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Abstract 

NLPQL is a FORTRAN implementation of a sequential quadratic programming 
method for solving nonlinearly constrained optimization problems with differentiable 
objective and constraint functions. At each iteration, the search direction is the 
solution of a quadratic programming subproblem. This paper discusses the organiza- 
tion of NLPQL, including the formulation of the subproblem and the information 
that must be provided by a user. A summary is given of the performance of different 
algorithmic options of NLPQL on a collection of test problems (115 hand-selected 
or application problems, 320 randomly generated problems). The performance of 
NLPQL is compared with that of some other available codes. 
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. Introduction 

The code NLPQL was designed to solve the constrained nonlinear programming 

problem 

min f ( x )  

gi(x) = O, ] '= 1 , . . . , m e ,  
x @  Rn: 

gi(x) ~ O, / = m e +  1 . . . . .  m ,  

x~ <~ x <~ x u . 

�9 J.C. Baltzer A.G., Scientific Publishing Company 

(1) 
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The optimization method generates a sequence of quadratic programming subproblems 
which are to be solved successively. The algorithm is therefore known as the sequential 
quadratic programming (SQP) method. The theoretical details and some convergence 
results are found in Schittkowski [28]. Its domain of application is determined by the 
following assumptions: 

(a) The problem is smooth: The problem functions are continuously differen- 
tiable on the set E = { x E R n " x~ <~ x <~ x u }. Note that the functions f and g], 

j = 1 . . . . .  m, need to be defined only on the set E, since the iterates computed by the 
algorithm will never violate the lower and upper bounds. 

(b) The problem is small: The problem size depends on hardware facilities, e.g. 
storage capacity, and on the capability of the quadratic programming routine to solve 
large problems. NLPQL was tested extensively on problems with up to 100 variables. 

A rough outline of the method is given in sect. 2, to convey the underlying 
mathematical ideas and the usage of program modules which could be modified or 
replaced by a user. The organization of the program package is outlined in sect. 3, 
together with some implementation details. To facilitate the solution of a nonlinear 
programming problem of the form (1), easy-to.use versions are supplied either in the 
form of a main program or a subroutine. The standard problem-adaptable subroutine 
NLPQL1 contains additional features to alter default parameters or to fit the code into 
an existing system, e.g. by reverse communication. The program has been tested on 
about 700 test problems, in particular in the framework of the comparative studies of 
Hock and Schittkowski [15] and Schittkowski [26]. The test problems are either 
randomly generated with predetermined solution characteristics or gathered from the 
literature, cf. Hock and Schittkowski [15] and Schittkowski [26,30]. A few numeric- 
al results are presented in sect. 4 to show the dependence of the performance on the 
choice of some program modules. Moreover, the efficiency and reliability of NLPQL 
are compared with those of some other available nonlinear programming codes. The 
results are found in sect. 5. 

The detailed usage of NLPQL is described in the user's guide (see Schittkowski 
[29]). The code is distributed upon request and has been used to solve practical 
nonlinear programming problems in many engineering and natural science areas. Most 
of the application problems come from mechanical engineering, particularly from 
structural optimization. 

2. The  sequent ia l  quadra t ic  p r o g r a m m i n g  a lgor i thm 

Sequential quadratic programming methods for nonlinearly constrained opti- 
mization were developed mainly by Han [12,13] and Powell [20,21], based on the 
initial work of Wilson [31 ]. The principal idea is the formulation of a specific quad- 
ratic programming subproblem. Let xg be a current iterate, o k an approximation of the 
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optimal Lagrange multipliers, and B k a positive definite approximation of the Hessian 
matrix of the Lagrangian function 

m ~ 

L(x,u) : =  [(x) - Z ujgi(x), ( 2 )  

j = l  

where x E R n, u = (u I . . . . .  urn,) r E 1t m'. Here we set m'  := m + 2n, and define the 
bound constraints "x~ ~ x <<. x u" by some functions gm+ 1 ( x ) , . . .  ,gin' (x)  to simplify 
the notation. More precisely, we let 

