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1. — Introduction.

In the last few years a large amount of theoretical work, using the most
varied methods and arguments, has led to the now common belief that a
—presumably first order-—phase transition from hadrons to a quark-gluon
plasma takes place at a transition temperature of 0.150 to 0.200 GeV and
at dengities not much larger than in nuclei. This holds for hadron matter with
total baryon number and strangeness zero; if these are not zero and their
conservation is enforced by chemical potentials, the transition temperature
will depend on the latter. This case, however, will not interest us here.

Presently the only available theoretical models starting from first principles
(QCD Lagrangian) are QCD lattice calculations, a sort of experimental theory.
They definitely seem to establish the existence of a phase transition. The
main point is, however, that all other models lead to the same qualitative—
and in most cases even gquantitative—results. Therefore, if one wishes to con-
front the current theoretical ideas with experiments, one might choose among
the various models any one which has a sufficient number of explicitly calculable
predictions. We choose the statistical-bootstrap model (SBM).

All approaches suffer in one way or another from the idealizations necessary
to enable theorists to arrive at any results at all: in the SBM the main ideali-
zations are the assumptions of equilibrium in infinitely extended matter, both
very far from the real situation in particle collisions (and even in heavy-ion
collisions).

The number of papers directly and indirectly concerned with the phase
transition at hand is so large that it would be impossible to give a list of
references doing justice to all authors. Ingtead I refer to the Bielefeld « Inter-
national Symposioum on Statistical Mechanics of Quarks and Hadrons»
(1980) [1] and to the Bielefeld Workshop «Quark Matter Formation and
Heavy-Ion Collisions » (1982) [2] where all present ideas and all relevant ref-
erences are available. In the course of this paper I shall then refer only to
works tightly connected with the presentation; my apologies go to all authors
who might feel they should have been quoted but who have not.

1'1. The experimental facts.

Eemark. We shall, in the main body of this paper, assume that the « measured
{py> » are indeed the true (p,y, although there can be serious doubts about this
(to be explained in appendix B). For our purpose the qualitative trends are
more important than the exact numerical values.

Figure 1.1 is taken from ref. [3] and exhibits several important points:
i) {(p,> increases with the multiplicity per unit rapidity dN/dy,
ii) at higher multiplicites it levels off.
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Fig. 1.1. — The average transverse momentum as a function of charged-particle den-
sity in the central rapidity region of proton-antiproton collisions at ISR and CERN
pp collider energies: e ISR proton-proton, 1/s = 63 GeV, |¥]|<2.0; w CERN collider,
proton-antiproton, +/s = 540 GeV, |¥| < 2.5. (Figure taken from ref. [3].)

We shall take these two qualitative statements for granted. Two other
features seem rather to indicate that the quantitative values of (p,> might
still contain some systematic errors:

iii) the multiplicity dependence of {p,> at ISR has been observed only
very recently [3a], while before in measurements with larger errors it seemed
to be absent [3b, c];

iv) the (p,> at low multiplicities at ISR lie above those of the collider;
thig is ulikely to be true.

In fact, as pointed out in appendix B, the {p,> values may depend appreci-
ably on extrapolation methods used when the p, distribution is measured over
an interval with a lower cut. The remaining differences at low multiplicities
(between ISR and collider) are of the order of the errors discussed in appendix B
and suggest that we should presently not worry about point iv) above.

Figure 1.2 from ref. [4] shows that the p, distributions at the collider differ
for different multiplicities over the whole range of measured p, and that the
effect on (p,> is not so much due to the large p, tails (> 2 GeV/c) which con-
tribute only a small fraction of the measured particles, but must come essentially
from lower p, where the usual thermodynamic interpretation (Boltzmann spec-
trum) implies then an apparent change of temperature with multiplicity.

Figure 1.3 from ref. [4] shows the overall p, distribution with its « thermo-
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Fig. 1.2. - Transverse-momentum distribution for different multiplicities at /s =
= 540 GeV. The slope rises with multiplicity already at rather low (>1GeV/c) pq.
a <nfAy> = 10.2, o {njAy> = 5.7, o {n/Ay> = 2.4. (Figure taken from ref. [4].)

dynamic » low-p,, part and the typical large-p, tail (already seen at ISR), which
we shall interpret as probing the quark-giluon plasma. The fit [4] to the data
is with a QCD-inspired formula discussed in appendix B, where it is shown
that, in spite of its looking impressive here, it is unsuitable for determining {p.>.

1'2. The theoretical model. — Our interpretation of the data will be done in
the framework of a recent version of the statistical-bookstrap model (SBM),
developed in collaboration with J. RAFELSKI. We shall present here only re-
sults and refer for their derivations to the original papers [5-8].
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Fig. 1.3. — Inclusive p, distribution at +/s = 540 GeV fitted by a semi-empirical
formula discussed in appendix B. e (k* 4 %7)/2, |y| < 2.6 UALl. (Figure taken from
ref. [4].)

The model considers a strongly interacting hadron gas; attractive inter-
actions are represented by allowing all possible hadron reactions A 4+ B 4-
+ ... 2 A’4+ B+ ... compatible with four-momentum and baryon number
congervation (other conservation laws can be added); the possible types of
particles A, B, ... form the hadronic mass spectrum t(m?2, b) which plays a central
role in the model: z(m2, b)dm? is the number of different types of hadrons
with baryon number b and mass in {m?, dm?}. To z(m?, b) belong the «input
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particles » pion and nucleon (strange, charmed ... particles may be added but
are here not important) as well as all allowed bound and resonant states and
all corresponding antiparticles. It has been shown that, if all possible particles
{A, B, ...} are counted in =(m?, b), the interacting-hadron gas formally reduces
to a mixture of infinitely many ideal gases with mass spectrum z(m?, b). Applying
this same idea also to its constituents, clusters of mesons and baryons, one is
led to consider these too as systems of strongly interacting constituents, hence
again as a mixture of ideal gases with mass spectrum z(m?, b)—thus the clusters
counted in z(m? b) consist of clusters, which consist of clusters, etec. This self-
consistency requirement generates an (infinitely) nonlinear integral equation (*)
for z(m?, b), which has a unique physical solution growing exponentially in m:

(1.1) T(m?, b) = f(m?, b) exp [m/T(b)],

where f(m?, b) is polynomially bounded; T’ (b) is calculable from the bootstrap
equation. In thermodynamics z(m2, b) appears in integrals of the type

(1.2) fdmz dE g(m, H, b, ...) exp [— E|/T]1(m?, b) =
:fdmzde him, B, b, ...) exp [~\/p2; ™y T??b)]

which do not exist for 7> T (b). Since thermodynamic quantities (energy
density, particle number and baryon number densities, etc.) are represented
by such integrals, they have some singularity at T (b) indicating a phase transition.

Calculations simplify if one does not require strict, but only average baryon
conservation (other conservation laws can be included) by introducing a baryon
chemical potential u; then the critical temperature is T’ (u).

This settles the attractive forces. Repulsive forces are dealt with ¢ la Van
der Waals by giving each particle a volume, from which other particles are
excluded. Introduecing this concept in the BE, leads automatically to the
result that the proper volume of a particle must be proportional to its mass [9],
a feature which SBM shares with the bag model [10] and with nueclear physies.
If now thermodynamics is, in addition to the exponential mass spectrum,
equipped also with finite (mass-proportional) particle volumes, the singularities
due to 7(m?, u) are somewhat weakened (quantities which diverge at T (u) for
point particles diverge less or may even become finite for extended particles),
but they remain at the same place in the (7', u)-plane. We have then the follow-
ing situation depicted in fig. 1.4.

(*y The «bootstrap equation » (BE) of the form 7 = input particles - Zj .J{prod-
ucts of &-functions and v’s}.
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Inside the region called « hadronic phase » we have a gas consisting of all sorts
of hadron clusters; the nearer we come to the critical curve, the more clusters
coalesce into ever bigger clusters and, when we reach the critical curve, they
all disappear in one infinitely large cluster of infinite mass—in striking similarity
to condensation where droplets coalesce in larger droplets and finally into the
liquid phase. As the volume of a cluster is proportional to its mass, all clusters
have the same energy density g, and on the critical curve the whole system has
then reached this density g,.

T T
quark-gluon
plasma phase ]
.
hadronic —
phase
—
vacuum
I | |
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Fig. 1.4. — The singular curve of the statistical-bootstrap model [5]. In the shaded
region the model is unreliable, because there the (otherwise negligible) effects of Bose-
Einstein and Fermi-Dirac statigtics become important.

We now relate SBM to the bag model. The two models share the mass-
volume relation, which in the bag model is written M= 4B-V. It is reasonable
to take the SBM mass-volume relation to be numerically the same, thus to
identify ¢, = 4B.

There is a further, much more important property which both models share:
the exponential mass spectrum [10,11]). Since the mass spectrum and the
particle volumes determine together the thermodynamical behaviour of our
system, the hadron gas seen as a SBM cluster system is identical to a hadron
gas seen as a gas of bags up to and including the critical curve T'(u). Thus
SBM is—as a thermodynamic model—fully equivalent to a gas of QCD bags [12].
Our clusters are excited QCD bags and choosing the pion and the nucleon as
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input {instead of quarks) amounts to imposing local colour neutrality inside
the bags and accepting Nature’s own solution of the QCD bound-state problem (7).

Once this is accepted, it is clear what must be on the other side of the critical
curve: since on the critical curve all clusters = bags have coalesced into one
infinite supercluster = superbag, the matter on the other side of the critical
curve is no longer a more or less dense gas of clusters: ¢t has there become the
very matter which is inside bags: a quark-gluon plasme [5,12-14]. As such, it
possesses the properties of a black-body radiation of an almost massless gas
of only a few species (flavours x colours) with feeble interaction.

1'3. The infinitely extended hadron phase in SBM. — Going back to the
hadron phase, we list a few more quantitative properties near the critical curve.
The model allows a simple straightforward calculation of densities, like baryon
number density, number density of baryons 4 antibaryons, pions, kaons, ...,
energy density, cluster number density and, important in our context, of the
average mass and volume of clusters as well as of transverse-momentum dis-
tributions.

