
Introduction
In patients with chronic kidney disease (CKD),

the term “renal osteodystrophy” describes a broad
spectrum of abnormalities in bone and mineral
metabolism (1). Traditionally, renal osteodystrophy
referred only to abnormalities of bone turnover.
Nowadays, however, renal osteodystrophy also
encompasses abnormalities in vascular calcification,
such as calcific uremic arteriolopathy (calciphy-
laxis), changes in bone density and bone architecture,
and dialysis-related amyloidosis (DRA). Changes in
bone turnover, density, and architecture can cause
decreased bone strength and lead to increased frac-
ture rates. In the non-CKD population, these changes
are often referred to as “osteoporosis,” but “renal
osteodystrophy” may be the preferred term in the

CKD population (1,2). Glucocorticoid treatment,
renal transplantation, and metabolic acidosis are
other circumstances that result in abnormal bone and
mineral metabolism. These related disorders of renal
osteodystrophy will be discussed under the appropri-
ate headings in this review article.

Calcific Uremic Arteriolopathy
(Calciphylaxis)

Calcific uremic arteriolopathy (CUA) is a syndrome
characterized by medial arteriolar calcification of the
dermis and by local tissue ischemia of dermis, sub-
cutaneous fat, and even muscle. In the past, CUA
was often termed as “calciphylaxis,” owing to
CUA’s similarity to an animal model of ectopic sys-
temic calcification first described by Selye (3). The
lesions seen in CUA, however, differ from the
lesions described by Selye, so CUA is the preferred
and more accurate term to describe the syndrome
(4,5). The history and evolution of the terminology
of CUA and “calciphylaxis” have been described
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elsewhere (6–9). CUA usually occurs in persons
with renal failure and in recipients of renal transplants
(10,11), although there are reported cases in persons
without kidney disease (12). The incidence of calci-
phylaxis among persons with renal failure appears to
be increasing (13), although broad, population-based
estimates are lacking. In one study, the incidence of
CUA was 4.5/100 patient-years (13), a figure mir-
rored by a recent cross-sectional study in which
4.1% of patients in a hemodialysis unit were diag-
nosed with CUA (14). 

Clinically, CUA usually presents as painful cuta-
neous and subcutaneous lesions. Violaceous mot-
tling similar to livedo reticularis and painful
plaque-like nodules or panniculitis are common, ini-
tial presentations of CUA (8). These lesions may be
located distal to the knees and elbows (e.g., on toes,
fingers, or ankles) or more proximally (e.g., on
thighs, buttocks, abdominal wall, or breasts) (8). As
CUA worsens, these lesions may progress into non-
healing ulcers and eschars and become sources of
infection and sepsis (7,15). These lesions often cause
intense cutaneous pain (6). The diagnosis of CUA
confers a grim prognosis, and patients have an eight-
fold increased risk of mortality (16). Patients with
proximal lesions appear to have a worse prognosis
than patients with distal lesions (6).

The precise pathophysiology and pathogenesis
of CUA remain unclear, but CUA is likely a
dramatic manifestation of vascular calcification
(17–19). Although intravascular precipitation of
amorphous calcium–phosphorus contributes to vas-
cular calcification and CUA, vascular calcification
and CUA are complex syndromes that probably
involve other mechanisms. These other mechanisms
may include (1) loss of tissue-derived and circula-
tory inhibitors of mineralization, such as matrix Gla
protein and fetuin-A (�2-Heremens-Schmid glyco-
protein); (2) induction of bone formation from
altered differentiation of vascular smooth muscle or
stem cells; (3) circulating complexes released from
actively remodeling bone, which serve as crystal
nucleation sites; and (4) cell death leading to release
of apoptotic bodies and/or necrotic debris that can
nucleate calcium–phosphorus complexes (18). In
CUA, mineralization of arterioles leads to ischemia
and necrosis of skin and adipose tissue.

Epidemiologic studies have identified several risk
factors for CUA. Not surprisingly, hyperphos-

phatemia (13,16,20), elevated calcium–phosphorus
products (13,20), elevated parathyroid hormone
(PTH) concentrations (15,21), and administration of
active vitamin D (13) are associated with CUA. Of
note, however, some studies have failed to link ele-
vated parathyroid hormone (PTH) with CUA (16,20),
and CUA may occur in patients with adynamic bone
disease (22). Obesity (20,23), anticoagulation with
coumadin (4), malnutrition-inflammation (4,16,20),
and female sex (16) have also been reported as con-
tributing factors in the pathogenesis of CUA.

