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Summary

A review of the state of the art in computational modeling and analysis of the mechanical behavior of
living bone is given. Particular attention is placed on algorithms for the sim ulation of the stress or strain
induced remodeling processes. A special remodeling algorithm is presented which allows the sim ulation
of internal bone remodeling taking in to account not only adaptation of the spatial distribution of the
e�ective mass density, but also the adaptation of the orientation of the material axes and of the orien tation
dependent sti�ness parameters. Suc h remodeling algorithms require a sound form ulation of the constitutive
relations of bony material. For this purpose some micro-macro mechanical descriptions of bone in its di�erent
microstructural con�gurations are discussed. In conjunction with the abo ve men tioned remodeling algorithm
a new uni�ed material model is deriv ed for describing the linear elastic, orthotropic behavior of bone in the
full range of micro-structures of cancellous and cortical bone. The application of the novel remodeling
algorithm is demonstrated in an example.

INTRODUCTION

It is widely accepted that bone material has the ability to respond to changes in its
mechanical loading environmen t (i.e. changes in the stress and strain �elds) b y adapting
its shape and/or its internal micro-structure. These t wo aspects are commonly referred to
as surface and internal remodeling [F rost 1964]. Bone material is resorbed in regions exposed
to small load levels, whereas in highly stressed zones deposition of new bone material sets in.
This process of functional adaptation is though t to enable bone to perform its mechanical
function with a minimum of mass. However, as clinical practice shows, it can often be
detrimen tal to the long term success of prostheses and implants used in orthopedic or dental
surgery.

Though signi�can t research has been undertaken to identify possible physical and bio-
chemical phenomena which transform mechanical stresses and strains into actual bone cell
processes (for a comprehensive overview see e.g. [Martin, Burr 1989]) these mechanisms
remain not fully understood. Considerable attention has been focused on the dev elopmen t
of phenomenologically based n umerical simulation tools for predicting the results of the
natural adaptation processes [e.g. Carter et al. 1987; Carter et al., 1989; Cowin, Hegedus
1976; Cowin 1987; Huisk eset al. 1987; Hart, Da vy 1989; Reiteret al. 1990; Beaupr �e et al.
1990; Prendergast, T aylor 1992].Most of these approac hes assume bone material to show
isotropic linear elastic behavior and reect the remodeling processes b y adaptation of the
bone apparent density and, introducing appropriate sti�ness{densit y relations, by adapta-
tion of the Y oung's modulus. Up till no w, only a limited n umber of attempts have been
undertaken to expand these models to more complex material symmetries, which better
reect the anisotropic behavior of actual bony tissue [Buch�a�cek 1990; Carter et al. 1989;
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Cowin et al. 1992; Fyhrie, Carter 1986; Jacobs et al. 1995; Pettermann 1993; Reiter 1996;
Starke et al. 1992; Zysset, Curnier 1995] A more comprehensive description of the state of
the art in bone remodeling simulation can be found in section \Remodeling Algorithms" of
this paper.

As long as ph ysiologically relevant stress states within the range of balanced adaptation
of bone are considered, the remodeling process of secondary bone can, in an approximativ e
manner, be described b y assuming linear elastic beha vior of bone. In the following section
an overview on the description of the elastic beha vior of bone is presented. With respect
to computational simulations of bone remodeling a material law is required which allows a
consistent and continuous transition between di�erent micro-structures of cancellous bone
as well as between cancellous and cortical bone. This means that a smooth change of the
apparent density, of the elastic parameters in the anisotropic material description, and of
the angles of the material axes must be represented in a uni�ed manner.

Such a uni�ed material la w is described in the section \Material Laws for Bone" of this
paper and an algorithm for the simultaneous adaptation of the anisotropic (i.e. orthotropic)
sti�ness and the local material orien tation for internal remodeling is shown in the section
\Remodeling Algorithms".

MATERIAL LAWS FOR BONE

Bone tissue generally can be classi�ed as either highly densi�ed cortical (or compact)
bone, found at the surfaces of most bones and particularly in the shafts of long bones, or
cancellous (or trabecular) bone, which shows a considerably smaller apparent density and
is found only in the interior of bones. Both t ypes show the same principal molecular-scale
micro-structure, consisting of a h ydroxyapatite reinforced collagenous matrix organized in a
lamellar compound. The structural organization at the mesoscopic level, however, is totally
di�erent.

The overall material beha vior of cancellous bone has been shown to be highly dependen t
on the trabecular volume fraction (whic h is directly related to the bone apparen t density), on
the sti�ness of the bulk trabecular material, and on the three dimensional arrangement of the
trabecular rods and plates, leading, in general, to anisotropic o verall behavior. The majorit y
of experimen tal investigations w ere focused on the uniaxial sti�ness of cancellous bone
specimens (mostly taken from the pro ximal femur or tibia) utilizing mec hanical compression,
tension and bending techniques as w ell as ultrasound methods. They showed strong evidence
for a power-law relationship bet ween apparent density and uniaxial Y oung's modulus of
cancellous bone with reported exponen ts in the range of one to three. More recen tly, a
number of experimen tal studies w ere published concerning the actual anisotropic trabecular
overall material behavior [e.g. Townsend et al. 1975; Goldstein et al. 1983; Rice et

al. 1988; Ha yes, Snyder 1989; Turner et al. 1990; Hollister et al. 1991; Goulet et al.

1994; van Rietbergen et al. 1995]. In addition to experimen tal investigations, a number of
theoretical studies w ere performed based on micro-mechanical models for the simulation of
the sti�ness behavior of cancellous bone. McElhaney et al. [1970] reported a porous block

model of cancellous bone, the sti�nesses being simulated by parallel or serial assem blages
of springs. Pugh et al . [1973] proposed trabecular bone to be modeled b y a collection
of plates, concluding that bending and buc kling w ere major modes of deformation of the
trabeculae. Williams and Lewis [1982] used a plane strain (two dimensional) Finite Element
model of an actual tissue section to compute its elastic behavior. Analytical models were
developed, whic h describe trabecular bone as a connected net work of rods and plates [Gibson
1985; Gibson, Ash by 1988]. Christensen [1986] focused on three dimensional isotropic high
porosity open and closed cell materials, assuming axial deformation of the cell walls and
�nding a linear relationship between the sti�ness parameters (Young's and shear moduli) and
the bulk material v olume fraction. Beaupr�e and Hayes [1985] introduced a three dimensional
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unit-cell model of open-cell trabecular structure consisting of a cube containing a spherical
hole, the diameter of which was assumed to be larger than the cube's edge-length. In order to
calculate the sti�ness behavior of such a unit-cell under appropriate displacemen t boundary
conditions, the Finite Element method w as applied.A similar unit-cell approach was used
by Hollister and co-workers using two dimensional [Hollister et al. 1990] unit-cells with
circular voids and three dimensional [Hollister et al. 1991] unit-cells representing closed cell
and open cell trabecular micro-structures. F or the evaluation of the elastic material behavior
Hollister and co workers applied the homogenization theory [Suquet 1990]. Real structure
Finite Element simulation has been carried out by Hollister et al. [1994], van Rietbergen et

al. [1995] and M�uller [1994].
Several attempts ha ve been undertaken to sim ulate the elastic behavior of cortical bone,

