
Annals of Operations Research 5(1985/6)485 500 485

NLPQL: A FORTRAN SUBROUTINE SOLVING CONSTRAINED
NONLINEAR PROGRAMMING PROBLEMS

K. SCHITTKOWSKI

Insti tut fiir Informatik,
West Germany

Universitat Stuttgart, Azenbergstrasse 12, D-7000 Stuttgart 1,

Abstract

NLPQL is a FORTRAN implementation of a sequential quadratic programming
method for solving nonlinearly constrained optimization problems with differentiable
objective and constraint functions. At each iteration, the search direction is the
solution of a quadratic programming subproblem. This paper discusses the organiza-
tion of NLPQL, including the formulation of the subproblem and the information
that must be provided by a user. A summary is given of the performance of different
algorithmic options of NLPQL on a collection of test problems (115 hand-selected
or application problems, 320 randomly generated problems). The performance of
NLPQL is compared with that of some other available codes.

Keywords and phrases

Nonlinear programming, sequential
implementation, test results.

quadratic programming method, numerical

. Introduction

The code NLPQL was designed to solve the constrained nonlinear programming

problem

min f (x)

gi(x) = O,] '= 1 , . . . , m e ,
x @ Rn:

gi(x) ~ O, / = m e + 1 m ,

x~ <~ x <~ x u .

�9 J.C. Baltzer A.G., Scientific Publishing Company

(1)

486 K. Sch i t t kowsk i , N L P Q L : A F O R T R A N subrout ine

The optimization method generates a sequence of quadratic programming subproblems
which are to be solved successively. The algorithm is therefore known as the sequential
quadratic programming (SQP) method. The theoretical details and some convergence
results are found in Schittkowski [28]. Its domain of application is determined by the
following assumptions:

(a) The problem is smooth: The problem functions are continuously differen-
tiable on the set E = { x E R n " x~ <~ x <~ x u }. Note that the functions f and g],

j = 1 m, need to be defined only on the set E, since the iterates computed by the
algorithm will never violate the lower and upper bounds.

(b) The problem is small: The problem size depends on hardware facilities, e.g.
storage capacity, and on the capability of the quadratic programming routine to solve
large problems. NLPQL was tested extensively on problems with up to 100 variables.

A rough outline of the method is given in sect. 2, to convey the underlying
mathematical ideas and the usage of program modules which could be modified or
replaced by a user. The organization of the program package is outlined in sect. 3,
together with some implementation details. To facilitate the solution of a nonlinear
programming problem of the form (1), easy-to.use versions are supplied either in the
form of a main program or a subroutine. The standard problem-adaptable subroutine
NLPQL1 contains additional features to alter default parameters or to fit the code into
an existing system, e.g. by reverse communication. The program has been tested on
about 700 test problems, in particular in the framework of the comparative studies of
Hock and Schittkowski [15] and Schittkowski [26]. The test problems are either
randomly generated with predetermined solution characteristics or gathered from the
literature, cf. Hock and Schittkowski [15] and Schittkowski [26,30]. A few numeric-
al results are presented in sect. 4 to show the dependence of the performance on the
choice of some program modules. Moreover, the efficiency and reliability of NLPQL
are compared with those of some other available nonlinear programming codes. The
results are found in sect. 5.

The detailed usage of NLPQL is described in the user's guide (see Schittkowski
[29]). The code is distributed upon request and has been used to solve practical
nonlinear programming problems in many engineering and natural science areas. Most
of the application problems come from mechanical engineering, particularly from
structural optimization.

