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Summary

The paper presents a review of the classical formulations for linear elasticity, known as principles in solid
mechanics. The analogy between the first variation of the energy functionals and the weak forms is pointed
out. Several recent developments in first order system least squares, applied to elasticity are discussed. The
paper concludes with a mathematical formulation of a new mixed least squares method and a discussion
about its future development.

1 INTRODUCTION

“The essential fact is that all the pictures which science now draws of nature,
and which alone seem capable of according with the observational facts, are
mathematical pictures.”

James Jeans

The underlying concept of the work presented in this paper came as a result of discussions
related to the mixed least squares numerical analysis technique, which was recently de-
veloped for solving problems in linear elasticity. In recent years, several new formulations
have emerged and a natural question is how they compare with the classical principles, and
what are the similarities and the difference between them. A detailed study of the litera-
ture on the existing formulations has showed that there are contradictory interpretations of
the classical weak forms or principles, which creates a problem in their understanding and
numerical implementation. There is a difference in the terminology used by mathematical
and engineering oriented researchers, which creates problems in the successful communi-
cation of ideas between them. In many discussions on one or another formulation very
little attention is apparently paid to the way the different types of boundary conditions
are imposed. In order to determine the possibility of applying the different formulations,
it is important to state which boundary conditions are essential and which are natural.
To clarify some ambiguities existing in the literature, a review is presented of the clas-
sical variational formulations for linear elasticity: virtual work, potential energy, virtual
forces, complementary energy, Herrmann, Hellinger-Reissner and Hu-Washizu principles.
The equivalence between the first variation of the classical energy functionals and the cor-
responding weak forms is pointed out. The manner by which the boundary conditions are
imposed (natural or strong form) is stated. It is well-known that the classical Galerkin
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mixed formulations require compatibility between the approximation for the different vari-
ables, expressed by the Ladyzhenskaya - Babus̆ka - Brezzi condition. The paper describes
the general concept of the formulations used to circumvent this condition such as Galerkin
least squares and first order least squares systems. During the course of the last several
years different versions of first order systems least squares (FOSLS) methods have been de-
veloped. So far, these methods have been most popular in the mathematical literature. The
general idea involves minimization of least squares functionals formed by representation of
the higher order partial differential equations as a system of first order equations. Usu-
ally, the least squares method is associated with squaring the residual of the higher order
partial differential equation. It is well-known that this leads to squaring of the condition
number of the resulting linear system and makes the standard version of the least squares
method difficult to use. This problem does not exist in the FOSLS methods, where the
squaring involves low (first) order partial differential equations. A specific form of a first
order systems least squares method is the mixed least squares method for solving problems
in elasticity, which the authors developed in recent years [60]. The paper continues with
a description of the mathematical formulation, which involves separate approximations for
stresses and displacements, allows continuous or discontinuous displacement approximation
and results in a positive definite coefficient matrix, which is suitable to be solved by using
multilevel iterative solvers. A unique feature of the method is that the displacements can
be approximated by different functions over different parts of the problem domain. The
initial computational results illustrated in previous publications show that the method gives
excellent results for both displacements and stresses for compressible and incompressible
materials (plane strain, Poisson ratio exactly equal to 0.5). For the first time, it seems, a nu-
merical formulation involving independent approximations for displacements and stresses,
exhibits stability for low order interpolations in the incompressible limit, without addi-
tional stabilization techniques (which are necessary for the Hellinger-Reissner formulation).
The method gives excellent results for stresses at the inter-element contacts. Its capability
to work in the incompressible limit makes it attractive for future extension to nonlinear
problems involving plasticity and contact interfaces.

2 PRELIMINARIES

2.1 Strong Form of the Linear Elasticity Equations

Consider a body of volume Ω which is bounded by a surface ∂Ω, and subjected to the action
of body forces f = (fx, fy, fz)T , surface tractions t = (t̃x, t̃y , t̃z)T , and surface displacements
g = (gx, gy , gz)T . The physical behavior of the linear elastic body is governed by the
following equations.

2.1.1 Equations of equilibrium

The stress state at a point of the body is determined by the second order symmetric stress
tensor σ which satisfies the equations of equilibrium

∇ · σ = f . (1)

2.1.2 Relationships between strains and displacement

The deformed state at a point of the body is described by the symmetric second order
strain tensor ε. In the geometrically linear theory of elasticity, the strain tensor ε is related
to the displacement vector u in terms of the relationships

ε =
1
2

[∇u+ (∇u)T
]

(2)



Classical and Recent Formulations for Linear Elasticity 43

2.1.3 Stress-strain relationships

For a linear elastic material, stresses are expressed in terms of strains by the relationship
σ = Cε, where C is the fourth order elastic constitutive tensor. Strains are expressed
in terms of stresses by ε = C−1σ = Dσ, where D is the fourth order elastic compliance
tensor. In this paper we use ν as Poisson ratio, E as modulus of elasticity, and G as shear
modulus.

2.1.4 Boundary conditions

The body surface ∂Ω can be split into two non-overlapping parts depending on the boundary
conditions. Denote the part where tractions are prescribed by ∂Ωt and the part where
displacements are specified by ∂Ωu. The boundary conditions are given by the following
expressions

t = t̃ (3)
u = ũ (4)

2.2 Definitions

In this paper we adopt the following definitions for variation of a function and variation of
a functional.

Variation of a function. Consider the functions u and η = u + ξv where ξ is a positive
number. The function η can be made arbitrarily close to u by choosing ξ small enough.
The term ξv is called a variation in u and also often is written as δu.

Variation of a functional of one variable. Consider the functional J(u). The quantity
δJ(u, v) is called the first variation in the functional J at u and is given by

δJ(u, v) = limξ→0
1
ξ
[J(u+ ξv)− J(u)] = ∂

∂ξ
J(u+ ξv)|ξ=0. (5)

Note that the definition of variation of a functional involves a second function v. It will
be shown in the following sections that it is extremely important to define what kind of
restrictions are imposed on this function.

3 CLASSICAL WORK FORMULATIONS FOR LINEAR ELASTICITY

In the following sections we describe the classical weak formulations in linear elasticity. We
show that they are equivalent to the first variation of the corresponding energy functionals.

3.1 Virtual Displacement (Virtual Work) Formulation

The virtual displacement formulation is derived based on the equations of equilibrium (1).
Let v = (vx, vy, vz)T be a vector of test functions satisfying homogeneous boundary condi-
tions v = 0 on the displacement part of the boundary ∂Ωu. Let us form a dot product of
the vector, representing the residual of the equations of equilibrium with the vector v and
integrate over the domain Ω ∫

Ω
(∇ · σ − f) · v dΩ = 0 (6)

Integration by parts of the left-hand side of equation (6) leads to the weak form

−
∫
Ω

σ : (∇v) dΩ−
∫
Ω

f · v dΩ+
∫
∂Ωu

(σ · n) · v d ∂Ω +
∫
∂Ωt

(σ · n) · v d ∂Ω = 0 (7)
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The integral over ∂Ωu in equation (7) is equal to zero, because the test functions v
satisfy homogeneous boundary conditions on this part of the boundary. On the other hand,
using the symmetry of the stress tensor, in the case of small strain theory we can show
that σ : (∇v) = (σ : ε). In variational calculus the test functions v have the meaning of
variations of displacements v = δu. The equation (7) becomes

∫
Ω

σ : δε dΩ −
∫
Ω

f · δu dΩ−
∫
∂Ωt

(σ · n) · δu d ∂Ωt = 0 (8)

Equation (8) expresses the principle of virtual displacements. It is the first variation of

the virtual work functional. The physical meaning of
(∫

Ω
σ : δε dΩ

)
is the strain energy,

or the internal work, the term
(∫

Ω
f · δu dΩ

)
denotes the work done by body forces, and

the term
∫
∂Ωt

(σ · n) · δu d ∂Ωt is the work done by the surface tractions.