whic h has to be considered as a highly complex, hierarc hically structured composite, b y
micro-mechanical methods originally dev eloped for describing arti�cial composites. For a
long time mainly two{phase micro-mechanical models based on the rules of mixture, e.g.
Voigt- and Reuss- t ype models [Currey 1964; Katz 1971, Piekarski 1973; Lees, Da vidson
1977; Katz, Meunier 1990], as well as the Hashin-Sh trikman bounds [Katz 1971; Piekarski
1973], w ere applied, whic h both are capable of giving bounds on the sti�ness parameters of
compact bone tissue. More recently, \multi-scale" micro-mechanical models were introduced
(consisting of two or three hierarchical levels of homogenization), which better reect the
micro-structure of cortical bone. Katz [1981] used a t wo-level hierarchical �ber-reinforced
composite model. More recen tly a similar model was introduced which uses a two dimen-
sional generalized plane strain Finite Element unit-cell approach [Hogan 1989]. Limited
collections of published empirical data which were obtained by standard mec hanical testing
of cortical bone specimens (mainly from femoral or tibial bones) or, alternatively, via ultra-
sonic techniques can be found in [Lipson, Katz 1984; Rice et al. 1988; Reilly et al. 1974;
Van Buskirk, Ashman 1981].

In the following subsections a uni�ed material law for describing the elastic beha vior of
bone is derived whic h is then used in the computational simulation of bone remodeling as
described in section \Remodeling Algorithms".

A Material Law for Spongy Bone

Following Gibson [1985], Gibson and Ashby [1988] one can �nd at least three typical micro-
structures in cancellous bone, represen ting the local degree of triaxiality of the stress state:
isotropic open cell structure in the case of pronounced triaxiality of the stress state, plated
structure in the case of predominan tly biaxial stress state, andprismatic structur e(or honey-
comb structure) for an almost uniaxial stress state (Figure 1). Certainly, these distinctions
or classi�cations cannot be used in a strict w ay, and there exist smooth transitions, both
between these micro-structures of bone material, and from low density cancellous bone to
highly densi�ed cortical bone.

Let us introduce the relative density of bone material

�r =
�a

�T
(1)

where �a and �T are the apparent and the bulk mass densit y, respectively. The three t ypical
micro-structures and the corresponding micro-mechanical models as described b y Gibson
and Ash by [1988] are shown in Figure 1 and Figure 2, respectively. The e�ectiv e material
data (with respect to the material axes as de�ned in Figure 2) obtained for these models
are summarized in the following c hapters.
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Figure 1. Di�erent structures of cancellous bone. a) open cell structure, b) prismatic
structure and c) plated structure [Gibson, Ash by 1988]

1

2
3

Figure 2. Micro-mec hanical models for di�eren t structures of cancellous bone:open cell
structure, plated structure and prismatic structure

Isotropic open cell structureIsotropic open cell structure

For the open cell structure, according to the model of Gibson and Ashby, the global sti�ness
is mainly go verned by beam bending of the cell edges. Even though the unit cell of this
model cannot be directly extended to three dimensions, an analogous smeared out, three
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dimensional beha vior ma y be used. Th us, the structural Y oung's modulus is found to depend
on the square of the relative density �r and on the Young's modulus of the trabecular cell
struts ET as

E� � ET �r
2 (2)

From the structural model and from experimental observations on foams (but not on bone),
and from the (assumed) isotropic global behavior, the Poisson ratio and the shear modulus
follow as

�� �
1

3
(3)

G� �
E�

2(1 + ��)
(4)

The tendency of more dense cancellous bone to form closed cells as reported e.g. in
[Carter, Ha yes 1977], can in principle be accounted for by closing the cell faces with
membranes. However, it was observed [M�uller 1994] that the densi�cation of real bone
material tak es place by sti�ening the struts rather than b y building closing membranes.
Thus, the open cell model can also be applied to describe the behavior of more dense
isotropic bone.

Plated structurePlated structure

Under the assumption that most of the material is concentrated in the plates the in-plane
moduli of the plated structure are simply governed by the amoun t of trabecular material,
expressed as a linear function of the relative density

E1
� = E2

� � ET �r (5)

�12
� = �21

� � �T (6)

G12
� �

E1
�

2(1 + �12�)
(7)

For the out{of{plane direction, neglecting the compliance of the connecting rods, the sti�ness
is dominated b y plate bending and therefore the Y oung's modulus is found to be proportional
to the third power of the relative density

E3
� / ET �r

3 (8)

No other P oisson contraction will occur, so that

�13
� = �23

� = �31
� = �32

� � 0 (9)

Only a rough estimate can be given for the out{of{plane shear moduli, expressed here in a
form whic h is analogous to the other equations,

G13
� = G23

� �
E3

�

2(1 + �13�)
(10)
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Prismatic structur ePrismatic structur e

The Young's modulus in the direction of the prisms' axis depends only on the amount of
material, because no e�ects due to structural deformation of the honeycomb cells will occur

E1
� � ET �r (11)

The axial Poisson ratios are found to be approximately the same as for the trabecular
material

�12
� = �13

� � �T (12)

and the transverse ones are nearly zero due to neglectable interaction

�21
� = �31

� � 0 (13)

Using the theorems of minimum potential energy and of minimum complementary energy,
Gibson and Ashby [1988] derived the shear moduli (for regular hexagons) as

G12
� = G13

� �
1

2

E1
�

2(1 + �13�)
(14)

The structural deformation of the regular hexagons gives rise to the Young's moduli in the
isotropic plane, which show a cubic dependence on the relative density

E2
� = E3

� � 1:5 ET �r
3 (15)

The structural model predicts the in{plane Poisson ratios as

�23
� = �32

� � 1 (16)

and the isotropic relation for the in{plane shear modulus holds

G23
� �

E3
�

2(1 + �23�)
(17)

For each of these three \basic" micro-structures the trabecular bone material making up
the struts and plates is treated as isotropic (even though it is a highly anisotropic, lamellar
composite structure). F or the structural sti�ness of the bone material, ho wever, the above
assumption appears to be a good appro ximation, because the bending of plates and struts is
dominated b y the in-plane sti�ness and the sti�ness in direction of the struts, respectively.

It should be noted that the materail models introduced in this section describe either
isotropic or transverse isotropic elastic material beha vior.

The Concept of Orthotropy Parameters

Now let us in troduce \orthotropy parameters"�i whic h are de�ned as follows

E�

i
/ ��i

r
(18)

where the indices i describe the axes of the principal stresses, whic h are assumed to be
aligned with the related material axes (an assumption which will be commented on later),
ordered according to

j�1j � j�2j � j�3j (19)
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We �nd the following v ectors of orthotropy parameters �
�

corresponding to the above

\basic" micro-structures and related to the material axes as de�ned in Figure 2, �
�

T = (2; 2; 2)

for the isotropic structure, �
�

T
= (1; 1; 3) for the plated structure, �

�

T
= (1; 3; 3) for the

prismatic structure, respectiv ely. In general, the real micro{structure of cancellous bone
cannot be described by the above \basic" con�gurations based on Gibson, Ashby [1988],
but may be regarded as some in termediate structure. The degree of triaxiality of the local
stress state, the cancellous structure is exposed to determines whether the appearance of
bone is rather related to one of the \basic" micro{structures or somewhere in{between. In
order to give a quantitative formulation to this rather qualitative statement we introduce
the following assumption for the dependence of the orthotropy parameters on the stress
state