g /x )  := xu-m)  _ x~J-m~ j = m +  1 , . . . , m + n ,  

gj (x)  := x ( j - m - n )  - x  (~-m-n)  j = m  + n + 1, m '  

where the right-hand sides include the components of x, x~,  and Xu, respectively. 
By linearizing the nonlinear constraints of (1) and minimizing a quadratic approxima- 
tion of the Lagrangian function (2), we obtain a subproblem of the form 

min } d T B g d  + V f ( X k ) T d  

V g j ( x k ) T d  + g/(Xk)  = O, j = 1 . . . . .  m e , 
d E R n .  (3) 

g](x gi(x + 1 . .  , m ,  V k ) T d  + g)  >t O, / = m  e , . 

x• - x  k<~ d<~ x u - x  k .  

Let d k be the solution of (3) and Ug the corresponding vector of Lagrange multipliers 
of the quadratic programming problem. Then a new iterate is determined by 

xk. t = x k + o~ k d g ,  (4) 

where % is a line search or steplength parameter. % is designed to produce a sufficient 
decrease of a merit function 

~k(Ot) := ~llrk ( ( X k )  
O k 

(')) + a . (5) 
U k -- O k 
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Since the line search may depend on the approximation v k of the optimal Lagrange 
multipliers of (1), we update v k simultaneously by 

vk + t := ok + ak (uk - v~ ) . (6) 

In (5), r k is a vector of penalty parameters and controls the degree of penalizing the 
objective or Lagrangian function when leaving the feasible region. Possible merit 
functions are the L 1 -exact penalty function 

m e m I 

$r(x,v):= f(x) + Z r.lgi(x)l + Z ~Imin(O, gj(x))l (7) 
]= 1 J=me+l  

used by Han [13] (see also Powell [20] ), and the augmented Lagrangian function 

6 (x, v ) : = / ( x )  - 

m e 

Z - 

j=l 

m'  I (vjgj(x) - l~)gl(x)2), if gs(x) < 0/5., 
Z I 1 2  

j = me+ 1 ~-O~/r., otherwise, (8) 

proposed by Schittkowski [27,28]. The penalty parameter r k is updated by a suitable 
rule to guarantee a descent direction d k with respect to the chosen merit function. 

However, we can not always implement the quadratic programming sub- 
problem (3) as it stands. It is possible that the feasible region of (3) will be empty 
although the original problem (1) is solvable. The second drawback is the recalculation 
of gradients of all constraints at each iteration, although some of them might be in- 
active at an optimal solution, i.e. locally redundant. To avoid both disadvantages, an 
additional variable 8 and an active set strategy are introduced, leading to the modified 
subproblem 

min l d T B k d  + f ( x k ) T d  + l p k 6 2  

d E ~ n ,  V g j ( x k ) T d + ( 1 - - 6 ) g j ( x k ) { ~ }  O' j E  4 , 

5 E  R Vg j ( xk ( / ) ) rd+g / ( xk )  >i O, ] E K  k , (9) 

x~ - x k <~ d K x u - x k ,  

0 ~ 8 <  1,  
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where 

4 := {1,. . . ,me} U{J'me<J<.m, gi(xk)<~e or v{k)> O} / 

K k : =  { 1 , . . . , m } \ J k .  

Here w e  have o k = (o~ k), . . . , O(mk,)) T and e is a user-provided tolerance. The index 
" k ( j ) "  indicates gradients which have been calculated in previous iterations. The 
term & is an additional penalty parameter designed to reduce the influence of 8 on a 
solution of (9). It is easy to see that the point d o = 0, 8 o = 1 satisfies the constraints 
of (9) and can also be used as a feasible starting point for a quadratic programming 
algorithm. 

