,  

(2.11) fzk~ + (tz' + 2 )kl + 2 ctg~k2 + 2k~ 

We start  by evaluating k a in terms of explicit functions of ? and ~. Taking the 
partial derivatives of eqs. (2.7) and (2.8) with respect  to r and ~, respectively and 
using eq. (2.10) and also the same procedure for eqs. (2A) and (2.5), we get  

(2.12) k~,~ - ctgSki,3 = 0 (i = 0, 1). 

Adding/~ times eq. (2.12) with (i = 0) and (fz' + 2/r) times eq. (2.12) with (i = 1) and 
using eqs. (2.9) and (2.10) yields k 2, ~ and k 3 as explicit functions of $. Using these 
values in the equation obtained by comparing eqs. (2.9) and (2.11) we get  k 3 as an 
explicit function of -~ and r while k 2 still depends on an arbi trary function of ~. Again 
using the value of k e and k 3 so obtained in eqs. (2.4) and (2.8), and using eqs. (2.9) and 
(2.11) we obtain k ~ and k ~ as explicit functions of ~ and k 2 as an explicit function of 
and ~. 

Using the values of k ~ obtained so far in the original Killing equations we finally 
obtain 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

k ~ = r 2 exp[~ - v i i -  sin $(B1 s ine  - B2 cosr + Ba cos$]  + K ,  

k I = - r 2 e x p [ t z - 2 ] [ - s i n $ ( B 1  ' s i n r  c o s r  c o s $ ] + L ,  

k 2 = - [ B I  s ine  - B2 cosfb] c o s O +  B3 sin~ + (ci s ine  - c2 cosr  

k a = - [ B 1  cosr + B 2  sine] cosec$ + (cl cosr  + ca s ine)  c tg$  + ca, 
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subject to the conditions 

(2.17) 2~j  + (27  - ; ) B j  - ~' exp[~  - ~ ] B ;  = 0 ,  

(2.18) 2/~i' + (~'  + 2 ) - - , , '  [~j+ ~ -  ~,)Bl =O, 
T 

(2.19) 2B7 + (2~' + 4 - )~') Bj - ~ exp[2 - v][~j= 

(220)  -Texp[~- vlBj+ , '+  exp~-~lB/+ -~Bj=O, 

(221) 2/1 + ;K + v'L = 0,  

(2.22) exp[v]K' - exp [)~1/~ = 0,  

(223) 2L' + 2'L + )J~=O, 

(224) /)s + (~t' + 2 ) L  = 0,  

where c~ are the coefficients for the three generators of the minimal group for 
spherical symmetry, S0(3). 

The problem is now reduced to finding eight functions of two variables (t and v), 
namely, Bj, K, L, v, ~, and ~ from a system of sixteen coupled non-linear partial 
differential equations. We consider all possibilities of the coefficients of the solid 
angle d~} 2, /~e. exp[/x + 2 In r] in eq. (224): 

case I 7 = 0 ,  ~t '+ 2 0 
r 

case II 7 = 0 ,  , + _ 2  ~ 0 ;  

2 
case III  7 ~ 0,  tt' + 0 

r 

case IV 7 ~ 0 ,  t t ' +  2 - - s 0 .  
r 

An alternate, but equivalent approach could be to consider the invariant 

(225) J = ( V r  2 exp [~])2 = [(r2 exp [tt])']2 e x p [ -  v] - [(r ~ exp [~t])'] 2 exp[ -~( ] ,  

to obtain a classification. Again there are four cases: 

Case I'. If J = 0, then either r 2 exp [~] = a 2 -- const, (which corresponds to 
case I) or V r 2 exp[~t] is null (which gives metric (3.9) of case IV); 
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Case II'. If  J < 0, then r z exp [/z] = r z can be achieved and it corresponds to 
case II; 

Case III ' .  If J > 0, then r 2 exp [g] = t z can be achieved and it corresponds to 
case III; 

Case IV'. If J = 0 (but ~ 0), then this corresponds to case IV. 

Though this classification has certain advantages (in that it would avoid 
redundancy) we use the other classification (and exclude redundant metrics by 
checking each metric separately) on account of calculational convenience. 

Cases I-III are comparatively simple to solve. The solution is given in the 
appendix for completeness. In case I, where/z = ln (aZ/rZ) ,  it is proved that either: A) 
v = v(r), ~( = 0; or B) v = 0, 2 = 2(t) (metric (2.1)). For both of these subcases 
the minimal isometry group is S0(3) |  $/, where the only difference is that for A) 
$/is time-like and for B) it is space-like. Now for the space-times admitting 
higher symmetries it is straightforward to see from eq. (2.20) that Bj = 0 and 
solution of eqs. (221)-(223) gives in subcase A): 

(226) v(r)  = In cosh2(A+~/-L~r)  (2 < 0), 

(2,27) v(r)  = In (B + r) 2 (a = 1), 

(228) v(r) = In cos2(C + V~ r) (a > 0), 

(2.29) v(r)  = D r  (a = 0, D ;~ 0), 

(2.80) v(r)  = 0 (a = 0, D =  0). 