2. The sequent ia l quadra t ic p r o g r a m m i n g a lgor i thm

Sequential quadratic programming methods for nonlinearly constrained opti-
mization were developed mainly by Han [12,13] and Powell [20,21], based on the
initial work of Wilson [31]. The principal idea is the formulation of a specific quad-
ratic programming subproblem. Let xg be a current iterate, o k an approximation of the

K. Schi t tkowski , NLPQL : A F O R T R A N subroutine 487

optimal Lagrange multipliers, and B k a positive definite approximation of the Hessian
matrix of the Lagrangian function

m ~

L(x,u) : = [(x) - Z ujgi(x), (2)

j = l

where x E R n, u = (u I urn,) r E 1t m'. Here we set m' := m + 2n, and define the
bound constraints "x~ ~ x <<. x u" by some functions gm+ 1 (x) , . . . ,gin' (x) to simplify
the notation. More precisely, we let

g /x) := xu-m) _ x~J-m~ j = m + 1 , . . . , m + n ,

gj (x) := x (j - m - n) - x (~-m-n) j = m + n + 1, m '

where the right-hand sides include the components of x, x~, and Xu, respectively.
By linearizing the nonlinear constraints of (1) and minimizing a quadratic approxima-
tion of the Lagrangian function (2), we obtain a subproblem of the form

min } d T B g d + V f (X k) T d

V g j (x k) T d + g/(Xk) = O, j = 1 m e ,
d E R n . (3)

g](x gi(x + 1 . . , m , V k) T d + g) >t O, / = m e , .

x• - x k<~ d<~ x u - x k .

Let d k be the solution of (3) and Ug the corresponding vector of Lagrange multipliers
of the quadratic programming problem. Then a new iterate is determined by

xk. t = x k + o~ k d g , (4)

where % is a line search or steplength parameter. % is designed to produce a sufficient
decrease of a merit function

~k(Ot) := ~llrk ((X k)
O k

(')) + a . (5)
U k -- O k

488 K. Schittkowski, NLPQL : A FOR T R A N subroutine

Since the line search may depend on the approximation v k of the optimal Lagrange
multipliers of (1), we update v k simultaneously by

vk + t := ok + ak (uk - v~) . (6)

In (5), r k is a vector of penalty parameters and controls the degree of penalizing the
objective or Lagrangian function when leaving the feasible region. Possible merit
functions are the L 1 -exact penalty function

m e m I

$r(x,v):= f(x) + Z r.lgi(x)l + Z ~Imin(O, gj(x))l (7)
]= 1 J=me+l

used by Han [13] (see also Powell [20]), and the augmented Lagrangian function

6 (x, v) : = / (x) -

m e

Z -

j=l

m' I (vjgj(x) - l~)gl(x)2), if gs(x) < 0/5.,
Z I 1 2

j = me+ 1 ~-O~/r., otherwise, (8)

proposed by Schittkowski [27,28]. The penalty parameter r k is updated by a suitable
rule to guarantee a descent direction d k with respect to the chosen merit function.

However, we can not always implement the quadratic programming sub-
problem (3) as it stands. It is possible that the feasible region of (3) will be empty
although the original problem (1) is solvable. The second drawback is the recalculation
of gradients of all constraints at each iteration, although some of them might be in-
active at an optimal solution, i.e. locally redundant. To avoid both disadvantages, an
additional variable 8 and an active set strategy are introduced, leading to the modified
subproblem

min l d T B k d + f (x k) T d + l p k 6 2

d E ~ n , V g j (x k) T d + (1 - - 6) g j (x k) { ~ } O' j E 4 ,

5 E R Vg j (xk (/)) rd+g / (xk) >i O,] E K k , (9)

x~ - x k <~ d K x u - x k ,

0 ~ 8 < 1,

K. Schi t tkowskL NLPQL : A F O R T R A N subroutine 489

where

4 := {1,. . . ,me} U{J'me<J<.m, gi(xk)<~e or v{k)> O} /

K k : = { 1 , . . . , m } \ J k .

Here w e have o k = (o~ k), . . . , O(mk,)) T and e is a user-provided tolerance. The index
" k (j) " indicates gradients which have been calculated in previous iterations. The
term & is an additional penalty parameter designed to reduce the influence of 8 on a
solution of (9). It is easy to see that the point d o = 0, 8 o = 1 satisfies the constraints
of (9) and can also be used as a feasible starting point for a quadratic programming
algorithm.

As an alternative to (9), a linear least-squares subproblem can be formulated
by exploiting the factorization

B k = L k D k L [(10)

with a lower triangular matrix Lg and a diagonal matrix D k . The resulting linear least-
squares problem then contains a triangular matrix in the objective function and is
easily transformed into a least-distance problem, for which efficient algorithms are
available. The LDL factors of B k can be updated with about the same computational
effort as the original matrix Bg, cf. for example Gill et al. [8].