As an alternative to (9), a linear least-squares subproblem can be formulated 
by exploiting the factorization 

B k = L k D k L  [ (10) 

with a lower triangular matrix Lg and a diagonal matrix D k . The resulting linear least- 
squares problem then contains a triangular matrix in the objective function and is 
easily transformed into a least-distance problem, for which efficient algorithms are 
available. The LDL factors of B k can be updated with about the same computational 
effort as the original matrix Bg, cf. for example Gill et al. [8]. 

The matrix Bg is to be a positive definite approximation for the Hessian 
matrix of the Lagrangian function (2). B k can be updated by standard quasi-Newton 
techniques from unconstrained optimization. The BFGS formula is certainly the 
most popular one, and is implemented in NLPQL together with a modification pro- 
posed by Powell [20] to guarantee positive definite matrices. 

The algorithm contains some additional features to overcome certain error 
situations and is completely described in Schittkowski [28]. Under some mild assump- 
tions, it can be shown that the algorithm converges globally, i.e. starting from an 
arbitrary initial point, at least one accumulation point of the iterates will satisfy the 
K u h n - T u c k e r  optimality conditions. This result was proved for the augmented 
Lagrangian merit function (8). But for the L 1-merit function (7), a similar result 
can be achieved only under more stringent assumptions, e.g. that the penalty para- 
meters are constant and sufficiently large. If the steplength is one in the neighbourhood 
of an optimal solution, then the algorithm is identical with the method investigated by 
Han [12] and by Powell [21]. Under different assumptions, they proved local super- 
linear convergence of the SQP method,  which provides a theoretical justification for 
the fast final convergence speed we observe in practice. 
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3. Program organization and implementation details 

The sequential quadratic programming algorithm described above has been 
implemented by the author and is distributed upon request. The program package 
does not contain a subroutine for solving the quadratic programming, or optionally 
linear least-squares, subproblem. The intention is that a user should utilize a library 
program or should obtain any available program, e.g. the quadratic programming 
codes QPSOL by Gill et al. [10], ZQPCVX by Powell [23], CONQUA and START 
by Kribbe [16], or the linear least-squares codes NNLS by Lawson and Hanson [18] 
and LCLSQ by Crane et al. [3]. 

The organization of the program package is explained by fig. 1, which also 
shows the program modules which have to be supplied by the user or which can be 

main progra~ 

I 

T 

1 GRAD 

i 

I 
I 

I I MERIT 

Easy-to-use main program, data 

read in 

Easy-to-use subroutine 

Standard version 

Realization of the algorithm 

Calculation of problem functions 

Calculation of gradients 

Solution of the subproblem 

Evaluation of merit function 

I LINSEA Steplength calculation 

Fig. 1. Organization of the program package. 

exchanged either to improve the submitted version or to test a specific module. To 
become familiar with the code, it is recommended that one first executes the easy.to- 
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use version, either in the form of a main program or subroutine. Only the problem 
dimension, number of constraints, desired output information, the bounds x~ and Xu, 
a starting value Xo, and a subroutine evaluating the problem functions have to be 
supplied by a user. All other decisions are predetermined by default values. If, however, 
this approach fails and some algorithmic parameters are to be changed, or if the user 
wants to have more influence on the solution process, the standard subroutine NLPQL1 
can be executed. Here, additional input information about the problem can be provided, 
an automatic scaling procedure applied, or reverse communication performed. Sub- 
routine FUNC has to be defined by the user to calculate the problem functions. If 
analytical differentiation is to be performed, subroutine GRAD must also be imple- 
mented by the user. As mentioned before, any quadratic programming or linear least- 
squares program can be used to solve the subproblem defined in sect. 2. To link this 
specific code with the nonlinear programming algorithm, it must be implemented in 
a special way, i.e. within a subroutine with the name QL and a fixed, predetermined 
calling sequence. The set of active constraints and the function or gradient values of 
the merit function (5) are calculated by a subroutine with the name MERIT. The 
program package contains a realization of the augmented Lagrangian function (8), 
but it could be replaced by any other merit function, e.g. the L 1 -exact penalty func- 
tion (7). Finally a user may influence the line search procedure, which is performed 
in a subroutine with the name LINSEA. The program package offers a simple Armijo- 
type bisection method combined with quadratic interpolation, but this scheme could 
be replaced by a more sophisticated sub-algorithm, e.g. by GETPTC of Gill et al. [9]. 
Detailed information about the usage of the nonlinear programming code and its 
modules is given in Schittkowski [29]. 

