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Summary. — It is shown that, for a system consisting of two spin-}
particles, every local hidden-variable theory must satisfy a certain
inequality D. Tt is shown that the inequality D implies Bell’s inequality.
An example is given in which Bell’s inequality is satisfied while inequal-
ity D is violated. The same example shows that a nonempty set of
(logically) possible results exists which are consistent both with quantum
mechanics and with Bell’s inequality, but which are not consistent with
inequality D and hence not consistent with a local hidden-variable theory.
A necessary and sufficient condition is given for Bell’s inequality and
inequality D to be equivalent; this condition is not generally satisfied for
the system we consider.

1. — Imtroduction.

To date, in order to find experiments whose predictions are consistent
either with quantum mechanics (QM) or with a local hidden-variable theory
(Lh.v.), only Bell’s inequality has been available ().

According to FrREEDMAN and CLAUSER the data from their experiment
«in agreement with quantum mechanics, violate these predictions (viz. those
imposed by the presence of local hidden variables) to high statistical accuracy,
thus providing strong evidence against local hidden-variable theories » (2).

() J. S. BELL: Physics, 1, 195 (1965).
(?) 8. J. FreepMaN and J. F. Crauser: Phys. Rev. Lett., 28, 938 (1972).
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Nevertheless according to some authors (), with whom we agree, it seems
advisable that, for matters so critical and important other experiments be
performed.

Unfortunately, for some experiments that can be performed today and for
which we believe that QM and any Lh.v. theory should lead to incompatible
predictions, Bell’s inequality does not allow one to demonstrate such a con-
jecture. Let us consider, for instance, the physical system § consisting of two
photons v obtained by positronium decay. If this system is described, in
agreement with QM, by a mixture of 2nd type, then, as was shown (4), infor-
mation about polarization correlations of the two y obtained by Compton
scattering does not violate Bell’s inequality.

Moreover there are stronger reasons to think that Bell’s inequality is too
much of a « weak » condition: the theory proposed by JAUCH (*) can never violate
Bell’s inequality, as shown in (). We recall that according to Jauch theory
mixtures of 2nd type do not exigt in Nature, while a physical system consisting
of two subsystems on which separate measures can be performed is described
by a mixture of 1st type. Nevertheless for the system S the predictions on po-
larization correlations obtained by Compton scattering are different, as shown
by JavcH (%), depending on whether QM or Jauch theory is valid. Bell’s inequal-
ity in this case does not seem suitable to discriminate between cases we know
are different (°).

Actually for the system consisting of two spin-1 particles in a singlet state
we find an inequality D which implies Bell’s inequality but which, in general,
is not implied by the latter. We shall show also that there are results con-
sistent with QM and with Bell’s inequality, but incompatible with a Lh.v.
theory, because they violate inequality D.

The example on which we shall give the proof of the above-mentioned results
shows that inequality D is stronger then an inequality found by SELLERI (®).

(3) V.Carasso,D.Forrunaro and F.SELLERI: Intern. Journ. Theor. Phys.,7,319(1973).
(3 V. Carasso, D. Fortunaro and F. SELLERT: Biv. Nuove Cimenio, 2, 149 (1970).
(3 J. M. JavucH: Rendiconii 8.1.F., Course IL (New York, N. Y., 1970), p. 20.

{®) One could ask: « Then,is it not sufficient to perform that experiment for which QM
and Jauch’s theory predict different results without using Bell’s inequality? »; we can
give the following answer: « the results obtained by JavcH are still unsuitable for an
immediate comparison with experimental data, because they do not take into account
the finite volume of the source of photons and the finite volume of the targets where
Compton effect takes place; these volumes should not be taken too small, if, for reason-
able source intensities and in reasonable time intervals, we want to observe a number
of events large enough to be statistically meaningful ». People are working in Catania
on this problem in the experiment they are carrying out (7).

(") G. Faraci, S. Norarrico, A. R. Pexxist and D. Gurrowski: Boll. S.I.F.,
No. 93, 39 (1972).

(&) F. SELLERI: Left. Nuovo Cimento, 3, 581 (1972).
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Moreover it seems to us that the method we have followed is suitable to be
generalized to further conditions, different from 1.h.v. The Pool axiomatics (2),
for instance, makes essentially use of the conditional probability on which is
baged our treatment.