All numerical results in this paper are computed with a model having the
following parameters [5]:

B = 0.145 GeV (bag constant),
(1.3) Ty:= T (4 = 0) = 0.19 GeV ,

u=20.

Only p = 0 is here specially adapted to the situation (pp), the other two pa-
ramenters have not been fitted to the present experiments; their values had
been chosen (**) in 1980 (for application of the model to relativistic heavy-ion
collisions [5]). In so far, the results displayed in this paper are predictions;
the most characteristic being the following ones.

While all densities and {(p, (T)> go to finite values on the critical curve,
the average cluster mass M(7T) and the average cluster volume (V(T)> go to
oo there [8] (for details see subsect. 2'2):

{M(T)> = const- (T,— T)-1,
KV(T)> = (M(T)>/4B.

(1.4)

(*) In the very spirit of the SBM the input particles need not be really «elementary »,
they serve as building blocks of all higher composite states. For our purposes the pion
and the nucleon do suffice, while p and A would not, because pions and nucleons do exist
as free particles; quarks, however, do not (so far) exist free.

(**) T, is not really a free parameter; it is calculated from the BE which, however,
contains another parameter m, lying between m, and my [6, 9].
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Figures 1.5a4) and b) show some particle number densities (here in an irrele-
vant normalization: number per « nucleon volume »).

Figure 1.6a) displays the average cluster mass (M(T)> as a function of T
and fig. 1.6b) the same as a function of (p(T)) (see subsect. 3'2). It is seen
that at pp collider energies cluster masses from 300 MeV to more than 10 GeV
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Fig. 1.5. — Particle number densities as following from the SBM [5]: a) logarithmic
plot, ) linear plot as functions of the temperature (u = 0).
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Fig. 1.6. ~ The average cluster mass as following from the SBM [5, 8] as a function
of a) the temperature and b) the average transverse momentum as calculated in the
same model (u = 0).
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Fig. 1.7. — Entropy per particle as a function of the temperature as calculated in
the SBM [5] (u = 0).

should currently occur (0.3 GeV/e< (p,><0.48 GeV/e), possibly leading to a
bumpy structure of the rapidity distribution in event-by-event plots.
Figure 1.7 shows the entropy per particle as a function of the temperature.
A commonly used rough estimate is that the entropy § is proportional to the
number of particles produced. This is exactly true for a black-body radiation

1-0 T l T I T ! T I L}
L B

0.8~ I

energy density &(T)/4B

0.2 7o 1
|

— 1 L I\ . 1 1
0 0.04 0.08 0.12 0.16 0.20
T (GeV)
Fig. 1.8. — Energy density vs. temperature from the SBM [5] (x = 0) normalized to
g9= 4B. Note that ¢ remains rather small up to 7/7, < 0.6 implying that most observed
particles come from regions with 7' of order 7.
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of massless particles, where S/N= 4 independent of T and of the number of
species of particles. In our case it is only approximately true at low particle
numbers, but it becomes true (with S/N— 2.04) for large particle numbers
(I — T,), because for T — T, the entropy density as well as the total particle
number density go to finite constants.

In fig. 1.8 we display the energy density e (normalized to 4B, the bag energy
density) vs. temperature (4 = 0). Note the steep rise of ¢ between 0.12<
<T<T,; it has the consequence that one finds experimental temperatures
hardly ever outside this interval (see below).

The most important property shown in this figure is that (due to finite
particle volumes) ¢ reaches a finite limit as T — T,; therefore, the transition
temperature can actually be aftained—and not only approached asymptotically
for ¢ — oo as in earlier versions of the SBM (where, therefore, T, was claimed
to be a limiting temperature).

1'4. How the model is related to a real collision. — All this applies to infinitely
extended hadronic matter in equilibrium. Experiments unfortunately produce
only microscopic lumps of such matter, which are never in equilibrium. The re-
lation between the described model and the situation in a collision is, therefore,
far from trivial. It seems, however, that at any given time equilibrium is
nearly reached locally, so that the above model might be applied locally and then
be folded with collective motions assumed ad hoc [15] or derived from special
models [16]. :

Qualitatively a collision goes through the following stages: the two col-
liding particles will, in the overlap region, slow down and compress each other,
whereby locally kinetic energy is changed into internal-energy density (heat).
In energetic collisions the so-produced energy density ¢ will, in the overlap
region, be larger than 4B, so that the system (locally) enters more or less in
the quark gluon phase and reaches there a temperature 7' ~ &, which may be
considerably higher than T,. Then it expands and cools until it reaches the
critical curve, where it breaks up into hadronic clusters. In less central regions
or in peripheral collisions the energy density might remain below 4B and there
the system does not enter into the quark gluon phase. The steep rise of ¢(T')
shown in fig. 1.8 has, however, the consequence that even then the temperature
will not be much below T, so that we may expect that over large parts of the
rapidity distribution the apparent temperature in very-high-energy collisions
is near T,: in the very central region because the system returns from the
quark gluon phase and breaks up into hadrons at 7',; in the other regions because
it reaches T'< T, even at moderate energy densities. Since, moreover, particle
production disappears exponentially with falling temperatures (fig. 1.5a), b)) most
produced particles come from regions with temperatures of order 0.14 GeV <
< T'<T,, which, as argued, might be reached up to nearly the ends of the
rapidity distribution. Therefore, in the central region (Iyl<<ln (v E/m)) we
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expect {p.> corresponding to ~ T,, while even near the ends ([y[ <In (vs/m) —1)
we still might have {p,> corresponding to ~ 0.14 GeV, only about 20 9%, less than
at y=0 (see fig. 3.3b)). Thus in very-high-energy collisions {p,(y)> ~const (within
=~ 20 9%,) over most of the rapidity distribution. This is a qualitative but char-
acteristic prediction of our model. It could not be made in statistical-thermo-
dynamical models not possessing & critical temperature (phase transition).

The present observations hold, of course, only on the average. If one triggers
for special events, one will find characteristic deviations, one of which we here
are precisely interested in: namely {(p,> vs. central multiplicity (subsect. 3°3).

While most emitted particles originate from the decay of hadronic clusters
at temperatures I'<T,, very few may escape already from the plasma phase.
This can happen in two ways: either on the surface of the quark-gluon blob
2 q and & q are near to each other and, at the same time, have a relative mo-
mentum such that a meson could be formed (mostly =; baryons would need
the conspiration of there quarks) which then might escape with a momentum
typical for the local temperature of the plasma at that moment; or a single
very energetic (at the tail of the momentum distribution) quark or gluon tries
to escape alone and, since confinement forbids this, it has to hadronize by
dragging a tail of qq pairs behind and giving rise to a jet of hadrons which
will have an internal momentum distribution whose average (in jet direction)
should again correspond roughly to the local plasma temperature. (Very ener-
getic jets from single hard scattering would not fall under this category though
an average over not so extremely energetic hard-scattering processes might.)
These two mechanisms would give rise to the main part of the well-known
large p, (those whose distribution takes off at p, ~ 1.5 to 2 GeV/c from the
underlying Boltzmann-like distribution characterized by I ~ T,; see fig. 1.3)
which, in our interpretation, would thus probe the quark-gluon plasma di-
rectly [17-21].

What is the difference between the quark-gluon plasma at 7' T, and
the big clusters near T, which inside also consist of quarks and gluons? Why
do the latter break up so easily, while the former allow only occasionally the
escape of a hadron? From the point of view of the statistical-bootstrap model
the large clusters near 7, (while being filled with a quark-gluon plasma) are
still composed of hadrons, which amounts to saying that colour neutrality is
locally satisfied in subregions of nucleon size (much smaller than the whole
cluster): such a cluster has no difficulty to rapidly disintegrate into the
already preformed hadrons.

Above the critical curve this short-range colour correlation is no longer
enforced; the mechanism which did so has broken down (because of the sin-
gularity in the partition funection describing clusters in clusters in clusters).
This makes the escape of hadrons more difficult.

If one does not intend to test a hybrid model in which collective and thermal
motions are superimposed [15, 16, 22], then only transverse momenta and
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multiplicities being invariant under collective motions (p, only under longi-
tudinal ones) remain as means of testing the above ideas by confronting ex-
perimental data with quantities calculated from equilibrium thermodynamics.
This will be done in sect. 2 to 4.

In appendix A we discuss possible distorting mechanisms, which presently
will be ignored.

In appendix B we shall show why the « measured {p,>» might not always
be the true (p,» and propose a safer method to determine them. Our notation
will be that of ref. [5-8].

2. — Thermal and hadrochemical equilibrium.

We consider an infinitely extended hadron gas in equilibrium as deseribed
by the statistical-bootstrap model [5-8], called « SBM gas ».

2'1. Transverse momentum p,. — If one neglects Bose and Fermi statistics, a
particle of mass m has at temperature 7' a momentum distribution (for a com-
plete derivation with statistics and longitudinal motions see [23])

(2.1) f(p, m, T)d%p = const-exp [— \/p2 + me/T]d3p 5

writing p? = p2 -+ p; and integrating over p,, one obtains, with d?p,= 2np;dp,
and p, = |p,|, the p, distribution
dN(p,, m, T)

. constp, Vp: + m* K,(Vp: 4 m*|T)
L

(2.2)

0.7

0.6

0.5

0.4

C.3

{p (T (Gevke)

0.2

0.1+ —

| 1 | 1 i R 1

0 0.04 0.08 0.12 0.16 0.20
7 (GeV)

Fig. 2.1. — Average transverse momenta (Boltzmann approximation) as functions of
the temperature according to eq. (2.3).
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and the mean p,

©

fpl(dN/dp¢)dpi = K T
(2.3) {po(m, T)y:="° - ‘/g mTK%‘
(@Njdp,)dp, 2

o3

These formulae—which are model independent—have been first derived with
Bose and Fermi statistics incorporated by IMAEDA [24]; see also appendix B.