As mentioned before, the subroutine NLPQL1 allows the alteration of default 
values or some internal algorithmic decisions, and to adapt the solution process to a 
specific situation. The most important features are the following ones: 

1. Alternative subproblems: A logical variable must be set by the user in order to indi- 
cate whether a quadratice programming or, alternatively, a linear least-squares problem 
is to be formulated. When using Powell's program ZQPCVX for example, one could 
decide whether the initial Cholesky factorization of the Hessian approximation is to be 
performed within ZQPCVX or the outer nonlinear programming algorithm. 

2. Expanded quadratic programming problem: In normal execution, NLPQL formu- 
lates the quadratic programming subproblem (3) combined with an active set strategy 
to avoid numerical inaccuracies induced by the additional variable 6. This additional 
variable is introduced only if the corresponding algorithm used to solve that sub- 
problem reports an error message. Then one obtains a subproblem of the form (9). 
Alternatively, this subproblem can be formulated in every iteration step of NLPQL1, 
so that the specific algorithm for solving it is always provided with a feasible starting 
point. 
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3. Scaling: Scaling is among the most difficult problems in practical optimization. 
Roughly speaking, one tries to achieve a model formulation, such that a small fixed 
alteration of any variable induces an alteration of the problem functions of the same 
order of magnitude. A generally applicable scaling method is not available, since 
initially the nonlinear programming algorithm possesses information about the be- 
haviour of  the problem only in a neighbourhood of the starting point. Thus, the best 
recommendation for a user is to define scaling parameters that depend on the particular 
practical problem. Nevertheless, a very careful scaling procedure is included in NLPQL1. 
If the objective function value or a constraint violation at the starting point is greater 
than a default value (1000), then the corresponding functions are scaled by the factors 
1/x/I f(Xo) I or 1/x/I g/(xo)l ,  respectively. Of course, the default value can be changed 
by a user, and when defining any negative value, e.g. - 1, he (she) is allowed to pre- 
determine his (her) own scaling parameters in a working array. 

4. Reverse communication: Nonlinear programming codes are often applied as aux- 
iliary routines in complex systems, e.g. as part of an optimal control or finite element 
algorithm. In these cases, it might be helpful to use reverse communication, the most 
flexible way to solve an optimization problem. Only one iteration step will be per- 
formed by NLPQL1. Then the subroutine returns to the main program of the user, 
where new function and gradient values have to be evaluated. A subsequent call of 
NLPQL1 continues the iteration. 

5. Additional problem information: Initially, the approximation matrix for the Hessian 
of  the Lagrangian function is set to the identity matrix and the initial estimates for the 
multipliers are set to zero. Alternatively, a user could provide the program with his 
(her) own guesses, to exploit known information about the problem structure. 

6. Restart in error cases: If  requested by a user, NLPQL1 performs automatic restarts 
in error situations (see remark 8 below). Proceeding from the last computed iterate, 
the quasi-Newton matrix, the multiplier estimates, and the penalty parameters are all 
set to their initial values and an attempt is made to solve the problem again, now with 
a lower limit on the allowed number of iterations. 

7. Output facilities: A user is allowed to suppress all output.  Alternatively, a final con- 
vergence analysis or additional output  for each iteration step can be produced. Some 
further output  from the program modules mentioned above can be printed upon re- 
quest. 