The next questions to be investigated are:

i) Can inequality D make the experiment on Compton scattering of
photons of the system an « experimentum crucis »?

ii) Is inequality D necessarily satisfied by Jauch’s theory?

iii) Does inequality D increase the likelihood in the statistical sense of
the hypothesis that, in the Freedman and Clauser experiment, a Lh.v. theory
is not valid?

We do not know yet the anwers to these questions, but even if inequality
D does not allow one, as in the above-mentioned questions, to operate a discrim-
ination sharper than that one operated by Bell’'s inequality, it seems to us
that, in the scheme of thought that gunided us in finding inequality D, it is pos-
sible to find even stronger conditions.

2. — We do not start, as BELL does, from correlation functions P(a, b) but
from a set A (the set of the values of hidden variable ). On P(A) (the set of
all subsets of /1) a positive measure P is defined simply additive and normalized
(probability). Hence our hypotheses are, from a mathematical point of view,
more general then those of BrLL, because we do not require the existence of
a probability density p(1), A€ 4. On the contrary, ours are the most, general
hypotheses under which it is permissible to speak of probability (19): let us recall
that complete additivity of the measure P is not required.

We shall suppose that there exist two functions:

(2.1) fiixA—-{—1, +1}, fa:2xA—{—1, 41},
where
(2.2) D=00xD, 0= {P0<b<n}, ® = {p|0<p<2n} .

The physical meaning of such functions is the following: for fixed ac 2,
be 2, e, {(a, A) takes the value 4 1 if and only if the spin component of

(%) J. C. T. Poor: Bvents, observables and operations and the mathematical approach to
quantum theory, lectures presented at the NATO Advanced Study Institute on Quantum
Mechanics and Ordered Linear Spaces (1973), to be published in Lecture Notes in Physics
(Berlin).

(1) B. DE Finerri: Teoria della probabilita (Torino, 1970).
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a particle relative to the direction ¢ has the value + 1, f,(b, 1) takes the value
+ 1 if and only if the spin component of the other particle relative to the di-
rection b has the value 4 L.

Locality, in the same sense as Bell’s, is expressed by the hypotheses that
is independent of & and §, is independent of & ().

So, in order that, as in quantum mechanies, for an arbitrary direction the
total spin component (given by the sum of the spin components of the two
particles relative to that direction) be zero, let us impose the condition

(2.3) Vacl2, Vied, fila, 2) = —f,(a, 1).

Let us introduce the function

(2.4) fra(d):A —{—1, + 1}
defined by
(2.5) Yied, fralA) = f,(a, 1), r=1, 2.

In order that the mean value of the spin component of a particle relative
to an arbitrary direction be zero, like in QM, let us impose the condition

(2.6) Vae®, P41} =PHA-1}=1}, r=1,2.
Let us define

(2.7) ky= P{fi(+ 1) n fA(+ D}, a:y a;€ 0;
aceording to (2.3) we have

(2.8) ky= P{fai(+ 1) 0 f(— 1)} .

(2.9) Theorem. Vi, §, ke #, where . is a set of indexes and each index
refers to a unitary vector, the inequalities
1) kp<min (k;, k) 4 min (% — ki —ka),
2) kp>max (b, + ki, — %’ %_ Foy— ko) = %— ky— kikl
must be valid. From now on inequality 2) will be called inequality .D. Before

giving the proof let ug infroduce, in order to make the formalism simpler, the
following notation:

(2.9.1) Vies, fi=fu+1), fi=fa-=1).

(1Y) Tt is easily shown that the subsequent condition (2.3) implies the independence
of f;, f, from hidden variables of the instrument.
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Let us go on to give the proof of 1):
(2.9.2) ky=P{f] 0 f3=P{/{ 0 ) o (FTOf =Py o fioff} + P 0 finfl,

Plff nfft =k,
P{f,*nf{mﬁ}<{ Piﬁnﬁgi:k.k’
P{f:ﬁf;r}:%_kwy

inequality 1) is therefore proved.
We shall give the proof of inequality D by means of lemmata from (2.9.3)
to (2.9.6).

(2.9.3) Proposition. The following alternative holds: either

P{ffaf+Pifinfi=4 and  P{ af}--P{nfi}=1

[

or f;, f{, L>0 can be found, such that (2)
U Ty = U5 173
P{finffi+ Plfinfi} =4+ 1L

and
P nff}+P{finfit=3—1.

Proof. Proposition (2.9.3) follows from the equality

1= P{ff} + P{fi} = P{(f; o ) 0 T} + PUfT ) nf =
= P{{nfi}+ P{fi nfi} -+ P afj} + P{f; 0 fi}

(2.9.4) If the first proposition of alternative (2.9.3) is valid, then inequality
D is satisfied.