Figure 2.1 shows {(p.(M,T)> for m, m., my and my, = 1.175 (mean value
A and X). Dividing eq. (2.3) by either m or T leads to universal functions of
m/T on the r.h.s:

poIT =, pofm=:w, m|T =z;

o
72 Hy(z) |V 2

v = /=
2 K
(2.4) (%) 3%{ for z —0;

for z > o0,

- — for z —c0,
v 7w Kyz) | V2%

W == -_
2 2z K,(2) | 3=
— for 2z —>0.
4z
8 T T T T T T T T T
7+ o

A SL -]
!

Ave

[N

8

(%)

[

>

[

>

Q

o

£

3

[¥]
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m/T

Fig. 2.2. — Universal scaling curves for the average transverse momentum: <{pp>/T
and <{pr>/m as a function of m/T as following from egs. (2.4).
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The curves in fig. 2.2 display v and w as functions of #z; whenever two of the
three variables {<p,>, m, T} are known, the third follows from fig. 2.2.

2°2. Particle number densities, entropy density, pressure and average cluster
mass. — We describe the SBM hadron gas by a procedure [5-8} in which the
extended-particle quantities can be simply expressed in terms of the point-particle
partition funection Z , (8, V, 4 ...), which is explicitly known [5, 25] and from
which point-particle densities (energy, entropy, particle numbers, pressure...)
follow as usual:

energy density ¢ ,:

10InZ
(2.5) ewlby By o) = — 3 5 =
baryon number density »,:
1, dlnZ,

(2.6) Vol By gy ) = VZB —EZ‘B’J;
pion number density 7 ,:

1, dlnZz,
(2.7) ol By Ay onr) = 5 A o -

and similarly for strange particles (K, Y). The corresponding quantities for
ewtended particles are then found by the rule [5-8]

(2.8)  intensive quantity for extended particles —

__intensive quantity for point particles

1+ eB, A, ...) 4B

From the definition as derivatives with respect to a fugacity it follows that
particle number densities refer to final particles after decay of all clusters.
The entropy density o = S/V is

Oy (L1/V)InZ,, + (e — o) /T

(2.9) T I e iB 1 &,,/4B ’

where u = T In 7 is the baryon chemical potential. The pressure is

Py
2.10 ) ) S
( ) 1 4 &,,/4B
with
(2.11) P,=— 2ln Z.(B, V, 4).

pt V
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It is remarkable that the pressure obeys an «ideal-gas equation » [8] in the
form

‘ @
2.12 P=-2T
(2.12) 7 T

where (V> is the expectation value of the total volume (which is not fixed)
of the gystem and <{N_> the expectation value of the number of clusters present;
while each of these two is oo, their ratio is a finite, well-behaved function of
u and 7. That we obtain the ideal-gas equation in these variables is not in
contradiction with our claim to describe a strongly interacting system: while
in the case of a truly ideal gas N and V are fixed external parameters, they
are here dynamical variables (functions of 4 and T). It turns out that near
the critical curve (N /V)> — 0 and P — 0. There, however, the system is instable
(dP/AV >0}, so that a Maxwell construction is necessary from which a first-
order phase transition results with P everywhere finite > 0.

Finally, the average cluster mass [8]: as the temperature is limited to T,
(of order m, ), most clusters (except the w itself) are moving with nonrelativistic
velocities, so that the total energy carried by a cluster of mass M is in good
approximation

(2.13) B

cluster R M+ %T’
hence, by averaging, the total energy
(2.14) B ~(NKM) + 3T)

and, with eq. (2.12),

B (V 3 ot

3
—5

which was shown in fig. 1.6a) and b) as a function of 7 and {p,>. For T—T,,
these formulae become exact.

These and other quantities are available through simple and short computer
programs based on the model described in ref. [5-9]. All curves shown here
were calculated with these programs and the parameters (1.3).

3. — Approaching the phase transition,

When the critical curve is approached, all above point-particle densities
diverge; the extended-particle ones reach finite limits (since they are divided
by the diverging ¢,); the energy density tends to 4B, the entropy density
(u = 0) to 4B/T,, ete.
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As all variables are functions of the temperature, one can plot any one
against any other using the temperature as a parameter. We present here a
few of the many possible combinations.

3'1. Charged-particle number ratios. — We define the ratios

(3.1) R(T):= {{NAT) KN AT} harsea

and show in fig. 3.1 these ratios for kaons, nucleons and hyperons as functions
of the total charged multiplicity emerging from an average cluster. While the
ratios tend to finite limits at the transition temperature, the average multiplicity
per cluster diverges with the cluster mass; hence the ratios level off for (¥ , —oco.

0.3 I 1
K/n
0.2} .
=
o
N/n
0.1§ -
Y/n
1 1
0 10 20 30
M, Dletuster

Fig. 3.1. — The ratios K/r, N/x, Y/n (charged) as functions of the mean charged
multiplicity emitted by an average cluster as calculated from the SBM [5].

If one would measure R; as functions of dN,/dy, curves of this shape should
result. The same ratios are plotted in fig. 3.2 as a function of {p,(T})>. The
bending down at the end (when 7 — T,) is due to the still steeply rising =
production (see fig. 1.5). As the total (p,(T)> is an almost linearly rising func-
tion of the temperature, (see fig. 3.3) a plot of the ratios vs. T would look very
similar.

A comparison of these predictions with experimental data is difficult for
reasons discussed in the introduction (model: infinite matter in equilibrium;
experiment: microscopic collective motions with only approximate local equi-
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0.3 T T T T

0.2 .
= K/n
<

0.1 N "

Yin
1 |
0 0.1 0.2 0.3 0.4 0.5

{p (T (Gevfe)

Fig. 3.2. — Charged-particle ratios (as in fig. 3.1) as functions of the average transverse
momentum <{pr(T)>an particres @8 calculated from the SBM [5].

librium) and also since charged multiplicites have been measured (more precisely,
estimated) only as averages over the rapidity interval — 5 <y <5 accessible to
the UA 5 detector [26]. Therefore, between the model and the experiment
various further averaging processes enter which depend partly on the physics
(e.g., collective motions) and partly on the experimental set-up (e.g., acceptances).

We shall nevertheless confront our results with the experiment. Our table
shows in the first column the ratios as taken from table II of ref. [26]; the
second gives our ratios in the interval 0.3 GeV/e<p(T)< Py pi(To), the third
the factor by which they vary in this p, interval and the fourth our values
at the measured {p,>.,, [4].

TasLe I. — The ratios By = NK/—NTT’ By = Nbaryon/'NTL" By= -Nhyperon/Nﬂ:-

Ratio TUAS5 Model Factor of Model
fig. 3.2 variation fig. 3.2 at Ppogar
Re 0.11 0.14 =0.25 2 0.24
Ry 0.07 0.02 =0.11 5 0.09
Ry 0.01 0.005=0.055 10 0.04

The estimated UA5 values [26] lie near to or within the interval chosen in
fig. 3.2. There is, however, no {p,(T)> at which we could reproduce all experi-
mental values simultaneously (which is indeed not to be expected). At {Prdum
we over-estimate R by a factor 2, R, by 4, while R, is about correct.
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Is this & satisfactory agreement or a catastrophic disagreement? We believe
neither, for the following reasons which again derive from the wide trench
between the idealizing model and the reality of a collision:

1) We use [5] the grand canonical formalism, which is justified in the ther-
modynamical limit (infinite system; {— oo), while in the experiment we have an
extremely small space-time region. With decreasing volumes grand canonical
results become gradually less and less reliable. As a simple example consider
pair production (pp, KK, ..). In the grand canonical formalism one uses
chemical potentials (here u = 0) and finds an equilibrium population of pairs
(leading factors, order of magnitude)

(3.2) N opair~ €Xp [~ %], large volume .
If the volume is not infinite, the equilibrium population depends on the vol-
ume, such that for very small volumes one obtains [23]

(3.3) Nz~ exp [ 2%”], small volume .
As discussed in detail in ref. [27], the volume in a pp collision is « small » and
the equilibrium population calculated in the grand canonical formalism may
be too large by a factor of ~ 2. Reducing our values by a factor of 2 would
make the overall agreement better.

ii) The previous remark still applies to equilibrium. If the time is short,
« chemical » equilibrium may be only more or less approached. Here again
the population at time ¢ will be smaller than at ¢ — oo [28].

i1}y Our fig. 3.2 shows
(3.4) R(T) = % — P (T)))

and this is, within the model, a unique functional relation between R, and
{py(T)>. Assume this relation to be indeed locally true in a collision; then
the variation of T over the whole space-time region as well as the influence
of experimental cuts etc. may be characterized by an unknown temperature
distribution W(T'), normalized to unity.

We then shall have to integrate our local functions with weight W(T) over
T; so that, in general,

(3.5) <'N’i>expt# <Ni(<Texpt>)>
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and

(3'6) <‘Ri>expf.?é Fi(<p_y_>exot) .

One should not even expect to find a single (p,> at which the (E
for all <.

__..Ri

expt ~

iv) In view of these remarks, of the strong variation of the E; (column 3
of the table) and of the experimental uncertainties we may claim that our
model i3 not in difficulty with respect to charged-particle ratios.

3'2. The mean tramsverse momenium. — Let n(m, T) be the mean charged-
particle number density of the species with mass m. As the mean transverse
momentum is a function of the mass and of the temperature, the total mean
transverse momentum of charged particles is

z n(m, T){p,(m, T))
3.1 @uTy) =g

m

This function, with m running from pions to hyperons, is shown in fig. 3.3a)
together with the individual weighted contributions of pions, nucleons, kaons
and hyperons to the total. Note that the weighted contributions of eq. (3.7)
must not be confounded with the (p,> these particles do actually have and

0.5

0.4

L
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e 5
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~ (U]
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-

B 0.2 e
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< N/

5

Q
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[=]
-

1 { 1 1 I 1 L 1 s

0 0.04 0.08 0.12 0.16 0.20 © 0.04 0.08 0.12 0.16 0.20
T(GeV)

Fig. 3.3. - a) Total <p(T)> as function of the temperature together with its individual
(weighted) components (r, K, N°, Y) according to eq. (3.7) evaluated in the SBM [5]
{p = 0). &) Total <px{T)> and {pp>r as functions of the temperature (eq. (3.7) and
SBM [5], eq. (2.3)) (u = 0).
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which are shown in fig. 2.1. In fig. 3.3b) we show the total {p,(I)) together
with the actual transverse momentum of pions. This figure illustrates a source
of error in determining a « temperature » from (p.>: take {p,> = 0.45; if one
takes into account all particles one concludes 7' = 0.168 GeV, but if one had
erroneously assumed that the contribution of heavier particles was negligible
due to their rarity, one would have taken the pion curve and found
T = 0.184 GeV.

