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Summary 

A new approach for multiplicity control (Optimal Subset) is presented. This 
is based on the selection of the best subset of partial (univariate) hypotheses 
producing the minimal p-value. In this work, we show how to perform this 
new procedure in the permutation framework, choosing suitable combining 
functions and permutation strategies. The optimal subset approach can be 
very useful in exploratory studies because it performs a weak control for mul- 
tiplicity which can be a valid alternative to the False Discovery Rate (FDR). 
A comparative simulation study and an application to neuroimaging real data 
shows that it is particularly useful in presence of a high number of hypothe- 
ses. We also show how stepwise regression may be a special case of Optimal 
Subset procedures and how to adjust the p-value of the selected model tak- 
ing into account for the multiplicity arising from the possible different models 
selected by a stepwise regression. 
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1 Introduction 

The problem of multiplicity control arises in all cases where the number 
of hypotheses to be tested is greater than one. This is certainly the most 
widespread scenario in many application fields. The most common aim is to 
select potentially active hypotheses (i.e. under the alternative). A property 
that  is generally required is the strong control of the Familywise Error Rate 
(FWE), i.e. the probability of making one or more errors on the whole of 
the considered hypotheses (Marcus et al., 1976). On the other hand, a weak 
control of the FWE  means simply controlling the a-level for the global test 
(i.e. the test where all hypotheses are null). Although the latter is a more 
lenient control, it does not allow the selection of active variables because it 
simply produces a global p-value that  does not allow interesting hypotheses 
to be selected, so the former is usually preferred because it allows us to 
make inference on each (univariate) hypothesis. An alternative approach to 
multiplicity control is given by the False Discovery Rate (FDR). This is the 
maximum proportion of type I errors in the set of elementary hypotheses. 
The FWE guarantees a more severe control than the FDR, which in fact 
only controls the FWE in the case of global null hypotheses, i.e. when all 
involved variables are under H0 (Benjamini and Hochberg, 1995). 

The advisability of adopting one of the two methods depends on the experi- 
mental hypotheses. In confirmatory studies, for example, it is usually better 
to strongly control the FWE. This guarantees a suitable inference when we 
wish to avoid making even one type I error. There are several cases (gen- 
erally all exploratory studies) in  which the aim is to highlight a pattern of 
potentially involved variables. Testing for the F W E  in these cases seems to 
be excessively strict, particularly when the experiment is characterised by a 
large number of hypotheses (sometimes thousands). In these cases the FDR 
would appear to be a more reasonable approach. In this way it is accepted 
that  part (no greater than the (~ proportion) of the rejected hypotheses are in 
fact under the null. Although FDR is more powerful than FWE, it can still 
be lacking in power when there are many hypotheses (e.g. in neuroimaging 
data, studies on microarrays or association tests in the genetic field). A new 
approach to this problem is presented below, based on both the selection 
of the best sub-hypothesis (i.e. associated with the minimum p-value) and 
multiplicity adjustment. 

2 The Optimal Subset procedures 

Let us suppose we are making inference on a set of m hypotheses. Interpreting 
the p-value as a measure of the distance of a possible evidence in the data 
from the null hypothesis (Fisher 1955) gives rise to the idea of looking for 
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the subset of variables which give the stronger (p-value based) evidence on 
the alternative. The correction for multiplicity of the p-value associated with 
the selected subset becomes unavoidable since each p-value has been selected 
among a multiplicity of possible subsets. 

Let us consider a set :H = {H1,. . . ,  H~n} composed of m (null) elementary 
hypotheses, where mo are true and ml are false. Let :HD be the set of car- 
dinality M of (not necessarily all) possible intersections of m hypotheses 
in 7/. 7-/~ is therefore a set of multivariate hypotheses: a generic element 
C = {H1,N...  n Hc}(C �9 7-/D) identifies a subset which is under thenull  
hypothesis if each of its elementary hypotheses H1, . . . ,  He is, in turn, under 
the null hypothesis, f~ indicates the criterion according to which :H~ is con- 
structed. Three elements are therefore necessary to characterise an Optimal 
Subset procedure: 

a) the ~ criterion which generates 7-/~, the set of possible subsets of 7-/; 

b) the tests (I)(Hc ; He �9 C,c = 1 , . . . ,  C) , C �9 for the multivariate 
hypothesis in :Ha; 

c) the test ~(C ; C �9 which identifies the Optimal Subset and adjusts 
the selected p-value for the hypotheses in :Ha. 