The corresponding Killing vectors in this case involve six arbitrary constants. 
Thus the metrics given by 2 = 0 and v given by eqs. (2.26)-(2.30) admit six isome- 
tries. The metrics with v given by eqs. (2.26)-(2,28) admit the symmetry groups 
SO(3) | SO( 1, 2), SO(3) | S 0 ( 1 ,  1) ~ $/2 and SO(3) | S 0 ( 2 ,  1), respectively. Equa- 
tions (2.29) and (2.30) give metrics corresponding to those given by eqs. (226) and 
(227). This is because, since there is a unique two-dimensional metric of signature 
zero corresponding to any given constant scalar curvature, only three of the metrics 
corresponding to eqs. (226)-(2.30) can be distinct. The metrics with 2 = 0, v given by 
eq. (2.26) include the Bertotti-Robinson metric which represents the non-null 
homogeneous Einstein-Maxwell fields [6,10,11]. The classification of case B) is now 
simple because ;~(t) can be obtained by replacing r by t in functions v(r) of case A) and 
corresponding Killing vectors can be obtained by the transformations k~  r ) , - ,  
o k l ( r ,  t). Hence the metric with v = 0, 2 = In [cos2(c + V~t)] includes the Bertotti- 
Robinson-type metric, representing a homogeneous non-null electromagnetic field 
discussed by Cahen, Lorey and Stephani [6,12,13]. 

Case II gives all the spherically symmetric static space-times given by Bokhari 
and Qadir [9]. The three spaces of constant curvature, namely de Sitter (negative 
curvature), Minkowski (zero curvature) and anti-de Sitter (positive curvature) are 
included. These space-times admit a G10, thus the spherically symmetric space-times 
admitting GlO are all known. 
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Case III  gives only one extra metric 

dt 2 
(2.31) d s  2 --  - d r  2 - t 2 d ~  2 , 

( t  2 / T  2 )  - 1 

where T is a constant. This metric also admits an isometry group SO(1, 3) | R similar 
to the anti-Einstein universe with a difference that here R is space-like and the 
energy density is positive. 

Case IV, which is complicated and lengthy, is discussed in the next section. 

3 .  - S o l u t i o n  o f  c a s e  I V .  

The procedure depends upon the analysis of the arbitrary constants involved in 
the solutions of the systems of equations (2) and (3), where system (2) consists of 
eqs. (221)-(224) and system (3) of eqs. (2.17)-(220). For  this purpose we apply a 
theorem (theorem 1 of ref. [7]) to two of the special cases: one when m = 1; and the 
other when m = 2, (where m represents the number of dependent variables involved 
in a system of partial differential equations). According to this theorem, if m = 1, the 
solution of the system contains at most one arbitrary constant and when m = 2, the 
solution has at most two arbitrary constants. 

For system (2), eq. (224) gives 

( 3 . 1 )  L = - -  K - - z ( t ,  r )  K .  
ix' + 2 / r  

Using eqs. (2.21)-(223) two independent expressions for K' can be obtained. 
Comparing these expressions yields 

1 
(3.2) 2-~ [exp[2 - v]{a2(; - av') - 2~5} + (2~' - ~ + alk')]K - P(t,  r ) K  = O. 

Equation (3.2) implies that either P(t, r) = 0 or L = K = 0. If  P(t, r) = 0, K ~ 0, the 
system (2) is reduced to a system with m = 1. Thus the solution of this system has at 
most one arbitrary constant. Therefore, for system (2), either K = L = 0 or if 
P(t, r ) =  O, K ~ O, we obtain one Killing vector corresponding to the functions K 
and L. 

For the investigation of system (3), we put exp[/~ + 2 In r - ( v / 2 ) ] ] ~ j  =J~, 
exp[~ + 2 In r - (2/2)]B~ = gj and correspondingly eqs. (2.17)-(2.20) reduce to three 
subsystems, each having m = 2. Therefore, system (3) has a solution with either six 
arbitrary constants or three arbitrary constants, or )~--gj = 0 (i~e. B j  = 0). 

Now combining the possible arbitrary constants involved in the solutions of these 
systems with the three arbitrary constants cj, we have the possibilities listed in 
table I. Thus there are only three cases to be discussed here: A) the space-times 
admitting G4; B) the space-times admitting G6; and C) the space-times admitting G7. 

In case A) where G4 = SO(3) |  R, R being (Xo) such that Xo • Xj ,  that is, 
[Xo, Xj] = 0, Vj; (X1, X2, X3)= S0(3). Since the cases when Xo is time-like or 
space-like have been given in sect. 2, we only need to discuss the possibility when Xo 
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TABLE I. - The possible combinations of  the solutions according to the arbi trary constants 
involved in  the systems (2) and (3) f o r  the case it ;~ O, tL' + 2 / r  ~ O. 