As the curves in fig. 3.3a) and b) have been computed ab s, ... = Huiraee = 05
heavier particles contribute only via pair and associated production. These
figures are, therefore, specific to pp collisions; in pp and even more in heavy-ion
collisions (u # 0) baryons would increasingly contribute and {p.),,,,, would rise
higher above the pion curve.

3'3. The dependence of p, on the multiplicity. — The experimental relation
between (p.> and the mean charged multiplicity per unit rapidity interval
was depicted in fig. 1.1.

Such a relation could be calculated quantitatively in a hybrid model con-
taining thermodynamics coupled with collective motions [15, 22]. As we here
wish mainly to see whether the existence of & phase transition shows up in this
relation, we try a simple semi-quantitative connection between model and
experiment. Let

(3.8) n(T):= > n(m, T)

be the total charged-particle number density. In a given volume V the total
number is then N= nV-—but what is the volume V corresponding to the
rapidity interval Ay = 12

A first guess is that it might be proportional to the average cluster volume
VAT = (M(T)>/4B:

ANy
dy

(3.9) = O(T)m(T){M(T)>[4B ,

where OO{T) is the average number of clusters per unit rapidity.

A better guess starts from the observation that n = N/V refers to a volume
containing clusters plus empty space. To obtain N= nV we, therefore, should
take a volume made up of the average cluster volume V, plus its average share
of empty space. This is not difficult, since the energy density is defined in
much the same way as the particle number density: (7)) = (M = 4B -V )/(V=
= V_+ empty space), so that

(3.10) {V = V,.+ empty space) :ﬁ

Vo e(T)
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With this factor—which tends to 1 when the phase transition is approached—
we should multiply the r.h.s. of eq. (3.9) in order to replace the cluster volume
V. by the correct reference volume

AN®
dy

(3.11) = CO(Dn(T)XM(T)>[e(T) .

Finally, we argue that in front of the other rapidly varying factors—M(T')
diverges for T — Ty—we may treat the two unknown functions 0%® as con-
stants. All other factors are calculable in the model.

The three full curves of fig. 3.4 represent eq. (3.9) with C® = {6, 9, 12},
the broken curve eq. (3.11) with ¢® = 3.5. None gives a perfect fit (which
should not even be attempted—see appendix B), but all show the correct
trend, which is extrapolated in fig. 3.5 (eq. (3.9), C = 9). Remember that
O andfor C® are here the only free parameters.

3'4. Interpretation. — The present model does not try to explain how in
the central region a variation of the temperature can arise; it only asserts that,
if it is there, corresponding variations of (p (T)> and dN_/dy must occur.
When T— T,, then (p,> goes to a finite limit, while d¥_, /dy diverges; therefore,
the general shape of the curves is independent of detailed assumptions.

In more elaborate models with longitudinal collective motions [15] a variation
of the temperature is linked to the degree of thermalization reached locally; at

0.50 T T T T 7 T T T
e
0.461~ P
.
L —+ 4
0.42 ; chm3
i~ . 1 C(”=G
T L [/ cl=9 ]
e ¢ =12
N\
< 0.38— _
N [}
I ) -
1
I
0.34 [ -
]
I
1 -
]
0.30 ' | " ] 5 ] s | L
0 4 8 12 16 20

dN/dy

Fig. 3.4. — Mean transverse momentum {p,> as a function of the charged multiplicity
per unit rapidity. The four different curves are calcultaed from eq. (3.9) (upper full
curve 0¥ = 6, middle OV = 9, lower O™ = 12) and eq. (3.10) (broken curve (@ = 3.5).
The crosses represent experimental data [4].
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large impact parameters most of the incoming energy remains kinetic and the
temperature remains low, while small impact parameters lead to better ther-
malization and higher temperatures as well as larger multiplicities. Sorting
events with respect to multiplicities amounts grosso modo to sorting them
with respect to impact parameter and/or to temperature.

The shape of the curves in fig. 3.4 and 3.5 is closely linked to the phase
transition which the model predicts. Indeed, without the phase transition the
average cluster mass and volume would not diverge at a finite transition tem-
perature and {p,> as a function of dN _/dy would not level off. The observed
levelling has nothing to do with the kinematical limit which is still far away
at AN /dy ~ 20.

0.50 T rromy T T LSRRI T rrrIr

0.461+

o

™~

N
T

<{p, > (Gevc)
o

8

T

0.34~

0.30 12 sl L Lraeenl L1 el L1121

107 10° 10’ 10° 10°

dn/dy

Fig. 3.5. — Extrapolation of (py> to large multiplicities (eq. (3.9) with CW = 9.)
Crosses as in fig. 3.4.

The present interpretation is only superficially different from that recently
proposed by VAN Hove [29] insofar as we do not explicitly invoke a first-order
phase transition; however, the present model indeed strongly snggests that
the transition is of first order, because near to the critical eurve there is a region
of instability requiring a Maxwell construction [7, 8]; in the present paper,
this fact is disregarded, because it would rather strengthen than invalidate
our conclusions.

Our approach to the problem is, however, different from the one chosen by
BARrsHAY [30], which also reasonably reproduces the data, but does not prediet
{p{dN/dy)> to level off. Measurements extended to d¥/dy ~ 30 would already
decide between the two models.
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3'5. Comparison ISR/UA1. — In the introduction we have read off from
fig. 1.1 three intriguing facts:

i) at small multiplicities the {p,> of UAl drop below those of ISR;

ii) the strong variation of {p,> with dN/dY seen in UAl, which we
just have claimed to have explained, is almost absent in the ISR data;

iii} flattening of the {(p,> curves occurs at ISR at significantly lower
{py> than at UAL.

As decided in the introduction, we shall not worry about the first two points.
Physical arguments make them unlikely to be true; moreover, the analysis
given in appendix B shows that systematic errors might possibly explain
them altogether.

Whatever the possible systematic errors may be, it seems that for larger
multiplicities the ISR (p,> do flatten at a lower value than the UALl {(p,>.
This poses a problem for our model: if flattening is due to a phase transition
—vwhich would occur at a fized temperature (*)—,then the corresponding {p.,>
should be the same.

Might there be two consecutive phase transitions [32], the first at the tem-
perature corresponding t0 {p, >, the second at higher temperature correspond-
ing to {(py>y,,? Probably not, because, if at UAL the second has been reached,
the first must have been already passed over: one should see two flat regions,
the lower coinciding with that of ISR ; nothing of that sort is indicated by the
data.

Could it be that at ISR mainly pions are produced and at UA1 many heavier
particles (see fig. 2.1: heavier particles have, at the same 7, larger {p,>), so
that <poy.,> <Prowe! NO, because if the (p,> of the flat part do belong to
a fixed critical temperature, then the ratios of particle numbers for different
magses are determined by that same temperature, so that the (p,> should be
the same again.

We, therefore, should look for mechanisms which would make it possible
to push up {p,» with the collision energy without changing the critical tem-
perature T,. There are several possibilities.

a) High cluster spin. The qualitative explanation is simple: the two
incoming particles have an orbital angular momentum L, = p,b (b = impact
parameter). In an intermediate stage a number of clugters plus leading particles
appear which move with much less momentum and, therefore, smaller orbital
momenta L; which, in general, do not add up to L,. The difference L, — > L;=
= > 8; must then reappear in cluster spins. In any statistical-thermodynamical

(*) The differences between pp and pP collisions are irrelevant [31], since also for pp
the chemical potential u &~ 0 in the central y region.
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model with clusters, the latter do have spin; however, only as a statistical fluctua-
tion with <S> =0 and V{82 ~+/M/2m_; for such a gas of clusters our
{p(T)> holds. If, however, something forces the clusters to have systematically
{8) # 0, then one would expect another (p,>. Indeed, it has been known for
a long time [33] that the decay multiplicity n(M, S) decreases with growing §
for fixed M; consequently the mean kinetic energy and thus {p,> must grow.
A detailed analysis [34] shows that

under favourable production conditions the spins of clusters can grow
proportional to their mass;

momenta in the plane orthogonal to the spin axis are strongly enhanced,
while those parallel to the spin remain practically unchanged (intuitively obvious:
centrifugal forces);

in the spin-orthogonal plane the angular distribution in an event-by-event
analysis is—contrary to intuitive expectation—anisotropic and simulates a
two-jet structure.

The average initial orbital angular momentum L, is about 150 at ISR and
1500 at UAl; it seems conceivable that with a 10 times larger L, there will
be also more clusters with higher spins; this would automatically lead to larger
{pyy at UA1 than at ISR—although the temperature should be the same (it
might then be not a 0.190 GeV, but rather a 0.160 GeV; this latter value
was considered the most likely one some years ago, theoretically [35-37] and
experimentally [38, 39]).

b) Oollective transverse motion. The existence of such motions as well as
of shock waves has been made likely by hydrodynamical calculations [40-43]
in the case of heavy-ion collisions; it is not daring to conjecture their presence
also in pp and pp collisions, in particular if the system enters into the quark-
gluon phase and there expands. It is conceivable that such transverse motions
might become more violent with increasing collision energy and make <{p.>
larger at UAl than at ISR. Some remarks about the kinematics are found
in ref. [44].

¢) Influence of the high-p, tail. In appendix A we make a rough estimate
of how the large-p, tail of the p, distribution could influence {p,>. The estimate
assumes that the p, distribution can be approximated by a superposition of
decreasing exponentials, the first being fixed with a temperature ~ T, giving
the low-energy <{p,>, while the tail exponential has a « temperature » depending
on the collision energy. Assuming for the sake of illustration only two supor-
imposed exponentials (*), we find that at ISR the tail pushes {p,> by about
(2+-3)9%, while at UA1 it pushes {(p,> by about 159, (fig. A.4); this could
almost explain the difference.