The ~ criterion defines the set of multivariate hypotheses. The terms "ele- 
mentary hypotheses" are used to define the elements of :Ha, i.e. the multivari- 
ate hypothesis from the intersection (allowed by ~) of univariate hypotheses. 
Each ~ test is an unbiased test for the (elementary) hypotheses in :Ha. It can 
be based on a combination of partial statistics or p-values. Once we obtain 
a test for each hypothesis in :H~, we select the elementary hypothesis (Cmin) 
associated to the minimum p-value. In order to obtain an unbiased global 
test, we need to adjust for multiplicity the selected minimum p-value taking 
into account the fact that it has been chosen from a set of p-values. This 
is the task accomplished by the �9 test. If it leads to the rejection of Ho, 
we reject all the univariate hypotheses composing the selected elementary 
hypothesis Cmin �9 Therefore kO is an unbiased test for Cmin; it rejects 
Cmin with probability less or equal to (~ when all its univariate hypotheses 
are under the null. On the contrary, Cmin is under the alternative if at least 
one elementary hypothesis is under the alternative. This makes it clear why 
an Optimal Subset procedure does not strongly control the FWE: it does not 
test each single hypothesis, but only the multivariate hypothesis generated 
by an "optimal" intersection of elementary hypotheses - where "optimal" is 
defined as the multivariate hypothesis associated with the minimal p-value. 
In this way Optimal Subset procedures perform a weak control of the FWE 
over :Ha, i.e. not over the set of univariate hypotheses, but over the set of 
elementary hypotheses allowed by 12. 
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For the multivariate tests (I)(H~ ; Hi E C) ; C E7-/n we shall refer widely to 
the NonParametric Combination (NPC) methodology (Pesarin, 2001), which 
easily takes into account the dependences among variables. However any 
suitable test for the multivariate hypothesis C ET/~ can be used. 

For the k~ test, the NPC methodology is even more useful. Indeed, apart for 
particular cases, the elements of 7/n are dependent given that the same uni- 
variate hypotheses are considered in several elements of 7/n. In this work we 
shall mainly adopt a Tippett combining function within the NPC method- 
ology which is a Bonferroni-like test where the dependences are taken in 
account within conditional permutation methods. 

3 Optimal Subset procedures and 
permutation tests 

Let us suppose that an appropriate permutation strategy and appropriate 
test statistics, suitable for testing for m hypotheses, in 7-/exist. For example, 
in the case of m comparisons for two independent samples, the strategy is to 
randomly permute the vector indicating the cases/controls. If the samples 
are paired, a valid permutation strategy consists of independently switching 
the observations of the same subject between the two samples. In the case of 
quantitative variables, a possible test statistic is based on the usual t-statistic. 

Any permutation strategy will produce a multivariate permutation space of 
T statistics. This can be represented as a B x m matrix where each of the B 
rows is associated with a different permutation of the data (and therefore an 
element of the space) and the i-th column is the marginal distribution of the 
statistic suitable for testing the i-th hypothesis in 7/. The generic element 
of T is called tbi (b = 1 , . . . , B ; i  = 1, . . . ,m) .  The procedure proposed 
here is based on this permutation space and is therefore applicable to any 
experimental design (C sample, quantitative/ordinal traits and others). 

From T it is possible to calculate the permutation space of the corresponding 
p-values; the generic element Pb= (b = 1 . . . . .  B;  i = 1 , . . .  , m )  of matrix P is 
calculated from the proportion of elements which, in the correspondig column 
of matrix T, is greater than or equal to the statistic in that column. The 
row of P corresponding to the p-values referring to the observed statistics 
(i.e. the test statistics calculated on observed data) is therefore the vector of 
p-values for the m hypotheses in 7/. 