The matrix Bg is to be a positive definite approximation for the Hessian
matrix of the Lagrangian function (2). B k can be updated by standard quasi-Newton
techniques from unconstrained optimization. The BFGS formula is certainly the
most popular one, and is implemented in NLPQL together with a modification pro-
posed by Powell [20] to guarantee positive definite matrices.

The algorithm contains some additional features to overcome certain error
situations and is completely described in Schittkowski [28]. Under some mild assump-
tions, it can be shown that the algorithm converges globally, i.e. starting from an
arbitrary initial point, at least one accumulation point of the iterates will satisfy the
K u h n - T u c k e r optimality conditions. This result was proved for the augmented
Lagrangian merit function (8). But for the L 1-merit function (7), a similar result
can be achieved only under more stringent assumptions, e.g. that the penalty para-
meters are constant and sufficiently large. If the steplength is one in the neighbourhood
of an optimal solution, then the algorithm is identical with the method investigated by
Han [12] and by Powell [21]. Under different assumptions, they proved local super-
linear convergence of the SQP method, which provides a theoretical justification for
the fast final convergence speed we observe in practice.

490 K. Schittkowski, NLPQL : A FOR TRAN subroutine

3. Program organization and implementation details

The sequential quadratic programming algorithm described above has been
implemented by the author and is distributed upon request. The program package
does not contain a subroutine for solving the quadratic programming, or optionally
linear least-squares, subproblem. The intention is that a user should utilize a library
program or should obtain any available program, e.g. the quadratic programming
codes QPSOL by Gill et al. [10], ZQPCVX by Powell [23], CONQUA and START
by Kribbe [16], or the linear least-squares codes NNLS by Lawson and Hanson [18]
and LCLSQ by Crane et al. [3].

The organization of the program package is explained by fig. 1, which also
shows the program modules which have to be supplied by the user or which can be

main progra~

I

T

1 GRAD

i

I
I

I I MERIT

Easy-to-use main program, data

read in

Easy-to-use subroutine

Standard version

Realization of the algorithm

Calculation of problem functions

Calculation of gradients

Solution of the subproblem

Evaluation of merit function

I LINSEA Steplength calculation

Fig. 1. Organization of the program package.

exchanged either to improve the submitted version or to test a specific module. To
become familiar with the code, it is recommended that one first executes the easy.to-

K. Schittkowski, NLPQL : A FOR TRAN subroutine 491

use version, either in the form of a main program or subroutine. Only the problem
dimension, number of constraints, desired output information, the bounds x~ and Xu,
a starting value Xo, and a subroutine evaluating the problem functions have to be
supplied by a user. All other decisions are predetermined by default values. If, however,
this approach fails and some algorithmic parameters are to be changed, or if the user
wants to have more influence on the solution process, the standard subroutine NLPQL1
can be executed. Here, additional input information about the problem can be provided,
an automatic scaling procedure applied, or reverse communication performed. Sub-
routine FUNC has to be defined by the user to calculate the problem functions. If
analytical differentiation is to be performed, subroutine GRAD must also be imple-
mented by the user. As mentioned before, any quadratic programming or linear least-
squares program can be used to solve the subproblem defined in sect. 2. To link this
specific code with the nonlinear programming algorithm, it must be implemented in
a special way, i.e. within a subroutine with the name QL and a fixed, predetermined
calling sequence. The set of active constraints and the function or gradient values of
the merit function (5) are calculated by a subroutine with the name MERIT. The
program package contains a realization of the augmented Lagrangian function (8),
but it could be replaced by any other merit function, e.g. the L 1 -exact penalty func-
tion (7). Finally a user may influence the line search procedure, which is performed
in a subroutine with the name LINSEA. The program package offers a simple Armijo-
type bisection method combined with quadratic interpolation, but this scheme could
be replaced by a more sophisticated sub-algorithm, e.g. by GETPTC of Gill et al. [9].
Detailed information about the usage of the nonlinear programming code and its
modules is given in Schittkowski [29].