(*) One needs three or more.
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Certainly all these mechanisms contribute to the difference in (p,> for ISR
and UAL and it will be very difficult to disentangle them. The point is, how-
ever, that they produce different (p.> without needing different temperatures.
Therefore, there seems to be no inconsistency.

4. — Beyond the phase transition,

Beyond the phase transition we enter into the quark-gluon plasma. In
the introduction we have claimed that the very large p, can be interpreted
as being due to particles escaping from the plasma before it cools down to
transition temperature and total hadronization.

Such a pieture is complementary, but not necessarily contradictory to QCD
hard secattering; in fact, it could possibly result from an average over many
hard-scattering processes. If it were true, it should be possible to calculate
the large-p, distribution from the properties of the quark-gluon plasma. We
do that now.

4°1. Energy density of a quark-gluon plasma. —In order to keep things simple,
we assume quarks and gluons to be noninteracting and massless. For such a
(black body) gas the Stefan-Boltzmann law reads (o, is the usual Stefan con-
stant; n*/156 for QED):

mt 7

(£.1) e = oy T4, Usz:%(gn‘;‘ ggF)y
where ¢, . = number of internal degrees of freedom of bosons and fermions,
respectively. We put g, = 8 (colour)-2 (helicity) = 16 (gluons), g, = 3 (colour)-
-2 (helicity) -3 (flavour)-2 (antiparticle) = 36 (quarks), where we took into ac-
count u, d and s quarks only. Thus

™

47 R

(1.2) G = 431(')" nt=156, T — (va) :

4'2. Energy density in a collision. — For an order-of-magnitude estimate it
suffices to assume that, in the overlap region of the colliding particles, matter
has essentially come to rest and most of the energy is thermalized. If AV is
the overlap volume and AF the energy contained therein, then from geometry
AV|Vy~ AE|E, where V, is about a nucleon volume and ¥ the c.m. energy.
Hence, independently of the impact parameter,

(4‘3) emax ~ E/Vo

is the order of magnitude of the maximal possible energy density in the overlap
region (we do not consider Lorentz-contracted volumes, since we assume matter
in AV to have come to rest).
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4'3. The maximal collision temperature. — With (4.3) and (4.2) we obtain

1\
4.4 Troae ~ Ei
(44) (O'cho)

a8 the maximal collision temperature, if in the overlap region a plasma is formed.
This is the upper limit of the temperature at the instant of collision at the
hottest points; subsequently the plasma expands and cools down until the
phase transition is reached. Particles escaping from the plasma should show a
P, distribution corresponding to a superposition of approximately termal dis-
tributions with temperatures ranging from 7' _ down to 7,. Therefore, the
largest p, might indeed measure 7', .

4'4. The tails of the p, distribution. — In fig. 4.1 we show p, distributions
as measured at ISR [45] and UA1L [4]. In order to eliminate the rising total
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Fig. 4.1. — Inclusive p,, distributions with 23 GeV << /s < 540 GeV. ISR [45] (= only):
e 23.5, a 30.6, ¢ 44.8, v 52.7, o 62.4; UAl[4] (all charged): * 540. The high-p,
tails are fitted by hand; for UA1 four lines are drawn to see how the temperature T
belonging to the slope varies within the experimental errors. It is possible without
forcing to draw the lines such that they meet in one point at p, = 0 lying by a factor
~ 600 below that where all curves converge (= 1 by definition).
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cross-section, we have normalized the curves to 1 at p, = 0. This has the re-
markable consequence that one can, within experimental errors, consider the
high-p, tails as straight lines meeting in one single point at p,=0. If we assume
that these tails belong to particles escaping near T, , this temperature can
be read off from the slopes. To see what the uncertainties are, we have made
a best eye fit to the ISR data and laid four straight lines through the UAl
data (shown in fig. 4.1). The ISR and UA1 data give in a In 7' vs. In E plot
a set of points with rather large errors, but compatible with s linear interpolation
(the errors are too large to allow more than that). Thus the data are compatible
with the law [46]

(4.5) T,.. ~aB.

ma,

The triples belonging to the four hand fits are

a 0.164 0.165 0.168 0.171
(4.50) b 1=1026 1} 0.25 |, 0.23 |, 0.21
T,., 0.842 0.795 0.714 0.641

These numbers reflect the uncertainties of the fits and, therefore, of our inter-
pretation.

4'5. Comparison with the quark-gluon plasma. — What should a and b be
for a quark gluon plasma? Equation (4.4) gives the answer: if quarks were
really massless (m < T), then b = 1. The values of b obtained from the data
lie indeed around that value.

With the preliminary assumption that V, is the ordinary nucleon volume
(4n/3) f* = 545 (GeV)~3, we obtain from eqs. (4.2) and (4.4)

1

(4.6) gs = (G lv ) — 0.104 [(GeV)]

also not much different from the experimental values.

We thus can state the remarkable fact that both, a and b, as calculated
from & massless quark-gluon plasma, are near to the corresponding values
deduced from the assumption that the physics behind the data is that of a
quark-gluon plasma.

That the relevant volume should be an ordinary nucleon volume is not
very likely: the violent shock of the collision will presumably do more than
concentrate the available energy AF in an unperturbed volume AV = AE-V,/H;
we rather expect that in addition the volume will be compressed to some smaller
value (in the Fermi and Landau models the assumed volume compression even
equals the Lorentz contraction before the collision). We can estimate by what
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amount the volume should have been compressed, if our interpretation of the
data were correct; for the effective interaction volume AV = AE-V, |E we
obtain from (4.5a) and (4.4)

Vv o 4
4.7) 0 :( expt ) = 6.2 to 7.3.
Vint aQG(VO)

Thus the compression factor is of order 6 to 7. This is considerably less than
the still often assumed Lorentz contraction, which would require a compression
factor y = 270 (at UAL); the energy density would be 270 times, the temperature
(270)* = 4 times larger: 3.2 GeV, in plain contradiction with the slopes of the
large-p, tails. Moreover, 7' should be proportional to v E instead to E* and
this contradicts the data from ISR to UAl. One can conclude that the data
—if our interpretation is correct—rule definitely out the old cherished «Lorentz-
contracted interaction volume ».

Whether our interpretation is correct or simply due to an accident is difficult
to say. What speaks in favour of it is the logical consistency of the whole pic-
ture: theory suggests the existence of a phase transition with a transition tem-
perature corresponding to the observed flattening of {p,> and a quark-gluon
plasma beyond with a temperature vs. energy relation corresponding to the
observed high-p, tails.

An analysis of experimental data leading to a clear distinction between
« pure » QCD hard-scattering processes and a statistical-thermodynamical back-
ground or to the result that the average over the pure QCD processes behaves
like coming from & plasma or simply disappears under the statistical-thermo-
dynamical background in ‘nclusive measurements—such an analysis is not yet
possible.

Probably statistical thermodynamics of the plasma and perturbative QCD
are complementary and compatible in a large overlap region, outside of which
each of them has its proper domain of validity (where the other fails): QCD
perturbative hard seattering for very-high-energy jets and the plasma descrip-
tion (with perturbative corrections [1, 2]) near to the transition region.

4°6. Further remarks. — The experimental data are compatible with the
interpretation that the high p, come from a quark-gluon plasma phase and
measure directly the highest temperature it has reached during the history
of a collision. It then would follow that this new phase had been entered already
at ISR energies.

The fact that the straight lines in fig. 4.1 can, without forcing them, be
drawn to meet in one single point is in itself interesting: it leads one to specu-
late that the ratio of the number of «leakage-from-the-plasma » events to that
of ordinary ones (hadronizing at T,) is approximately energy independent and
of the order of 1:600 (see fig. 4.1).



30 R. HAGEDORN

At low p, the UA1 distribution does not join the common straight line of
all ISR distributions. This has several reasons: the ISR data in fig. 4.1 refer
to n® only, while UAl registers all charged particles. Therefore, UA1l should
see systematically larger p, (and a somewhat larger slope) (see fig. 3.3b)) than
does ISR. Other reasons were discussed in subsect. 3'5; all of them conspire
to make p (UA1) > p (ISR) at all p_.

Our present interpretation does not claim originality; proposals to see in
large p, a signature of superheating at a phase transition [15] or of a new
phase of hadron matter actually having been reached have been made by
many authors [17-21].

5. — Conclusion.

Do we see the phase transition hadron — quark-gluon plasma (predicted
by so many models) at pp collider energies?

Yes; we even see it alrealy at ISR energies.

This conclusion might only be escaped if all speculations and calculations
about this phase transition and the use of statistical thermodynamics in this
context are sensecless and if the consistency (though not detailed agreement)
of their predictions with the experiment is due to some most unlikely accident.

The various distorting mechanisms entering between idealized thermody-
namics and real collisions may affect numerical values; they cannot invalidate
our conclusion.

% % ok

Discussions with M. FAESSLER and J. RAFELSKI were very helpful; the
latter drew my attention to the uncertainties in determining the experi-
mental {p.>.

APPENDIX A

Distorting mechanisms.

We have, in the course of this paper, mentioned several times the wide
gap between the idealized model of infinitely extended matter in equilibrium,
for which one can derive theoretical results, and the situation in a collision where
meagurements are possible. That these theoretical predictions could have
anything to do with quantities measurable in collisions is miraculous enough.
It becomes more so if one looks at some distorting mechanisms in more detail.
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A.l. Temperature distributions.

A.1.1 Primordial (due to velocity distributions). At all energies
one finds rather flat rapidity distributions with a half-width larger than half
the kinematic limit [47]. This proves that strong collective motions in the
forward-backward direction survive the collision and that only a fraction of
the totally available energy could have been thermalized. Therefore, a tem-
perature distribution results such that at ¥ ~ 0 we have T~ T,, while T=- 0
when [y = ¥uax &~ In (4/8/m). This distribution will be different for different
impact parameters b: in central collisions (b =~ 0) it will be flatter than in
peripheral collisions, where it will be peaked at y ~ 0.