�i = 3� j�ij
2

j�1j+ j�3j
(20)

with �i denoting the principal stress components. Together with eq.(19) this gives rise to
the following relations for the orthotrop y parameters

�1 � �2 � �3 (21)

�1 2 [1:0; 2:0] ; �2 2 [1:0; 3:0] ; �3 2 [2:0; 3:0] (22)

This heuristic assumption provides a continuous transition between the three \basic" micro-
structures for intermediate stress states and is consistent in the following sense: Equation
(20) exactly reproduces the vectors of orthotropy parameters for the three \basic" micro-
structures, if the corresponding stress state is presen t. This can easily be checked by inserting
the relevant stress states expressed in terms of principal stresses in to eq.(20) (assuming that
the material axes coincide with the principal stress axes).

j�1j = j�2j = j�3j ! �
�

T
= (2; 2; 2) : : : isotropic structure

j�1j = j�2j 6= 0 ^ j�3j = 0! �
�

T = (1; 1; 3) : : : plated structure

j�1j 6= 0 ^ j�2j = j�3j = 0! �
�

T
= (1; 3; 3) : : : prismatic structure

Although the \basic" micro-structures show isotropic or transv erse isotropic material be-
havior the concept of orthotropy parameters can giv e rise to general orthotropic descriptions
of bone material as will be shown later.

The range of validity of the above models is giv en by Gibson and Ashby [1988] for a
relative density of �r � 0:3. To obtain the uni�ed model these equations are also used in the
range of more densi�ed cancellous bone. Even though the deformation beha vior becomes
di�erent at higher relative densities, reasonable values for the Y oung's moduli are obtained
(at least in the sense of a continuous transition) (Figure 5). This way the elastic constants
for the whole range of micro-structures in cancellous bone can be captured by a single set
of equations as described later.
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A Material Law for Cortical Bone

In order to de�ne the transition between cancellous and cortical bone w e introduce a
transition value of the relative mass densit y�r;t

�r < �r;t ! cancellous bone

�r > �r;t ! cortical bone

Furthermore, w e assume a maximum relativ e density for compact bone in the most den-
si�ed con�guration �r;max (�0.95 for \healthy" secondary compact bone), as well as the
Young's moduli and the Poisson ratios, respectively, in this con�guration: EC;max; EC;min

and �C;12; �C;13 ; �C;23 (under the assumption EC;max = EC;1 � EC;2 � EC;3 = EC;min, where
EC;i are the Young's moduli of the most dense con�guration in the principal material coordi-
nate system). In the presen t uni�ed model pro vision is made for in troducing these Y oung's
moduli independen tly from the trabecular Y oung's modulus, because experimental observa-
tions have shown a signi�can tly higher value for the sti�est direction in compact bone than
for trabecular bone [Rho et al. 1993]. These data allow an interpolation (assumed to be
linear with respect to �r 2 [�r;t; �r;max] for the sake of simplicity) between highly densi�ed
cancellous bone and highly densi�ed compact bone, leading to a set of equations for the
elastic constants of the cortical bone depending on its relative mass density and the degree
of triaxiality of the stress state.

Formulation of a Uni�ed Material Law for Bone

As men tioned above, internal remodeling simulations require a uni�ed material description
of bone in the whole range of apparen t densities whic h is given by an expression of the
following form

�
�
= E

�
"
�

with E
�
= E

�
(�r; �

�

) (23)

with respect to the spatially v arying material axes. �
�
and "

�
are the 6�1 representations of

the stress and strain tensors, respectively, and E
�

is the 6�6 representation of the elasticity

tensor. Although discussed later, it should be mentioned at this point that the argumen ts
in E

�

, i.e. �r and �
�

, as well as the orientation of the material axes are subject to remodeling.

With the abo ve assumptions and the giv en values for the description of the bulk material
of the trabeculae, i.e. ET ; �T , the limiting v alues of�r, i.e. �r;t and �r;max, as well as the
material constan ts for the most densi�ed compact boneEC;max EC;min and �C;12, �C;13, �C;23,
the elastic parameters for determining the elasticity matrix E

�

can be found in a continuous

and uni�ed manner.
In the uni�ed material model the structure of cancellous bone must generally be classi�ed

as plated{type or prismatic{t ype. The distinction bet ween plated{type and prismatic{t ype
micro-structures is go verned by the orthotropy parameter�2

�2 < 2 ! plated{type structure

�2 > 2 ! prismatic{t ype structure

All cases of �2 = 2 must be captured by both classi�cations and can be regarded as
intermediate states (isotropic structure is one special case of these in termediate states).
Furthermore, a distinction bet ween cancellous and cortical bone has to be made.

In order to state a uni�ed model suitable for remodeling the material moduli (Ei, �ij,
Gij) must be expressed as continuous functions of the leading parameters (�i, �r). Within
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the range of cancellous bone this is done by an \interpolation" between the \basic" micro{
structures. For cortical bone a linear interpolation between the �ctitious�

�

{related values

corresponding to the transition densit y �r;t and the �
�

{related values of the most dense

compact bone is performed.
For cancellous bone the three Y oung's moduli follo w from eq.(18) as

Ei = ET�r
�i (24)

where the proportionalit y factors have been neglected for the in-plane moduli of the pris-
matic structure and the out{of{plane modulus of the plated structure. This inaccuracy is
of minor inuence with respect to the global behavior, because the moduli for the corre-
sponding directions (whic h depend on the third power of the relative density) are very small
compared to those for the other directions. The alteration of the density dependent Young's
modulus function corresponding to the use of orthotropy parameters deviating from �i = 2
agree well with data published by M�uller [1994].

For cortical bone we introduce the density ratio

�̂ =
�r � �r;t

�r;max � �r;t
(25)

and a ratio of the Y oung's moduli of the most dense compact bone

� =
ECmin

ECmax

(26)

Then linear in terpolation gives the cortical Young's moduli as

Ei = ET �r;t
�i + (ECmax Æi �ET �r;t

�i)�̂ (27)

with Æi =
�� 1

2
�i +

3� �

2
(28)

A consistent interpolation of the di�erent Poisson numbers giving rise to continuous
transitions for any possible change of the actual structure (within the framework of the
uni�ed model) is more complicated. For cancellous bone some P oisson ratios have �xed
values and the others have to be calculated by means of �

�

{related \extreme" values.

Regarding cortical bone one has, in addition, to in volve the �ctitious values for most dense
cancellous bone. The detailed equations for the P oisson numbers �12, �13 and �23 are given
in the appendix. The remaining Poisson numbers can be calculated from the symmetry
condition of the elasticity matrix

�ij

Ei
=

�ji

Ej
.

For the shear moduli of cortical bone of prismatic{type structure, where no structural
model is used, the application of the relations derived for cancellous bone shows good
agreemen t with experimen tally observed data from long bones.The results given by Van
Buskirk and Ashman [1981] can be met by the prismatic structure model using a slightly
increased �1-value (whic h corresponds to a nearly uniaxial case). For plated{type cortical
bone, if it exists at all, no experimen tal data are available. Hence, the shear moduli of both
cancellous and cortical bone are described b y a set of equations di�erentiating only whether
the structure type is plated{type or prismatic{t ype.