As mentioned before, the subroutine NLPQL1 allows the alteration of default
values or some internal algorithmic decisions, and to adapt the solution process to a
specific situation. The most important features are the following ones:

1. Alternative subproblems: A logical variable must be set by the user in order to indi-
cate whether a quadratice programming or, alternatively, a linear least-squares problem
is to be formulated. When using Powell's program ZQPCVX for example, one could
decide whether the initial Cholesky factorization of the Hessian approximation is to be
performed within ZQPCVX or the outer nonlinear programming algorithm.

2. Expanded quadratic programming problem: In normal execution, NLPQL formu-
lates the quadratic programming subproblem (3) combined with an active set strategy
to avoid numerical inaccuracies induced by the additional variable 6. This additional
variable is introduced only if the corresponding algorithm used to solve that sub-
problem reports an error message. Then one obtains a subproblem of the form (9).
Alternatively, this subproblem can be formulated in every iteration step of NLPQL1,
so that the specific algorithm for solving it is always provided with a feasible starting
point.

492 K. Schittkowski, NLPQL : A FOR T R A N subroutine

3. Scaling: Scaling is among the most difficult problems in practical optimization.
Roughly speaking, one tries to achieve a model formulation, such that a small fixed
alteration of any variable induces an alteration of the problem functions of the same
order of magnitude. A generally applicable scaling method is not available, since
initially the nonlinear programming algorithm possesses information about the be-
haviour of the problem only in a neighbourhood of the starting point. Thus, the best
recommendation for a user is to define scaling parameters that depend on the particular
practical problem. Nevertheless, a very careful scaling procedure is included in NLPQL1.
If the objective function value or a constraint violation at the starting point is greater
than a default value (1000), then the corresponding functions are scaled by the factors
1/x/I f(Xo) I or 1/x/I g/(xo)l , respectively. Of course, the default value can be changed
by a user, and when defining any negative value, e.g. - 1, he (she) is allowed to pre-
determine his (her) own scaling parameters in a working array.

4. Reverse communication: Nonlinear programming codes are often applied as aux-
iliary routines in complex systems, e.g. as part of an optimal control or finite element
algorithm. In these cases, it might be helpful to use reverse communication, the most
flexible way to solve an optimization problem. Only one iteration step will be per-
formed by NLPQL1. Then the subroutine returns to the main program of the user,
where new function and gradient values have to be evaluated. A subsequent call of
NLPQL1 continues the iteration.

5. Additional problem information: Initially, the approximation matrix for the Hessian
of the Lagrangian function is set to the identity matrix and the initial estimates for the
multipliers are set to zero. Alternatively, a user could provide the program with his
(her) own guesses, to exploit known information about the problem structure.

6. Restart in error cases: If requested by a user, NLPQL1 performs automatic restarts
in error situations (see remark 8 below). Proceeding from the last computed iterate,
the quasi-Newton matrix, the multiplier estimates, and the penalty parameters are all
set to their initial values and an attempt is made to solve the problem again, now with
a lower limit on the allowed number of iterations.

7. Output facilities: A user is allowed to suppress all output. Alternatively, a final con-
vergence analysis or additional output for each iteration step can be produced. Some
further output from the program modules mentioned above can be printed upon re-
quest.

8. Error conditions: The user will be informed about the reason for termination of the
algorithm. If the optimality conditions could not be satisfied to within some user-
provided tolerance, then the code encountered a certain error situation, which is re-
ported. The following errors occur most frequently:

- The algorithm terminates because the user-provided maximum number of
iterations was attained.

K. Schit tkowski , NLPQL : A F O R T R A N subroutine 493

- The line search algorithm stopped because the user-provided maximum number
of sub-iterations was exceeded. This situation occurs, for example, if the
iterates are close to a solution but the optimality conditions can not be satisfied
due to round-off errors.

- The search direction dg is close to zero, but the current iterate is still infeasible.
The message indicates badly scaled problem functions.