The diagnosis of CUA may be difficult and
requires a skin biopsy of the area surrounding the skin
lesions. The differential diagnosis of CUA includes
vasculitis, panniculitis, atherosclerotic peripheral
vascular disease, atheroembolic disease, cryoprecipi-
tate disorders, scleroderma, and porphyria cutanea
tarda (6,24). Physical examination can assist in the
diagnosis of CUA. In particular, with distal lesions,
the absence of peripheral pulses suggests peripheral
vascular disease rather than CUA, although CUA and
vascular disease often coexist. In CUA, the skin
biopsy displays vascular calcification of the medial
layer of the arterioles, without vasculitic changes.
Performance of a skin biopsy incurs the risk of further
lesions at the biopsy site, so biopsies are not always
performed in suspected cases of CUA. 

Currently available diagnostic tests that are less
invasive than skin biopsy are unproven. Laboratory
tests, such as elevated PTH, phosphorus, and
calcium–phosphorus product levels, are suggestive
but not diagnostic of CUA. In one study of 36
patients with CUA, 97% of patients had abnormal
uptake, usually subcutaneous, on bone scans per-
formed using 99Tc-MDP (13). Another noninvasive
test for CUA is measurement of the transcutaneous
oxygen tension (TCPO2), which is often low in CUA,
even at areas free of skin lesions (25). The diagnostic
utility of bone scans and TCPO2 remains uncertain.

No cure for CUA exists, so treatment is largely
supportive. To our knowledge, no randomized,
controlled trials of therapies for CUA have been
published. Instead, the CUA literature mainly con-
sists of case reports, case series, and retrospective
cohort and case–control studies. Consensus opinion
endorses tight control of serum calcium and phospho-
rus concentrations and of the calcium–phosphorus
product (7,26). Control of these mineral parameters
may require use of noncalcium-based phosphorus
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binders, use of low-calcium dialysate, longer or
more frequent dialysis sessions, and decrease or dis-
continuation of active vitamin D administration. Of
note, some authors have advocated cautious use of
vitamin D analogues in order to lower elevated PTH
levels (27). Aggressive pain control and wound care,
including avoidance of additional skin and tissue
trauma, are also suggested. Surgical debridement of
necrotic tissue and administration of antibiotics may
be helpful (15).

The role of parathyroidectomy in the treatment of
CUA is unclear, given the absence of any supporting
randomized trials. When PTH levels are frankly
elevated, parathyroidectomy may have a role in the
management of CUA, by helping to control calcium
and phosphorus levels (7,8,27,28). Parathyroidectomy
may also be useful in persons with particularly
painful skin lesions (28). In a review of prior cases of
CUA, parathyroidectomy (versus no parathyroidec-
tomy) was associated with increased patient survival
(21). Other surgical series have also reported a bene-
fit from parathyroidectomy (29). These results may
be attributable to selection bias, since critically ill
patients with CUA may be less likely to be offered
the operation (28). Furthermore, patients with good
outcomes after parathyroidectomy may be more
likely to be reported in the literature (publication
bias) (28). The optimal type of parathyroidectomy
operation (subtotal, total with autotransplantation, or
total without autotransplantation) remains unknown
(14,28). Proof of the effectiveness of parathyroidec-
tomy in the treatment of CUA will require a random-
ized, controlled trial, but given the rarity of CUA,
such a trial is highly unlikely. At this time, consensus
opinion appears to endorse parathyroidectomy in
selected cases when PTH concentrations are very
elevated (7–9,28).

Case series and case reports have reported suc-
cessful treatment of CUA using other therapies,
but the effectiveness of these therapies remains
unproven and unknown. For example, hyperbaric
oxygen therapy may assist in the healing of the skin
lesions of CUA (30–32). Patients may require treat-
ments five times per week for 5–8 wk, however, and
resolution of skin lesions does not occur in all CUA
patients who receive the treatments (30,31). Other
therapies that have anecdotally helped to treat CUA
include intravenous sodium thiosulfate, given three
times weekly for a total of 8 mo (33); intravenous

pamidronate, given five times over 4 wk (34); oral
prednisone for nonulcerating CUA, given as 30–50
mg every other day for 3–8 wk (13); and low-dose
tissue plasminogen activator, given daily for 10 d
and followed by warfarin and low-dose aspirin anti-
coagulation (35); and ozonated autohemotherapy
over 3 wk (36). Some of these therapies may actually
be harmful in CUA and should be used with caution.
For example, warfarin anticoagulation has been sug-
gested as a risk factor for calcification and CUA (4).
Definitive proof of the effectiveness of any of these
interventions will require randomized clinical trials. 