Prismatic{Type Structure:

G12 =
Æ

2

E1

2(1 + �12)
with Æ = (�2 � 2)�1 + 6� 2�2 (29)
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G13 =
�1

2

E1

2(1 + �13)
; G23 =

E3

2(1 + �23)
(30)

Plated{T ype Structure:

G12 =
E1

2(1 + �12)
; G13 =

E3

2(1 + �13)
; G23 =

E3

2(1 + �23)
(31)

From these \engineering" moduli (Ei, Gij, �ij; i; j = 1; 2; 3), selected by use of �2 and �r,
the compliance matrix C

�

and the elasticity matrix E
�

can be found in the usual w ay (using

the 6� 6 representation of the elastic tensors and engineering strains)

C
�

=

0
BBBBBBB@

1

E1

� �21

E2

� �31

E3

� �12

E1

1

E2

� �32

E3

� �13

E1

� �23

E2

1

E3

1

G12

1

G13

1

G23

1
CCCCCCCA

(32)

with the condition for the ph ysically required symmetry
�ij

Ei
=

�ji

Ej
and

E
�
= C

�

�1
(33)

Since this elasticity matrix is related to the position dependent orientation of the material
axes typical stress analysis procedures, such as the Finite Elemen tmethod, require a
rotational transformation to obtain the material law with respect to a global coordinate
system

��
�
= �E

�

�"
�

with �E
�

= T
�

E
�

T
�

T (34)

where the rotational transformation matrix

T
�

= T
�

(�1; �2; �3) (35)

is a function of the orientation of the material axes de�nedb y the components of the
Rodriguez rotation vector [B�uchter, Ramm 1992] with respect to the global coordinate
system.

Experimen tally evaluated values for the exponent� of the density (e.g. Carter and Ha yes
[1977], Gibson [1985], Rice et al. [1988], Ashman and Rho [1988]) are bounded by the
extreme v alues, viz. 1 and 3, introduced by the present model.Most of the experimental
studies investigating the Y oung's modulus as a po wer law function of the mass density do
not focus on the pertinent micro{structure and on a possible anisotropy of the material.

REMODELING ALGORITHMS - A REVIEW OF THE STA TE OF THE ART

Clinical in vestigations carried out during the last decades ha ve revealed strong evidence of
the existence of functional adaptation and stress or strain induced remodeling processes
acting in bone. Such bone remodeling reactions ha ve been shown to be sensitiv e to the local
strain rates, strain peak magnitudes, strain distributions, the principal dynamical nature of
the loads, and to the num ber of loading cycles. P ossible physical and biochemical phenomena
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transforming mechanical stresses and strains into actual bone cell processes w ere discovered
and studied in some detail. All this experimental evidence has shown bone remodeling and
functional adaptation to be of a rather complicated nature, which still cannot be readily
described in detail.

Parallel to the e�orts aimed at gaining insight into the nature of bone remodeling phe-
nomena, a n um ber of researchers w orked on developing semiempirical, phenomenologically
based mathematical descriptions of these processes, which are suitable for sim ulating and
predicting actual stress related bone remodeling reactions. These mathematical formula-
tions, whic h consider bone tissue to be a locally adaptiv e material, directly couple the
mechanical loading, mostly c haracterized by the strain or stress tensors or measures calcu-
lated from them, with the local remodeling reactions as observed in experiments, via suitable
\bone growth laws". Such growth laws are the basis of computational tools for simulating
the natural adaptation occurring under giv en loading situations and changes in geometry
and sti�ness, as can be caused for example b y implan ts. In the following an overview over
several bone remodeling theories proposed b y di�erent authors is given.

The Model of Pauwels

One of the �rst mathematical formulations of \Wol�s law" w as given by Pauwels [1965].
He assumed the existence of an optimal mechanical stim ulusSn, which has to be present
in the bone tissue to ensure a balanced state of bone resorption and deposition. Pauwels
was mainly in terested in the surface remodeling of long bones which primarily are loaded
by bending, so that the stress state can approximately be described as uniaxial. Hence, the
remodeling relev ant mec hanical stim ulusS was assumed to be iden tical with the axial stress
�. Consequen tly, the optimal v alueSn corresponds to some optimal axial stress value �n.
Stress values exceeding this optimal v alue will lead to an increase in osteoblastic activit y
giving rise to bone hypertrophy. Values below �n will lead to bone atroph y. This feedbac k
system will force the stress state in the bone into the direction of the optimal homeostatic
value as long as the actual stress lies within a certain range (�u � � � �o with �n =

�u+�o
2

).

This principal idea can be formalized by a simple cubic relationship [Kummer 1972] as

dm

dt
= c (� � �u) (� � �n) (� � �o) (36)

dm

dt
is the change in bone-mass per time, the coeÆcient c being a model parameter which has

to be evaluated empirically . Numerical parameter studies of remodeling induced changes
in a cross-section of a long bone (modeled as a hollo w cylinder) subject to axial loading
have shown that the v alue ofc is rather critical with respect to the type of overall system
behavior (damped oscillation, asymptotic convergence or undamped oscillation) [Kummer
1972].

The \Curvature" Model of Frost

Frost [1964] presented a somewhat di�erent bone remodeling theory. The remodeling
processes w ere thought to be controlled by a negative feedback system with some time-
averaged strain acting as the control variable whic h has to surpass some threshold level to
activate both osteoclastic and osteoblastic activity. In addition, the strain induced c hanges
in the local curvature of the bone surface w as assumed to ha ve an inhibiting inuence on
either osteoclasts or osteoblasts. Strains resulting in more conca ve surfaces are assumed
to lead to bone mass deposition whereas strains inducing less concave surfaces are subject
to osteoclastic activity and, consequently, bone resorption. With this simple theory, it was
possible to explain clinical results which show a tendency that fractured long bones that
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healed in a bent con�guration straighten out during long term usage. Some years ago, the
\curvature" model w as reform ulated in terms of strain gradien ts [Martin, Burr 1989].

The \Self{Optimazation" Concept of Carter et al.

In a series of papers Carter and co-w orkers introduced a mathematical formulation of the
functional adaptation of trabecular bone based on a self-optimization concept [Carter et al.
1987; Whalen et al. 1988; Carter et al. 1989]. In accordance with F rost and Pauwels they
assumed that a certain mechanical stim ulusS has to be present in the bone tissue in order
to main tain a quasi-stationary state of no bone remodeling. Carter et al. suggested this
stim ulus, whic h is thought to be constant in the whole bone, to be proportional to some
e�ective stress measure

S /

lX
i=1

ni��
m

eff i
(37)

This form ulation takes into account the inuence of di�eren t load-cases (i = 1 : : : l) which are
weighted by the corresponding num ber of load-cyclesni and the inuence of the magnitude of
the corresponding stress states by introducing the exponentm. The e�ectiv e stress measure
��
eff i

(�
�
; �a) is assumed to be a function of the local stress state �

�
(corresponding to loadcase

i), and of the local apparent density �a. It is assumed that, whatever the biological basis
of bone remodeling might be, functional adaptation gives bone the ability to maximize its
structural integrity with the least amount of bone mass present. This is equivalent to the
assumption that stress induced bone remodeling acts as an optimization tool minimizing
some objectiv e function (connected to some structural in tegrity criteria) [Fyhrie, Carter
1986]. Di�eren t possible optimization goals, including material strength and prevention
of damage accumulation, have been addressed in the literature. In accordance with the
assumed optimization goal a suitable selection of ��eff has to be chosen. The utilization
of a strain energy density approach is linked with the idea that bone is attempting to
maximize its sti�ness whereas a failure stress criterion is connected with material strength
optimization. Both approaches can be formulated in a similar w ay leading to a correlation
between the apparent density�a and the e�ective stress measure ��eff as