Let us suppose we wish to test a generic multivariate hypothesis C -- H1N...N 
H e  (He E 7 / ,Yc  = 1 , . . .  ,C ) .  An unbiased and consistent test 4)(C) is based 
on Tc, the subspace of T (or P), induced by the hypothesis C (i.e. the sub- 
matrix defined by the columns referring to the hypotheses He; c = 1 , . . . ,  C) .  
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In order to obtain a combined (i.e. multivariate) test, it is necessary to define 
an appropriate combining function. In this work we mainly take into con- 
sideration the combining functions presented in Pesaxin (2001) and discussed 
below. By applying the same combining function on each row of the sub- 
matrix of T or P we obtain the (univariate) permutation distribution of the 
multivariate statistic. The associated p-value is calculated on the proportion 
of elements greater than or equal to the observed statistic. Given positive 
weights w~, c = 1 , . . . ,  C fixed a priori, the following combining functions 
may be considered: 

- Direct combining function: T~) = ~ wctc. This combining function 
l < c < C  

is based on the direct sum of the test statistics. It is applicable when 
all partial tests have the same asymptotic distribution and the same 
asymptotic support, which is at least unbounded on the right. 

- Fisher's omnibus function: T~ = - 2 .  )-~l<c<c wc log (pc). 

- Tippett 's  combining function: T~ = maxl<c<c(wc(1 - p c ) ) .  In the 
case of independent variables, this combining function is asymptotically 
equivalent to the Bonferroni test. 

- Liptak's combining function: T~ ~ = ~ l<c<c  wc~- I  (1 - ~c) (where ~, 
in this case, indicates a standard normal c'.d.f.). 

The set of T"  vectors calculated on each element of the 7-/~ set defines the 
multivariate permutation space Ta .  Working on Ta ,  by using the same 
procedure adopted to determine P from T,  it is possible to obtain P~  from 
T~.  All the above combining functions, except for Tippett 's,  are based on 
sums of elements, hence each element plays a role in the value of the statistic. 
Because of this "synergic" property, we recommend using one of them for the 
4) test. 

The ~ test is a global test for the hypotheses in 7-/~, so an unbiased test can 
be obtained using any combining function on the space of its T n  statistics or 
P~  p-values. Although every combining function produces unbiased and con- 
sistent tests, we suggest using Tippett 's  because it focuses on the minimum 
p-value. 

From now on, we shall suppose appropriate 4) and �9 tests exist and we shall 
pay more attention to the characterization of the ~ criterion defining 7-/n. 

3 . 1  C l o s u r e  s e t  o f  7-/ 

The most intuitive characterisation of ~ is given by all possible non empty 
intersections of the m univariate hypotheses in 7-/. ~ is therefore defined 
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by the closure set of 7-I (excluding the empty set). It has a cardinality of 
M = 2 " ~ -  1. 

As previously pointed out, the definition of the ~ criterion plays a crucial 
role in the definition of an Optimal Subset procedure. The definition of H~ 
ensures that  we find out the minimum p-value among all the possible inter- 
sections of elementary hypotheses. On the contrary, reducing the number 
of elements of 7-/~ means limiting the search to a lower number of subsets 
and therefore limiting the chance of finding a "good model" (i.e. a Pmin 
low enough). As a trade-off, limiting the number of elements of 7-/~ means 
"making more lenient corrections", i.e. obtaining a more powerful procedure. 
Suppose we use Bonferroni's correction as the �9 test; in this case the mini- 
mum p-value is multiplied by the number of sets in 7-/~. Now consider a set 
7 ~ ,  defined by a different criterion with a cardinality of less than M = 2m--1. 
If it includes the hypothesis Hmin associated with the minimum multivariate 
p-value, 7-/~ is strictly less powerful than the Optimal Subset defined by 7-/a 1 . 

In most real cases the size of 7 ~  (M = 2 "~-  1) is a huge number, leading to an 
extremely conservative correction of the global p-value and making the test- 
ing problem computationally unfeasible. Therefore a "good" f~ criterion lies 
within the delicate balance of these two requirements: a low p-value for the 
multivariate hypotheses versus a low p-value for the multiplicity correction 
�9 . Our attention should therefore turn out to the definition of an "efficient" 
7-/ft. 