Serial No. of arbitrary constants involved Total no. of arbitrary Remarks 
no. in the solutions of constants involved 

including three for 
system (2) system (3) spherical symmetry 

1 one six ten space times 
admitting Glo. 
All discussed 
in sect. 2 

2 one three seven to be 
discussed 

3 one Bj = 0 four to be 
discussed 

4 K = L = 0 six nine not possible 
Fubini [ 14] 

5 K = L = 0 three six to be 
discussed 

6 K = L = 0 Bj = 0 three metric (2.1) 

is null. Now 

(3.3) 2[o = K ( t ,  r ) a / a t  + L ( t ,  r ) O / 3 r .  

The existence of Xo will be ensured later by using the condition P ( t ,  r )  = O. For  X0 to 
be null L = + - e x p [ ( v - ) O / 2 ] K .  Hence comparison of ( I N K ) "  and ( I N K ) " ,  using 
system (2) gives 

(3.4) (v' exp [(v - 2) /2]) '  = (~ exp [(2 - v) /2])" ,  

an integrability condition for /~ and K'.  Using this condition we 
transformations 

(3.5) du = exp [v/2] cosh ~b d t +  exp [2/2] sinh ~b d r ,  

(3.6) dv = exp [v/2] sinh~bdt + exp[2/2]  cosh~bdr, 

def'me the 

from the variables t, r to u,  v, where ~b = [ ~ exp [(2 - v)/2] dr. I t  is easy to verify tha t  

these transformations with condition (3.4) satisfy the integrabflity conditions 
(theorem I, ref. [7]). These transformations reduce the metric (2.1) into the form 

(3.7) ds 2 = dt  2 - d r  z - exp [tz + 2 In r] dO z . 

Hence /~  = K'  = 0,/~e. K = Co (Co is an arb i t rary  constant) and L = +_ Co. Putt ing this 
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value of L in eq. (3.1) yields 

(3.8) ~ (br + 2 ) - '  - -  = - T - l  = a ,  

T 

which identically satisfies eq. (3.2). Now eq. (3.8) gives 

/~ + 2 In v = f ( t  +-- r ) .  

Thus the metric given by eq. (3.7) reduces to 

(3.9) ds 2 = dt 2 - dr 2 - exp If(z)] dD 2 (z = t • r) 

and the corresponding Killing vector is 

(3.10) K = Coa/~ + Coa/~r + 

+ ( c l  s i n e  - c2 + [ c t g $ ( c l  c o s r  + c2 s i n e )  + c3]a/ar 

This K involves four arbitrary constants and the corresponding symmetry group is 
G4 = S0(3) | R, where Pl = (a/~t • a /~> is null. To verify that B i = 0 put the metric 
components from eq. (3.9) into eq. (2,20), to obtain 

(3.11) - d f / d z  exp [f(z)]/~j ~- df /dz  e x p [ f ( z ) ] B  i' + 2B i = O, 

where z = t ~- r. Therefore, G4 is the group of maximum mobility for the metric given 
by eq. (3.9). This completes the classification of case A). The metric given by eq. (3.9) 
represents a class of non-static metrics depending on one arbitrary function of the 
variable z. 

In case B) K = L = 0 and the solutions of system (3) have three arbitrary 
constants (table I) corresponding to each B i. Thus the space-times admit a G6 _~ SO(3). 
Our task is, now, to determine these G6 and the corresponding metrics or classes of 
metrics. For this purpose we consider k" with K = L = 0 and subject to the conditions 
of system (3). 

We write generators of G6 as X~+3 corresponding to each Bj and Xj corresponding 
to each cj, present in the expressions of k a. Then we have 

(3.12) X~ = sinCa/a~ + ctg~ cosCa/ar 

(3.13) x2 = - cos r  + ctg$ s inr162 

(3.14) X 3 = ~ / ~ r  

(3.15) X4 = - r  2 exp [ix - v ] ~  sin~ sin r + r 2 exp [fz - )~] BI' sin~ sin r - 

- B1 (cos ~ sin r a / ~  + cosec ~ cos r ~/~r 

= - (3.16) 

with Bi replaced by B2 in this  equation, 

(3.17) X6 = - r ~ exp [,a - ~] B3 cos ~ ~/~t + 

+ r  2 exp[~ - 2]B~ cos$O/~r + B 3 s i n ~ / ~ O .  



THE CLASSIFICATION OF SPHERICALLY SYMMETRIC SPACE-TIMES 325 

Now using the closure proper ty  of G6 and evaluating the commutators  [Xp, Xq] 
(Vp, q -- 1, ..., 6), we have 

[XI ,  X 4] -- - r 2 exp [tt - v] B1 cos  ~ o/at  d- r 2 exp [/z - 2] BI' cos ~ D/0r + B 1 s in  ~ a / a ~ .  