The program requires core storage for approximately n ~ + mn + 28n + 9m real
variables, plus whatever additional storage is needed to solve the quadratic program-
ming subproblem. The problem size is therefore limited by the core size and the
capability of the subproblem algorithm to solve large problems. The program has been
implemented in FORTRAN and tested by the author on a Telefunken TR440 at the
University of WiJrzburg, on an IBM 370/168 at the Stanford University, and on a
VAX 11/780 at the University of Stuttgart in single and double precision arithmetic.
Moreover, the code has been run by users on many other mainframe machines.

Besides NLPQL, some other nonlinear programming codes realizing a sequential
quadratic programming algorithm are available upon request. The first implementation
of an SQP method is Powell's program VF02AD [20], which was distributed by the
Harwell Subroutine Library. The algorithm uses the L 1 -penalty function (7) to deter-
mine a steplength, and Fletcher's [6] quadratic programming routine VE02AD. A very
similar implementation was performed by Crane et al. [4]. The resulting program is
called VMCON. Based on the observation that the L l -merit function could prevent
superlinear convergence or even cycle, a watchdog technique was proposed by Chamber-
lain et al. [2]. The resulting program VMCWD by Powell [22] was compared numeric-
ally with NLPQL (see Powell [24] for details). For a class of highly nonlinear test
problems, the augmented Lagrangian merit function seems to be preferable, but this
function could induce some numerical instabilities when the problem is degenerate,
i.e. when the gradients of active constraints are linearly dependent. Gill et al., [11]
implemented an SQP method (SOL/NPSOL) which also uses the augmented Lagrangian
merit function, which is now included in the NAG Library.

4. Tes t ing d i f fe ren t p rog ram m o d u l e s

We now give the results obtained by interchanging the program modules out-
lined in sect. 3. The intention is to form an impression about the numerical sensitivity
of the nonlinear programming method, if one of its sub-algorithms is altered. The re-
suiting different versions of NLPQL1 are identified by the parameter NC as shown in
table 1, where the following abbreviations are used:

QL : Subroutine for calling a quadratic programming or linear
least-squares algorithm;

QL = QPSOL : A quadratic programming subproblem is formulated and
solved by algorithm QPSOL by Gill et al. [I0] ;

494 K. SchittkowskL NLPQL: A FOR TRAN subroutine

Q L = N N L S :

LINSEA :

LINSEA = QI :

LINSEA = GETPTC :

MERIT :

MERIT = L1 :

MERIT = L2 :

GRAD :

GRAD = A :

GRAD = N :

A linear least-squares subproblem is formulated, trans-
formed into a least-squares problem with lower bounds on
the variables only, and solved by subroutine NNLS by
Lawson and Hansen [18] ;

Subroutine for performing a one-dimensional minimization,
i.e. for calculating a steplength a k ;

Simple quadratic interpolation is used, combined with an
Armijo-type stopping criterion, cf. Powell [20] or
Schittkowski [27,28];

This safeguarded cubic interpolation algorithm was de-
veloped by Gill et al. [9] and requires simultaneous function
and gradient evaluations during the line search;

Subroutine MERIT evaluates the merit or line search
function, the active set, and the penalty parameters;

An L l -exact penalty function is formulated, cf. Han [13]
or Powell [20]. All constraints are contained in the active
set and the penalty parameters are defined following
Powell [20];

An augmented Lagrangian function is defined, where the
Lagrangian function is penalized in the L2-norm, cf.
Schittkowski [27,28]. This function is continuously
differentiable, and an active set strategy is performed;

This subroutine is required to compute the gradients of
the problem functions;

Analytical derivatives are provided by the test frame;

The gradients are approximated numerically by scaled
forward differences.