3 . 2  S t e p - u p  p r o c e d u r e s  

The rationale behind such procedures is that  lower univariate p-values tend 
to produce lower combined p-values. The idea is therefore to consider the hy- 
pothesis with the lowest p-value, the multivariate hypothesis given by the two 
elementary hypotheses with lowest p-values, then look for the multivariate 
hypothesis formed by the three elementary hypotheses with the three lowest 
p-values and so on until the set of all m hypotheses is defined. All these 
multivariate hypotheses are tested using a �9 test and finally the minimum of 
these multivariate p-values is adjusted by an adequate �9 test (see below for 
its definition). 

Thus, let us consider the vector of p-values arranged in increasing order 
P(1) <- P(2) <- . . .  <- p(m) (pi;H~ E 7-/); 7-/~ is defined by: ~ = {H1 = 
H(,), H,2 = (H(,) n H(2)) .... , H, ..... = (H(,) n H(2) n... M H(m))}. 

7-/~ has a cardinality equals to m, which is much lower than the cardinality 
of 2 "~ - 1 found in the "closure set of 7-/" and in case of independent variables 
7-/~ is an asymptotically optimal set. 

I t  is worth noting that  the multivariate test in H~ is biased, since the uni- 
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variate hypotheses are not chosen a priori independently from the observed 
p-values. Instead, a "Step-up" procedure selects only the p-values produc- 
ing the largest multivariate statistic. In this way the multivariate p-values 
associated with 7-/~ do not have a uniform distribution under the null hy- 
pothesis.  In order to obtain an unbiased test for each element of 7-/~ we 
could multiply the p-value of the generic multivariate hypothesis/-/1 ..... i, by 
k = (~); where k the number of possible sets of exactly i elements chosen 
among m. This correction would severely penalize the procedure producing 
extremely conservative tests. By adopting the NPC methodology we do not 
need to consider ~ unbiased tests. All that  is needed is to repeat the same 
criterion for each random permutation, thus a) sorting the p-values, b) com- 
bining them in the same step-up fashion used for calculating the observed 
p-values and c) searching for the minimum multivariate p-value. In this way 
the vector of minimum p-values obtained from the B random permutations 
corresponds to the min-p statistic (i.e. Tippett 's  combining function) and 
the proportion of p-values greater than or equal to the observed minimum 
p-value is the global p-value corrected for multiplicity. 

3 . 3  T r i m m e d  a n d  s t e p - u p  p r o c e d u r e s  

The permutation approach is very flexible w.r.t, different criteria. In general 
it is sufficient to define a rule and repeat it for the observed data and for each 
permutation of them. An interesting criterion is based on trimmed combining 
functions that  allow us to search for the hypotheses which do not exceed a 
certain threshold of significance A. 

Consider the vector of sorted p-values, defined as in 3.2, 7-/~ = {H1 -- 
H(1), H12 = (H(1) n H(2)) , . . . ,  H1,...,~ = (Ho) N H(2) N . . .  N H(t))}, where 
t = max( / :  P(i) <- A). The combined test is simply a special case of the NPC 
methodology; in fact it corresponds to a combining function with weights 
equal to: wi = 1 if i < t and 0 otherwise (i=l, .  .. ,m). The adoption of 
such a trimmed function provides at least two practical advantages: it fur- 
ther restricts the size of 7-/~, and if A = a,  the search for "good models" is 
restricted to only singularly significant tests. This constraint also seems to 
have an appealing justification. Other threshold criteria can be taken into 
consideration as, for example, by considering the r hypotheses with lower p- 
values. Valid criteria which exploit information a priori can also be defined; 
if, for example, there is an expectation for a certain number of significant 
hypotheses, this can be used as a threshold value. 
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4 Stepwise regressions as a special case of Op- 
timal Subset procedures 