Osteoporosis and Compromised Bone
Strength in Renal Osteodystrophy

Persons with renal osteodystrophy are at increased
risk for osteoporosis and bone fractures (37).
“Osteoporosis,” defined by a recent NIH Consensus
Statement as “a skeletal disorder characterized by
compromised bone strength predisposing to an
increased risk of fracture” (38), is one component of
renal osteodystrophy. The remainder of this section
will discuss “osteoporosis” and bone strength in
patients with CKD, including patients requiring
maintenance dialysis. Renal osteodystrophy and
osteoporosis in persons treated with glucocorticoids
and recipients of renal transplants are discussed
separately, in their own sections below.

Despite the increased fracture rates in CKD, a
recent Working Group discouraged use of the term
“osteoporosis” in CKD (1,2). “Osteoporosis” is
defined by bone strength, which is determined by
both bone density and bone quality. Since neither
bone strength nor bone quality is directly measurable,
osteoporosis is typically diagnosed by measuring
bone mineral density (BMD), using dual X-ray
absorptiometry (DEXA). As a result, osteoporosis is
often (and erroneously) considered synonymous
with suboptimal BMD. In postmenopausal women,
BMD measurements accurately reflect fracture risk
(39); a BMD more than 2.5 standard deviations
below the young adult normal value defines osteo-
porosis and confers an 8� increased risk of fracture
(2).

In CKD patients, however, DEXA BMD mea-
surements correlate inconsistently with fracture risk
(40–42). This inconsistency partly stems from the
complexity of renal osteodystrophy, because the
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bone turnover, which does not correlate with BMD,
also contributes to bone strength. Low BMD and
normal–high BMD can each coexist with low, nor-
mal, or high bone-turnover disease. Furthermore, the
optimal site for BMD measurement—spine, hip,
radius, or other—remains unknown (2). Finally,
PTH excess is associated with loss of cortical bone
but gain of trabecular bone (43). DEXA fails to dif-
ferentiate these effects and unfortunately integrates
these changes into one BMD measurement. Thus,
renal osteodystrophy and secondary hyperparathy-
roidism may plausibly result in increased, decreased,
or normal BMD. Many studies have used BMD as a
surrogate for fracture risk (44–49), but these studies
should be interpreted with caution, given the limita-
tions of BMD and DEXA in renal osteodystrophy.
Recent guidelines from the National Kidney
Foundation recommend use of DEXA to measure
BMD in patients with fractures or known risk factors
for osteoporosis (50), but a more recent Working
Group has advocated caution in the use and interpre-
tation of BMD in CKD (2). Quantitative computed
tomography (QCT) may be a more accurate method
than DEXA for assessing BMD, as it can distinguish
cortical from trabecular bone (51). The clinical rele-
vance of both QCT and DEXA, however, remains
unproven in CKD.

Several studies have reported that the risk of bone
fracture appears increased in persons with CKD. In
a large study of Caucasian hemodialysis patients, the
relative risk for hip fracture was increased more than
fourfold, compared to a reference population (37).
The fracture risk increased as time on dialysis
increased (37). It remains unclear whether this
increased risk extends to non-Caucasians, to patients
on peritoneal dialysis, or to those with other types of
fractures (e.g., vertebral). A single-center study also
reported increased rates of hip fracture among
hemodialysis patients, compared to a standard refer-
ence population (52). Few data exist regarding frac-
ture risk among patients with CKD who do not
require maintenance dialysis. Prospective studies of
fracture rates in nondialysis CKD patients are
needed.

Multiple factors probably contribute to increased
fracture risk in CKD (53). Demographic factors
associated with fracture include increased age,
female gender, and nonblack race (52,53). Lower
body mass index and the presence of peripheral

vascular disease are also associated with fracture
risk (53). Gonadal dysfunction, especially decreased
estrogen and testosterone levels, and decreased
physical activity may also contribute to impaired
bone strength in CKD (54). These risk factors are
similar to the risk factors for osteoporosis in the non-
CKD population. Several studies have correlated
potential risk factors with BMD (48,49), but the use-
fulness of these studies is unclear, given the uncer-
tain correlation of BMD with fracture risk in CKD.

The association between circulating PTH concen-
trations and fracture risk remains unclear. In a large
cohort of hemodialysis patients, Stehman-Breen et al.
reported that intact PTH levels were not associated
with the risk of hip fracture (53). In contrast, single-
center studies have associated low intact PTH with
both hip fractures (52) and vertebral fractures (40).
Low PTH levels are often, but not always, associated
with adynamic bone disease. Pathophysiologically,
adynamic bone disease may hamper repair of
microfractures and maintenance of skeletal integrity,
leading to osteoporosis and clinically apparent frac-
tures (55). Although intriguing, this hypothesis
remains unproven. At present, the target PTH range
at which fracture risk is lowest remains unknown.