3.2 Potential Energy Formulation

It is readily seen that equation (8) is the first variation of the functional

Fvd =
1
2

∫
Ω

C ε : ε dΩ−
∫
Ω

f · u dΩ−
∫
∂Ωt

(σ · n) · u d ∂Ωt (9)

which is known as the potential energy functional. The term
1
2
(C ε : ε) is a quadratic form,

having the physical meaning of strain energy density.
The principle of minimum potential energy is a special case of the principle of virtual

work. Washizu [68] pointed out that both principles are equivalent under the following
assumptions: First, there exist a positive definite function, which can be derived from
the relationships between strains and stresses; second, the relationships between strains
and displacements are given by the linear equations (2); and third, the body forces and
the surface tractions are conservative and can be derived by differentiation of potential
functions.

The solution to the linear elasticity problem consists of those admissible displacements
(ux, uy, uz), which satisfy the displacement boundary conditions and lead to a stationary
point of the total potential energy. In the case where the body forces and the surface
tractions do not depend on displacements, the principle of stationarity of the total potential
energy reduces to the principle of minimum potential energy.

3.3 Virtual Forces (Complementary Virtual Work) Formulation

The complementary virtual work formulation is conjugate to the virtual displacements
formulation. It is derived from the relationships between strains and displacements. Let τ
be a symmetric tensor satisfying zero traction boundary conditions

τ · n = 0 on ∂Ωt (10)

and the homogeneous equations of equilibrium

∇ · τ = 0 in Ω (11)
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Let us contract the residual of the geometric relationships (2) with τ and integrate over
the domain Ω:

∫
Ω

[
ε − 1

2
(∇u + (∇u)T

)]
: τ dΩ = 0 (12)

After integration by parts of the left-hand side of (12), the following expression is obtained

∫
Ω

ε : τ dΩ+
∫
Ω
(∇ · τ ) · u dΩ−

∫
∂Ωu

(τ · n) · u d ∂Ω −
∫
∂Ωt

(τ · n) · u d ∂Ω = 0 (13)

The substitution τ · n = 0 on ∂Ωt, u = g on ∂Ωu, and ∇ · τ = 0 into (13) leads to the
following weak form

∫
Ω

ε : τd Ω −
∫
∂Ωu

g · (τ · n)d ∂ Ω = 0 (14)

If the test function τ is selected to be equal to a variation of stresses δσ, then equation
(14) becomes

∫
Ω

ε : δσd Ω −
∫
∂Ωu

g · (δσ · n)d ∂ Ω = 0 (15)

The term
(∫

Ω
ε : δσ

)
denotes the complementary energy. The weak form expressed

by equation (15) represents the principle of complementary virtual work in mechanics of
solids. It is valid for any constitutive relationship between stresses and strains.

3.4 Complementary Energy Formulation

Equation (15) represents a first variation of the functional

Fcw =
1
2

∫
Ω

Dσ : σd Ω−
∫
∂Ωu

g · (σ · n)d ∂ Ω (16)

which is known as complementary energy functional. The term
1
2
(Dσ : σ) denotes the

complementary energy density.
The complementary energy formulation is a special case of the complementary virtual

work expression. Both formulations are equivalent under the same assumptions for equiv-
alence between virtual work and potential energy formulations.

According to the complementary energy principle the solution of the linear elasticity
problem is a symmetric stress tensor satisfying the equations of equilibrium and the pre-
scribed traction boundary conditions, and minimizing the complementary energy functional
Fcw. The stress tensor σ must have components which are square integrable functions, and
its divergence (∇ ·σ) must also be square integrable (σ ∈ H(div,Ω)). The complementary
energy formulation is difficult to use because the stress tensor functions have to satisfy the
boundary conditions and the equations of equilibrium a priori. It is a formidable task to
choose such a tensor, which satisfies these equations a priori in a domain of arbitrary shape.
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4 MIXED FORMULATIONS

In the following section we describe classical two and three-field mixed formulations.

4.1 Hellinger-Reissner Formulation

The Hellinger-Reissner formulation involves two independent types of unknowns: displace-
ments and stresses. Hellinger [28] formulated a functional of strains and stresses and pos-
tulated that the “canonic” equations (the equations of equilibrium and the constitutive
equations) can be obtained from this functional. Hellinger discussed that when strains are
expressed in terms of stresses, another form of this functional can be obtained, (reminding
us of the complementary energy statement) from which the equations of equilibrium can be
recovered. In order to obtain displacements corresponding to the stresses, the conditions
of compatibility should be fulfilled.

Reissner [53] formulated a variational theorem stating that “Among all states of stress
and displacement which satisfy the boundary conditions of prescribed surface displacement,
the actually occurring state of stress and displacement is determined by the variational
equation

δ

{∫
Ω
F dΩ −

∫
∂Ω
(t̃xux + t̃yuy + t̃zuz)

}
d ∂Ω = 0.” (17)

Reissner [53] assumed that the integral over ∂Ωt vanishes because the variations of
displacements δu are equal to zero on the traction part of the boundary. The original
form of the Reissner principle expressed by equation (62) in the Appendix, implies that
displacements are essential boundary conditions and the tractions are natural boundary
conditions.

Washizu [68] discussed two forms of the Hellinger-Reissner principle which are given in
detail in the Appendix.

The two forms of the Hellinger-Reissner formulation can be derived from the comple-
mentary energy functional by introducing the equilibrium equations as additional terms.
One alternative is to impose them as penalty terms. A disadvantage of penalty formula-
tions in general is that the physics of the problems is sometimes affected in order to satisfy
purely mathematical conditions. The rate of convergence of the iterative methods used to
solve the resulting linear system is slowed down. A better alternative, having more physical
meaning, is to introduce the equilibrium conditions in terms of Lagrange multipliers. Let us

augment the complementary energy functional with the term
∫
Ω

λ ·(∇·σ−f)dΩ which also

reflects an energy state. It is clear that the Lagrange multipliers λ must have the physical
meaning of displacements (λ = u). The augmented complementary energy functional takes
the form:

Face1 =
1
2

∫
Ω

Dσ : σd Ω−
∫
∂Ωu

g · (σ · n)d ∂ Ω+
∫
Ω

u · (∇ · σ − f)dΩ (18)

It can be readily recognized that (18) is the form of the Hellinger-Reissner functional

given by equation (63) in the Appendix. If the term
∫
Ω

u · (∇·σ)d Ω is integrated by parts

and substituted in (18), then the result is

Face2 =
1
2

∫
Ω

Dσ : σd Ω −
∫
∂Ωt

u · (σ · n)d ∂ Ω−
∫
Ω

u · fdΩ+
∫
Ω
∇u : σdΩ (19)
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It is quite clear that expression (19) is similar to the second form of the Hellinger-
Reissner functional expressed by equation (64). It should be noted that the addition of
Lagrange multiplier terms changes the mathematical nature of the problem. The comple-
mentary energy formulation is a pure minimization problem, where the equilibrium and
boundary conditions have to be imposed a priori on the selected trial functions. The
Hellinger-Reissner formulation represents a saddle point, or constraint minimization prob-
lem, where the equilibrium equations are introduced in terms of Lagrange multipliers having
the physical meaning of displacements.