In this section we emphasize the link between Optimal Subset procedures 
and stepwise regressions. In a multivariate regression, the F-test based on 
the ratio between the variance explained by the model and the variance of 
the error terms (or the likelihood test if we consider logistic regression), is a 
multivariate testing of the hypothesis that none of the independent variables 
are under the alternative. Hence, this is a proper (I) test being under the 
null hypothesis if all the elementary hypotheses are under the null; instead, 
it is under the alternative if at least one independent variable is associated 
with the response (the dependent variable). The forward and the backward 
stepwise procedures are the two most popular (Brook and Arnold, 1985). 
Forward stepwise regression starts with no model terms except for the inter- 
cept. At each step it adds the most statistically significant term until there 
are none left. Backward stepwise regression starts with all possible terms 
in the model and removes the least significant terms until all the remaining 
terms are statistically significant. These two procedures properly define 12 
criteria. 

Although stepwise regression is very similar to the Optimal Subset procedure, 
the former differs from the latter failing in the multiplicity correction. In fact 
no global ~ test is taken into account. The usual properties of Least Square 
estimates are invalid when a subset is selected on the basis of the data. 
Thus the coefficients for a selected subset will be biased, and as a result the 
usual measures of fit wilt be too optimistic, sometimes markedly so (Copas, 
1983, Freedman et al. 1992). Hence the greater the number of variables 
considered, the greater the possibility of getting a significant F-test for the 
selected model even when none of the independent variables is associated to 
response Y. Following the discussion in 3.2, the issue is easily resolved; all 
that is needed is to perform a stepwise regression on B random permutations 
of the Y vector calculating the F-test for the selected model. The adjusted 
p-value is given by the proportion of p-values (related to the selected model) 
less than or equal to the p-value calculated from the observed data. This 
leads to an exact permutation test controlling the multiplicity for all possible 
models explored by the stepwise regression. 

5 Comparative simulation study 

This paragraph shows the results of a comparative simulation study aimed at 
evaluating the behaviour of the Optimal Subset procedures under different 
proportions of active variables. The simulation study considers a compari- 
son between two independent samples on 100 independent standard normal 
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variables. The fixed effects of the second sample for the variables under H1 
are generated by a normal N(0, .7) distribution; the alternative hypotheses 
are bi-directional and a is equal to .10. The number of random permutations 
(Conditional Monte Carlo [CMC] iterations) for each test and the number of 
random generations of data axe set equal to 1000. 

The procedures considered axe the so-called "Raw-p" procedure, the Bonfer- 
roni-Holm procedure (Holm, 1979) and the FDR-procedure (Benjamini and 
Hochberg, 1997). The first of these procedures rejects each hypothesis with a 
p-value of less than a; multiplicity is not considered at all. The second (step- 
down) procedure considers Bonferroni's inequality and strongly controls the 
FWE; the third, as said before, controls the FDR. For the Optimal Subset 
procedures the Direct and Fisher's combining functions are considered. Three 
criteria were considered for both combining functions: Step-up Procedure; 
Trimmed and Step-up Procedure with a threshold equals to a = 10% (shown 
by Trimmed 10%); and Trimmed and Step-up Procedure with a threshold 
equals to the proportion of active variables (shown by Trimmed /-/1%). In 
this way the first solution considers all hypotheses involved, the second only 
the significant p-values and the third adds up the most significant k p-values, 
where k is equal to the number of variables under the alternative. 

As pointed out before, Optimal Subset procedures do not strongly control 
the FWE nor the FDR. The control of the FWE is weak, i.e. it is verified 
only in the case of a global null configuration (all hypotheses are null). The 
results of the simulation study under H0 are shown in the second column 
of table 1 (percentage of variables under H1 equals to 0%). Columns two 
to five in table 1 shows the power for these procedures. It is important to 
emphasise that the comparison among powers of the considered procedures 
is not a proper comparison due to the fact that multiplicity control is car- 
ried out differently for the Bonferroni, FDR and Optimal Subset procedures. 
However, the results highlights that Optimal Subset procedures are gener- 
ally more able to identify the hypotheses under the alternative w.r.t, other 
considered procedures. 