Pharmacologic therapies for osteoporosis in the
general population are often used, possibly mistak-
enly, to treat decreased bone strength in CKD (2,54).
Therapies that increase BMD in non-CKD patients
include bisphosphonates, estrogen, selective estro-
gen receptor modulators (SERMs), calcitonin, cal-
cium, and active analogs of vitamin D (2,54). Some
of these agents, notably the bisphosphonates, have
not been evaluated in CKD, so their effects on bone
turnover and bone quality in renal osteodystrophy
are unknown. These agents have been more exten-
sively evaluated in the renal transplant population
(see sections on renal transplantation below) than in
the dialysis or predialysis population. At the present
time, although CKD patients have an increased risk
of fracture, use of these agents to treat or prevent
osteoporosis in CKD cannot be recommended (2). In
particular, the bisphosphonates may theoretically
exacerbate adynamic bone disease, and some author-
ities recommend bone biopsy to exclude adynamic
bone disease prior to initiation of bisphosphonate
therapy (2). Of course, calcium supplements and
active vitamin D analogs may be used to treat other
aspects of renal osteodystrophy that are unrelated to
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osteoporosis. A recent Working Group noted that
since “more data exist on the diagnosis and treatment
of abnormalities of bone turnover in CKD, clinicians
are encouraged to focus first on correction of this
component of renal osteodystrophy [than on BMD
abnormalities]” (2).

Glucocorticoids
Perhaps the most important interaction between

glucocorticoid therapy and renal osteodystrophy is
found in the role glucocorticoids play in the patho-
physiology of posttransplant bone loss (56). A number
of studies (57,58) describe the rapid and rather
profound bone loss in renal transplant recipients
early after transplantation. The major factor in post-
transplant bone loss is glucocorticoid administration,
although other agents such as cyclosporine (CsA)
may also contribute though inducing hypercalciuria.
In studies in which no specific therapy is used to pre-
vent the bone loss posttransplantation, the median
decline in the lumbar bone mineral density was
–13.2%/yr in the first 6 mo (59). Although there is
not always a direct correlation between the dosage of
glucocorticoids administered and the severity of
bone loss, many studies support the idea that gluco-
corticoid use is the major cause of bone demineral-
ization both early and late after renal transplantation
(60,61). The issue of posttransplantation bone disease
will be extensively discussed below, in the sections on
transplantation.

DRA
DRA is a serious complication of end-stage renal

disease (ESRD) caused by deposition of �2-
microglobulin fibrils in bones, joints, and periarticu-
lar structures (62–67). The prevalence of DRA,
which is also known as �2-microglobulin amyloido-
sis, increases as the duration of dialysis increases
(64,68,69). Although its prevalence has decreased
since the 1980s (70), DRA continues to cause sub-
stantial musculoskeletal and rheumatic morbidity
in ESRD patients.

The amyloid deposits in DRA are primarily com-
posed of �2-microglobulin, an 11.8 kilodalton pro-
tein that is metabolized and excreted by the kidney.
Amyloid deposits in DRA also contain other pro-
teins, such as amyloid P component, proteoglycans,

antiproteases (71), and immunoglobulin light chains
(72), but �2-microglobulin appears to the most
important constituent protein (66,73,74). In persons
with preserved renal function, plasma concentrations
of �2-microglobulin vary between 1 and 3 mg/mL
(66). In ESRD, however, decreased metabolism and
excretion cause circulating levels of �2-microglobulin
to increase up to 60-fold (64). ESRD may also be
associated with increased production of �2-
microglobulin owing to release of inflammatory
mediators stemming from the hemodialysis proce-
dure (64). 

The pathophysiology of DRA remains unclear.
Elevated serum concentrations of �2-microglobulin
predispose to DRA but do not inevitably lead to the
formation and deposition of amyloid fibrils. �2-
microglobulin may need to undergo biochemical
modifications that render it more amyloidgenic (67).
Some postulated modifications include oxidative
stress, advanced glycation end product (AGE)
formation, conformation changes in the three-
dimensional structure of the �2-microglobulin mol-
ecule, and limited proteolysis (the latter remains
controversial) (66,67). Amyloid formation and depo-
sition may also require the actions of local factors,
such as extracellular matrix (e.g., proteoglycans) and
inflammatory markers (66).