�a /

 
lX

i=1

ni��
m

eff i

! 1

2m

(38)

Introducing the bulk strain energy densit y

Ub =
�c

�a
U (39)

(U standing for the strain energy density in the \smeared out" or homogenized material
and �c being the maximum densit y of cortical bone), whic h better reects the strain energy
actually transmitted to the mineralized bone matrix, eq.(38) is rewritten as

�a /

 
lX

i=1

niU
�

i

! 1

�

(40)

where the exponen t� corresponds to the parameter m in eq.(38). Expression of this type
give an estimate for the relation bet ween the apparent density and an e�ective stress state
in an optimal, i.e. equilibrium, state of no bone remodeling and can be used as \optimality
criteria" in an iterative optimization procedure. In com bination with the Finite Element
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method, which is employed for obtaining the stress and strain distributions in the pro ximal
femur according to three di�erent typical loading cases, these form ulae w ere used to predict
the apparent density distribution in the actual bone [Carter et al. 1987] starting from a
homogeneous densit y distribution. The algorithms predicted density distributions similar to
those found in the real fem ur within only a few iterations. However, no convergence could be
obtained and further iterations led to non{ph ysiological states where most elements showed
either maximum or zero density values. Since the model addresses only the con verged
equilibrium state, time was not considered as a model parameter, and no speci�c estimates
of the time history of the remodeling process were possible.

With respect to trabecular orientation Carter et al. follow ed the trajectorial hypothesis
by assuming that the trabeculae are orien ted in the direction of the principal stresses. It
was shown that for a single load case an alignment between principal material and stress
axes (and consequently strain axes) will result in an optimal con�guration with respect
to local sti�ness maximization [Fyhrie, Carter 1986]. In the case of m ultiple load cases a
weighted com bination of the normal stress components with respect to a normal-v ector~n
was suggested to serve as a stim ulus for trabecular growth in the corresponding direction.
This e�ectiv e \cyclic normal stress" ��n is calculated in analogy to eq.(40) as

��n(~n) =

"
lX

i=1

niP
j
nj

��
ni
(~n)

# 1

�

(41)

The material sti�ness in any direction ~n was suggested to be directly related to the magni-
tude of the corresponding cyclic normal stress ��n [Carter et al. 1989]. However, no practical
implementation of this trabecular orientation approach has been reported.

Starke et al. [1992] proposed the use of a modi�ed version of the internal remodeling
algorithm of Carter et al . in an investigation of the adaptive growth reactions of bone
following total hip join t replacement. Bone material was assumed to show transversally
isotropic material beha vior, whic h reduces the number of independent material parameters
compared to the orthotropic case. Following the trajectorial hypotheses of Wol�, the
directions of the material axes are aligned with the principal stress directions. For example,
the local longitudinal Y oung's modulusEl is calculated in an iterative procedure as

Ei+1
l

= c
h�
�i
eff

(Ei

l
)
�2=(�+1)i�

(42)

where c and � are suitable remodeling parameters. This procedure was implemented as a
User Material subroutine in the nonlinear Finite Element program ABAQUS. Utilizing two-
and three dimensional Finite Element models of a pro ximal femur and an implan t-fem ur
system the densit y distributions in the femoral bone before and after surgical treatment
were predicted. Good agreement was found with actual densit y distributions known from
natural femora in the case of the pre-surgery state. Pronounced stress shielding e�ects and,
consequently, disuse resorption in the upper third of the cortical shaft w ere predicted for
the implan t-fem ur system.

The \Adaptive Elasticit y" Model of Cowin et al.

Cowin and co{w orkers developed a sophisticated continuum theory of bone in ternal re-
modeling describing the deposition and resorption of bone material as the sum of chemical
reactions between bone matrix and the extracellular uids [Cowin, Hegedus 1976; Hegedus,
Cowin 1976; Co win, Nac hlinger 1978].

This theory w as used in the investigation of the evolution of bone inhomogeneity due to
stress concentrations caused by elliptical holes [Firoozbakhsh, Aley aasin 1989; Firoozbakhsh
et al. 1992].
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Taking into account the reorientation and the changes in the anisotropic material be-
havior of the trabecular architecture, Cowin et al. [1992] introduced a material model of
trabecular bone utilizing the fabric tensor for expressing the anisotrop y. The fabric tensor
H is a symmetric second rank tensor, that gives a quantitative stereological description of
the microstructural arrangement of trabeculae and pores [T urner et al. 1990] and can be
related directly to the material elasticit y tensor [Cowin 1985].

Cowin et al. [1992] suggested that the trabecular architecture attempts to adapt in suc h
a way that some equilibrium strain state "

�

� is reached, which is characterized by

"
�

� = ("01; "
0
2; "

0
3; 0; 0; 0)

T (43)

where the "0
i
(i = 1 : : : 3) are equal to some optimal values, whic h are di�erent for tension

and compression. F urthermore, it is assumed that for the equilibrium remodeling state the
principal axes of the corresponding stress and strain states �

�

� and "
�

� m ust coincide with the

principal axes of H�. In this state the bone material sho ws its equilibrium matrix volume
fraction �� and its equilibrium fabric tensor H�.

This model of orien tational and anisotropic bone remodeling was used in a numerical
sim ulation of trabecular remodeling reaction in a small (two dimensional) area subject to a
change in the orientation of the applied stress �eld.

One of the major drawbac ks of the model of Co win lies in the relativ ely high number
of bone remodeling parameters necessary for describing the remodeling behavior. Even
in the linearized version each of the six componen ts of the strain tensor is assumed to
contribute to the remodeling process. Up to now quantitative estimates for these remodeling
parameters ha ve only been reported for a special class of problems in which it was possible
to signi�cantly reduce the num ber of parameters. In order to overcome this parameter
identi�cation problem Huisk es et al. [1987], following Carter et al., suggested that the
strain energy density (SED) may serve as a suitable mec hanical stim ulus in the case of
surface and internal remodeling. In addition, an \equilibrium zone" of SED-values giving
rise to no bone remodeling was proposed. Utilizing this modi�ed version of the \Adaptiv e
Elasticity" approach the density distribution in the proximal femur was predicted [Huiskes
et al. 1987], resulting in a converged solution similar to the actual densit y patterns observed
in real femora. In a further investigation the surface remodeling behavior of the fem ural
cortical shaft around an intramedullary implant was studied (using a rather idealized two
dimensional model with a straight stem). This study predicted pronounced resorption in
the upper part of the cortical shaft due to a \stress shielding" e�ect of the sti� stem.