Next it is shown that both forms of the Hellinger-Reissner functional are equivalent
to corresponding weak forms obtained from the elasticity equations. The condition for
stationarity of a two-field functional F (u,σ) is given by the variational equations:

δF (u,σ) |u=const = 0

δF (u,σ) |σ=const = 0
(20)

The application of the stationarity conditions (20) to the Hellinger-Reissner functional
in (18) yields the following set of equations:

∫
Ω
(∇ · δσ) · u dΩ−

∫
∂Ωu

(δσ · n) · u d ∂Ω−
∫
Ω

Dσ : δσ dΩ = 0∫
Ω
(∇ · σ − f) · δu dΩ = 0

(21)

Next, let us consider the equations of equilibrium and the constitutive equations ex-
pressed in terms of displacements and stresses. Let τ be vector test functions and τ be
tensor test functions. The displacement-stress weak mixed form is given by the equations:∫

Ω

[
1
2

(∇u+ (∇u)T
) − Dσ

]
: τ dΩ = 0∫

Ω
(∇ · σ − f) · v dΩ = 0

(22)

If the first of the equations (22) is integrated by parts, and if τ · n = 0 on the traction
part of the boundary ∂Ωt, then the weak mixed form becomes∫

Ω
(∇ · τ ) · u dΩ−

∫
∂Ωu

(τ · n) · u d ∂Ω −
∫
Ω

Dσ : τ dΩ = 0∫
Ω
(∇ · σ − f) · v dΩ = 0

(23)

It can be readily seen that the substitution of v = δu and τ = δσ in (23) leads to the
set of equations (21) which resulted from the first form of the Hellinger-Reissner functional.
In this formulation the displacement boundary conditions are natural and the traction
boundary conditions are essential.

If the second of the equations (22) is integrated by parts, the weak form becomes∫
Ω

[
1
2

(∇u+ (∇u)T
) − Dσ

]
: τ dΩ = 0

−
∫
Ω

σ : (∇v) dΩ −
∫
Ω

f · v dΩ +
∫
∂Ωt

(σ · n) · v d ∂Ω = 0

(24)
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Let v = δu and τ = δσ, where σ is a symmetric tensor. Because of the symmetry of
the stress tensor, the following identity is true:

1
2

[∇u + (∇u)T
]
: δσ = (∇u) : δσ (25)

The substitution of v, τ and (25) in (24) gives

∫
Ω
(∇u) : δσ dΩ−

∫
Ω

Dσ : δσ dΩ = 0

−
∫
Ω

σ : (∇δu) dΩ−
∫
Ω

f · δu dΩ+
∫
∂Ωt

(σ · n) · δu d ∂Ω = 0

(26)

Equations (26) represent the conditions for stationarity of the form of the Hellinger-
Reissner functional expressed by (19). In this formulation the displacements are essential
boundary conditions and the tractions are natural boundary conditions.

4.2 Displacement-Mean Stress Formulation for Nearly Incompressible and In-
compressible Elasticity

For problems involving nearly incompressible and fully incompressible materials the work
formulations are difficult to use. The functional of virtual work becomes indeterminate as
Poisson ratio tends to 0.5, and the standard displacement-based method does not converge.
The complementary virtual work principle also causes difficulties, since the stresses must
be selected in such a way, that they satisfy the equilibrium equations a priori.

Herrmann [29] suggested the concept to “utilize some function of the mean pressure
as a primary independent variable, so that in the limit as Poisson ratio equals one half,
the formulation specializes to the governing equations for an incompressible material”. He
introduced a mean stress functionH, which is related to the mean stress σm = 1

3(σx+σy+σz)
by the expression

H =
3σm

2µ(1 + ν)
(27)

Herrmann’s formulation states that “Among all admissible states of the variables u and H
(displacement and mean stress variable) the actually occurring state is determined by the
variational equation”

δ

∫
Ω

{
µ

[
(ε2x + ε

2
y + ε

2
z) + 2(ε2xy + ε

2
yz + ε

2
zx) + 2νH(εx + εy + εz) −

−ν(1− 2ν)H2 − 6νeTH − 2(εx + εy + εz)eT
]

−(fxux + fyuy + fzuz)dΩ−
∫
∂Ω
(txux + tyuy + tzuz)d∂Ω

}
= 0

(28)

where eT is thermal expansion. According to Herrmann [29] “An admissible displacement
state is one that: 1) satisfies the prescribed displacement boundary conditions; 2) has con-
tinuous second derivatives within each region; 3) is continuous across all region interfaces.
An admissible state of the mean stress variable H is one with continuous first derivatives
within each region”.

The functional

F (u, p) =
∫
Ω
µ ε(u) : ε(u) − p (∇ · u) +

1
2λ
p2 − f · u dΩ−

∫
∂Ωt

(σ · n) · u dΩ
(29)
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is similar to Herrmann’s principle for eT = 0 (no thermal expansion), provided that p = ν H.
The condition for stationarity of a two-field functional F (u, p) is given by the variational

equations

δF (u, p) |p=const = 0

δF (u, p) |u=const = 0
(30)

The application of (30) to Herrmann’s functional yields the set of equations

2
∫
Ω
µε(u) : ε(δu) dΩ−

∫
Ω
p (∇ · δu) dΩ =

∫
∂Ωt

(σ · n) · δu dΩ+
∫
Ω

f · δu dΩ

∫
Ω

1
λ
p δp dΩ =

∫
Ω
(∇ · u) δp dΩ (31)

Next, we derive a mixed weak form involving displacements and mean stress as separate
unknowns. The incompressible material involves zero volumetric strain described by

∇ · u =
(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
= 0 (32)

The volumetric strain can be expressed in terms of mean stress p as

−(λ+ 2
µ

3
) (∇ · u) = p = −1

3
(σx + σy + σz) (33)

In the nearly incompressible limit µ� λ, equation (33) can be approximated by

λ (∇ · u) + p = 0 (34)

After substitution of the constitutive relationships

σ = λ (∇ · u) I+ 2µε(u) = −pI+ 2µε(u), (35)

the virtual displacement principle takes the form

2
∫
Ω
µ ε(u) : ε(v) dΩ−

∫
Ω
p (∇ · v) dΩ =

∫
∂Ωt

(σ · n) · v dΩ+
∫
Ω

f · v dΩ. (36)

The incompressibility constraint is introduced in a weak sense by multiplication of
equation (34) by a test scalar function q and integration over the domain Ω:

∫
Ω

1
λ
p q dΩ =

∫
Ω
(∇ · u) q dΩ (37)

Equations (36) and (37) represent a weak formulation of the problem involving nearly
incompressible and incompressible linear elastic materials. The unknowns are the displace-
ment vector u and the scalar function mean stress p. The mean stress is equivalent to



50 M. Tchonkova and S. Sture

pressure, when Poisson’s ratio is exactly equal to one half. When the material is nearly

incompressible,
1
λ
is not equal to zero, and p can be eliminated from equation (37) and sub-

stituted in (36). Then the mixed form is reduced to a modified displacement based form.
In the case when the test functions v are equal to a variation of displacements δu, and test
functions q are equal to a variation of mean stress δp, the weak form is equivalent to the
stationarity condition for Herrmann’s principle. It should be noted that the requirements
for admissible displacements and mean stress in the original formulation of Herrmann seem
to be too strong. The weak formulation requires that displacements be in the space H1

(i.e. the displacement functions and their first derivatives must be square integrable) and
mean stresses be square integrable functions.

4.3 Hu-Washizu Formulation

The Hu-Washizu formulation involves three independent types of unknowns: displacements,
strains and stresses. In the solid mechanics literature it is known as the Hu-Washizu
principle [68]. The displacement-strain-stress mixed formulation can be derived from the
potential energy functional. The relationships between displacements and strains can be
imposed via an additional term having the physical meaning of energy. The augmented
potential energy functional takes the form

F =
∫
Ω

{
1
2
Cε : ε +

[
ε − 1

2
(∇u + (∇u)T

)]
: σ − f · u

}
dΩ

+
∫
∂Ωt

(σ · n) · u d ∂Ω (38)

The functional (38) is equivalent to the original Hu-Washizu functional expressed by
equality (67) in the Appendix. Under the assumptions of small strains, conservative body
and surface forces and the existence of a positive definite function of strains, the Hu-Washizu
formulation is equivalent to a problem for minimimization of total potential energy under
the constraints expressed by the stress-strain relationships. The constraints are imposed by
Lagrange multipliers, which have the physical meaning of stresses. In general, the conditions
for stationarity of a three-field functional F (u, ε,σ) are given by the variational equations:

δF (u, ε,σ) |u=const,σ=const = 0

δF (u, ε,σ) |u=const,ε=const = 0

δF (u, ε,σ) |ε=const,σ=const = 0

(39)

Next, we show that the conditions for a saddle point of the Hu-Washizu functional are
equivalent to a weak formulation of the equations of linear elasticity.