8. Error conditions: The user will be informed about the reason for termination of the 
algorithm. If  the optimality conditions could not be satisfied to within some user- 
provided tolerance, then the code encountered a certain error situation, which is re- 
ported. The following errors occur most frequently: 

- The algorithm terminates because the user-provided maximum number of 
iterations was attained. 
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- The line search algorithm stopped because the user-provided maximum number 
of sub-iterations was exceeded. This situation occurs, for example, if the 
iterates are close to a solution but the optimality conditions can not be satisfied 
due to round-off errors. 

- The search direction dg is close to zero, but the current iterate is still infeasible. 
The message indicates badly scaled problem functions. 

The program requires core storage for approximately n ~ + mn + 28n + 9m real 
variables, plus whatever additional storage is needed to solve the quadratic program- 
ming subproblem. The problem size is therefore limited by the core size and the 
capability of the subproblem algorithm to solve large problems. The program has been 
implemented in FORTRAN and tested by the author on a Telefunken TR440 at the 
University of WiJrzburg, on an IBM 370/168 at the Stanford University, and on a 
VAX 11/780 at the University of Stuttgart in single and double precision arithmetic. 
Moreover, the code has been run by users on many other mainframe machines. 

Besides NLPQL, some other nonlinear programming codes realizing a sequential 
quadratic programming algorithm are available upon request. The first implementation 
of an SQP method is Powell's program VF02AD [20], which was distributed by the 
Harwell Subroutine Library. The algorithm uses the L 1 -penalty function (7) to deter- 
mine a steplength, and Fletcher's [6] quadratic programming routine VE02AD. A very 
similar implementation was performed by Crane et al. [4]. The resulting program is 
called VMCON. Based on the observation that the L l -merit function could prevent 
superlinear convergence or even cycle, a watchdog technique was proposed by Chamber- 
lain et al. [2]. The resulting program VMCWD by Powell [22] was compared numeric- 
ally with NLPQL (see Powell [24] for details). For a class of highly nonlinear test 
problems, the augmented Lagrangian merit function seems to be preferable, but this 
function could induce some numerical instabilities when the problem is degenerate, 
i.e. when the gradients of active constraints are linearly dependent. Gill et al., [11] 
implemented an SQP method (SOL/NPSOL) which also uses the augmented Lagrangian 
merit function, which is now included in the NAG Library. 

4. Tes t ing  d i f fe ren t  p rog ram m o d u l e s  

We now give the results obtained by interchanging the program modules out- 
lined in sect. 3. The intention is to form an impression about the numerical sensitivity 
of the nonlinear programming method, if one of its sub-algorithms is altered. The re- 
suiting different versions of NLPQL1 are identified by the parameter NC as shown in 
table 1, where the following abbreviations are used: 

QL : Subroutine for calling a quadratic programming or linear 
least-squares algorithm; 

QL = QPSOL : A quadratic programming subproblem is formulated and 
solved by algorithm QPSOL by Gill et al. [I0] ; 
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Q L = N N L S :  

LINSEA : 

LINSEA = QI : 

LINSEA = GETPTC : 

MERIT : 

MERIT = L1 : 

MERIT = L2 : 

GRAD : 

GRAD = A : 

GRAD = N : 

A linear least-squares subproblem is formulated, trans- 
formed into a least-squares problem with lower bounds on 
the variables only, and solved by subroutine NNLS by 
Lawson and Hansen [18] ; 

Subroutine for performing a one-dimensional minimization, 
i.e. for calculating a steplength a k ; 

Simple quadratic interpolation is used, combined with an 
Armijo-type stopping criterion, cf. Powell [20] or 
Schittkowski [27,28]; 

This safeguarded cubic interpolation algorithm was de- 
veloped by Gill et al. [9] and requires simultaneous function 
and gradient evaluations during the line search; 

Subroutine MERIT evaluates the merit or line search 
function, the active set, and the penalty parameters; 

An L l -exact penalty function is formulated, cf. Han [13] 
or Powell [20]. All constraints are contained in the active 
set and the penalty parameters are defined following 
Powell [20]; 

An augmented Lagrangian function is defined, where the 
Lagrangian function is penalized in the L2-norm, cf. 
Schittkowski [27,28]. This function is continuously 
differentiable, and an active set strategy is performed; 

This subroutine is required to compute the gradients of 
the problem functions; 

Analytical derivatives are provided by the test frame; 

The gradients are approximated numerically by scaled 
forward differences. 