Reiter et al. [1990] extended the bone remodeling algorithm in troduced by Huiskes
et al. [1987] to include the e�ects of overstrain necrosis. A further re�nemen t of the
remodeling rules w as given in Reiteret al. [1994] to account for certain biological bounds
in the maximum bone material turnover. A detailed description of these extended bone
remodeling algorithm can be found in [Reiter 1996]. These remodeling rules in combination
with the Finite Element men thod w ere applied in a number of studies of the behavior of
bone around implants in dental surgery [Reiter, Rammerstorfer 1993; Reiter et al. 1993a;
Reiter et al. 1994a] and for sim ulating the behavior of the tibia after insertion of a knee
endoprosthesis [Reiter et al. 1993b; Reiter et al. 1994a; Krach et al . 1995]. Pettermann [1993]
proposed a further extension of the model used b y Reiteret al. [1990] taking into account the
anisotropic material beha vior of bone tissue by introducing a uni�ed bone material model.
The application of these algorithms can be found in [Reiter et al. 1994b; Pettermann et
al. 1995]. A t this point it may be mentioned that modi�ed v ersions of these algorithms
have been adapted to topology and material optimization in technical applications, see for
example [Reiter, Rammerstorfer 1993; Reiter et al. 1993b; Reiter 1995; Reiter 1996].
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Recen tly the SED-based v ersion of the adaptive elasticity approach was developed further
by Harrigan and Hamilton [1992a; 1992b; 1993], who introduced a generalized continuum-
level strain energy density UT de�ned as

UT =
U

�m
(44)

(� being the volume fraction of the mineralized matrix), as a mechanical stim ulus for stress
induced remodeling. In the case of the exponent m being equal to 1, UT is proportional
to the bulk-SED, de�ned in eq.(39). By in troducing this slightly modi�ed stimulus, the
numerical remodeling simulation w as shown to displa y a signi�cantly more stable behavior.
In [Reiter 1996] these phenomena are discussed in greater detail.

The original in ternal remodeling approach of Cowin et al. was extended to include
material damping e�ects in bone tissue [Misra, Samanta 1987] by assuming the elasticit y

tensor to show time dependent behavior: E
�

= E
�

0 f(t; e). The function f(t; e) was selected

to give a suitable relaxation function leading to a visco-elastic stress-strain relation.
Based on the idea that the c hanges in the density and orientation of bone material are not

only inuenced by the momentary strain regime but ha ve to be considered to be functions
of the whole strain history , Buc h�a�cek [1990] developed an extended version of the \Adaptiv e
Elasticity" model of Co winet al. He assumed that the di�erence between the actual density
and material orien tation and an optimal densit y and orientation, respectively, which both
depend on the strain state, serve as the adaptive stimuli and have a time-fading e�ect on the
remodeling beha vior. This w ay, at a given timet any past strain event will ha ve some e�ect
on the remodeling c hanges but since some exponen tial time-fading function is assumed the
bone reactions are dominated b y the most recen t strain events.

Cell Biology Based Remodeling Algorithms

Several researchers presented theoretical models in which some of the cell biology processes
known to be involved in bone remodeling are explicitly taken into account. This way,
mathematical formulations w ere obtained that are similar to the pure phenomenological
descriptions given in the previous sections.

Beaupr �eet al. [1990] developed a time dependen t description of bone internal remodeling
where the remodeling reaction was proposed to depend on the di�erence bet ween the actual
bulk mec hanical stim ulusSb;act, whic h is calculated according to eq.(37), and some site
speci�c bulk equilibrium stimulus value Sb;eq, which is assumed to depend on the local
apparent density. Furthermore, follo wing the ideas of Martin [1984], the bone surface area
available for osteoblastic and osteoclastic activity was taken into account.

Cell biolo gy based model of Hart and DavyCell biolo gy based model of Hart and Davy

Using mathematical formulations similar to those of the model of Cowin et al., Hart and
Da vy [1989] established a cell biology based remodeling theory utilizing biological remodeling
parameters that quan tify processes of cell di�erentiation and cell function (num bers of
di�erent cells present and their average activity). According to Martin [1984], remodeling
on the surfaces of bone (including in traosseos surfaces of canaliculae etc.) can be expressed
as the sum of the osteoclast and osteoblast activit y per unit area. Hart and Da vy assumed
the activity of the cells active in the remodeling process to be regulated b y the cellular
response to a strain dependent stimulus as

S(~x; t) =

Z
t

0

f("ij(~x; t � �)) d� (45)



310 H.E. Pettermann, T.J. Reiter and F.G. Rammerstorfer

The activity levels of osteoblasts and osteoclasts (i.e. the average volume rate of bone that
is deposed or resorbed by a single active osteoblast or osteoclast, respectively), _ab and _ac
are given as

_ab = cb S + ab0 ; _ac = cc S + ac0 (46)

The scalar constan tscb, cc, ab0 and ac0 are remodeling parameters to be evaluated empiri-
cally. Hart and Da vy discussed various possible de�nitions of the strain dependen t stimulus
S utilizing higher order relationships as w ell as strain rate e�ects. In [Reiter 1996] it is
shown that special forms of this sophisticated model can be related to some of the above
described models.

Accumulated Damage Models

Bone remodeling has been considered to function as an e�ective self-healing procedure,
whic h enables bone to avoid the accum ulation of microdamage caused even by normal daily
loading regimes. Prendergast and T aylor [1992] assumed that bone adaptation is directly
regulated by the continuous process of tissue damage and repair. F rom the assumptions |
1) that there exists damage in the form of the distribution of microcracks at remodeling
equilibrium and 2) that microcracks are repaired at a rate equal to that at whic h they are
generated at remodeling equilibrium | they derived a mathematical formulation for local
bone growth (or resorption).
This growth-law was introduced into an iterative procedure utilizing the Finite Element
menthod for calculating the stress and, consequen tly, the damage distribution in the bone
tissue around intramedullary �xated prostheses.

Viceconti and Seireg [1990] introduced a slightly di�erent damage-based remodeling
approach, utilizing an iterative procedure whic h accum ulates the daily material damage
and deposition. Vicecon ti and Seireg w ere able to qualitatively reproduce experimen tal
data.

A NEW ALGORITHM FOR ANISOTROPIC INTERNAL REMODELING
SIMULATION

In this section an impro ved remodeling algorithm is presented. It is based on the assumption
that the adaptation of bony tissue with respect to site

speci�c mec hanical stim uli, whic h act as the driving forces in the remodeling processes,
can be described appropriately on the con tinuum lev el by using overall (smeared out) tissue
material parameters and stress/strain measures. Any material parameter actually contribut-
ing to the local bone sti�ness will be subject to a speci�c remodeling process which tries to
adapt the e�ective sti�ness behavior at the particular site under consideration according to
the local stresses and strains. With respect to the uni�ed material model presented above,
whic h is based on micromechanical considerations, the essential material parameters gov-
erning the elastic material behavior of bony tissue are given by the apparent density �a (or,
alternatively, by the relative density, �r), the structural anisotropy (orthotropy) described
by the orthotropy parameters �i and the orientation of the principal material axes with
respect to some global coordinate system as described by the Rodriguezrotational vector �

�

.

For each of these material parameters P (P standing for �r, �i or �i) a suitable remod-
eling stim ulusSP can be de�ned, whic h acts as a driving force in the remodeling process.
Following Carter et al. [1987] and Huisk eset al. [1987], the di�erence between the e�ective
(or actual) strain energy density (SED) UTact

and a homeostatic (or equilibrium) SED-value
UTeq

S� = UTact
� UTeq

(47)
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is assumed to be a suitable mechanical stim ulus for the adaptation of apparen t mass densit y
(internal remodeling) as w ell as for external bone growth or resorption.In an analogous
way the stimuli for changes regarding the degree of anisotropy as well as the orientation of
the material axes can be de�ned, with the di�erences between the actual and the required
equilibrium v alues again serving as the driving forces for adaptation, i.e.

S�i = �i;eq � �i;act (48)

with �i;eq being de�ned according to eq.(20) and using the e�ectiv e principal stress state as
described below.