Let e and τ be symmetric test tensors and their components possess first derivatives
with respect to coordinates x, y and z. Let v be a vector of test functions satisfying
homogeneous displacement boundary conditions on ∂Ωu. The three-field mixed formulation
is derived based on the constitutive relations, stress-strain relationships and the equations of
equilibrium. The constitutive relations are contracted with the test tensor e and integrated
over the domain Ω. The strain-displacement relationships are contracted with the test
tensor τ and are also integrated over Ω. The equations of equilibrium are multiplied by a
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vector v and integrated over Ω. As a result, the following equations are obtained
∫
Ω
(σ − Cε) : e dΩ = 0∫

Ω

[
ε − 1

2
(∇u + (∇u)T

)]
: τ dΩ = 0∫

Ω
(∇ · σ − f) · v dΩ = 0

(40)

After integration by parts the third equation in (40) and taking into account that the
test functions v satisfy homogeneous conditions on the part of the boundary Ωu, where
displacements are specified, the three field mixed formulation takes the form

∫
Ω
(σ − Cε) : edΩ = 0∫

Ω

[
ε − 1

2
(∇u+ (∇u)T

)]
: τdΩ = 0

−
∫
Ω

σ : (∇v) dΩ −
∫
Ω

f · v dΩ +
∫
∂Ωt

(σ · n) · v d ∂Ω = 0

(41)

Equations (41) are valid for each set of test functions e, τ ,v. Let the functions e be
variations of strains e = δε, the functions τ be variations of stresses, τ = δσ and the
functions v be variations of displacements, v = δu. The substitution of e, τ and v in (41)
leads to the set of equations

∫
Ω
(σ − Cε) : δε dΩ = 0∫

Ω

[
ε − 1

2
(∇u+ (∇u)T

)]
: δσ dΩ = 0

−
∫
Ω

σ : (∇δu) dΩ−
∫
Ω

f · δu dΩ+
∫
∂Ωt

(σ · n) · δu d ∂Ω = 0

(42)

which are the conditions for stationarity of the Hu-Washizu functional.

5 CONDITIONS FOR STABILITY, UNIQUENESS AND CONVERGENCE
OF THE STANDARD MIXED FORMULATIONS

5.1 The Limitation Principle

At the continuous level, without any discretization into finite elements, the weak formu-
lations are equivalent. They represent one or another integral or weak form of the linear
elasticity equations. However, at the discrete level, they are not equivalent and might lead
to different approximate solutions. It has been observed that there is a restriction on the
combinations of interpolation functions, which can be used in the discretization of the mixed
formulations.

De Veubeke [19] discussed the limitation principle related to the theoretical possibility of
using separate approximations of displacements and stresses in the Hellinger-Reissner prin-
ciple. If stresses are expressed in terms of displacements and substituted in the Hellinger-
Reissner principle, then it reduces to the principle of virtual work. If no restrictive assump-
tions are made on the stresses, then “if a net of finite elements is analyzed by compatible
displacement modes and the stresses left free to be determined by energy considerations, the
best stresses are those associated with the strains derived from the displacements and the
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degrees of freedom in the displacement modes are governed by the ordinary principle of vari-
ation of displacements. In other words, it is useless to look for a better solution by injecting
additional degrees of freedom in the stresses, although the stresses obtained as a rule, will
not satisfy the detailed equilibrium conditions”. If displacements are expressed in terms of
stresses and substituted in the Hellinger-Reissner principle, it reduces to the complementary
energy principle. “If no restrictive assumptions are made on the displacements”, then “if
the stresses form an equilibrium field a priori, their degrees of freedom are governed by the
ordinary complementary energy principle. In as much as the resulting strains are not, as a
rule, integrable the principle gives no indication concerning a best associated displacement
field”. The limitation principle of De Veubeke was a prelude to the LBB condition, which
is discussed next.

5.2 The LBB Condition

The displacement-mean stress formulation of Herrmann, the Hu-Washizu and Hellinger-
Reissner principles represent saddle points, or min-max problems, i.e. problems, where a
minimum is searched with regard to some of the field variables and a maximum must be
found for the rest of the variables. The mathematical basis for mixed formulations was
developed by Ladyzhenskaya [36], Brezzi [10] and Babus̆ka [4]. They established the con-
ditions for uniqueness, stability and convergence of saddle point problems. Their theorems
are known as the celebrated “Ladyzhenskaya - Babus̆ka - Brezzi” condition. In general, a
saddle point problem can be written in an abstract form as follows:

Given the continuous linear functionals f ∈ W ′ and g ∈ V ′, find {u, p} ∈ W × V such
that the following equations are satisfied:

a(u, v) + b(v, p) = f(v) ∀v ∈W
b(u, q) = g(q) ∀q ∈ V, (43)

where W and V are the definition spaces for variables u and p correspondingly, a and b are
continuous bilinear forms. The notation (x, y) is the L2 inner product of two scalar, vector

or second order tensor functions x and y, (x, y) =
∫
Ω
x · ydΩ where ’·’ is the appropriate

inner product.
The existence and uniqueness of the solution of the saddle point problem (43) is governed

by the following theorems:

• Continuity of a and b.

There exist positive constants c1, c2 <∞ such that:

a(u, v) ≤ c1 ‖u‖W ‖v‖W , ∀u, v ∈W
b(u, q) ≤ c2 ‖u‖W ‖q‖V , ∀u ∈W, ∀q ∈ V (44)

• Stability Condition (K-ellipticity of a).

There exists a constant α > 0 such that:

|a(v, v)| ≥ α ‖v‖2W ∀v ∈ K (45)

where K = {v ∈W | b(v, q) = 0 ∀q ∈ V }.
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• Ladyzhenskaya - Babus̆ka - Brezzi condition.

There exists a constant β > 0 such that:

sup
v∈W

b(v, q)
‖v‖W ≥ β ‖q‖V ∀q ∈ V (46)

Then the problem (43) has a unique solution {u, p} ∈W × V .
If the left-hand side of (46) is divided by ‖q‖V , then the condition is written as

inf
q∈V

sup
v∈W

b(v, q)
‖v‖W ‖q‖V ≥ β > 0. (47)

In the last form the LBB condition is known as “inf − sup” condition. If (44) and (45)
are satisfied, then (46) is a necessary and sufficient condition for existence, uniqueness and
stability of the saddle point problem.

The discretization of problem (43) involves the selection of finite dimensional subspaces
Wh ⊂ W and Vh ⊂ V , spanned by finite element functions, say piece-wise polynomials.
The classical Galerkin method is then formulated as follows:

Given f ∈ W ′ and g ∈ V ′, find (uh, ph) ∈Wh × Vh such that:

a(uh, vh) + b(vh, ph) = f(vh) ∀vh ∈Wh

b(uh, qh) = g(qh) ∀qh ∈ Vh, (48)

The discrete analogue of the conditions (44), (45) and (47) holds for problem (48), if
(u, v, p, q, w, v) are replaced by their discrete counterparts (uh, vh, ph, qh, wh, vh), and K is
replaced by Kh ⊂Wh, where
Kh = {vh ∈Wh| b(vh, qh) = 0 ∀qh ∈ Vh}.
Since Kh �⊂ K in general, the existence, uniqueness and stability conditions must be

verified for each combination ofWh and Vh. For many problems, combinations of functions,
which seem “natural” (such as equal order approximations) do not satisfy the stability
conditions with α and β independent of the mesh size h. Spurious oscillations and locking
(lack of approximation when the mesh is refined) occur when working with combinations
of Wh and Vh which violate either (45) or (47). Within the classical Galerkin formulation
one needs to use combinations of functions which satisfy the LBB condition.