Clearly, for the algebra to b e  closed we must  have B~ = bBa (where b # 0 is an 
arbi t rary constant). Thus 

[ X l ,  X 4] = bX6, [X2, X4] = 0 ,  

[.~3, X4] = - T2 e x p [ ~  - y]B1 s inO c o s r  + T 2 exp  [~t - ~,]B1 p s i n 0  c o s C D / ~ r -  

- B~ (cos-~ cos r a/a~ + cosec ~ sin r a /a r  

and again for the algebra to be closed we must  have BI = (b/e)B2 (where e ~ 0 is an 
arbi t rary constant). Hence the closure of Gs implies that  B1 = bf(t, r),  B2 = ef(t, r), 
Ba =f ( t ,  r), where f ( t ,  r)  is an arbi t rary  function. Thus after  rescaling X4 and Xs, we 
have 

(3.18) X4 = - r e exP[t~ - v] f s in~  s in r  + r 2 exp[t~ - 2 ] f '  sin~ sinr - 

- f cos ~ sin r a /a  ~ - f cosec ~ cos r a / a r  

(3.19) X5 = - 8X4/ar  

(3.20) X6 = - r 2 exp [/z - ~ ] f c o s ~ a / s t  + r 2 exp [t~ - i l f '  c o s t a / a t  + f s i n , ~ a / a # .  

The other commutation relations are 

[ x , , x s ]  = o ,  [ x 2 , x s ]  = x 6 ,  [ x 3 , x s ]  = x 4 ,  

IX,,  x~] = - x 4 ,  [x2,  x6]  = - x ~ ,  [x~,  x6]  = o ,  

(3.21) [X4, Xs] = H(t, r)X3 , [X4, X~] = - H(t,  r ) X 1 ,  

[Xs, X6] - H(t,  r )X2 ,  

where H(t,  r) = r 2 exp[ft - v ] f  '~ - r 2 exp[/z - 2 ] f  '2 + f 2 ,  and using system (3) we 
have I:I(t, r) = H'(t ,  r) = O. Thus H(t, r) = a an arbi t rary  constant. Correspondingly: 
Ge - SO( l ,  3) for a > 0; G6 - S0(3)  D R 3 (a = 0); G6 -= S0(4 )  (a < 0). The metric 
given by eq. (2.1) is now subject to the constraints 

(8.22) 2 f +  (2& - ; ) f -  v' exp [v - ;~]f' = 0,  

(3.23) 2 f '  + (x' - v ' ) f +  (& - i ) f '  = 0 ,  

(3.24) 2f" + (2x'  - 2 ' ) f '  - ), exp[2 - v ] f =  0,  

(3.25) - &  e x p [ x -  v ] f +  x'  e x p [ x -  2 1 f '  + 2 f=  O, 

(3.26) exp [x - v ] f  2 - exp[x  - 2 ] f ,2  + f 2  = a (a ~ 0),  

where x = tL(t, r ) +  2 I n r .  Different choices of f ( t ,  r)  and ,,a,, would lead us to 
different classes. We discuss all possibilities o f f ( t ,  r): a ) f =  0 , f '  ~ 0; b ) ] ~  O, f '  = 0; 
c) f ~  0, f '  ~ 0. Firs t  we consider case a). Equations (3.22)-(3.26) imply that  
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x = xo(t) + xl(r)  and X = ;(o(t) + ;(l(r) with xo(t) = 2o(t) and 

[1] 
exp ~ x l  = A s i n h ( ~ r + C )  ( a > 0 ) ,  

[1] 
exp -~ xl = D +- r ( a = O ) , 

[1] 
exp = E sm(X/-  r + (a < 0),  

where A, C, D, E, ~ are constants of integration. Putting a = 1/r~ for a > 0 and 
a = -  1/r~ for a < 0 and redefining the variables, the posmlale metrics are, therefore, 

(327) ds2 = dt2 - exp[xo(t)][dr2 + r2 sinh2( ~o )dgJ2 ] , 

(328) d82 = d t  2 - e x p  [xo(t)][dr 2 + r 2 d ~ 2 ] ,  

(329) 

for a > 0, a = 0 and a < 0, respectively. Now for the maximum group of mobility for 
these metrics, we appeal to systems (2)-(3) and require G6 to be the maximal group of 
motions we must have [ e x p [ - x 0 ]  - (1/2)r02~o] ~ 0, 5o ~ 0 and [ e x p [ - x 0 ]  + 
+ (1/2)r~/o]  ~ 0, respectively. The metrics given by eqs. (327)-(3.29) are conformally 
related to the anti-de Sitter, Minkowski and de Sitter space-times with symmetry 
groups S0(1 ,3) ,  S 0 ( 3 ) D R  a and S0(4), respectively. These metrics represent 
Robertson-Walker (Friedmann)[15] cosmologies. 

For case b), where f ~ 0, f '  = 0, 

(3.30) 
[ (t)] 

d8 2 -- exp [Xl ( r ) ]  d t  2 - ~ c o s h  2 ~ d ~  2 - d r  2 , 

where xl (r) is an arbitrary function of r subject to the condition 

(3.31) 
[ 1 ]  
e x p [ - x l ] +  ~ t~x~ s 0 ,  

and to is an arbitrary constant. In this ease there exists no solution for a ~< 0. The 
mettle given by eq. (3.30) is conformaUy related to the mettle given by eq. (2.31) and 
admits SO(1, 3) as the mmdmal symmetry group. It  represents a class of space-times 
depending on one arbitrary function of one variable. If  condition (3.31) is not 
satisfied, the mettle reduces to the Minkowski metric. 