The orien tational stim uliS�i are chosen to be the di�erence between the components of
the Rodriguezvectors describing the equilibrium material orientation and the actual material
orientation

S�i = �i;eq � �i;act (49)

The equilibrium material orientation is assumed to be iden tical with the directions of the
principal stresses according to the local stress state. The hypothesis of bone tissue trying
to develop into a state of coaligned principal material and stress directions, kno wn as the
\trajectorial hypothesis", w as introduced by Wol� [1892]. It is in good agreemen t with
experimen tal �ndings [Ha yes, Snyder 1989], and the alignmen t of the principal material and
stress axes of orthotropic elastic low-shear materials has been shown to be optimal with
respect to material sti�ness [Fyhrie, Carter 1986; Pedersen 1989].

Following Carter et al. [1987] the e�ective strain energy densityUTact
is calculated by an

appropriate
superposition of a number (l) of relevant discrete load cases, weighted according to the

corresponding num ber of load cycles.

Uact =

 
lX
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niP
j
nj
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! 1

k

(50)

where k acts as a weighting parameter of the degree of inuence of the load magnitude
and the num ber of loading cyclesni. UT stands for a remodeling relev ant SED-measure at
the bone matrix-lev el. The transformation from the continuum lev el (smeared out) strain
energy density U to the micro-structural bone matrix-level scale is represented according to
eq.(44) as

UT =
U

�rm
(51)

where U is calculated from the local stress and strain state as

U =
1

2
�
�

T

"
�

(52)

The exponen tm was proposed to be equal to 1, so that it corresponds to an a verage bone
matrix or \bulk"; SED [Carter et al. 1987; Huisk es et al. 1987; Reiter et al. 1990].

Large-scale Finite Element analyses of CT-scanned samples of actual trabecular bone
areas showed the maximum actual matrix-level SED v alues to be orders of magnitude higher
than the smeared out SED-value at the continuum lev el. Hollisteret al. [1994] reported the
maximum ratio of matrix to continuum level SED in their model to be as high as 350 and
van Rietbergen et al. [1995] found a maximum ratio of 1029 with the mean ratio of UT;max=U
being 7.07.

The e�ectiv e stress state�act
�

for �nding the orthotropy parameters (eq.(20)) and the

orientation of the material axes, i.e. of the trabeculae, can be de�ned in analogy to eq.(50)
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Figure 3. Qualitative graphical representation of the piecewise linear relationship between

the remodeling stim ulusS
P
and the rate of remodeling c hanges _P

as an appropriate superposition of local stress tensors resulting from sev eral distinct load
cases
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Negative values of the stim ulusS� < 0 (cf. eq.(47)) lead to bone resorption whereas
positive ones give rise to local bone hypertrophy, i.e. an increase in bone apparent density
in the case of internal remodeling and gro wth of bone perpendicular to the bone surface in the
case of surface remodeling, pro vided a limiting v alue above which overstrain necrosis appears
is not exceeded (for details see [Reiter 1996]). For the other stim uliS�i and S�i positive
values lead to an increase, negative values to a decrease of the corresponding parameters
�i and �i, respectively. Each remodeling stimulus has to exceed a speci�c threshold level
to cause any actual adaptive changes at all, whic h means that bone material is assumed to
show a \lazy-zone" beha vior in the vicinity of its homeostatic state. Furthermore, certain
bounds on the growth rate (whic h are linked to biological cell activity limits) ha ve to be
taken into consideration.

The rate of adaptive change of the individual parameters can be described by a set of
partial di�erential equations of the form

dP

dt
= f (S

P
(~x; t)) (54)

A detailed in vestigation of these relations w ould require the consideration of the biochemical
and bioelectrical processes controlling the activation of osteoblasts and osteoclasts which are
not yet fully understood. For the sake of tractability and simplicit y the connection between
the individual stim uli and the resulting rates of change of the remodeling parameters are
assumed to follo w piecewise-linear relations (see Figure 3)

dP

dt
=

(
C

P 1 (SP
+ SlzP ) for S

P
< �SlzP

0 for �SlzP � S
P
� SlzP

C
P 2 (SP

� SlzP ) for SlzP < S
P

(55)

the rates of change being bounded b y

_P�

max
�

dP

dt
= _P � _P+

max
(56)

The parameter SlzP de�ning the range of the \lazy zone", and the constant coeÆcients C
P 1

and C
P 2 have to be established according to empirical data.
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In order to follow the adaptational c hanges in time, the set of di�erential equations
resulting from an element-wise application of eq.(54) with respect to a Finite Element
discretization of the spatial domain has to be solv ed. A t present a simple Euler forward time
integration scheme is implemented, resulting in an iterative remodeling process as shown
schematically in Figure 4. However, since the explicit Euler method is known to be only
conditionally stable, the time steps are required to be suÆciently small to a void numerical
instabilities.
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Figure 4. Schematic graphical represen tation of the iterative adaptive bone remodeling
algorithm

Figure 5 gives a graphical illustration of a possible developmen t of material anisotropy at

a particular position starting from an isotropic material behavior, i.e. �
�

T = (2:0; 2:0; 2:0),

corresponding to a dominan tly hydrostatic local stress state withj�1j � j�2j � j�3j and
Uact = Ueq). The local stress state is assumed to have changed (e.g. due to surgical
treatmen t) so that it has become anisotropic (j�1j > j�2j > j�3j), giving rise to a higher
e�ective SED (Uact > Ueq). According to the remodeling algorithm, the local material
behavior will be subject to adaptive changes, whic h will tend to increase the material
density and, consequently, will reduce the magnitude of the e�ective SED. In addition,
the orthotropy parameters �

�

will dev elop in response to the new local stress state leading to
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an orthotropic material beha vior. Immediately after the introduction of the change in the
local stress state the rate of change will be rather high. However, the rate of change will
subsequently decrease during the remodeling process while the system approaches a new
remodeling equilibrium state.
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Figure 5. Qualitative graphical representation of the remodeling process due to c hanges in
the local stress state. The developmen t of anisotropic material beha vior starting
from an isotropic con�guration is shown

The new remodeling algorithm can be used to predict the equilibrium con�guration of a
bone with respect to giv en loading conditions. If the progress of remodeling is of in terest,
emphasis has to be put on the formulation of the evolution in time, i.e. to a more precise
determination of the remodeling parameters and the eventual interrelation between them.
As a basic h ypothesis for such interrelation, one ma y assume that the amount of resorbed
and deposited bone material is kept to a minimum during eac h of the individual remodeling
steps. In terms of the uni�ed material model this means, that the orientation adaptation
is done primarily for the smallest possible rotation which transforms the actual into the
required orientation without regard of the indication of the axes.

Example: The Proximal Fem ur

Starting from an initial con�guration of uniform apparent density (�a = 0:95 g/cm3) and

isotropic material beha vior, i.e.�
�

T
= (2:0; 2:0; 2:0), the density distribution, material

orientation and anisotropy within the pro ximal femur predicted by the new internal remod-
eling algorithm are studied. For this purpose a highly idealized two dimensional model of
the proximal femur with a plane stress state is assumed. This simpli�cation is based on the
observation that the external forces corresponding to appropriate represen tative load sys-
tems act mainly in the midfrontal plane of the fem ur. Accordingly , the relevant mechanical
responses within the femur are dominated b y inplane deformations and stresses. Following
Carter et al. [1987] and Huisk es et al. [1987] it is assumed that the loading en vironmen t
whic h the proximal femur is exposed to can be represented with suÆcient accuracy by three
typical load cases (see Figure 6 and T able 1).