The existence of a positive constant β guarantees that the mixed method results in a
nonsingular matrix. This does not always mean that the method is stable (i.e. for small
changes in input it gives small variations of the solution). The stability depends on β. If it
can be proved that β is exactly a constant and does not depend on the size of discretization
h, then the method is stable and the numerical solution converges to the exact solution. If
β depends on h, then even if the resulting matrix is non-singular, the method might not be
stable and the numerical solution might not converge to the exact solution. The proof that
β is a constant must be performed for all combinations of the approximation functions. The
theoretical proof is a formidable task, but one might perform computational experiments
and see how the solution behaves with respect to the mesh size. If β is equal to zero, then
the resulting matrix is singular. There are two ways to handle this obstacle. First, one
can impose appropriate boundary conditions, which eliminate the incompatible functions.
Then the resulting linear system will become invertible. Second, an iterative method can
be used to solve the singular problem, and, after a satisfactory number of iterations, in
terms of post-processing, the “bad” interpolation functions can in principle be eliminated.
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6 RECENT FORMULATIONS FOR LINEAR ELASTICITY

6.1 Galerkin Least Squares

Franca [20] and Franca and Hughes [21] proposed a modification of the general abstract
form of the saddle point problems (see Appendix). For Hellinger-Reissner formulation, the
modification can be written as follows:

Given f ∈ V ′
, find

(
uh,σhph

) ∈ Vh ×Wh such that

a∗h(σσσh, τττh) + bh(uh, τττh) = fh(τττh), ∀τττh ∈ Vh
bh(vh, σσσh) + ch(uh,vh) = gh(vh), vh ∈Wh

where

a∗h(σσσh, τττh) = −
∫
Ω
(Dσh) : (τττh) dΩ + δ1γ1

∫
Ωh

(D σh) : (D τh) dΩh

−δ2h
2

γ1

∫
Ωh

(∇ · σσσh) : (∇ · τττh) dΩh

bh(uh, τττh) =
∫
Ω

ε(uh) : τττh dΩ − δ1γ1
∫
Ωh

ε(uh) : Dτh dΩh

ch(uh,vh) = δ1γ1

∫
Ωh

ε(uh) : ε(vh) dΩh

fh(τττh) = δ2h
2

∫
Ωh

f · (∇ · τττh) dΩ

gh(vh) =
∫
Ω

f · vh dΩ (49)

The equations (49) represent a stabilization of the original Galerkin formulation by
adding least squares-like terms. Franca [20] pointed out that the difference between Galerkin
least squares and the least squares as a methods for solving partial differential equations
is that the least squares terms are evaluated only in the interior of each element and pre-
multiplied by a coefficient, which depends on the mesh size h. The δ1 term adds stability to
the Lagrange multiplier (displacements in the Hellinger-Reissner formulation). The δ2 term
stabilizes the primary variable (stresses in the Hellinger-Reissner formulation). Franca [20]
observed that the general formulation (68) expresses two classes of finite elements depending
on the nature of the governing stability equations:

• Circumventing the LBB condition, when δ1 > 0, δ2 ≥ 0.

• Satisfying the LBB condition, when δ1 = 0, δ2 ≥ 0.

The theoretical investigations by Franca [20] and Franca and Hughes [21] on circumvent-
ing the BB were applied to compressible elasticity. The computational results confirmed
the predictions of the theoretical analysis.

6.2 First-Order System Least Squares Methods

The general concept involves minimization of least squares functionals formed by represen-
tation of the higher order partial differential equations as a system of first order equations.
Usually, the least squares method is associated with squaring the residual of the higher
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order partial differential equation. It is well-known that this leads to squaring of the con-
dition number of the resulting linear system and makes the standard version of the least
squares method difficult to use. This problem does not exist in FOSLS methods, where the
squaring involves low (first) order partial differential equations.

Carey and Chen [14] applied a least squares numerical technique to a second-order ordi-
nary differential equation. They represented the higher order ordinary differential equation
in terms of a system of first-order ordinary differential equations. Their approach involved
minimization of a least squares functional consisting of the sum of the squares of the resid-
uals of the first-order equations. The numerical experiments performed by Carey and Chen
seemed very encouraging and were partially explained in the theoretical work of Pehlivanov,
Carey, Lazarov and Chen [45]. Recently the least squares methods became the object of a
renewed interest. The least squares methods have the advantage that the resulting linear
system is symmetric and that the compatibility condition for the spaces used for the differ-
ent field variables can be circumvented. A least squares method for the Stokes equations,
with application to linear elasticity was introduced in the mathematical literature by Cai,
McCormick and Manteuffel [12]. The original formulation used displacements and displace-
ment gradients as independent unknowns. Later, Cai, Manteuffel, McCormick and Parter
extended and analyzed the original first-order least squares formulation for the linear elas-
ticity problem with pure traction boundary conditions [13]. The linear elasticity problem
is represented by a first-order system of partial differential equations

U −∇ · u = 0 in Ω
−∇ ·AU = f in Ω

∇U = 0 in Ω
n · AU = 0 on ∂Ωt

(50)

where U is the gradient of displacement vector, U =
(
∂ux
∂x
,
∂ux
∂y
,
∂uy
∂x
,
∂uy
∂y

)
, n is the unit

normal to the boundary, n = (nx, ny), and A = λA1+2µA2 is a (4 by 4) matrix defined as
follows
A1 = bbT , where b = (1, 0, 0, 1)T and

A2 =




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1


 (51)

One of the least squares approaches involves minimization of the functional

G(U ,u;f) =|| f +∇ ·AU || 2 + || ∇U || 2 +(A(U −∇u),U −∇u) . (52)

with regard to displacements and displacement gradients.

7 A NEW MIXED LEAST SQUARES FORMULATION FOR LINEAR ELAS-
TICITY

Recently we developed an original mixed least squares formulation for solving problems
in linear elasticity [60], [65], [64]. It involves separate approximations for stresses and
displacements, allows continuous or discontinuous displacement approximation and results
in a positive definite coefficient matrix, which is suitable to be solved by using multilevel
iterative solvers. The approximate solution of the linear elasticity problem is obtained via
a minimization of a least squares functional F depending on displacements and stresses.
The mathematical formulation is presented next.
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7.1 Strong Form of the Linear Elasticity Problem

Consider the domain of an elastic body Ω ⊂ Rd, with sufficiently smooth boundary ∂Ω =
∂Ωu ∪ ∂Ωt where d = 2 or 3 is the number of space dimensions (see Figure 1). Given body
forces f in Ω, tractions t on traction part of the boundary ∂ Ωt and displacements g on the
displacement part of the boundary ∂ Ωu, find a pair of stresses and displacements (σσσ, u)
satisfying the first order system of partial differential equations:

2Dσσσ = ∇u + (∇u)T in Ω

∇ · σσσ = f in Ω
(53)

and the boundary conditions:

u = g on ∂ Ωu

σσσ · n = t on ∂ Ωt

(54)

where D is the fourth order compliance tensor of the elastic constants and n is the unit
outward normal to the boundary surface.