This proposition is obvious.
(2.9.5) If the second proposition of alternative (2.9.3) is valid, then

Pifinfiafi>L.
Proof.

1+ L="P{,nfH + Pif,afiy = P{lfinfHu (fin i} 4+ Pifso frofy;

(%) {f, f;} denotes the set whose elements are only f and f;.
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from the previous relation it follows immediately that
Pifinffoff—L=3—P{(f;nfl)u(f,0f)}=0.

(2.9.6) If the second proposition of alternative (2.9.3) is valid, then in-
equality D is satisfied.

Proaof.

PUF oy =k,> P00 0> L
according to (2.9.5); furthermore from the definition of I in (2.9.3) it follows
L=|i—ky—kyl.
Proposition (2.9.6) has thus been proved.

(2.9.7) The proof of inequality D) can be obtained from (2.9.3), (2.9.4)
and (2.9.6).

Proposition (2.9) has thus been proved.

2. — Inequality 1) is equivalent to Bell’s inequality.

31. - P{a,, a;)is defined as in BELL (1), viz. it i3 the mean value of the prod-
uct of the results of the measurements performed on a particle along the direc-
tion @, and on the other particle along the direction a,. An easy calculation
gives

(3.1.1) Pla;, a;)=1—4k,;, Vi, jef.
3'2. — We remind the reader that Bell’s inequality can be written

(3.2.1) |P{2ts, a;) — Pla;, a;)| <1+ Pla;, a,),

which, because of (3.1.1), becomes

(3.2.2) bi<§— ko — Fusl

an inequality which is equivalent to inequality 1).

4. — Inequality D implies Bell’s inequality, 4.c. the set A, of the triplets
R,, R,, R, such that
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and
Viy j: k:{ia j; k} = {17 27 3} ’
Ri>|%—‘Rj—‘chl

is a proper subset of the set A, of the triplets R,, E,, B, such that

0<k, <3, O<R, <%, 0<R;<}

B

and
v’ljf ?.’ k:{i, j; k} l {1127 3}1
R, <i—|B,—R,.

The proof is obtained by the following 4’1 and 4°2.

"

4'1. — Let @ be the square whose side is [0, 1]. V(R,, R;) €@, let 4 (R,, R,)
be the set of the triplets R,, R,, &, such that

Vi, j, k{t, 4, k} = {1, 2,3}, Rz‘?]%_Ra‘_Rﬂ-

Let 4, be the set union of the sets 4,(R,, B,) when the pair (R,, R,) describes
the square €.

By taking into account that V(R,, B,) € @ the set of values for RE; allowed
by the inequalities D is not empty, it is eagily proved that

AL(R,, R,) = A,(R,, R,).

4'2. — However fixed (F,, B;) €@, it is proved by direct calculation that
the get of values of R, allowed by inequality D is a closed interval, which we
denote by [di(R., B,), d(R,, B;)], and it is a subset (proper or not according
to the pair (R,, R,)) of the set of values of R, allowed by inequality B, which
is also a closed interval, and we denote it by [b,(R., E;), b.(H,, B;)].

We have

V(Rzy RS) EQ ’ bz(RQa Rs) = dz(R27 R3) = % - IRz — Rﬁ] .

(4.2.1) For R,+ R,>1
bl(RZ? Rs) = dl(R27 Rs) = |%_ R2 - Ra’ .

(4.2.2) For R, R3<%
bl(R27 R:s) - R2+ Ra_ %<0<d1(R27 Rs) = |%‘_ R2 - Rsl .
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4'3. — An example for case (4.2.2).

(4.3.1) The numerical values chosen, satisfying the conditions required by
(4.2.2), are the following:

85 10

Fa=3200" F+T 300
(4.3.2) From inequality D it follows that
ki — Ky <% — ki <kpt ki

(4.3.3) Permuting the indexes we have

ky—ka<t—kyp<ky+ kg,

(4.3.4) from which, substituting the values chosen, we obtain
200 = 200
(4.3.5) Let us choose k;,= 0, i.e. a value which violates inequality D; we

will show that it does not violate Bell’s inequality.

(4.3.6) ‘We have, owing to (3.1.1),

3b 40

P(a'iyaf;):_%)—og -P(a/i’a’k):5_07 Pla,a;) =1,
75 100
IP(“M“;‘)_P(“@;%)I:%’ 1+P(aa‘a“k):E5

with analogous calculations it can be verified that Bell’s inequality is not
violated for all permutations of indexes i, j, %.