Next we come to case c). Here ~ ~ 0, x' ~ 0, f ~ 0, f '  ;~ 0. Using eq. (325) in 
eqs. (322)-(324), one can write two equations in f and f ' .  A non-trivial solution of 
these two equations establishes a condition on the metric coefficients. Using this 
condition and the condition obtained by comparing the expressions for ( f ) '  and ( f  ')" 
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we obtain 

(3.32) ( x ' f -  &f')[{(& - ;~) exp [(2 - v)/2]}" - {(x' - v') exp [(v - 2)/2]} ']  = 0.  

Now putting, e x p [ x -  v]j"= F and e x p [ x -  2 ] f ' =  G into eqs. (3.22)-(325) and 
comparing (F) '  with (F')" or (G)' with (G')" yields 

(3.33) [(& - ;~) exp [(2 - v)/2]]" - 

- [ ( x '  - v') exp [(v - 2)/2]] '  - 2 exp [ -  x + [(v + 2)/2]] = 0.  

Condition (3.32) implies that  either 

x ' f -  &f' = 0 or [(& - 4) exp [(2 - v)/2]]" - [ ( x '  - v') exp [(v - 2)/2]] '  = 0. 

If  [(&- 4) exp [ ( 2 -  v ) / 2 ] ] " - [ ( x ' -  v') exp [ ( v -  2)/2]] '  = 0, then eq. (3.33) implies that  

(3.34) 

which is not possible. Thus 

(3.35) 

exp [ - x + [(v + 2)/2]] = 0,  

z'f-~f'  = o .  

Again, writing exp [v/2] F = S and exp [2/2] G = T, in eqs. (322)-(3.25) and using con- 
dition (3.35) yields SS - TT = SS' - TT '  = 0. Therefore, [S 2 - T2]" = [S 2 - TZ] ' = 0. 
Using eq. (3.26) we have [ e x p [ x ] ( a - f 2 ) ] ' = [ e x p [ x ] ( a - f 2 ) ] ' = O .  Therefore, 
exp[x](a _ f2 )  =f~, here fi is a constant of integration. Using this value off ,  with fi = 0, 
in eqs. (3.22)-(325) and comparing the resulting equations gives the condition (3.4), 
for which the metric attains the form given by eq. (3.7). Here P(t, r) = 0. For  this 
type of metric there are four Killing vectors. For  ~ ;~ 0 the same procedure shows 
that  there are ten Killing vectors. 

Now we discuss case C), where the solution of system (2) admits one arbitrary 
constant whereas that  of system (3) admits three arbitrary constants (table I). Since 
system (2) admits one arbitrary constant, the corresponding Killing vector Xo is of the 
form given by eq. (3.3). The other six Killing vectors are Xp represented by 
eqs. (3.12)-(3.14) and (3.18)-(320). Using the closure property of G7 we have 

(3.36) [Xo, X~] = 0,  

(3.37) [Xo, X4] = 

(3.38) 

(3.39) 

= - H i ( t ,  r) exp[x - v ] f s in~  sinCa/at + H2(t, r) exp[x - 2 ] f '  sin~ sin r 8 /3r  - 

- Ha (t, r)[cos ~ sin Cfa/O~ + cosec ~ cos Cf3 /a r  

[Xo, x s ]  = - a[Xo, x 4 ] / a r  

[Xo, x6]  = 

= - H ~ ( t ,  r) exp[x - v]j 'cos ~ a/3t  + H2(t, r) exp[x - 2 ] f '  cos~ a/Or + 

+ H3 (t, r ) f  sin ~ 0 / ~ ,  
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where 

(3.40) 

(3A1) 

H, (t, r) = 

= _  e x p [ ~ - ~ l f ' g ' + -  exp[v-  )tl f 'K + -~(x'] '-ief ')L + ~.f'L , 
f 2 

He(t,r)= e x p [ A - v ] f L +  2 e x p [ 2 - v ] j : L - - ~ ( x ' f - g ' ) K + - v ' f L  
2 

1 
(3.42) Ha(t, r) = -](Kf + Lf'). 

Thus the necessary and sufficient conditions for the algebra to be closed are 

(3.43) f ; t  0,  f '  ~ 0,  Hi(t, r) = ~, 

being a constant greater than, less than or equal to zero. 
If  fl = 0, then V7 = (Xo, ..., X6> such that [Xo, X v] = 0, Vp and Gv_~ G~SO(3), 

where Gs is SO(l, 3), SO(3) D ~ and S0(4) according to whether a > 0, a = 0 and 
a < 0, respectively, and the Lie algebra for these groups is given by eq. (321). Thus 
in this case the possible symmetry groups may be SO(l ,  3 ) |  R, [ S 0 ( 3 ) D  ~ ]  | R 
and S0(4) | R. To determine the metrics corresponding to these algebras, consider 
the conditions (3.43) with j = 3, fl = 0. In this case a non-trivial solution of eqs. (2.24) 
and (3.43) will exist if eq. (3.35) holds. But for ~ # 0, x' # 0, f # 0, f '  # 0 and x ' ] -  
- ~f '  = 0 solutions of eqs. (3.22)-(3.26) admit only G4 or G,o. 