Figure 7 shows a comparison bet ween the distribution of the relative mass densit y�r as
predicted by numerical simulation (left), and represented by an X-ra y image of a t ypical
femur (right). Brigh t areas indicate regions with lo w densit y trabecular bone, whereas dark
zones represent high values of bone mass per unit area, i.e. high thic kness and/or density of
the bone. A smoothened image of the simulated density values, whic h are actually constant
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Figure 6. Two dimensional plane stress Finite Element model of a proximal fem ur, the loads
are assumed to be cosine distributed. The magnitude and the direction of the
load-resultants are given in Table 1

Load case Fk �k Ft �t

[N] [Æ] [N] [Æ]

Load case 1 2317 24 702 28
Load case 2 1158 -15 351 -8
Load case 3 1548 56 468 35

Table 1. Magnitude and orien tation of resultants of the loads applied to the model of the
proximal fem ur; taken from [Huiskes et al. 1987]

in any elemen t, is obtained by using a post-processing procedure whic h calculates averaged
nodal values and emplo ys a bilinear interpolation within the elements. The essen tial features,
such as \Ward's triangle" and the high and low densit y regions within the femoral head are
well represented in the numerical simulation results.

Figure 8 (right) gives the results of the numerical bone remodeling simulation with
respect to the structural architecture, i.e. the pattern of orientation of the trabeculae within
cancellous and of the Ha versian systems within cortical bone, respectively, and, consequently,
the anisotropic bone behavior. The orien tations of the principal material directions (which
are identical to the directions of the trabeculae and Ha versian systems, respectiv ely) within
each element are represented by crosses pointing in the principal material directions with
the lengths of the individual bars represen ting the e�ective sti�nesses of the bone in the
corresponding directions. Again, the agreement between the numerical results and the
structural architecture found in natural femora is reasonably good, compare Figure 8 (left).
Some local disturbances in the densit y and material orien tation patterns can be seen at the
bottom of the Finite Element model, whic h are caused by the inuence of the boundary
conditions (see �g. 6). The results giv en in �g. 7 and 8 show the converged solution, whic h
means that further iterations did not c hange the predicted distribution of the density and
the elasticity tensors.
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Figure 7. Density distribution in the proximal fem ur predicted by numerical bone remodeling
simulation { smooth in terpolation of density values (left); X-ray image [Kummer
1972] of a typical femur (right)

Figure 8. Cross section of a proximal h uman fem ur showing the trabecular architecture
(left) [Gibson, Ash by 1988]; Predicted trabecular architecture within the proximal
fem ur obtained by numerical sim ulation (right) with the direction of the crosses
representing the material orien tations and the lengths indicating the corresponding
material sti�nesses within eac h elemen t

Figure 9 displays the development of two convergence parameters (the v alues are nor-
malized with respect to the �rst time step), viz. the relative average change in density

��rel = ��ai=��a0 and the relative average di�erence between the actual and the equi-

librium strain energy densit y�Uactrel
= jS�ij=jS�0j with S�i = Uacti

� Ueq. A rather fast
convergence of the solution can be observed within 20 to 30 time steps (this number is
dependent on the actual values of the remodeling parameters used). After 50 time steps the
solution can be considered to be fully con verged. In order to account for the possibility of
instabilities occurring in later time steps the simulation process w as continued up to a total
number of 500 incremen ts with no further remodeling changes being found.
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Figure 9. Graphical represen tation of the convergence behavior of the remodeling process
during the sim ulation of the femoral arc hitecture with respect to the relative
average change in density ��rel and the relative average stim ulus�Uactrel

. The
parameters are normalized with respect to the starting con�guration

 
0
.
0

 
4
0
0
.
0

 
8
0
0
.
0

 
 
 
 
 
 
 
 
 
 
 
 

 0.0  0.02  0.04  0.06  0.08  0.10

      

 
0
.
0

 
4
0
0
.
0

 
8
0
0
.
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 0.00  0.02  0.04  0.06  0.08  0.10

                

 
0
.
0

 
2
0
.
0

 
4
0
.
0

 
 
 
 
 
 
 
 
 
 
 
 
 

 0.00  0.10  0.20  0.30
                

Uact Uact

full range

V
o

lu
m

e

V
o

lu
m

e

full range

Ueq Ueq

Figure 10. The distributions of e�ective strain energy density at the begin of the simulation
(left) and for the converged solution (right)

Due to the remodeling process the system under consideration (i.e. the model of the
femur subject to three di�eren t load cases) is driven towards an equilibrium state with a
homogeneous distribution of the e�ectiv e strain energy density withUact = Ueq. Figure 10
gives a comparison of the distributions of Uact within the FE model of the femur for the
starting con�guration and for the converged state. Whereas at the start of the simulation
the values of the e�ective SED are distributed o ver a wide range, in the con verged solution
the values of Uact show a narrow peak cen tered at the homeostatic SED value (Ueq = 5:0 10�3

[Nmm�2 cm3 g�1]).
The plane model was chosen in the example because both the geometry of the proximal

femur and the loading conditions relevant for remodeling as published in the literature, sho w
a suÆcien t degree of symmetry with respect to the model plane. The algorithms described
above are implemented for full 3/D simulation, corresponding test examples can be found
in [Pettermann 1993; Reiter 1996].
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CONCLUSIONS

Within physiological limits bone as a living tissue sho ws the abilit y of natural self-adaptation
to altered stress �elds. This adaptation or remodeling, respectively, appears in the form of
surface, i.e. external, remodeling and/or microstructural, i.e. internal, remodeling. For both
situations computational simulation algorithms exist for predicting the new balanced states
after changes in the loading conditions (e.g. due to insertion of an implant). Such algorithms
are discussed in the present review paper. All these algorithms require a proper description
of biomec hanically based laws for absorption or deposition of bone material. More advanced
algorithms also include a proper simulation of the adaptation of the anisotropy. In each case
a sound form ulation of the material la w of bone is necessary taking in to account the location
dependent micro-structural arrangements.

In the review a number of papers describing the mec hanical behavior of bone material
are discussed. Based on some of the results drawn from this literature a uni�ed model
for describing the linear elastic orthotropic behavior of bone has been derived and applied
to internal bone remodeling. The material model is based on micro-mechanical models of
cancellous bone with lo w densit y and experimen tally evaluated material data for compacta at
maximum densit y. It describes the elastic properties within the full range of arc hitectures
of bone, where the elastic moduli are given as continuous functions of the local density,
structural appearance, and trabecular orien tation. Experimen tally evaluated (orthotropic)
material data for bone of di�eren t densities (which are very rare) can be reproduced with
good accuracy by applying the presented material model.

The remodeling algorithm described here in some detail allows the prediction of the
balanced state of bone with respect to apparen t mass densit y and micro-structure at least
in a qualitative manner.

The presen ted uni�ed materail model, which can be embedded in a num ber of remodeling
algorithms review edin the paper, is considered as one possibility for studying internal
remodeling while taking into account the anisotropy of bone material. It helps to improve
the understanding of functional adaptation and may also be seen as a justi�cation of the
trajectorial hypothesis of W ol�.
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APPENDIX

Poisson numbers in the uni�ed model (for explanation see text)
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