For the numerical test runs, the test problems of Hock and Schittkowski [14]
were used. Only some mean values will be presented here to give an impression of the
performance of NLPQL1 in the situations of concern. First a decision must be made as
to whether a test run was successful or not. To avoid unfair comparisons if different
local solutions of a problem are obtained, the few corresponding problems have been
dropped from the evaluation of the test results. Then a test run is called successful if
the error in the objective function is less than 10 -3 and if the constraint violation is
less than 1 0 - 4 . The numerical tests were performed on an IBM 370/168 at Stanford
University in double precision arithmetic using the WATFIV compiler. The following
notation is needed in table 2 to explain the results:

K. Schittkowski, NLPQL." A FORTRAN subroutine 495

Table 1

NLPQL1 versions

NC QL LINSEA MERIT GRAD

1 QPSOL QI L2 A
2 QPSOL QI L1 A
3 QPSOL GETPTC L2 A
4 QPSOL QI L2 N
5 NNLS QI L2 A

Table 2

Average test results for different versions of NLPQL1

NC PNS NF NG NDF NDG ITER DGX DFX

1 10.4 14.6 64.6 11.9 28.2 11.9 0.37 E-10 0.22E-9
2 7.8 13.8 58.2 11.6 51.5 11.6 0 .20E-10 0.15E-9
3 10.4 13.9 59.5 13.9 33.0 11.0 0 .20E-10 0.16E-9
4 7.8 83.5 313.0 0.0 0.0 12.3 0 .96E-10 0.52E-9
5 25.3 (12.3) (36.6) (9.7) (18.6) (9.7) (0.13E-8) (0.12E-7)

NC :

PNS :

NF :

NG :

NDF �9

NDG �9

ITER �9

DGX "

DFX �9

Version number of NLPQL1, cf. table 1;

Percentage of non-successful solutions;

Average number of objective function evaluations;

Average number of constraint function evaluations, each constraint
counted;

Average number of gradient evaluations of the objective function;

Average number of gradient evaluations of the constraint functions,
each constraint counted;

Average number of iterations (identical with NDF, if analytical
derivatives and no gradient evaluations for the line search are used);

Average violation of constraints corresponding to the successful test
runs (geometric mean);

Average error in objective function corresponding to the successful
test runs (geometric mean).

496 K. SchittkowskL NLPQL: A FORTRAN subroutine

All mean values are evaluated only for successful test runs. There are no drastic
differences in the performance of all these versions of NLPQL1. The slight differences
can be summarized as follows.

NC = 1 versus NC = 2: The outstanding difference is that many gradient
evaluations of the constraint functions can be saved by the active set
strategy. When using the L 1 -penalty function, two more problems
(TP74/75) could be solved successfully, since the approximation of a
point where the constraint qualification of (1) is not satisfied could be
prevented.

NC = 1 versus NC = 3: There is nearly no difference in the performance of both
versions. The number of gradient evaluations for NC = 3 is only slightly
greater than for NC = 1, showing that in most iterations the steplength
one is satisfactory.

NC = 1 versus NC = 4: The use of numerical differentiation does not seem to
have a significant effect on the number of successful runs, the number
of iterations, or the accuracy of the solutions.

NC = 1 versus NC = 5 : Obviously, the least.squares version is less reliable than
the version based on quadratic programming subproblems, because of
the numerically unstable transformation of (3) into the form required
by NNLS. This is also verified by a lower final accuracy of this version.
The reduced number of function and gradient evaluations is due to
the fact that many of the more complicated, higher dimensional test
problems could not be solved. An evaluation of the mean values
based on those test runs which were successful for both versions
would not indicate any significant differences. Therefore, the per-
formance figures of the least-squares versions we set between brackets
and they should be used very carefully when comparing them with
those of the other versions.

The preceding results show, in particular, the flexibility of NLPQL1, since all
implemented versions represent different mathematical ways to solve the correspond-
ing subproblem.

5. S o m e c o m p a r a t i v e tes t resul ts

NLPQL was tested in the framework of a comparative study of optimization
codes, cf. Schittkowski [26]. Using the same randomly generated test problems and
the same evaluation system for the results, the performance of NLPQL was compared
with that of 26 other available nonlinear programming codes. 370 additional test runs
have been performed to obtain these results, on a Telefunken TR440 at the University

K. Schittkowski, NLPQL : A FOR TRAN subroutine 497

of Wiirzburg in single precision arithmetic. A numerical comparison of NLPQL with
the optimization codes based on the test problems of Hock and Schittkowski [14] is
also possible, cf. Hock and Schittkowski [15].