Now we consider the case when ~ # 0. Rescaling Xo so that ~ is absorbed in it (or, 
equivalently, setting fl = 1), we have 

(3.44) [x0, x~+31 = xj+3 

and other commutation relations are given by eqs. (321). These Lie algebras are not 
included in Petrov's discussion, but are discussed by Turkowski [16] for ~ = 0. 

For a non-trivial solution of K and L, from eqs. (22,4) and (3.43) with j = 3, fl = 1, 
we have the requirement that eq. (3.35) does not hold. Solving eqs. (3.43) for all j 
gives 

(3.45) exp[v - 2 ] f ' [ 2 K '  + v'K + A exp[~ - v]L] = 2 f +  ~f 

and 

(3.46) exp[~ - v]f[2/~ + ~L + v' exp[v - ~]K] = 2f' + &f. 

These equations may be combined to give 

(3.47) 4ff'(exp[v]K' - exp [~]/~) + 4 exp[v + ~][exp [ -  ~]f,2 _ exp[-  v]f 2] + 

+f[x' e x p [ -  2 l f '  - x e x p [ -  v l f ]  = 0. 

Using eqs. (2.22), (3.25) and (3.26), we have a = 0. Thus if ~ r 0 ;~ x' and the 
space-times admit a G7, the only Gs included in the G7 has the Lie algebra given by 
eq. (3,21) with a = 0. This Lie algebra is similar to that of Turkowski[16], /~e. 
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TABLE II .  - Properties of the spherically symmetric space-times of the type V2 �9 S 2 admitting G6 as the 
maximal symmetry, group. 

Metric Ro101 Roo R11 R 

(2.26) acoshZ(A + ~/---~r) -acosh2(A + ~/----~r) a -2 (a  + a -2) 

(227) . . . .  2a -2 

(228) acos2(c + ~/~r) - ~tcos2(c + V~r) a -2 (a  + a -2) 

(229) - 1D2exp [ D r ] 4  1D2exp [ D r ] 4  D'~4 2 ( D2--~- - a -2 ) 

(226) -~coshZ(A + ~ - ' ~ t )  ~ -~cosh2(A + ~ - ~ t )  2(a - a -2) 
r~-.t 

(2.27) . . . .  2a - z 
r--*t 

(228) -~cos2(C + V~t) ~ -~cos2(C + V'-L~ t) 2 (a  - a -2 )  

r.-*t 

- - e x p [ D t ]  - +2a -2 
r~-*t 4 4 4 

(2.30) . . . .  2a - 2 

Metric KT~ KTH KT22 Petrov Identification 
type 

(22,6) c~ + V ~ -  ~ r ) a  z - a - 2  -aa2  { :t=-a-2a # - a z : }  static Bertotti-RobinsOnanisotropic perfect fluid 

(2,27) a-Z(B + r) 2 - a  -~ - -  D anisotropic perfect fluid 

(2.28) a z -a  -2 -aa 2 D anisotropic perfect fluid 

t D  = 4a-2 O non-nuil homo-isotropic 
(229) a-2exp[Dr] _a_2 1 4 a 2 D  2 Einstein-Maxwell field 

[D  2 ~ 4a--2 D anisotropic perfect fluid 

(2.26) a - 2 cosh 2 (A + ~ t) aa 2 D (non-static) anisotropic 
r-,* t a2 perfect fluid 

a - 2 ( B  + t) 2 (227) a -2 
r.,-*t 

cos 2 (C + V ~  t) aa2  [ ~ = a - 2 
(228) 2(a - a-2)  a 2 
r ~ t  [a ~ a_ z 

[Dr] 1 a2D JDz=4a -z 
(229) a - z  eXPa 2 _ 4- / 
r~'~t [Dz;~4a-Z 

(2.30) a -z - a - 2 

D anisk~otxopic perfect fluid 
(non-static) 

i} non-static, Cahen, Lorey, 
Stephani anisotropic 
perfect f l ~  

D homo-isotropic perfect 
fluid 

anisotropic perfect fluid D 

D anisotxopie perfect fluid 
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[80(3) D R 3] D R. However, in this case eqs. (224) and (3.43) with j = 3,/~ = 1 have 
no non-trivial solutions by virtue of eq. (3.35). Thus there is no space-time corres- 
ponding to Turkowski's algebra! 

4.  - C o n c l u s i o n .  

The main point of the paper is that we have been able to obtain a complete 
classification of spherically symmetric space-times according to their isometries and 
metrics. Thus we have a complete list of a// metrics, or classes of metrics, 
corresponding to each possible isometry group along with the group's infinitesimal 
generators. In the process we also found some metrics not previously known and 
demonstrated that Turkowski's symmetry does not apply to any 4-dimensional 
spherically symmetric space-time. This complete classification has already been used 
to prove a singularity theorem [2] without reference to a positive-energy condition, 
for classifying Ricci collineations[3] and to extend the classification to other 
symmetries [4, 5]. 