6 An application to neuroimaging data 

In an exploratory study on correlates of Obsessive Compulsive Disorder 
(OCD) symptoms (Sherlin and Congedo, 2003), eight clinical individuals were 
compared to eight age-matched controls using frequency domain LORETA 
(Low-Resolution Electromagnetic Tomography: Pascual-Marqui, 1999). The 
intra-cranial grey matter volume was divided into 2394 voxels of dimensions 
7 x 7 x 7 r a m .  (Pascual- Marqui, 1999) and current density therein for one 
high-frequency bandpass (Betal: 12-16 Hz) region was estimated. Details of 
the method used in LORETA clinical studies can be found in Lubar et al. 
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Power 
(Prop. H1 rejected) 

Raw-p 
Bonferroni 
FDR 
Direct 
Direct Trimmed 10% 
Direct Trimmed//1% 
Fisher 
Fisher Trimmed 10% 
Fisher Trimmed H1% 

P e r c e n t a g e  of  var iables  unde r  H1 
0% 25% 50% 7"5% 99% 

0.669 0.404 0.410 0.409 0.414 
0.093 0.170 0.176 0.198 0.199 
0.099 0.190 0.215 0.255 0.279 
0.078 0.230 0.438 0.652 0.714 
0.090 0.214 0.394 0.521 0.551 
0.110 0.232 0.292 0.356 0.411 
0.087 0.272 0.470 0.650 0.762 
0.083 0.231 0.304 0.364 0.392 
0.097 0.215 0.297 0.362 0.416 

Table 1: Simulation results: percentage of rejected alternative hypotheses 
(power). 

(2003). The statistical problem here is to simultaneously test 2394 elemen- 
tary hypotheses (one per voxel). Previous experimental knowledge suggests 
the use of directional alternatives. A suitable test-statistic for each hypoth- 
esis is the Student's t-test for paired samples. The data appear to be "far 
from normality" and spatial neighbourhood induces strong dependences that 
are difficult to characterize in a parametric form. In this case, the use of per- 
mutation tests guarantees unbiased univariate tests and allows for an easy 
combination of them. Moreover the low sample size (n -- 8) induces a "tight" 
permutation space (of cardinality B---2s=256). 

The number of elementary hypotheses associated to a (raw) p-value of less 
then ~ = .01 were 1214 out of 2394. According to the FWE-controlling 
Bonferroni-Holm procedure none of them was significant after correction for 
multiplicity. The Tippett 's step-down permutation (Bonferroni-like) proce- 
dures take the dependences between p-values into account. However, again no 
significant results were found using the Tippett step-down procedure. Other 
closed testing (FWE-controlling) procedures are not applicable in this case 
because of the high number of hypotheses being tested ( 2 2 3 9 4  - -  1). Even the 
FDR-procedure fails in this case (no hypotheses were rejected). By perform- 
ing a step-up Optimal Subset procedure using a t-sum combining function, 
81 voxels are selected. Hence, the Optimal Subset procedure produces a sig- 
nificant global test and indicates a "potential" evidence against the (global) 
null hypotheses. 
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7 Conclus ions  

The Optimal Subset procedures perform a less stringent multiplicity control 
than FWE and FDR. Instead of controlling the multiplicity of the univariate 
tests, these procedures select the multivariate hypotheses which produce the 
most significant combined tests. The p-value of this multivariate hypothesis 
is then corrected for the multiplicity of multivariate hypotheses considered in 
~/n. In this way, therefore, the Optimal Subset procedures supply a "global" 
response and not a specific response on the single partial test. By way of 
compensation, however, they show sensitivity in identifying the hypotheses 
under the alternative. These two characteristics (weaker multiplicity control 
and greater power) suggest their use in exploratory studies and, more gen- 
erally, in all studies which consider a multiplicity of variables and which are 
more interested in a global overview of the phenomenon rather than strongly 
inferring on single univariate hypotheses as FWE and FDR controlling proce- 
dures do. We have also shown how normal stepwise regressions can become a 
special case of Optimal Subset procedures, explaining the appeal of this new 
procedure. 

The software has been developed in Matlab 6.5 (Mathwork inc. (~)) and is 
available upon request from the authors. 
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