To give at least a rough impression of the numerical performance of NLPQL,
a few results are compared with those of seven other optimization programs which
are frequently used in practical applications. The programs are typical realizations of
the underlying mathematical method and represent the algorithmic progress in non-
linear programming during the last 15 years. Their names, authors, and mathematical
methods are found in table 3. More detailed information about these and 19 other

Table 3

Optimization programs

Code Author Method

SUMT Fiacco, McCormick [5]
NLP Rufer [25] Penalty method

VF01A Fletcher [7]
LPNLP Pierre, Lowe [19] Multiplier method

GRGA Abadie [1] Generalized reduced
GRG2 Lasdon, Waren [17] gradient method

VF02AD Powell [20] Sequential quadratic
NLPQL Schittkowski [28] programming method

available optimization codes is given in Schittkowski [26]. Table 4 contains some
average efficiency and reliability scores obtained by a sequence of 240 test runs for
each code. In this case, the test problems are randomly generated with predetermined
solutions (see Schittkowski [26] for details). The following abbreviations are used in
table 4 to characterize the numerical performance.

ET : Average execution time in seconds;

NF : Average number of objective function calls;

NG : Average number of constraint function calls, each single constraint
counted;

NDF : Average number of gradient calls of the objective function;

NDG : Average number of gradient calls of the constraint functions, each
single constraint counted;

PNS : Percentage of non-successful solutions and of failures (overflow, ex-
ceeding calculation times, etc.).

498 K. Schittkowski, NLPQL ." A FOR TRAN subroutine

Table 4

Numerical results

Code ET NF NG NDF NDG PNS

SUMT 270.1 2335 24 046 99 1053 77.8
NLP 88.1 1043 8635 111 957 28.5
VF01A 42.2 158 1595 158 603 29.3
LPNLP 57.8 252 2518 101 1014 30.5
GRGA 37.7 204 2946 67 378 13.4
GRG2 52.6 297 3368 38 423 10.4
VF02AD 31.6 16 179 16 179 8.3
NLPQL 14.1 18 181 16 64 3.3

Obviously, the sequential quadratic programming codes are the most efficient
ones, followed by the generalized reduced gradient, multiplier, and penalty methods.
The programs NLPQL and VF02AD use about the same number of function evalua-
tions and iterations, since both codes are based on the same mathematical idea. How-
ever,NLPQL saves many gradient evaluations of the constraints due to the active set
strategy, leading also to a reduction of calculation time. A further'reduction is ob-
tained by using the more efficient subroutine QPSOL by Gill et al. [10], which was
implemented in NLPQL for solving the quadratic programming subproblem.

References

[1] J. Abadie, M6thode du gradient reduit generalis~: Le code GRGA, Note HI 1756/00,
Electricite de France, Paris (1975).

[2] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell, The watchdog tech-
nique for forcing convergence in algorithms for constrained minimization, Mathematical
Programming Studies 16(1982)1.

[3] R.L. Crane, B.S. Garbow, K.E. Hillstrom and M. Minkoff, LCLSQ: An implementation of
an algorithm for linearly constrained linear least squares problems, Report ANL-80-116,
Argonne National Laboratory, Argonne, Illinois (1980).

[4] R.L. Crane, K.E. Hillstrom and M. Minkoff, Solution of the general nonlinear programming
problem with subroutine VMCON, Report ANL-80-64, Argonne National Laboratory,
Argonne, Illinois (1980).

[5] A.V. Fiacco and G.P. McCormick, Nonlinear Sequential Unconstrained Minimization
Techniques (Wiley, New York, 1968).

[6] R. Fletcher, A FORTRAN program for general quadratic programming, Report No. R6370,
AERE, Harwell, Berkshire (1970).

[7] R. Fletcher, An ideal penalty function for constrained optimization, in: Nonlinear Program-
ming 2, ed. O.L. Mangasarian, R.R. Meyer and S.M. Robinson (Academic Press, New York,
1975).

K. Schittkowski, NLPQL." A FOR TRAN subroutine 499

[8] P.E. Gill, W. Murray and M.A. Saunders, Methods for computing and modifying the LDV
factors of a matrix, Mathematics of Computation 29(1975) 1051.