The clinical manifestations of DRA stem from
deposition of �2-microglobulin-containing amyloid
fibrils in the musculoskeletal system. These symp-
toms usually occur after many years of renal failure.
The most common manifestations of DRA are carpal
tunnel syndrome (CTS); amyloid arthropathy, whose
spectrum of symptoms ranges from limited joint
mobility to severe joint pain, sometimes with effu-
sions; and bone cysts and articular erosions, which
can lead to pathologic fractures and destructive
spondyloarthropathy. Less commonly, manifestations
of DRA may arise from deposition of �2-microglobulin
in visceral tissues, such as the cardiovascular and
gastrointestinal systems. 

CTS may be the most common clinical manifes-
tation of DRA. The prevalence of CTS appears to
increase with time spent on maintenance dialysis
(75). Clinically, symptoms of CTS arise from entrap-
ment of the median nerve. These symptoms include
pain and paresthesias in the thumb, first two fingers,
and the radial-half of the ring finger (76). The palm
and dorsum of the hand are usually spared (76). The
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findings that best correlate with nerve conduction
electrodiagnosis of CTS include hand symptoms
diagrams, hypalgesia, and weak thumb abduction
strength testing (76). The traditional Tinel and Phalen
signs have limited ability to predict the electrodiag-
nosis of CTS (76). Treatment of CTS is initially
conservative, involving pain relief and splinting of
the wrist. DRA-related CTS is progressive, however,
so surgical carpal tunnel release is often required.

Amyloid arthropathy includes both pain and
swelling of the joints. Symptoms of amyloid
arthropathy are typically bilateral and tend to worsen
over time (63). Arthralgias typically involve large-
and medium-sized joints, such as the shoulders,
knees, and hips (64,77). The shoulder joints are the
most classically affected; ESRD patients with scapu-
lohumeral periarthritis typically have amyloid infil-
tration of the synovium and subacromial bursa (65).
Joint swelling and effusions can affect smaller joints
(e.g., wrists, fingers, and ankles) as well as the
larger, more proximal joints that develop arthralgias.
The effusion is usually serous and noninflammatory,
although exceptions occur (65).

Bony involvement by DRA manifests as cystic
lesions, typically at the ends of long bones and near
synovial joints. These cystic lesions contain amyloid
and enlarge over time (65). These cysts can lead to
pathologic fractures, classically at the femoral and
humeral heads (77). �2-microglobulin amyloid cysts
must be distinguished from brown tumors of sec-
ondary hyperparathyroidism.

Destructive spondyloarthropathy results from the
development of erosive vertebral lesions, typically
on the cervical spine (78–81). Some observers clas-
sify spondyloarthropathy either as a type of amyloid
arthropathy or as a bony consequence of DRA.
Clinically, symptoms are sometimes absent but often
range from pain and stiffness, typically in the neck,
to nerve compression syndromes and even paralysis
(63,79,82). Radiographically, DRA-associated spondy-
loarthropathy can manifest as narrowing of the
intervertebral spaces, erosions, and cysts of the ver-
tebral plates (63). Deposition of �2-microglobulin
contributes to destructive spondyloarthropathy, but
other factors, such as secondary hyperparathyroidism,
also play a role (79).

Although clinical features are often suggestive,
definitive diagnosis of DRA requires histologic
confirmation of �2-microglobulin amyloid deposition

(63,66,83). Deposition of amyloid fibrils is classically
confirmed by positive Congo red staining; fibrils dis-
play green-yellow birefringence under polarized light.
Congo red-positive tissues may be immunostained
with a labeled anti-�2-microglobulin antibody to con-
firm that the amyloid contains �2-microglobulin (84).
Alternatively, electron microscopy of tissue specimens
may demonstrate characteristics of amyloid fibrils.
Specimens of synovial membranes or bone are the
most useful in the diagnosis of DRA, whereas rectal
and fat pad specimens are not useful.

Noninvasive imaging studies are also used to
diagnose DRA. For example, ultrasonography of
capsules and tendons can detect thickening of the
synovial membranes because of amyloid deposition
(85). The disadvantages of ultrasonography include
inter-observer variability and its limited applicability
to selected joints (66). Cystic involvement of the
bones may be detected radiographically by plain 
X-rays. Radiographs may show bone cysts that
enlarge over time and fat pad displacement because
of soft tissue swelling (63). When strict criteria are
used to classify radiograph cysts as a result of DRA,
then radiographs may be specific for DRA, albeit
insensitive. Scintigraphy with radiolabelled �2-
microglobulin may also assist the diagnosis of DRA
(86). In particular, use of 111In-labeled recombinant
human �2-microglobulin appears to provide safer
and better quality imaging (86), but it may not be
widely available. 