There are five different classes of metrics admitting G4 as the maximal group of 
motions. These classes depend on one or two arbitrary functions of one variable. It  
was proved that there does not exist any spherically symmetric space-time admitting 
G5 as the maximal group of motions. The space-times admitting G6 as the maximal 
group of motions have symmetry structures S0(3)| 2); S0(3)| 1)D 

R2; S0(3) | 80(2, 1); SO(4); SO(l ,  3) and S0(3)  D ~ .  These space-times include: 
metrics with A = 0, v given by eq. (226), representing the Bertotti-Robinson metric; 
a metric with ~ - -0  and ~ given by eq. (226) with r replaced by t, satisfying the con- 
ditions for a non-null electromagnetic field (discussed by Cahen, Lorey and Stephani) 
and the Robertson-Walker space-times given by metrics (327)-(329) (see table II). 

The spherically symmetric space-times admitting G7 as the maximal group of 
motions which previously included the Einstein and anti-Einstein space-times only 
have proved to also include a non-static space-time admitting the symmetry group 
SO(l ,  3 ) |  R. This admits a symmetry group similar to the anti-Einstein universe. 

We are most grateful to H. Azad, M. /L  H. MacCallum and L. Parker for useful 
comments and suggestions. 

APPENDIX 

Case I. The metric given by eq. (2.1) reduces to 

(/~1) ds 2 = exp [v(t, r)]dt  2 - exp [~((t, r ) ]dr  2 - aZdD 2 , 

where (exp [v] dt 2 - exp [~] dr 2) is the metric for a V2 space and ,,a, is a constant. We 
first consider the case of the group of motions G1 of a V2, then either [7]: A) v and A are 
functions of r only; or B) v and ~( are functions of t only. 

In case A), redeffme r so that A = 0. The curves of the parameter t are the 
trajectories of motion. Thus G1 is generated by the operator X0 = D/Ot, a time-like 
Killing vector (go~X~X~ > 0). Thus the space-times in this'case are all static. Now in 
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order to determine whether this V2 can admit more than one motion, we consider the 
conditions (221)-(223) with 5 = 0 and ~ = 0, we get L ' =  0 and 

(A.2) 

(A.3) 

These equations easily yield 

(A.4) 

(A.5) 

2 / ~  + v 'L  = 0 ,  

exp [v]K' - / ~  = 0. 

s  

v " = -  2a e x p [ -  v], 

where a is a separation constant. Equations (A.2)-(A.5) then yield the metric with v 
given by eqs. (226)-(2.30). The corresponding Killing vectors for these cases are, 
respectively, 

(A.6) g = [Co - tgh (A + ~ r){c4 sin (V ~- ~ t) + c5 cos (~/-:--a t)}] O/at + 

+ {c4 cos(x/-:  ~ t) + c5 s in(x /=- ;  t ) } l a / a r  + (c, s ine  - c~ cos r  + 

+ [ctg~(cl case + c2 sine) + c3]a/ar  

I --1 (c4sinht+cse~ a/at+(c 'c~ (A.7) K =  co B + r  

+ (Cl sine - ce cos r  + [ctg~(cl cosr + c2 sine) + c3]a/ar 

(A.8) K = [co + tg(C + V~ r){c4 sinh (V~ t) + ca cosh (V~ t) } ] a/at + 

+ {ct cosh (V~ t) + c~ sinh (V~ t)} D/0r + (Cl sin r - c2 cos r  + 

+ [ctg(cl case + c2 sine) + c3]a/ar  

(A.9) K= co- 2 ~c4 +cst - - ~ e x p [ - D r - E ]  a/at+(c4t+cs)a/ar+ 

+(Cl sine - c2 cosr  + [ctg~(cl case + c2 sine) + cz]a/ar 

(A.10) K = (Co + c4r)a/at + (Cat + cs)a/ar + (Cl sine - c2 cos r 0/a~ + 

+ [ctg~(cl case + c2 sine) + cs]a /ar  

All other metrics given by eq. (A.1) with v(t, r) - v(r) and 2(t, r) = 0, admit a G4 = 
= S0(3) | R as the maximal group of motions, where R stands for time translation. 

The classification of the case B) is now obvious. The functions )~(t) can be obtained 
by replacing r by t in the functions v(r) of the case A) and the corresponding Killing 
vectors can be obtained by the transformations 

k~ r)~,-~ kl (r, t). 

Case II. Putting/~ = 0 in eq. (2.24) yields L = 0. Therefore eq. (2.23) implies that 
either A) ~ = 0, i.e. ~ = 2(r) or B) K = 0. The latter case will be discussed at the end. 
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Using eqs. (2.21) and (222) we get ; '  = 0. Thus for the case A), absorbing the time 
part of v in the definition of time, v(t, r) =- v(r), 2(t,  r)  - A(r) and g(t, r) = 0 in metric 
(2.1). 