Ω
t

Ω
u

Ω

Figure 1. Elastic body occupying domain Ω bounded by a surface ∂Ω = ∂Ωu∪∂Ωt

The equations denoted by the first part of expression (53) are the constitutive relation-
ships for a linear elastic medium, and the equations in the second part are the equations of
equilibrium.

7.2 Weak Formulation

Let L2(Ω) be the space of square-integrable functions on Ω, and HS(div,Ω) be a space of
symmetric tensor functions, which together with their divergence are square integrable on
Ω. Denote by H

1
2 and H− 1

2 the definition spaces for the boundary displacement function

g and boundary traction function t; Given f ∈ [
L2(Ω)

] d
, g ∈

[
H

1
2 (∂ Ωu)

]d
and t ∈[

H− 1
2 (∂ Ωt)

]d
, find (σσσ, u) , where σσσ ∈ HS(div, Ω), σσσ · n = t on ∂Ωt, u ∈ [

L2(Ω)
]d
,

such that:

2
∫
Ω
DDDσσσ : τττ +

∫
Ω
uuu · (∇ · τττ)−

∫
∂Ωu

g · (τττ · n) = 0
∫
Ω
(∇ · σσσ − f) · (∇ · τττ) = 0

(55)
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for every τττ ∈ HS(div,Ω) | τττ · n = 0 on ∂ Ωt.
Note that in (55) there are no derivatives on the displacement vector, which allows the

use of discontinuous approximation functions for the displacement variable.

7.3 The Least Squares Functional

The problem domain is discretized into triangles or quadrilaterals in the two-dimensional
space and into tetrahedra or hexahedra in the three-dimensional space. For simplicity, we
assume that the domain is polygonal.

The numerical technique proposed in this study involves minimization of a least squares
functional F which consists of two parts. The first part F1 is formed from the first of
equations (55) by substitution of τττ equal to the test functions φi and summation of the
squares of the obtained residuals.

It is defined on HS(div,Ω) × [
L2(Ω)

]d and has the following form

F1 (σσσ, u, g) def=
m∑
i=1

[
2

∫
Ω
(D σσσ : φi +

∫
Ω

u · (∇ · φi)−
∫
∂Ωu

g · (φi · n)
]2

(56)

where φi are test tensor functions, which satisfy the homogeneous traction boundary con-
dition φi · n = 0 on ∂Ωt and form a basis for the test space T h

0 ⊂ HS(div,Ω).
The second part of the functional F2 is obtained from the second of equations (55) by

substitution of (∇ · τττ) by (∇ · σσσ − f). It is defined on HS(div,Ω) and is given by

F2 (σσσ, f) def=
∫
Ω
| ∇ · σσσ − f |2 ≡ || ∇ · σσσ − f || 2

[L2(Ω)]
d (57)

The functional to be minimized is defined on HS(div,Ω)×[
L2(Ω)

]d and takes the form
F (σσσ,u, f , g) def= F1 (σσσ, u, g) + F2 (σσσ, f) (58)

An approximate solution to the problem (55) will be any pair
(
σσσh,uh

)
, σσσh ∈ T h

t , uh ∈ Uh
g or

uh ∈ Uh
disc, which minimizes F (σσσ,u,f ,g), where T h

t is the finite element space for stresses,
Uh

g and Uh
disc are the finite element spaces for displacements in the case of continuous and

discontinuous approximation respectively.
The trial stress space T h

t consists of symmetric tensors over Ω which satisfy the traction
boundary conditions σσσh · n = t on ∂Ωt. The test tensor functions φ1,φ2, · · · ,φm satisfy
zero traction boundary conditions and span the space T h

0.
Displacements can be approximated by continuous or discontinuous functions. Let the

finite element space for displacements be spanned by the functions η 1,η 2, · · · ,η n. In the
case of continuous approximation, ηi are piece-wise continuous functions, satisfying the
displacement boundary condition u,g on ∂Ωu and belong to the space Uh

g. In the case of
discontinuous displacement approximation, the space for displacements is denoted by Uh

disc
and consists of square integrable vector functions. No boundary conditions are imposed on
the functions ηi.

After applying the standard minimization procedure, that is equating to zero all partial
derivatives of the functional F with respect to the unknown components of displacement
vector and stress tensor, we obtain a discrete form of the problem (58) which has the form
KV = R, whereV is the unknown of the displacement vector and stress tensor components,
R is the right-hand side, and K is the coefficient matrix. The coefficient matrix K is
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symmetric and is represented by the sum (AT A+B), where A is a rectangular matrix
determined by differentiation of the first part of the functional. The number of its columns
is equal to the number of unknown displacement and stress components and the number
of its rows is determined by the number of the stress test functions. The matrix B is
symmetric and is obtained by differentiation of the second part of functional.

The new formulation involves separate approximations for displacements and stresses,
allows for discontinuous or continuous approximation of displacements, and results in a
positive definite coefficient matrix and does not require compatibility between approxima-
tion spaces for displacements and stresses. A condition for existence and uniqueness of the
solution of the discrete problem was established and verified analytically and numerically
for two low order piece-wise polynomial FEM spaces [60]. The condition for uniqueness
of the solution via the mixed least squares method is given by expression similar to the
LBB condition for the Hellinger-Reissner formulation. The difference is, that in the pro-
posed least squares formulation the compatibility is between the approximation spaces for
displacements and the spaces for test functions, while in the Hellinger-Reissner formulation
the compatibility condition relates the approximation spaces for displacements and stresses.

7.4 Numerical Example

Bending of a Beam Loaded by Uniform Load

This example is described by Timoshenko and Goodier [66]. A beam of a rectangular cross
section of unit width, simply supported at the ends is loaded by a uniformly distributed load
of intensity q (see Figure 2). Because of the symmetry in geometry and load and linearity
of the material properties, only one half of the beam was modeled. The following boundary
conditions were prescribed: on the lower boundary of the beam the components of traction
vector were taken equal to zero; on the right boundary the traction components σx and
τxy were specified as computed by Timoshenko and Goodier [66]; on the upper boundary
traction components τxy = 0 and σy = −q were specified. On the left boundary the
conditions of symmetry τxy = 0 and ux = 0 were imposed. The following data for material
properties and beam geometry were used: Young’s modulus: E = 0.1 GPa, Poisson ratio
ν = 0.2, half-span of beam l = 2 m, half-width of beam c = 0.1 m, uniform load density
q = 10 kPa.

c

y

x

q

c

l l

Figure 2. Beam loaded by uniform load
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The mixed least squares formulation was implemented in an original computer program,
written from scratch in C programming language, using object-oriented logic. The computer
code was first applied to the state of plane stress. The initial results were obtained with
the use of an element which involves piece-wise constant interpolations for displacements
and bilinear interpolations for stresses. It is well known that such an approximation of
displacements is not possible in the standard finite element formulation.

The computer simulation was performed for rectangular grids, consisting of different
number of elements in the x and y directions. Figures 3, 4 and 5 illustrate a comparison
between the exact and approximate solutions for the three stress tensor components corre-
sponding to a pointing upwards coordinate system with origin in the middle of the lower
wall of the beam). The approximate stress tensor components were obtained with a rect-
angular grid of 10 elements in x direction and 49 elements in y direction. Smooth stresses
were computed at the points of the grid, without any post-processing of the solution. The
low order interpolation polynomials required more elements to approach the exact solution.
The ’constant displacement-bilinear stress element’ resulted in slower convergence for dis-
placements compared to stresses. In the numerical simulation the displacement boundary
conditions were considered to be essential. When they are approximated by piece-wise
constants, the boundary value is imposed over the entire element. When the size of el-
ements, where displacement boundary conditions were specified, decreased, the error in
displacements also decreased.