For the numerical test runs, the test problems of Hock and Schittkowski [14] 
were used. Only some mean values will be presented here to give an impression of the 
performance of NLPQL1 in the situations of concern. First a decision must be made as 
to whether a test run was successful or not. To avoid unfair comparisons if different 
local solutions of a problem are obtained, the few corresponding problems have been 
dropped from the evaluation of the test results. Then a test run is called successful if 
the error in the objective function is less than 10 -3 and if the constraint violation is 
less than 1 0  - 4  . The numerical tests were performed on an IBM 370/168 at Stanford 
University in double precision arithmetic using the WATFIV compiler. The following 
notation is needed in table 2 to explain the results: 
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Table 1 

NLPQL1 versions 

NC QL LINSEA MERIT GRAD 

1 QPSOL QI L2 A 
2 QPSOL QI L1 A 
3 QPSOL GETPTC L2 A 
4 QPSOL QI L2 N 
5 NNLS QI L2 A 

Table 2 

Average test results for different versions of NLPQL1 

NC PNS NF NG NDF NDG ITER DGX DFX 

1 10.4 14.6 64.6 11.9 28.2 11.9 0.37 E-10 0.22E-9 
2 7.8 13.8 58.2 11.6 51.5 11.6 0 .20E-10  0.15E-9 
3 10.4 13.9 59.5 13.9 33.0 11.0 0 .20E-10  0.16E-9 
4 7.8 83.5 313.0 0.0 0.0 12.3 0 .96E-10  0.52E-9 
5 25.3 (12.3) (36.6) (9.7) (18.6) (9.7) (0.13E-8) (0.12E-7) 

NC : 

PNS : 

NF :  

NG : 

NDF �9 

NDG �9 

ITER �9 

DGX " 

DFX �9 

Version number of NLPQL1, cf. table 1; 

Percentage of non-successful solutions; 

Average number of objective function evaluations; 

Average number of constraint function evaluations, each constraint 
counted; 

Average number of gradient evaluations of the objective function; 

Average number of gradient evaluations of the constraint functions, 
each constraint counted; 

Average number of iterations (identical with NDF, if analytical 
derivatives and no gradient evaluations for the line search are used); 

Average violation of constraints corresponding to the successful test 
runs (geometric mean); 

Average error in objective function corresponding to the successful 
test runs (geometric mean). 
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All mean values are evaluated only for successful test runs. There are no drastic 
differences in the performance of all these versions of NLPQL1. The slight differences 
can be summarized as follows. 

NC = 1 versus NC = 2: The outstanding difference is that many gradient 
evaluations of the constraint functions can be saved by the active set 
strategy. When using the L 1 -penalty function, two more problems 
(TP74/75) could be solved successfully, since the approximation of a 
point where the constraint qualification of (1) is not satisfied could be 
prevented. 

NC = 1 versus NC = 3: There is nearly no difference in the performance of both 
versions. The number of  gradient evaluations for NC = 3 is only slightly 
greater than for NC = 1, showing that in most iterations the steplength 
one is satisfactory. 

NC = 1 versus NC = 4: The use of numerical differentiation does not seem to 
have a significant effect on the number of successful runs, the number 
of iterations, or the accuracy of the solutions. 