Treatment of DRA includes medical and surgical
interventions. Medical therapy includes analgesics,
heat, and physical therapy to decrease the discomfort
from carpal tunnel syndrome, amyloid arthropathy,
and other joint and bone manifestations of DRA (87).
Corticosteroids, given either orally in low doses or
via intra-articular injection, have also been used (87)
but are not currently recommended (50). Surgical
therapy includes carpal tunnel release for carpal tun-
nel syndrome; arthroscopic synovectomy, typically
of the shoulders, to remove amyloid deposits (88);
and curettage and bone grafting of amyloid cysts in
weight-bearing long bones (63). These therapies treat
the symptoms of DRA but fail to correct the underly-
ing pathophysiology of DRA.

The flux and biocompatibility of hemodialyzer
membranes may influence the development and
treatment of DRA (50,89). Low-flux membranes
are relatively impermeable to �2-microglobulin,
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whereas high-flux membranes permit removal of
some �2-microglobulin during hemodialysis sessions
(62). Most studies have compared low-flux, cellu-
lose membranes versus high-flux, biocompatible
(noncellulosic) membranes, making it difficult to
distinguish the effects of flux and biocompatibility.
As recently summarized in the K/DOQI guidelines
(50), several studies have demonstrated a benefit of
noncellulosic, high-flux membranes on clinical or
radiographic symptoms of DRA (90–92). These
studies have their limitations, including small sam-
ple sizes and retrospective or nonrandomized study
designs. Nevertheless, current K/DOQI guidelines
recommend use of noncellulosic, high-flux dialyzers
in patients with evidence of, or at risk for, DRA (50).

Other dialytic and extracorporeal therapies have
been used to treat or prevent DRA (87,93).
Compared to hemodialysis, peritoneal dialysis is
similarly unable to remove �2-microglobulin from
the blood (62,87). Patients receiving hemodialysis
and patients receiving continuous ambulatory
peritoneal dialysis have a similar prevalence of his-
tological �2-microglobulin amyloidosis (94) and
CTS (95). Removal of �2-microglobulin from the
blood may be accomplished using either nonspecific
or specific adsorption modalities, although most of
these techniques remain experimental (93,96,97).
Other alternatives to traditional hemodialysis
include convective treatments, such as hemofiltration
and hemodiafiltration, and nocturnal hemodialysis.
One study of registry data reported that convective
renal replacement therapies were associated with a
significant delay in the need for CTS surgery (98).
Current K/DOQI guidelines do not recommend any
of these therapies for the treatment or prevention of
DRA (50).

Renal transplantation is the only therapy that
appears to stop progression of DRA and provide
symptomatic relief (50). Return of renal function
after successful transplantation permits urinary
excretion of �2-microglobulin and normalization of
serum �2-microglobulin concentrations. After trans-
plantation, many symptoms of DRA, such as
shoulder stiffness, disappear, often rapidly (99,100).
This improvement is partly attributable to the anti-
inflammatory effects of corticosteroids but persists
even after reduction or withdrawal of corticosteroids
(101). After renal allograft failure and return to

dialysis, symptoms of DRA reappear rapidly (99).
Radiographic signs of DRA, such as bone cysts,
appear to neither improve nor worsen after trans-
plantation (99,102,103). Although some researchers
contend that amyloid deposits regress after trans-
plantation (101), most studies suggest that DRA fails
to regress (99,100,104,105).

Renal osteodystrophy after renal
transplantation

For patients with ESRD, renal transplantation is
the preferred treatment option (106). Although suc-
cessful transplantation restores renal function, there
are several reasons why disorders of bone and min-
eral metabolism continue to afflict renal transplant
recipients. First, renal osteodystrophy is already well
established in most patients at the time of transplan-
tation; most transplant recipients have suffered from
years of CKD prior to receipt of their transplant
(107–109). In transplant recipients, the spectrum of
pre-existing bone disease (detailed elsewhere in this
issue) ranges from high to low turnover disease and
includes other conditions such as DRA (109).
Second, many, if not most, transplant recipients have
impaired renal function despite “successful” trans-
plants (110). Among transplant recipients with allo-
graft survival of at least 2 yr, the mean glomerular
filtration rate at 6 mo posttransplant is less than 50
mL/min (110), which corresponds to stage 3 CKD.
The continuation of CKD, even after transplantation,
exacerbates pre-existing renal bone disease. Finally,
the immunosuppressive medications used in trans-
plantation, notably corticosteroids, can affect bone
strength and metabolism and increase the risk of
fracture.