The displacements improved when a ‘bilinear displacement-bilinear stress’ element was
used. The results for both stresses and displacements were close to the exact solution. It was
noticed that with the decrease in mesh size, the approximate solution for every component
of displacement vector and stress tensor converged to the exact solution. The obtained
rate of convergence for displacements was similar to the rate of convergence for stresses.
Numerous analyzes were done for rectangular meshes and different number of elements. In
all cases the approximate solution converged to the exact solution. No “spurious modes” or
oscillations were noticed. The results for displacements converged faster than those obtained
with the ‘constant displacement- bilinear stress’ element because the boundary conditions
were imposed correctly and because of the higher order of approximation. The comparison
between the results obtained with both elements showed that good stress distributions can
be computed even when the displacements are not so good. It seems that in the proposed
method the displacements and stresses converge independently of each other. The obtained
displacements with the ‘bilinear displacement-bilinear stress’ element are shown in Figure 6.
For a regular mesh consisting of 10x50 elements the exact solution was very close to the
solution obtained with least squares mixed method.

The convergence of the proposed numerical technique for an incompressible material in
the plane strain state (Poisson’s ratio equal to 0.5) was also studied. The same boundary
conditions were applied. For the ‘bilinear displacement-bilinear stress’ element, regular
rectangular meshes involving 6 by 6, 12 by 12 and 24 by 24 elements were used. The
computations with the ‘constant displacement-bilinear stress’ element were performed on
meshes involving 6 by 7, 12 by 13 and 24 by 25 elements. For the results from every
numerical experiment, we computed the L2 norms of the absolute errors in stresses and
displacements. In order to illustrate the rate of convergence, we recorded graphically the
logarithm of the L2 norms versus the logarithm of the reciprocal of the largest diameter of
element, which occurred in the computational mesh, in terms of Log of 1/h.

To make the graphical illustration more transparent, we “normalized” the absolute
error. In our presentation of the stress convergence we took the logarithm of the computed
absolute error of the stress divided by 100,000. Also, instead of taking Log of the computed
absolute error of displacements, we calculated the Log of the absolute displacement error
divided by 0.01.
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Figure 3. Exact and approximate solutions for σx in the beam, ‘constant
displacement-bilinear stress element’
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Figure 4. Exact and approximate solutions for σy in the beam, ‘constant
displacement-bilinear stress’ element



62 M. Tchonkova and S. Sture

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Distance x from the middle of the beam, m

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

St
re

ss
   

   
 , 

M
Pa

Distribution of Stress     in the Right Half of the Beam
Exact Solution

σ
σ x

y
xy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Distance x from the middle of the beam, m

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

St
re

ss
   

   
 , 

M
Pa

Distribution of Stress     in the Right Half of the Beam
Approximate Solution (mesh 10x49)

xy

xy
σ

σ

Figure 5. Exact and approximate solutions for σxy in the beam, ‘constant
displacement-bilinear stress’ element
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Figure 6. Displacements along x direction and deflection for the right half of the beam,
loaded by uniformly distributed load, m, ‘bilinear displacement-bilinear stress’
element
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Figure 7. Stress convergence of the ‘bilinear displacement-bilinear stress’ element and
‘constant displacement-bilinear stress’ element for the beam loaded by a uni-
formly distributed load, Poisson ratio 0.5, plane stress and plane strain states

Figure 7 shows a comparison between the convergence rate of the two elements for
Poisson’s ratio equal to 0.5. It is seen that the rate of stress convergence is very close
for both elements. The displacements obtained with ‘bilinear displacement-bilinear stress’
element were better than those obtained with ‘constant displacement-bilinear stress’ ele-
ment. The results for stresses did not seem to be affected by the results for displacements.
Figure 8 shows a comparison between the rates of convergence of stresses when the ‘bilin-
ear displacement-bilinear stress’ element was used, for Poisson’s ratios 0.5 and 0.2. In this
problem the stresses do not depend on Poisson’s ratio and both plane stress and plane strain
states provided identical results. Figures 9 and 10 illustrate the displacement convergence
for plane stress and plane strain respectively. It is seen that for both Poisson ratios the
method exhibits a stable rate of convergence. The same stability was observed, when the
‘constant displacement-bilinear stress’ was used.

The initial computational and theoretical results from the new mixed least squares
method seem to be very encouraging and stimulating for numerous future developments.
We see the immediate continuation of the method in several major directions. An impor-
tant feature of the mixed least squares method is that it allows selective continuous or
discontinuous approximation of displacements over different parts of the problem domain.
This makes it suitable for further extension and application to problems involving discon-
tinuity in displacements, such as joints, interfaces and cracks. The excellent results for
stresses at the inter-element contacts, as well as the capability of the method to work in
the incompressible limit makes it attractive for future extension to nonlinear problems in-
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Figure 8. Stress convergence of the ‘bilinear displacement-bilinear stress’ element for
the beam loaded by a uniformly distributed load for Poisson ratio 0.5 and 0.2,
plane stress and plane strain states

volving plasticity and contact interfaces. The method also represents a theoretical interest
for a strict mathematical proof of convergence. It is important to note that it allows the
use of an innovative approach for numerical stabilization. The method can be stabilized
by the addition of more test functions. The number and type of the test functions can be
different from that of the trial stress functions. The addition of more test functions will
not destroy the symmetry of the coefficient matrix and the consistency of the method will
be preserved. Also, the addition of new constraints will not increase the number of equa-
tions in the resulting linear system. The mixed least squares method can be used to solve
problems involving nonlinear constitutive relationships between stresses and strains. The
standard linearization techniques, such as fixed point or Newton-Raphson methods can be
applied. In the case of hyper-elasticity the second part of the functional remains the same,
and the first part takes the form:

F1 (σσσ, u, g) def=
m∑
i=1

[ ∫
Ω
(
∂W

∂σσσ
: φi +

∫
Ω

u · (∇ · φi)−
∫
∂Ωu

g · (φi · n)
]2

(59)

For geometrically nonlinear problems, the mixed least squares formulation is still valid,
but for a general problem domain, it seems that the trial functions for displacements must
be continuous. This topic, as well as the issues discussed previously, represent an interesting
field for future research undertakings.
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Figure 9. Displacement convergence of the ‘bilinear displacement-bilinear stress’ element
for the beam loaded by a uniformly distributed load for Poisson ratio 0.5 and
0.2, plane stress state
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for the beam loaded by a uniformly distributed load for Poisson ratio 0.5 and
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Formulation Type of Problem Coefficient Boundary conditions
matrix

Virtual work Minimization problem Positive definite Displacements-essential,
Tractions-natural

Virtual Forces Minimization problem Positive definite Tractions-essential,
Stresses must Displacements-natural
satisfy equili-
brium apriori

Displacement- Saddle Point Problem or Indefinite Displacements-essential,
Mean Stress minimization of Tractions-natural

virtual work under
incompressibility
constraint

Hellinger- Saddle Point Problem or Indefinite 1. Displacements-essential,
Reissner minimization of Tractions-natural

virtual forces under 2. Displacements-natural,
equilibrium constraint Tractions-essential

Hu-Washizu Saddle Point Problem or Indefinite Displacements-essential,
minimization of virtual Tractions-natural
work under displacement-
strain constraint

Mixed Least Minimization Problem Positive definite Displacements-natural
Squares or essential,

