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Summary. — Circular timelike geodesies in the vicinity of a Reissner-
Nordstrom black hole of mass m and charge ¢ are considered. These
geodesics exist for all » > (3m/2)[1 -+ (1 — 8¢2/9m?)}], and are stable for
all »r>r_, where r, is the largest real root of r*— 6mr®+ 992 r — 4¢*/m = 0.
For ¢®= 0 these expressions reduce to the familiar Schwarzschild results
r>3m and r>6m, respectively; for ¢®=m? they reduce to r>2m
and r > 4m.

In Schwarzschild co-ordinates zy=1, 2'=1r, 2= 0, 2°=¢ with ¢=G =1,
the Reissner-Nordstrom metric may be written (1)

(1) ds*= — @ der+ P-1dr2+ r2(d62 4 sin20 dg?)
with

L
(2) P=1—"x+3.

The metrical form (1) also encompasses the Schwarzschild (2) metrie
(®=1-—2m/fr) and the de Sitter (3) universe (® =1 —r?/R?, 0 <r<<R).

(1) H. REISSNER: Ann. der Phys., 50, 106 (1916); G. NorRDSTROM: Proc. K. Akad.
Wet. Amsterdam, 20, 1238 (1918).

(?) K. ScEWARZSCHILD: Siteber preuss. Akad. Wiss., Physik.-math. Ki., 189, 189 (1916);
J. DROSTE: Proc. W. Akad. Wet. Amsterdam., 19, 197 (1916).

(® W. DpE SitTER: Mon. Not. Roy. Astr. Soc., 76, 699 (1916); 77, 155 (1916).
Circular geodesics do not exist in the empty de Sitter universe as is readily confirmed
with the aid of eq. (9b).
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The motion of test particles in the field of the static metric (1) may be
determined from the Lagrangian (%)

(3) ysdd—jz — — @i2f P17 22+ sin26¢?)

where dots denote differentiation with respect to proper time. The absence
of explicit ¢- or ¢-dependence in (3) leads to two conserved quantities

(4) E=¢dt, J =r2sin%fp ,
where E and J correspond to the energy per unit mass and angular momentum

per unit mass of the test particle. The motions are planar (6 = x/2, = 0) and
are governed by the orbit equation

do\> E*— @
® (@) ="7" 0,
or equivalently
do 1 1\ .
(®) d¢2——5[(92+ ﬁ)dﬁ +2e@],

where ¢ =1/r and @'= dP(g)/dp. For circular motion d2p/de?*= do/dp =0
and consequently, for such motions

—r2
2 _
() Jr= @'+ 2rd
and
2r@?
2 __
(8) = D'+ 20D’

Circular motions require and energy and angular momentum E and J which
are both real and finite. Hence circular motions exist only for those values of
r for which both

(9a) D42 >0
and
(9b) D'<0,

are satisfied. Equations (9) define an existence domain on the r-axis whose

(%) See, e.9., C. MoLLER: The Theory of Relativity (Oxford, 1952), p. 228.
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threshold value corresponds to the radius at which the orbital velocity of the
test particle reaches the local velocity of light.

The stability of circular geodesics may be investigated by means of the
standard stability analysis which is based on a Lagrangian formalism (°) and
which leads to the condition

(10) 20D+ B(P' — 0P") <0 .

It is interesting to note that the radius of the smallest stable circle (defined
by equality in (10)) is also the radius at which E? and J? achieve their mi-
nimum values

. 4D . | —2r@7
(1) B =30 T o@? T 3560 1 000"
Hence for spherically symmetric metries of the form (1), a stability threshold
for circular geodesics occurs at that value of r for which the slopes of the
energy and angular-momentum curves vanish (Fig. 1 and 2). The Schwarz-
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Fig. 1. — E? vs. r/m for circular timelike geodesics about a Reissner-Nordstrém black
hole. For ¢*= 0, E? reaches its minimum value E%, = 8/9 at r= 6m. For ¢>= m2,
the minimum value is EX,= 27/32 at r=4m. For every value of ¢?, E?—>1 as
7/m —co.

(®) E. T. WHITTAKER: Analytical Mechanics, 4th ed., Chap. VII (Cambridge, 1937);
see also A. ARMENTI jr. and P. Havas: Relativity and Gravitation, edited by C. G.
KurEr and A. Peres (London, 1971), p. 1.



EXISTENCE AND STABILITY CRITERIA FOR CIRCULAR GEODESICS ETC.

schild geometry:
(12) d=1—2mp, @D'=—2m, D =0.

From (5), (7) and (8) we have

do\* E*—1  2m
(19) (d_q;\) =g tyre—e¢+2me’,
s s (L 2mn)?
(14) T =g BT g

0 ha I 1 ! L I
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Fig. 2. — J2/m?® vs. r/m for circular timelike geodesics about a Reissner-Nordstrém
black hole. For ¢®=0, J? reaches its minimum value Ja,= 12m? at r= 6m. For
¢*=m?, the minimum value is J2,,=8m? at r=4m. For every value of ¢

J?—>mr (dashed line) as r/m —co.

From eqs. (9), (10) and (11) we find

r>3m (existence threshold),
(15) r>6m (stability threshold)
and
(16) Ji o—=12m?,  E3, —=8/9.

The Reissner-Nordstrom geometry:

(17) b=1-—2mp+ 0>, D' =2¢0—2m, DP'=2¢.
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From eqs. (5), (7) and (8) we obtain

do\? E*—1  2m q*
1 =)= L LYoz 3__g2p4
(18) (dq)) g tgze (1+J2)9 + 2mo® —q*o*,
mr — g (A —2m[r 4 ¢*[r*)*
1 2 — 2= .
(19) J 1—3m/fr+ 2¢2/r2’ £ 1—3mfr+2¢3r2

J? and E? are plotted in Fig. 1 and 2 for several values of ¢*. From eqs. (9)
the existence conditions for the Reissner-Nordstrom case are

(20) r2—3mr -+ 2¢2>0, r—g} m>0.