Osteoporosis after renal
transplantation

Like other patients with CKD, renal transplant
recipients are at-risk for osteoporosis and bone frac-
tures. Compared to the general population, trans-
plant recipients have increased risk of fractures,
particularly of the vertebra and feet (111). More
importantly, compared to dialysis patients on the
transplant waiting list, renal transplant recipients
have a 34% increased risk of hip fracture during the
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posttransplant period (112). This increase in fracture
risk wanes over time, however, and by approx 630
days posttransplant, the fracture risk is equal among
transplant recipients and dialysis patients, at least in
one large study (112).

Instead of examining actual fracture rates, most
studies of posttransplant bone disease have used
BMD, measured by DEXA, as a surrogate for frac-
ture risk. As noted earlier, BMD is an imperfect sur-
rogate for fracture risk in patients with renal
osteodystrophy. Nevertheless, BMD appears to
decline rapidly during the first 6–12 mo after renal
transplantation (109). For example, in a prospective
cohort study of 20 recipients of living donor trans-
plants, Julian et al. found that vertebral BMD
decreased 6.8 ± 5.6% 6 mo posttransplant and 8.8 ±
7.0% 18 mo posttransplant (113). Similar reductions
in BMD occur at the femoral neck (109). Different
studies using different study designs (cross-sectional
versus cohort studies) have reported conflicting
results regarding BMD after the initial 1–2 yr post-
transplant. Several studies report that BMD stabi-
lizes and even increases after the first posttransplant
year (59,114), but other studies report that BMD
continues to decrease (115).

The increased risk for osteoporosis and bone frac-
tures among renal transplant recipients is mainly
attributable to the use of glucocorticoids after trans-
plantation. Glucocorticoids can lead to osteoporosis
via several mechanisms (116), such as inhibition of
osteoblast activity, increase in bone resorption, and
increase in osteoblast and osteocyte apoptosis. The
correlation, however, between the amount of post-
transplant bone loss, as measured by BMD, and the
use of glucocorticoids appears to be imperfect (109).
The lack of a clear-cut correlation may be because of
the limitations of DEXA and BMD in the assessment
of bone strength in patients with renal disease.
Because glucocorticoids have harmful effects on
bone strength (as well as on blood pressure, weight,
and lipids), many transplant centers now use
immunosuppressive protocols that almost com-
pletely avoid use of glucocorticoids (117,118). It
remains unclear whether glucocorticoid avoidance
will lead to a decrease in actual fractures.

Calcineurin inhibitors have also been associated
with deleterious effects on bone strength and metab-
olism, but these effects may be minor (109). Clinical

evaluation of the direct causative effects of cal-
cineurin inhibitors is difficult, largely because of con-
comitant use of glucocorticoids (119). Furthermore,
the in vitro and in vivo effects may differ and may not
correlate with clinical outcomes. In vitro studies sug-
gest that CsA inhibits bone resorption (120,121). In
vivo studies, however, suggest that CsA increases
bone resorption (122,123). Tacrolimus may act simi-
larly to CsA and decrease bone mass, at least in ani-
mal experiments (124,125). The clinical significance
of changes in bone metabolism because of cal-
cineurin inhibitors remains unclear.

Treatment and prevention of osteoporosis after
renal transplantation, such as treatment and preven-
tion of osteoporosis associated with renal osteodys-
trophy, has utilized therapies originally devised for
patients without renal disease. Weight-bearing exer-
cise and enrollment in organized rehabilitation pro-
grams posttransplant may help prevent bone loss
(126). Pharmacologically, several studies have eval-
uated the use of antiresorptive therapy with bisphos-
phonates after renal transplantation, using BMD as a
surrogate for fracture risk (127–132). In these stud-
ies, bisphosphonates attenuated or eliminated the
usual decrease in BMD seen after transplantation
(127–131). Owing to their small size, however, no
differences in the number of fractures could be
shown. As stated earlier, in the transplant population,
therapies that prevent loss of BMD do not necessar-
ily produce parallel reductions in fracture risk (108).
In one randomized clinical trial that used periodic
doses of intravenous pamidronate as the interven-
tion, all the renal transplant recipients who were
given pamidronate developed adynamic bone dis-
ease, as shown on bone histomorphometry (133).
The potential, albeit unproven, benefits of preserving
BMD in patients with renal transplants must be
weighed against the potential harms and unknowns
of bisphosphonate use (134), such as adynamic bone
disease.