Tractions-essential

Table 1. Classification of weak formulations for elasticity

8 CONCLUSIONS

In this paper a detailed review of the classical and some newly developed formulations
for solving problems in linear elasticity is presented. The derivation of the different for-
mulations, based on the partial differential equations of elasticity, is emphasized. Table 1
represents a general classification of the different weak formulations in terms of type of math-
ematical problem, type of the resulting coefficient matrix and way in which the boundary
conditions are imposed. It should be noted that at the continuous level all the formulations
are equivalent. However, at the discrete level, their behavior is different. The classical
virtual work and virtual force formulations are pure minimization problems and the re-
sulting coefficient matrix is positive definite. The common feature of the classical mixed
formulations is that they are saddle-point problems, the coefficient matrix is indefinite and
the spaces used for different variables must satisfy the LBB condition in order to guarantee
stability. Those methods can be stabilized at the discrete level by modifying the coefficient
matrix and the right hand side of the linear system. In the past several years, different least
squares types of formulations for linear elasticity have been developed. They are known as
first-order least squares system [12], mixed least squares [60], etc. A common feature of
these methods is that in some of cases the LBB condition can be circumvented, and others
can be stabilized by the addition of more least squares terms in the functional, without
destroying the symmetry of the resulting matrix and without increasing the number of the
unknowns. The major goal in the least squares development is to combine the capability of
the mixed formulations with obtaining a linear system with a positive definite matrix, which
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is easier to solve iteratively. We believe that in the future these methods will represent not
only theoretical interest, but will find their appropriate area of application. The authors
hope that the review presented in this paper will be useful for those who make their first
steps in the field, as well as for those who might refresh their concepts in computational
elasticity.
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APPENDIX

Strain Energy Density

For linear isotropic elasticity the strain energy density is

A =
E ν

2(1 + ν)(1− 2ν)
(εx + εy + εz)2 +G

(
ε2x + ε

2
y + ε

2
z

)
+
G

2
(
γ2xy + γ

2
yz + γ

2
xz

)
. (60)

Complementary Energy Density

For a linear elastic isotropic material the complementary energy density is equal to

B =
1
2E

[
(σx + σy + σz)2 + 2(1 + ν)(σ2yz + σ

2
zx + σ

2
xy − σyσz − σzσx − σxσy

]
(61)

Detailed Form of the Original Reissner Principle

∫
Ω

[(
∂ux
∂x

− ∂W
∂σx

)
δσx +

(
∂uy
∂y

− ∂W
∂σy

)
δσy +

(
∂uz
∂z

− ∂W
∂σz

)
δσz

+
(
∂uy
∂x

+
∂ux
∂y

− ∂W
∂σxy

)
δσxy +

(
∂uz
∂x

+
∂ux
∂z

− ∂W
∂σxz

)
δσxz

+
(
∂uz
∂y

+
∂uy
∂z

− ∂W
∂σyz

)
δσyz −

(
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
δux

−
(
∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ fy

)
δuy

−
(
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ fz

)
δuz

]
dΩ

+
∫
∂Ωu

(tx δux + ty δuy + tz δuz) d∂Ω

+
∫
∂Ωt

[
(tx − t̃x)δux + (ty − t̃y)δuy + (tz − t̃z)δuz

]
d∂Ω = 0

(62)

where W (σx, σy , σz, σxy , σyz, σxz) is a given function such that ε =
∂W

∂σσσ
.

First Form of Hellinger-Reissner Principle

The first form of the principle is formulated as

ΠHR =
∫
Ω

[
B(σx, σy , σz, τxy, τxz, τyz) +

(
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ fx

)
vx

+
(
∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ fy

)
vy

+
(
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ fz

)
vz

]
dΩ

+
∫
∂Ωt

[
(tx − t̃x) vx + (ty − t̃y) vy + (tz − t̃z) vz

]
d ∂Ω

+
∫
∂Ωu

(tx gx + ty gy + tz gz)d ∂Ω

(63)

where B(σx, σy , σz, τxy, τxz, τyz) is the complementary energy density.
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Second Form of Hellinger-Reissner Principle

The second form of the Hellinger-Reissner formulation discussed by Washizu [68] was

ΠHR =
∫
Ω

[
σx
∂ux
∂x

+ σy
∂uy
∂y

+ σz
∂uz
∂z

+ τxy

(
∂uy
∂x

+
∂ux
∂y

)

+ τxz

(
∂uz
∂x

+
∂ux
∂z

)
+ τyz

(
∂uy
∂z

+
∂uz
∂y

)

- B(σx, σy , σz, τxy, τxz, τyz) + (fx ux + fy uy + fz uz)
]
dΩ

-
∫
∂Ωt

(t̃x ux + t̃y uy + t̃z uz)d∂Ω

−
∫
∂Ωu

[(ux − gx)tx + (uy − gy)ty + (uz − gz)tz] d∂Ω

(64)

Derivations related to Herrmann’s Principle

Following the notation of Herrmann’s principle, we can derive:

ν H =
ν

1 + ν
1
2µ

3σm =
λ

3λ+ 2µ
1
2µ

3σm =
1

3 +
2µ
λ

1
2µ

3σm (65)

For the nearly incompressible and incompressible cases

lim
λ→∞

(ν H) = lim
λ→∞


 1

3 +
2µ
λ

3
2µ
σm


 =

1
2µ
σm =

1
2µ
p.

The substitution of p by (2µν H) in equation (29) leads to

F (u, p) =
∫
Ω

{
µε(u) : ε(u) − 2µνH (∇ · u) − 2µ2 ν2H2

λ
− f · u

}
dΩ

−
∫
∂Ωt

(σσσ · n) · u dΩ
(66)

When expanded, equation (66) becomes Herrmann’s principle expressed by (28) for zero
thermal expansion (eT = 0).

Hu-Washizu Principle

Hu-Washizu principle states that the solution to the linear elasticity problem can be deter-
mined from the conditions for stationarity of the following functional

ΠHW = −
∫
Ω
A (εx, εy, εz, γxy, γxz, γyz) +

∫
Ω
(fx ux + fy uy + fz uz) dΩ

+
∫
Ω

[(
εx − ∂ux

∂x

)
σx +

(
εy − ∂uy

∂y

)
σy +

(
εz − ∂uz

∂z

)
σz

+
(
γxy − ∂uy

∂x
− ∂ux
∂y

)
τxy +

(
γyz − ∂uy

∂z
− ∂uz
∂y

)
τyz

+
(
γxz − ∂ux

∂z
− ∂uz
∂x

)
τxz

]
dΩ+

∫
∂Ωt

(
t̃x ux + t̃y uy + t̃z uz

)
d ∂Ω

+
∫
∂Ωu

[(ux − gx)tx + (uy − gy)ty + (uz − gz)tz] d ∂Ω

(67)
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where A is the strain energy density expressed in terms of strain components and t̃x, t̃y, t̃z
are the prescribed surface tractions.

Abstract Form of Saddle Point Problems (Franca and Hughes)

Franca [20] and Franca and Hughes [21] proposed the following modification of the general
abstract form of the saddle point problems:

Given f ∈ V ′
and g ∈W ′

, find
(
uh,ph

) ∈ Vh ×Wh such that

a∗h(uh,vh) + bh(ph,vh) = fh(vh), ∀vh ∈ Vh
bh(qh,uh) + ch(ph,qh) = gh(qh), qh ∈Wh

where

a∗h(uh,vh) = ah(uh,vh) + δ1h2r1(Auh, Avh)h − δ2h2r2(Buh, Bvh)h

bh(ph,vh) = bh(ph,vh) + δ1h2r1(B∗ph, Avh)h

ch(ph,qh) = δ1h
2r1(B∗ph, B

∗qh)h

fh(vh) = (f ,vh) + δ1h2r1(f , Avh)h − δ2h2r2(g, Bvh)h

gh(qh) = (g,qh) + δ1h
2r1(f , B∗qh)h

(68)

In (68) δ1 and δ2 are non-negative stability constants and r1 and r2 are non-negative
exponents. For the mixed Hellinger-Reissner formulation the following notation is used:

a(uh, vh) = −(C−1 σh, τττh)

b(ph, vh) = (ε(vh), σh)

f(vh) = 0

Auh = −C−1(σh)

B uh = −div σσσh
B∗ ph = ε(uh)

g = f

(69)