The existence threshold value defined by these two equations is
3m . i

(21) r> 2[4 (1—8¢/9me)H],

which for 0 < ¢><m? is always smaller than 3m. Thus circular motions in
the Reissner-Nordstrom field exist not only for » > 3m as in the Schwarz-
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Fig. 3. — Existence criteria for circular timelike geodesics about a Reissner-Nordstréom
black hole. The existence threshold is defined by the larger of the two roots of the
quadratic y= r2— 3mr+ 2¢*= 0. For ¢?=0 this root has the value e=3m. For
¢* = m? it has the value r= 2m.

schild case but also in the region 2m <r<3m (Fig. 3). The lower limit
¥ = 2m is achieved at ¢2= m?, that is at the transition between a Reissner-
Nordstrom black hole and a naked singularity.
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From eq. (10) the stability condition for the Reissner-Nordstrom case
becomes

(22) 73 — 6mr? 4 992r — 4¢4/m >0 .
For ¢® < m? this condition is equivalent to
(23) r> 6m[l — ¢*[4m?].

Hence stable circles exists in the Reissner-Nordstréom field down to radii which
are in all cases smaller than the Schwarzschild stability threshold r = 6m.
In fact, in the limit ¢>— m?, r,—4m (Fig. 4). Finally, for ¢>=m?

(24) J:_ =8m2, B =27[32.
y
g'=0
=05m

5 =m’
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Fig. 4. — Stability criteria for circular timelike geodesics about a Reissner-Nordstrom
black hole. The stability threshold is defined by the largest real root of the cubic
y=1r*—6mr2 4 9¢2r — 4q%/m = 0. For ¢*= 0 this root has the value r=6m. For
¢®= m? it has the value r= 4m.

In summary, circular timelike geodesics about a Reissner-Nordstrém black
hole exist and are stable down to radii which are smaller than the correspond-
ing thesholds for the Schwarzschild case. This results from the fact that a
Reissner-Nordstrom source of mass m and charge ¢ is formally equivalent
(for geodesics) to a Schwarzschild source with variable mass (%)

* q2
m*r =m——
(25) = 27. .

(¢) Equation (25) transforms the Schwarzschild metric and orbit equation (13) into
the Reissner-Nordstrom metric and orbit equation (18).
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Interestingly, the presence of electric charge of either sign on the source reduces
the effective mass of the source, again only as far as the motion of uncharged
test particles (geodesics) are concerned (7). It is this lowered effective mass
which accounts for the lowered thresholds for circular geodesies in the Reissner-
Nordstrom case. The negative sign in (2b) reflects a fundamental difference
between mass and charge, »iz. that like masses atfract, while like charges
repel. Specifically, the sign difference in (25) arises from the fact that in as-
sembling a Reissner-Nordstrém source having mass and charge, the respective
energies of formation and hence the equivalent masses must invariably be of
opposite sign. For charged test particles, the magnitude of the effective mass
depends also on whether the source and test particle charges are alike or unlike,
and hence on whether the electric interaction energy (and its equivalent mass)
is negative or positive.

(") This is true for noncircular geodesics as well. In the case of quasi-elliptic motions,
for example, the exact perihelion advance associated with the Reissner-Nordstrom
solution is less than that associated with the Schwarzschild solution, being smaller
by a factor of m*/m (A. ARMENTI jr.: to be published).

® RIASSUNTO (%

Si prendono in eonsiderazione geodetiche temporali circolari in prossimitd di una buca
nera di Reissner e Nordstrém di massa m e carica ¢. Tali geodetiche esistono per ogni
r > (3m/2)[1+ (1 — 8¢%/9m2)}] e sono stabili per ogni r >7,, in cui 7, & la massima
radice reale di 73— 6mr® - 9¢®>r — 4¢*/m= 0. Per ¢*= 0 queste espressioni si riducono
ai soliti risultati di Schwarzschild » > 3m e r > 6m, rispettivamente; per ¢%=m? si
riducono a r>2m e r > 4m.

(*} Traduzione a cura della Redazione.

Kpurepun cyIieCTBOBAHHS M YCTOMYHBOCTH UL KPYTOBBIX Ie0Ie3H4ecKHX JIHHAM
B OKpecTHOCTH 4epHoit anipei Pelicnepa-Hopacrpema.,

Pesrome (*). — PaccMaTpuBaroTcs KpyroBbie BPeMEHHIIONOOHBIE T€OAE3HYECKHE JIMHUH
B OKDEeCTHOCTH 4epHOM meipsl Peticuepa-HopacTpema ¢ Maccoil m ® 3apsagoM ¢. Ot
Teone3uIeckne JHHAN CYIIECTBYIOT Al BCex 7 > (3m/2)[1-+(1 — 8¢*/9m?)H], m siBisrorTCa
CcTaOUIIBHBIMH JIJISl BCEX 77, TE 7, €CTh HAUOONBIIN BEIECTBCHHEI KOPEHDb YDaBHEHHSA
73— 6mr?+992r — 4q4/m=0. Jlna ¢*=0 3T BeIpa’XeHUsA CBONATCH K H3BECTHBIM PE3yNb-
raram IIBapuomibaa 7>3m u 7>6m, COOTBeTCTBEHHO. A ¢*=m® OHEH cBOnATCA
X r>2m " r>4m.

(*) Iepesedeno pedaryueil.