A.1.2. Cooling. Particle emission and expansion will cause both, the
quark-gluon plasma and the hadron gas, to cool [6]. However, most particles
will be emitted during the hotter stages, because of the Boltzmann-type fac-
tors ~exp [—m/T] entering in production rates.

Al3. The temperature distribution and measurable values.
Let us combine all possible effects of this sort into a temperature distribution
function W(T'; E, C,, C,,...) which depends on the collision energy F and on
experimental control parameters C, C,, ... (e.g., acceptances, triggers, rapidity
regions ...), but which is otherwise averaged over all collisions fulfilling these
bias conditions at F; then, if X is a quantity whose expectation value (X (T))
can be calculated in the model at fized T, its experimental value will be (if the
model is correct)

(A1) (= [ W(T, B, ) (X(T)) AT
in particular for 7T itself

(A.2) (TS =fW(T, E,.)TdT
and then in general
(A'3) <X>expt# <X(<Texpt>)>

unless the control parameters C,, C,, ... were chosen such that W is strongly
peaked at some T (e.g., by selecting ly|<1, large multiplicities and/or heavy
particles).

A.2. Transverse collective motions. — Already discussed in subsect. 375.
Hydrodynamic calenlations [40-43] suggest nonnegligible transverse collective
motions, which ean broaden the local pr distribution. The calculations having
been done for heavy-ion collisions, little is known quantitatively about this
effect in pp and pp collisions.

Expansion will have very much the same effect, but here again little is known.

A.3. High cluster spin. — High cluster spin was already discussed in sub-
sect 3'5; signatures [34]: single events should show azimuthal anisotropy with
respect to the collision axis, large momenta and even a jet structure in and
near some plane containing the collision axis, small momenta orthogenal
to it. Averaged over events: an elongation of the p, distribution towards
larger p., hence larger pr or larger apparent temperatures.
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A4, Two-body decays. — Heavy eclusters do not explode at once inte final
particles, but disappear in steps along a decay chain, preferentially emitting
in each step one or two (*) low-mass particles (w, K, N°) with low kinetic energy
(of order T), so that in an average step the cluster mass decreases by only a
few hundred MeV [48]. As long as the cluster mass is large compared to the
emitted energy, the emitted particles have thermal distributions [37]. At the
end of the decay chain as well as in the subgequent decay of some emitted res-
onant states (g, », A,...) a two-body decay with sharp energy of the decay
products will take place. This two-body decay is far from being thermal;
what distorting effect will it have on the momentum distribution?

Let us assume the following situation: particles of mass m* are emitted
thermally with a Boltzmann distribution at temperature 7. Then these par-
ticles decay: m* — m, + m, with fixed m,, and, therefore, fixed momenta in
the rest frame of m*. What will be the averaged momentum distributions of m;,
and m, in the Lorentz frame where m* had a thermal distribution? This prob-
lem is analytically solvable (ref.[49], subsect 76, and ref. [15], appendix IV)
with the following results:

the speetral distributions of particles m, and m, will more or less differ
from a pure Boltzmann distribution;

it, therefore, is, strictly speaking, not possible to assign to them a temper-
ature; if one tries nevertheless by fitting them with a Boltzmann distribution,
the resulting effective temperature is different from the original T and depends
ol the fit criteria (least square, same (p), same position of maximum); in view
of the experimentally so easily accessible (p;> the most reasonable method
is a fit with a Boltzmann distribution having the same {p)> as the particle
considered. Our results below are computed this way.

T [ 1 l T l T I T
n
Q
)
-4
o
N
A
1 | 1 I 1 !
0 0.4 0.8 1.2 1.6 2.0
p (Gevje)

Fig. A.1. — The momentum distributions of the = and the N coming from the decay
A — 7+N when the A had a Boltzmann distribution with T = 0.150 GeV.

(*) Emission probabilities: P(1):P(2):P(3) = 0.69:0.24:0.06.
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Hzample: decay A(1.23 GeV) — N°(0.94) 4 7(0.14); the A follows a Boltz-
mann distribution with 7 = 0.150 GeV.

Figure A.1 shows the three distributions (A, N, ©) as a function of the mo-
mentum p. Of course, whas much lower and N slightly lower momentum than A
because of their masses. We now fit the curves for = and N of fig. A.1 with
a Boltzmann function having the same {(p) as the corresponding actual distri-
butions. For N this works perfectly (fit and original indistinguishable within
drawing accuracy; not shown here), T (N’) = 0.131 GeV independently of
the fit method; fig. A.2 shows that for the decay pion the «best Boltzmann »
curve deviates rather much from the original (different fit procedures give

T ‘ T ‘ T T T ! T
-"‘\'
q N
/ \
Y \
= \
© \
’ \
! 3
!
t v
\
! \
l N\,
1 \-\_
P T SR R LY
0 0.2 0.4 0.6 0.8 1.0
p (Gev/c)
Fig. A.2. — The n momentum spectrum of fig. A.1 (——) fitted with a Boltzmann
distribution (—+—-— ) requiring that <p>goitzmann sit = <P>r. While the A had a Boltzmann

spectrum with 7'= 0.150 GeV, the Boltzmann fit to the daughter pion is rather bad;
its temperature is 0.085 GeV.

visibly different results); the «same-{p) » method gives T.(m) = 0.085 GeV.
(Least square: T.u(m) = 0.091, «same maximum »: T(w) = 0.101, hence dif-
ferences of ~ 159%,.)

Of course, the pion with its smaller mass suffers more recoil than the nu-
cleon and shows a more distorted spectrum.

Table A.I displays two cases in which the deviations (visible in the disagree-
ment of the resulting T, from the three fits) of the spectra from thermal ones
are reflected and two others proving the method to yield correct results in
trivial cases.

The resuits in the last two lines are obvious: in line 3 nothing happens to the
particle of mass 2 and in line 4 the two particles of mass 0.5 did not receive
decay energy, hence they have a thermal spectrum with o= % Torzinam (the
small differences in T are due to our not having aimed at great numerical
precision). The first two lines illustrate that the decay recoil can lower as well
as increase the effective temperature; although in both cases the two daughter
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TaBLE A.L

Decay (*) Toriginns Lett Toys Test Remarks about
same same <{p> least square momentum spectrum
maximum

-0+ 0 0.150 0.034 0.082 0.063 far from thermal

2 ->0+0 0.190  0.500 0.386 0.440 far from thermal

2 —-240 0.190 0.190 0.189 0.187 exactly thermal (trivial)

1 -05+05 0190 0.095 0.095 0.094 exactly thermal (trivial)

(*) The numbers give the masses in GeV.

particles have zero mass, the effect is opposite in the two cases; the high T
in the second case is simply borrowed from the large parent mass. Since no
gencral rule (except for the unhandy analytic formulae [15]) can be given,
we have computed several realistic examples and obtained more or less satis-
factory Boltzmann fits (always «same {p) »).

The results for p - nw, A - (N=m and N'z) and m, — vy are summarized
in terms of effective temperatures as functions of the original temperature
T,igines @t which the parent particle was emitted () (fig. A.3). The broken
line T = T, illustrates well what distortions in eftective temperature
(determined from {pr>) we have to envisage from 2-body decays. As mentioned

0.24 T I T 1 T T 13 I T I ﬁ{ T
r o Teff=rorig'ma.l,—
0.20 / -
/ n(p—=mm) B
N(A—=N'1)
0.16 -
= L 4
$ 0.12
~, = 0 =
5 Y (—=yY)
- 4
—nt\)
0.081 A n he
0.04— -
1 t 1 1 I 1 1 | 1 | I 1 1
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28
T . (GeV)
original

Fig. A.3. — The effective temperatures 7', of the daughter particles in a few typical
decays plotted against the temperature belonging to the Boltzmann distribution of
the parent particle T, (from Boltzmann fit requiring <{p g, = <P originat)-

(*) The relation T, = HT peina» M*, My, My) is linear within drawing accuracy in
the region 0.1 GeV < 7 ,:,,,<0.2 GeV. As this is the only interesting region, we did
not try to find how T,; behaves outside it.
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above, such decays oceur mostly at the end of decay chains and occasionally
if a cluster emits a resonance which dominatingly decays into two stable par-
ticles. Thus in very-high-energy collisions the contribution of genuine 2-body
decays may be small and the distortion too; its general trend will be to lower
the apparent temperature.

A.b. Contributions from the quark gluon phase. — We have stated that fig. 4.1
suggests that about once in 600 ordinary events (hadronization at the phase
transition) a leakage from the quark gluon plasma oceurs; from ISR to UAl
this fraction does not much depend on the collision energy. What then is the
influence on <{p;y from the tails? Assume for simplicity that the distribution
is given by the sum of the ordinary plus a leakage contribution and that, there-
fore (neglecting for this order-of-magnitude estimate the influence of masses),

d(dN/dy)

A4 hk bl - 2 AP - ‘ - L
( ) 2mp, dp, Aiwexp [ p_L/Tlow] + Apien €XP [— P/ Thien)
Then

1 Aig Aow Tig T°w3

(A.5) P =LPLww + Auien/ Aiow) (L) Trox)

1 + (Agigh/Alow) (Thigh/Tlow)2 )

With Apm/A..= 1/600 we obtain for the correction factor the values displayed
in fig. A.4; for UA1l this amounts to an increase by ~ 159%,, while for ISR it

2.0

7high/r

Low

Fig. A.4. —~ This figure illustrates that the {p,> resulting from the superposition
f(pr) = Ao €XD [— P2/ Tioq] + Apign €XP [ P/ Thignl is even for Ay, < Ay, (here 1:600)
substantially larger than the {py>,, resulting from the low-T component alone. This
effect would amount to an increase of 1 to 3% at ISR and ~ 159, at the Collider.
Though it contains few particles, the large-py tail does influence {p;> significantly.
Our figure gives a lower limit.
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remains of the order of 1 to 39,. Thus the influence of the tail alone can raise
the {pr> from = 0.40 GeV/je at ISR to &~ 0.46 GeV/c at UA1l; this effect
almost explains the difference in the limiting values of (pr» for large multi-
plicities in the two cxperiments.