NC = 1 versus NC = 5 : Obviously, the least.squares version is less reliable than 
the version based on quadratic programming subproblems, because of 
the numerically unstable transformation of (3) into the form required 
by NNLS. This is also verified by a lower final accuracy of this version. 
The reduced number of function and gradient evaluations is due to 
the fact that many of the more complicated, higher dimensional test 
problems could not be solved. An evaluation of the mean values 
based on those test runs which were successful for both versions 
would not indicate any significant differences. Therefore, the per- 
formance figures of the least-squares versions we set between brackets 
and they should be used very carefully when comparing them with 
those of the other versions. 

The preceding results show, in particular, the flexibility of NLPQL1, since all 
implemented versions represent different mathematical ways to solve the correspond- 
ing subproblem. 

5. S o m e  c o m p a r a t i v e  tes t  resul ts  

NLPQL was tested in the framework of a comparative study of optimization 
codes, cf. Schittkowski [26]. Using the same randomly generated test problems and 
the same evaluation system for the results, the performance of NLPQL was compared 
with that of  26 other available nonlinear programming codes. 370 additional test runs 
have been performed to obtain these results, on a Telefunken TR440 at the University 
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of Wiirzburg in single precision arithmetic. A numerical comparison of NLPQL with 
the optimization codes based on the test problems of  Hock and Schittkowski [14] is 
also possible, cf. Hock and Schittkowski [ 15]. 

To give at least a rough impression of the numerical performance of NLPQL, 
a few results are compared with those of  seven other optimization programs which 
are frequently used in practical applications. The programs are typical realizations of 
the underlying mathematical method and represent the algorithmic progress in non- 
linear programming during the last 15 years. Their names, authors, and mathematical 
methods are found in table 3. More detailed information about these and 19 other 

Table 3 

Optimization programs 

Code Author Method 

SUMT Fiacco, McCormick [5 ] 
NLP Rufer [ 25 ] Penalty method 

VF01A Fletcher [ 7 ] 
LPNLP Pierre, Lowe [ 19 ] Multiplier method 

GRGA Abadie [ 1 ] Generalized reduced 
GRG2 Lasdon, Waren [ 17 ] gradient method 

VF02AD Powell [20] Sequential quadratic 
NLPQL Schittkowski [28] programming method 

available optimization codes is given in Schittkowski [26]. Table 4 contains some 
average efficiency and reliability scores obtained by a sequence of 240 test runs for 
each code. In this case, the test problems are randomly generated with predetermined 
solutions (see Schittkowski [26] for details). The following abbreviations are used in 
table 4 to characterize the numerical performance. 

ET : Average execution time in seconds; 

NF : Average number of objective function calls; 

NG : Average number of constraint function calls, each single constraint 
counted; 

NDF : Average number of gradient calls of  the objective function; 

NDG : Average number of  gradient calls of the constraint functions, each 
single constraint counted; 

PNS : Percentage of non-successful solutions and of failures (overflow, ex- 
ceeding calculation times, etc.). 
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Table 4 

Numerical results 

Code ET NF NG NDF NDG PNS 

SUMT 270.1 2335 24 046 99 1053 77.8 
NLP 88.1 1043 8635 111 957 28.5 
VF01A 42.2 158 1595 158 603 29.3 
LPNLP 57.8 252 2518 101 1014 30.5 
GRGA 37.7 204 2946 67 378 13.4 
GRG2 52.6 297 3368 38 423 10.4 
VF02AD 31.6 16 179 16 179 8.3 
NLPQL 14.1 18 181 16 64 3.3 

Obviously, the sequential quadratic programming codes are the most efficient 
ones, followed by the generalized reduced gradient, multiplier, and penalty methods. 
The programs NLPQL and VF02AD use about the same number of function evalua- 
tions and iterations, since both codes are based on the same mathematical idea. How- 
ever,NLPQL saves many gradient evaluations of the constraints due to the active set 
strategy, leading also to a reduction of calculation time. A further'reduction is ob- 
tained by using the more efficient subroutine QPSOL by Gill et al. [10], which was 
implemented in NLPQL for solving the quadratic programming subproblem. 
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