[9] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, Two steplength algorithms for nu-
merical optimization, Report SOL 79-25, Dept. of Operations Research, Stanford University,
Stanford (1979).

[10] P.E. Gill, W. Murray, M.A. Saunders and M. Wright, User's guide for SOL/QPSOL: A
FORTRAN package for quadratic programming, Report SOL 82-7, Dept. of Operations
Research, Stanford University (1982).

[11] P.E. Gill, W. Murray, M.A. Saunders and M. Wright, User's guide for SOL/NPSOL: A
FORTRAN package for nonlinear programming, Report SOL 83-12, Department of Opera-
tions Research, Stanford University (1983).

[12] S.-P. Han, Superlinearly convergent variable metric algorithms for general nonlinear program-
ruing problems, Mathematical Programming 11 (1976)263.

[13] S.-P. Han, A globally convergent method for nonlinear programming, J. of Optimization
Theory and Applications 22(1977)297.

[14] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems, Vol. 187 (Springer-Verlag, Berlin- Heidel-
berg-New York, 1981).

[15] W. Hock and K. Schittkowski, A comparative performance evaluation of 27 nonlinear
programming codes, Computing 30(1983)335.

[16] W. Kribbe, Documentation of the FORTRAN-subroutines for quadratic programming
CONQUA and START, Report 8231/1, Econometric Institute, Erasmus University, Rotter-
dam (1982).

[17] L.S. Lasdon and A.D. Waren, Generalized reduced gradient software for linearly and non-
linearly constrained problems, in: Design and Implementation of Optimization Software,
ed. H.J. Greenberg (Sijthoff and Noordhoff, Alphen aan den Rijn (1978).

[18] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice Hall, Englewood
Cliffs, New Jersey, 1974).

[19] D.A. Pierre and M.J. Lowe, Mathematical Programming via Augmented Lagrangians
(Addison-Wesley, Reading, Massachusetts, 1975).

[20] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations,
in: Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630 (Springer-
Verlag, Berlin-Heidelberg-New York, 1978).

[21] M.J.D. Powell, The convergence of variable metric methods for nonlinearly constrained
optimization calculations, in: Nonlinear Programming 3, ed. O.L. Mangasarian, R.R. Meyer
and S.M. Robinson (Academic Press, New York-San Francisco-London, 1978).

[22] M.J.D. Powell, VMCWD: A FORTRAN subroutine for constrained optimization, Report
DAMTP 1982/NA4, University of Cambridge, Cambridge (1982).

[23] M.J.D. Powell, ZQPCVX: A FORTRAN subroutine for convex quadratic programming,
Report DAMTP 1983/NA17, University of Cambridge, Cambridge (1983).

[24] M.J.D. Powell, The performance of two subroutines for constrained optimization on some
difficult test problems, Report DAMTP 1984/NA6, University of Cambridge, Cambridge
(1984).

[25] D. Rufer, User's guide for NLP - A subroutine package to solve nonlinear optimization
problems, Report No. 78-07, Fachgruppe ftir Automatik, ETH Ztirich (1978).

[26] K. Schittkowski, Nonlinear Programming Codes, Lecture Notes in Economics and Mathe-
matical Systems, Vol. 183 (Springer-Verlag, Berlin- Heidelberg- New York, 1980).

[27] K. Schittkowski, The nonlinear programming method of Wilson, Han, and Powell with an
augmented Lagrangian type line search function. Part 1: Convergence analysis, Numerische
Mathematik 38(1981) 83.

5 O0 K. Schittkowski, NLPQL: A FOR TRAN subroutine

[28] K. Schittkowski, On the convergence of a sequential quadratic programming method with
an augmented Lagrangian line search function, Mathematische Operationsforschung und
Statistik, Ser. Optimization 14(1983)197.

[29] K. Schittkowski, User's guide for the nonlinear programming code NLPQL, Report, Institut
fiJr Informatik, Universit~it Stuttgart, FRG (1984).

[30] K. Schittkowski, Test examples for nonlinear programming codes, Report, Institut f/Jr
Informatik, Universit~it Stuttgart, FRG (1984).

[311 R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Thesis, Graduate
School of Business Administration, Harvard University, Boston (1963).