This is, however, a qualitative statement, because in reality one needs at
least a superposition of three exponentials (*) to fit the experimental p, distri-
butions including the tails. Also, as shown in appendix B, exp [— po/T] i8
not a very good ansatz for determining (pr>; in this estimate, however, a good
part of the latter error cancels on both sides in eq. (A.5).

A.6. Imperfect equilibrium even locally. — This is very difficult to estimate;
should it happen that hadron matter in very-high-energy collisions is always
very far fromlocal equilibrium, our whole method would become inapplicable (**).
That it nevertheless gives reasonable results can be taken as an indication that
local equilibrium is more or less reached. Still, one has to distinguish between
kinetic and chemical equilibrium, the approach to the latter depending on in-
dividual ecoupling strength andjor cross-sections[28]. It can happen that it
makes sense to speak of a local temperature, but that ratios of particle
numbers for different species are still faxr from their equilibrium values at that
temperature.

A7, Summary of distortive mechanisms. — The various effects discussed
{(with the exception of the last, which is beyond control) may partly com-
pensate each other. We put them together in table A.1I, which may explain

TasrLe A.IL

Effect on apparent temperature Toti> Tongina T o< Tiriginat

temperature distribution due to no yes
collective motion and cooling

transverse collective motion depends on kinematics
cluster spin yes no
2-body decay yes at low Tna yes at high T, m

leakage from the yes no
quark-gluon phase

why the experimental values for 7, given in the literature vary between
0.14 GeV and 0.20 GeV.

It must be stressed that none of the mentioned distorting mechanisms could
possibly simulate a phase transition when it was not there, nor could they
hide it, if it is there.

(*) Cooling; see subsect. 4°5.
(**) Even nonequilibrium statistical thermodynamics would then not help, because it
uses the concept of local temperature.



MULTIPLICITIES, P, DISTRIBUTIONS ETC. 37

APPENDIX B

Difficulties in determining p..

In high-energy hadron physics the p, distribution is strongly decreasing:
for py up to about (1-2) GeV/c nearly exponentially and then like a high power
of 1/py (or as a superposition of exponentials with smaller 1/T). It is, there-
fore, obvious that the region of small p; contributes dominantly to {pr>; as
the current (py> are of order 0.5 GeV/c, the region below 0.5 GeV/c gives the
main contributions. Unfortunately, it is difficult to measure p, down fo zero
in very-high-energy experiments. Therefore, there are often cuts in the data
excluding all p, below, say, 0.15 to 0.3 GeV/c (that is, excluding the most
important part contributing to {pry). It is then customary to fit the meas-
urable p; distribution—often over a very large region up to several GeV/je—
with some function, which then, if the fit is good, is extrapolated to zero and
{ppy computed from it. Such a procedure appears reagsonable if looked at in
a logarithmic plot, but it may induce considerable errors, because the usually
taken fit functions (looking so nice over large intervals) happen to fail seriously
just in the region into which they are extrapolated and which is the most
important one for (pry: namely, below 0.3 to 0.5 GeV/c, where, as we shall
see, the (most likely) true distributions have a Gaussian shape which is not
reproduced by most fit functions.

The aim of this appendix is to illustrate what are the systematic errors
possibly introduced by computing {pyp from these fits. While we shall show
as examples the distributions for the mw, K and N’ mass, the experimental
situation is most often such that the p, distribution is measured for a mixture
of unidentified particles. We, therefore, give also such an example where
n-+K+N are superimposed. Finally, we show the dangers in using a nice-
looking semi-empirieal formula.

B.1. The most likely true distributions at low py and their corresponding
{py>. - The elaim of all statistical models (whatever their degree of sophistica-
tion) that below p. ~ 1 GeV/c the inclusive pp distribution should be roughly
thermal has never been falsified; at lower energies it has been explicitly con-
firmed; it has even been shown that pions obey a Bose-Einstein-Planck distri-
bution [50, 51]. We cannot reasonably doubt that this will remain true at ISR
and collider energies, where with the higher energy density the number of degrees
of freedom increases and, therefore, the thermodynamical description should
become still more adequate.

In this appendix, we, therefore, assume that the py distribution below
pr~1GeV/c is thermal. This is a safe assumption in the central rapidity region
(—1<y<1); it might be true even up to the ends.

From an isotropic thermal distribution of particles with mass m at tem-
perature 7T, one derives by integrating over an arbitrary «longitudinal »
direction [23, 24] the p; distribution

@ 2 2
(B.1)  W(p,)dp, = const-dp, p, Vp?: + m* > (F 1)"+1K1(n mf_l——%) R
n=1

where {F 1} <> {fermions/bosons}.
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This formula remains unchanged if collective motions in only one direction
(« longitudinal ») exist and when T does not (or very little) depend on the lon-
gitudinal velocity [23], as is indeed the case over large parts of the rapidity
distribution (see subsect. 1'2). We thus have good reasons to assume this
formula to be true for most particles produced.

Note that W(pg) is defined above such that

(B.2) fW(pl) dp, ~ number of particles

that is, the phase-space factor 2ap, is absorbed into W{p,). We rewrite (B.1)
to conform with the currently used notation. Using

dsg d3c
B.3 F—=p—" "
( ) d_p3 E2ﬂpi_dp_].dp"

and introducing the rapidity y
P = \/]—)T—I—vﬁz sinh v,
(B.4) E =Vp?: + m?coshy,
E*=pi + pi +m,
we find dp, = Edy, so that

_ d3o 1 d(d¥N/dy)
B. = . ik S - 4
(B.5) ¥ ap? const Smp, ap,

with dN/dy being the total multiplicity per unit rapidity of the species (mass m)
considered. Normalization does not interest here, hence

3
1 W:const-m:constEE:
onp,  dp, A dp?

(B.6)

= const- Vp? 4 m? i (F 1)~ K, (n\%ﬂ)

n=1

From this the mean p; becomes

fp. (U(AN/dy)/2xp, dp,)2xap, dp,
B.7 ,T)> = X
1) @l 10> = T (AN jay) 27 L 0p, ) 2up , O,

The integrations can be done with the result [23, 24]

(F 1) Kyg(n(m/T))

(B38) P, D) g = |2

Bose 2

Ms[iMs

(F 1)"+1K2(’”'(m/T))

[
-

n
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Equations (B.6), (B.8) are the official, model-independent expressions for the
P distribution and for (pr> when thermalization at fixed temperature 7T is as-
sumed. Models differ by using different equations of state, i.e. relations between
energy density, temperature and chemical potential(s).

B.2. Comparison to two approximations. — We now compare these exact
formulae numerically with two frequently used approximations:

(B.9 d(dN/dy) {exp [—»./T],
-9) 27p  dp, - exp [_ \/pi + mz/T] )

in the case of Bose, Boltzmann (r» =1 in (B.6), (B.8)) and Fermi statistics
at several mass values (though to each mass belongs a definite quantum sta-
tistics, we compare with all; e.g., for fake n fermions). Note that the second
choice of (B.9) really covers also the first; in fact,

~ exp [— p} [2mT] for p, <m,

(B.10) exp [—Vp] + m*/T] {Nexp [— p,/T] for p, >m,

thus it also covers the sometimes used Gaussian approximation. Indeed, if one
neglects quantum statistics (Bose, Fermi) and assumes that m/T>1, then

from K(w)~\/n/2w exp [—«] (#>1) it follows that eq. (B.6) becomes [23]

d(dN/dy) —
B.11 —— 1 o const-(p? + mP)texp [—VpE + m/T
( ) o, dp, mirs (p1 + ) P [ pi+ / ] )
— 1'0 T ] T I L4 I T l L
< 5
s [ -
ER e
3 \ exp|-p
3 0.8~ 4 -1
S \,/
(%
3 L\ _
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Fig. B.1. — Thermal p, distributions (of w). The three exact curves (Bose, Boltzmann,
Fermi) are compared to exp [—+/p% + m/T] and exp [—py/T] for m=my; T=0.167 GeV,
over a small p; interval in a linear plot.
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where, of course, the exponential is the most varying part. We conclude from
(B.11) that, if drastic approzimations must be made, exp [—Vp& -+ m*[T] not
only covers the Gaussian and the linear exponential, it also is the physically best
motivated one [52]. If only pr but no masses are measured, one might take m
and 7T as fit parameters and will, up to py~ 1 GeV, obtain something much
better than with either Gaussian or linear exponential fits (*).

Our comparisons are made at T = 0.167 GeV.

Figures B.1 and B.2 show the distributions at the pion mass; once linearly
over asmallintervaland once logarithmically over a larger one; the second figure
shall only illustrate how misleadingly nice things can look in a logarithmic scale.
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Fig. B.2. — The same p, distribution (of =) as fig. B.1, but over a large p, interval
in a logarithmic plot. The enormous differences in the most important low-p; region
are less exhibited than in fig. B.1.

For the nucleon mass (fig. B.3 and B.4), the effect of quantum statistics
is negligible, but exp [— py/T] is really bad.
Next, we compare the {p,> values following from these approximations:

exact: (eq. B.8);
. . ]/an Ky(m|T)
B2 Boltzmann: po = 5 _—Kz(m/T) ;
exp [—p [T]: po =2T;
S T K,(m/|T
exp [—Vpi 4 m*T]: (p> = Vﬂ;— f;:i—;,_p; :

(*y I have been trying to progapate this simple consideration for about 15 years;
it seems to be in vain.
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Fig. B.3. — p, distributions as in fig. B.1, but for the nucleon. With the larger nucleon
mass the differences between the exact and approximate formulae are more pronounced ;
statistics, however, is unimportant.
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Fig. B.4. — p, distributions as in fig. B.2, but for the nucleon. With the larger nucleon
mass the differences between the exact and approximate formulae survive in the log-

arithmic plot over a large interval: statistics, however, is unimportant.
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Consider first the limiting cases m/T — 0, co:

m|{T —0
3w, L) [2—1v2] , [2.483
Pomemy > 7T L)1 1 =Ty 991"
(B.13) (B moenen = S T = 2,356
<p_L>exn[—m_L/T1 = <p_L>exp[—'\/p1+m’/T] =2T .