For this metric K =  co, an arbitrary constant, and using eq. (2,20), eqs. (2.17)- 
(2.19) reduce to 

(A l l )  2rBj = v '  exp [v]Bj = O, 

(A.12) { 2 ( -  exp[X] + 1) - v'r}[~j = O, 

(A.13) [2(exp [2] - 1) - X' r ]B j  = O. 

There are two possibilities consistent with eq. (&13). The first is a) Bj = 0, and hence 
the metric admits at least the isometry group G4 of case A). Therefore, these 
space-times are again static. The second is b), where Bj r 0 and exp[Al= 1 / ( a t  2 + 1) 
(.a .~ 0). Equation (A.12) further allows two possibilities. Either: b)* Bj = 0; or b)** 
Bj ;~ 0 and exp [v] = ar  2 + 1. Now using eq. (A.11), these possibilities give: 

(A.14) v = 0 ,  A= - ln(ar2 + 1) (a <> 0); 

(A.15) v = ln (a ' r2  + 1) ,  X =  - ln(ar2 + 1) (~ <> 0); 

(A.16) v = X = 0 (~ = 0). 

The metrics given by eq. (A.14) represent the Einstein and ,,anti-Einstein- 
universes admitting seven isometrics ( S O ( 4 ) |  and SO(l,  3 ) |  respectively). 
For completeness we give the extra isometrics 

(A.17) 

X 4 -- --(0iT 2 + 1) 1/2 Sin~ Sine D/Dr-  

(at  2 + 1) 1/2 

r 

= - a x ,  / a r  , 

X6 = -(a~r2 + 1) 1/2 cos~q~/~r + 

[cos $ sin r 3/D$ + cosec $ cos r D/Dr 

(~r 2 + 1)I/2 
sin z 

The metrics given by eq. (/~15) represent the de Sitter (a < 0) and anti-de Sitter 
(~ > 0) universes admitting ten isometries (SO(l, 4) and SO(2, 3), respectively). The 
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extra isometries are 

(A.18) 

a a 
x~ = j~o cos v q  t sin.s sin r ~ - J cos v ~  t sin ~ sin r 

0r 

J cos V~ t cos ~ sin r a J cos V~ t cos r a 
r a~ r sin ~ ~ ' 

x5 - a x , / a r  

l ____r a _ j cos ~ cos V~ t ~ J sin ~ cos V~ t a X6 = j r  ~ cos ~ sin V ~  t ~ t  ~ - r ~--~' 

X7 = ro a X , / a t ,  X8 = ro a X 5 / a t ,  X9 = ro a X 6 / a t ,  

J ( r )  - ~v/1 + ar  2 . 

Here the trigonometric functions get replaced by hyperbolic functions when the 
argument becomes imaginary. The metric given by eq. (/~16) is the well-known 
Minkowski space-time admitting the Poincar6 group, S 0 ( 1 , 3 ) ~ .  The extra 
generators are 

(A.19) 

I a a 
x4 = - r  s i n ,  s i n r  - t s i n ~  s i n r  - 

_ t cos ~ s in  r a 
r a~ 

x~  = - a x , / a r  

a o t a l . . . .  X6 = - r cos ~ at t cos 0 Or + r sin ~ --a~ ' 

X7 sin~ sine ~ 1 0 1 = - cos ~ sin r - -  - -- 
Or r a~ r 

1 a 
a + sin ~ . X8 aX7/~r X 9 = - cos ~ Or r a~ 

t a 
cosec $ cos r - - ,  

r ar 

cosec ~ cos r r , 

Again all other metrics admit a G4 as the maximal group of motions as in case A). 
This completes the classification of case A). 

Case III. Putting t~'+ 2 / r  = 0 in eq. (2.24) yields K = 0. Therefore, eq. (2.21) 
implies that either A) v' -- 0, or, equivalently, v = v(t); or B) L = 0. Using eqs. (2.22) 
and (2.23) we get ~ ' =  0. Proceeding as before (with 5 ' =  0) we now find that 
v(r, t) =- v(t), ~(r, t) - 2(t) and /~(r, t) -- In (t z / r2) .  Here L = Co and we obtain 
equations analogous to eqs. (A.11)-(AA3) with r o t ,  v o ; ~  and e x p [ v ] o - e x p [ v ] .  
Hence the minimal G4 obtained now has a space-l ike instead of a t ime- l i ke  translation 
isometry. Only one new space-time with higher symmetry is obtained by applying 
the above transformation to the Einstein metric and the corresponding isometry 
group becomes S O ( l ,  3) | R (R being space-like). For the generators of this algebra 
we also need to transform k ~  1 . 
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In case I I B )  (or I I IB) )  K =  L = 0 and # = 0 (or ~'  + 2 / r  = 0). We can now 
redefine variables so that  the coefficient of the solid angle is r 2 (or t2). Using 
eqs. (322)-(3,25) and following the previous procedure we find that  there are no 
additional space-times contained in these cases. 
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