5. — Comparison between Bell’s inequality, inequality D and QM for ex-
ample (4.3) previously considered.

51. — Since equivalence between Bell's inequality and inequality 1) has
been proved, the limitations on %,, given by Bell’s inequality can be obtained
as intersection between the sets of values allowed by inequality 1) (written
in the equivalent form (3.2.2)), for all the permutations of indexes 4, j, k.
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(5.1.1) An easy calculation will show that Bell’s inequality gives the single
nontrivial limitation
25
k< 200’

while inequality D gives the two limitations (4.3.4).

(5.1.2) The conditional probability that the measure of the spin component
of a particle along direction @; gives the result + 1 under condition that the
measure of the spin component of the other particle along direction a; has
given the result — I is expressed by

P{ff 0 ff}
Pfiy 7

and it is equal to 2k;; because of (2.6) and (2.8).

(5.2.1)

(5.2.2) This probability, according to QM is expressed by

a.a,
cog? —12,
2

If we assign to %,; and %, the values of the previous example, then QM gives
for k;, the following limitations:

0.565 43.36
< kﬂc < .
200

Notice that values of %, €(0.565/200,5/200) are consistent with QM and
incompatible with a Lh.v. theory and that this can be asserted on the grounds
of inequality D and not on the grounds of Bell’s inequality.

Note added in proofs.

In a subsequent paper we shall answer to some remarks by 8. J. FREEDMAN and
8. NOTARRIGO.

® RIASSUNTO

Si dimostra che, per un sistema costituito da due particelle di spin £, ogni teoria a varia-
bili nascoste locali deve soddisfare ad una certa diseguaglianza D. 8i dimostra che la
diseguaglianza D implica la diseguaglianza di Bell. 8i d4 un esempio in cui la disegua-
glianza di Bell & soddisfatta, mentre la diseguaglianza D & violata. Il medesimo esempio
mostra che esiste un insieme non vuote di risultati (logicamente) possibili che sono
compatibili tanto con la meccanica quantistica quanto con la diseguaglianza di Bell,
ma che non sono compatibili con la diseguaglianza I e quindi non sono compatibili
con una teoria a variabili nascoste locali. 8i d& una condizione, in generale non soddi-
sfatta per il sistema considerato, necessaria e sufficiente affinché la diseguaglianza di
Bell e la diseguaglianza D siano equivalenti.

9 — Il Nuovo Cimenio B.
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HepasenctBo Gosiee cTporoe, vemM mepasencTBo benna.

Pesrome (*). — TlokasbIBaeTcs, YTO JJIsi CACTEMBI, COCTOAIIE!H M3 ABYX YaCTHI] CO CIHHOM 3,
mo0as JIOKAJIbHAs TEOPHs CO CKPBITHIMH NEPEMCHHBIMH IOJDKHA YHOBJIETBODATH OIpe-
HenenHOMY HepasencTBy D. TlokaseiaeTcs, 4TO HepaBeHCTBO D 3akimovaeT B cebe Hepa-
BeHCTBO benna. ITpuBommTcs mpuMep, B KOTOPOM HEpPaBeHCTBO beinna yagoBneTBopseTcs,
TOTHA Kak HEPaBeHCTBO D Hapymaercsi. OTOT MPUMEP IIOKa3pIBaeT, 9TO CYIIECTBYET
Henycrass cHcTeMa (JIOTHYeCKH) BO3MOXHEBIX PpE3YIILTaTOB, KOTOpas COTJIAcyeTcs M ¢
KBaHTOBO# MexaHHKOE M ¢ HepaseHcTBOM benna, HO KOTOpas He COIACYeTcs C Hepa-
BeHCTBOM 1) H, CIICIOBATEILHO, HE COIJIACYETCs C IOKATBLHOM TEOpHeH CO CKPHITRIMU TIepe-
MeHEbIMU. IIpuBOmATCS HeoOXOOHMEIE W IOCTATOYHBIE YCIOBHS, 4TOOBI HEpaBeHCTBO
Benna m mepaBencTBO D OpIIH OB 3KBHBAJIGHTHBEL. OJTO YCHOBHE B OOLIEM Ciyvae He
YHOBIETBOPACTCS HJIA paccMaTpuBaeMoi HaMM CHCTEMBL

(*) Ilepesedeno pedaxyueii.