For m —0, the last two members of eq. (B.12) must obviously become equal.
m|T — oo
amT
<pJ__>exact:> <p_]_>Boltzmann = <p_l_>exp[..'\/pl+m’ll'] = T 3
(B.14)

<p_L>exp[—°1)J_/T] = 27,

We show the distributions (B.12) in the most usual temperature interval
0.1 GeV<T<0.2GeV in fig. B.5-B.7.

The lesson from these figures is that statistics is still important for (p>x,
while for K and N it may be safely neglected. In all cases exp [—Vp& 4 m?/T]
induces an underestimate of {p;> by 4 to 7%, while exp [—py/T] leads to values
too low by 12 to 459,. Thus the latter should really never be used for extra-
polations aiming at determining {p¢>.

0.60 T T T T T T T T T
(Fermi)
0.50
(Boltzmann)
—_ -
§ 0.40H e
é .
AN . N -1
- - i
Q - .
N 0.30 Lt L~ .
L e
- \\
. L~ 7. 3 _
— .~ exp[—-\/pL+m /T]
0.20 — —
exp[ pilf]
L 1 A 1 i 1 1 | !
0.10 0.12 0.14 0.16 0.18 0.20
T (GeV)

Fig. B.5. — Mean transverse momenta computed from exact (B.8) and approximate
formulae (B.12) for =; exp [— p,/T] gives inacceptably bad estimates of <{p;>.
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Fig. B.6. — Mean transverse momenta computed from exact (B.8) and approximate
formulae (B.12) for K. Already for K statistics is a 19, effect; exp [— pp/T] gives
inacceptably bad estimates of {pg)>.
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Fig. B.7. — Same as fig. B.5 and B.6, but for N.
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Next, we compare exp [— pr/T] to a reasonably realistic superposition
n+K-+N. While in the previous examples we have compared the «true»
and approximate distributions at the same T, we now change the philosophy:

we caleulate from the exact eq. (B.6) a superposition of 809 = 4
+15% K +5%N at T = 0.15 GeV and assume this distribution to be a
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realistic one up to p,= 1.5 GeV/jc. We give this «fake experimental» dis-
tribution to someone to fit it with A exp[— p,/T] over various intervals
{pr cuts) with 4 and 7 as free parameters and see what happens.

Fit 1: 0 GeV/je<py<1.5GeV/je, no cut,
fit 2: 0.3 GeV/e<pr<1.5GeV/e, lower cut,
fit 3: 0.3 GeV/je<py< GeVle, lower and upper cub;

the lower cut is not unusual [4]in high-energy experiments; the upper one might
have been motivated by trying to avoid the influence of the large-py component.
The belief in exp [— pr/T] as a good representation of data is, of course, due to
usually plotting p, distributions logarithmically over a large pr range and cut-
ting them below (0.1 to 0.3 GeV/e). Then they look indeed sunitable for such a
procedure. Moreover, this optical illusion may seduce one to fit the logarithm
of the distribution with @ 4~ bpy. This is what we have done in this example,
whose result is displayed in fig. B.8 (fit 1), B.9 (fit 2) and B.10 (fit 3); to

log (cL(oLN/oLy)/2n'pl dp )(arbitrary normatization)

7 fit region —
—9 -
-1 L | H L | 1
0 0.4 0.8 1.2 1.6
p, (Gevk)

Fig. B.8. — The full line represents a «fake experimental » distribution: superposition
of 80% m + 15% K + 5% N with 7 = 0.15 GeV computed from the exact formula
(B.6); the broken line is a best fit to the logarithm with a -+ bpy in the region
0 GeV <pr<1.5 GeV/e (fit 1).

see how good the fits look, one should cover in fig. B.9, B.10 the excluded part
with a strip of paper. How bad it really is if used as an extrapolation to de-
termine {ppy is shown in a linear plot in fig. B.11. Depending on the fit region
we obtain different estimates of 7 and {(pry as listed in table B.I.

All {pg>us are too low by about 109,, while differing among each other
by ~ 39%; the temperature is estimated too high by 10 to 15%.
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Fit 2 looks much better than fit 1, provided one regards only the fit interval.
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Fig. B.9. — The same as fig. B.8 but with a different fit interval: 0.3<p, < 1.5
Fig. B.11. — Same as fig. B.10 but in a linear plot; if only the fit region is considered

even here the fit is perfect. If used for computing {p,> it would, however, give a bad

pr< 0.3 GeV/c unknown; cover the regions outside the fit interval with a piece of paper).
result, as obvious from the shaded part.

Fig. B.10. — The same as fig. B.8 but with a different fit interval: 0.3 <p, <1 (fit 3).
Fit 3 is almost perfect, provided one regards only the fit interval (assume data for

MULTIPLICITIES, Py DISTRIBUTIONS ETC.

(fit 2).
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TasLE B.I. — Fit of a «fake experimental» py distribution with exp [— py/T].

Fit region T Py « true values»
fit 1

0 <pp<Ll.5 0.171 0.342

fit 2 T = 0.150
0.3<pr<15 0.166 0.333 {ppy = 0.378
fit 3

0.3 < pp<1 0.171 0.34

B.3. An empirical formula inspired by QCD. — The previous examples were
restricted to p,<1.5 GeV/e. This is the main region contributing to {pr).

We know, however, that above 1.5 GeV/e the distribution becomes flatter
due to the large pr which may push up {pr> by order of 109, (appendix A.5).
It is then tempting to try to fit the whole distribution (which may have a cut
at low pr) with one single expression inspired by QCD; for instance with

. d3e d(dN/dy) Do "
(B.15) B — =const-———— = A|{——
dp? 27p, dp, P+ 2’

which—over a large p; interval 0.3 GeV/c<py<10 GeV/c and plotted logarith-
mically—gives indeed an impressive fit (see fig. 1.3) [4], seducing one to com-
pute also {pry from it. This will induce again systematic errors of the order
of 10 % and more. Indeed, for p;, —0, oo, we have

n n
1——pL~exp[—;pL] for p, -0,
(B.16) ( Do ) Po ’

P+ Do (po)"

for p, > o00.
1

Just in the most important small-p, region, this distribution approaches the
simple exponential with all its disadvantages (table B.I).

Thus in spite of the impressive fit, which now includes the large py, the
astimate of (pyy coming from it

_ J(Pol(p L+ o)) Pl dp _2po
(B-17) Pw = f(po/(pijL po))"pldpj T n—3’

will be ~10 9%, too low—an error of the order of the ISR/UAL discrepancy at
low multiplicities (fig. 1.1).

The semi-empirical distribution (B.13) suffers, however, from a further,
equally important disease: its nonuniqueness. Indeed, the «same» curve
(within about experimental errors) ecan be obtained with rather different pa-
rameters yielding {p,> differing by up to 10 9%,. This is illustrated in the fol-
lowing example: we draw the three curves listed in table B.IT and plotted in
fig. B.12.
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TaBLE B.IL. — Three curves of the type (po/(py+ Pr))"

Do n {px> = 2pof/(n — 3)
(GeV/e) (GeV/e)

1.0 8 0.400

1.3 9 0.433

1.6 10 0.457

The lesson is that eq. (B.15) is unsuitable for determining {p,> from the
data, because its inherent nonuniqueness as well as its failing at low py in-
troduce errors of the order of 109, which may compensate, or add up to 209,.

10 - -1
107 -
L 1 | L Ly 1 1
0 2 4 6 10
p, {Gevjc)

Fig. B.12. — The essential nonuniqueness of fits with (py/(p, +- pr))*. The three curves
belong to three different sets of parameters

=1

and deviate from each other by about typical experimental errors. Yet they give
{pr> = 0.400, 0.433, 0.457 GeV/c (mainly due to their different slopes at pp = 0).
To this adds the error common to all fits approaching an exponential at pp— 0. (See
fig. B.11 and table B.L.)

B.4. A better fit method for finding {pyy>. — Neither the thermodynamic
formula (B.6) nor the power law (B.15) can be used to determine {(pr)y, because
the first does not reproduce the tail at large p, (which can contribute ~ 159,
to (pry, see subsect. A.5), while the second fails to account for the flattening
at pr=0 (whereby {p,> may be underestimated by = 109%). As, however,
their ranges of validity seem to overlap in the region 0.5 to 1 GeV/c, one might
expect a good fit over all p, with a suitable combination of the two; {py> cal-
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culated from this would be a safe estimate including the influence of the large pq
as well as that of the Gaussian-type flattening at pp= 0.
T propose the following method:

find N.:Ng:Ny:Ny from experiment or by extrapolation or from a
model; a rough guess is sufficient;

fit the experimental distribution with

— lmax '\/—2—‘>2
(B.18) f(m):=A-0(p1*m){ > NVplmi Y (T 1)’“K1(l L+mz)}+

1=T,K... i=1 T

P \*
B —p)——
+ Bi(p, p)(zu+po) )

fermions

bosons |’
where the N, are given and where the switching point p, may be chosen any-
where between 0.5 and 1 GeV/e (as seen from fig. B.9-B.11, the fit should not
significantly depend on this choice), while the fit parameters are A, B, T, p,
and n. One then requires that at p, values and slopes of the two functions should
match, which leaves one with only 3 free parameters, say A, T, n. This method
should suffer little from the nonuniqueness encountered with the power
fit (B.15) (fig. B.12 and table B.II), since 7 would essentially depend on the
thermal part, # on the tail and A on the overall normalization.

The sum over ! (coming from Bose/Fermi statistics) can be cut off at
lnax = 10 for pions, at b for kaons and at 1 for nucleons and hyperons (see
fig. B.1, B.4). The whole procedure would, even on a small computer, take
not much more time that the fit with eq. {B.15) alone; it would, however, give
a much safer estimate of (pr> in all cases where a lower cut in the data makes
its direct determination impossible.

T suspect that, if the collider and ISR data are analysed with this method,

the apparent inconsistency visible in fig. 1.1 will be reduced (if it will not
disappear altogether).

fl

6(x) is the usual step function, (& 1)
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