Minimization of glucocorticoids should theoreti-
cally minimize posttransplant bone loss. The appar-
ently rapid loss of bone mass posttransplant,
however, means that even relatively rapid tapering
of glucorticoids to low maintenance doses (e.g., 5 or
7.5 mg per day) may still result in significant bone
loss. Complete (or almost complete) avoidance of
glucocorticoids posttransplant may help preserve
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bone mass. Published studies have mainly evaluated
the safety of glucocorticoid-free immunosuppres-
sion and not reported (or evaluated) fracture rates
(117,118,135).

Prescription of calcium with active vitamin D
(e.g., calcitriol) may also help prevent posttransplant
bone loss (132). Most studies have shown that in its
inactive form, vitamin D fails to prevent posttrans-
plant bone loss (126). In several randomized trials,
calcium with active vitamin D appears effective in
preventing bone loss, as measured by BMD
(136–138). This prevention of bone loss may be
mediated, in part, by reductions in PTH concentra-
tions in patients randomized to receive active vita-
min D. Treatment of calcium with active vitamin D
may require intensive monitoring, given the risk of
hypercalcemia with these therapies.

Osteonecrosis After Renal
Transplantation

Osteonecrosis, also known as avascular necrosis
or ischemic necrosis, is a potentially debilitating
complication of glucocorticoid use (109,139).
Osteonecrosis most commonly affects the femoral
head but can also affect the knee and weight-bearing
long bones. The incidence of osteonecrosis was
higher in the past, like with the use of higher doses of
glucocorticoids (140). Depending on the study, the
incidence ranges from 3% to 16% (109); use of lower
doses of glucocorticoids has presumably decreased
the incidence of most centers to the lower end of this
range. Osteonecrosis typically manifests as persistent
pain in the affected bone. The diagnosis is best made
by radiography, bone scans, and magnetic resonance
imaging (139). Therapy is often surgical and includes
decompression and hip replacement (for osteonecro-
sis of the femoral head) (109,139).

Hyperparathyroidism After Renal
Transplantation

Persistent hyperparathyroidism after renal trans-
plantation can lead to hypercalcemia and hypophos-
phatemia (141–143). Persistent hyperparathyroidism
is common but usually resolves during the first year
posttransplant (141). Continued hypersecretion of
PTH can lead to increased bone turnover and

resorption, as in the pretransplant setting. Clinically,
posttransplant hyperparathyroidism mainly manifests
as hypercalcemia that is usually mild and transient
(142). In one study of 129 transplant recipients who
received prednisone and CsA immunosuppression,
52% of the patients had hypercalcemia at 6 mo post-
transplant (144). By 24 mo posttransplant, only 10%
of patients were hypercalcemic (144). Curiously, in
this study, there was no correlation between calcium
and PTH levels, and serum phosphorus levels
remained in the low-normal range (144). Most other
studies cite the severity of pretransplant hyper-
parathyroidism as the main risk factor for posttrans-
plant hyperparathyroidism (145). As PTH slowly
decreases posttransplant (146), hypercalcemia also
resolves.

Management of posttransplant hyperparathy-
roidism and hypercalcemia depends on the severity of
the hypercalcemia. Since the hypercalcemia is usually
mild, conservative medical management usually suf-
fices. These measures include volume repletion and
avoidance of medications that can worsen hypercal-
cemia, such as vitamin D and calcium (141). If severe
or persistent, hyperparathyroidism and hypercalcemia
can lead to decreased renal function and may require
parathyroidectomy. In one large case series of 227
transplant recipients with posttransplant hypercal-
cemia, only 15 patients (6.6%) ultimately required
parathyroidectomy, for hypercalcemia that was either
symptomatic or persistent (147). The conclusion from
surgical series is that parathyroidectomy should be
reserved for symptomatic hypercalcemia, acute hyper-
calcemia in the immediate postoperative period, or
asymptomatic hypercalcemia (serum calcium greater
than 12.0 mg/dL or 12.5 mg/dL) that persists for over
one yr posttransplant (147,148). 

Metabolic acidosis
Metabolic acidosis has a rather profound effect on

bone structure and function. For example, in a study
designed to compare bone changes in children with
diabetic ketoacidosis or acute metabolic acidosis as
a result of dehydration before and after the correction
of acidosis and also compare results to a group of 18
age- and sex-matched healthy children as the control
group, severe negative calcium balance occurred
during acidosis (149). Plasma ionized calcium levels
were increased in both groups, significantly more
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so in diabetic ketoacidosis. Although osteoblastic
markers, osteocalcin and alkaline phosphatase, were
depressed to a comparable degree in both groups,
urinary calcium/creatinine ratio and hydroxyproline
excretion were significantly greater in diabetic
ketoacidosis. No significant changes in calcitrophic
hormone (intact PTH, calcitonin, 25-hydroxy vita-
min D3) levels were observed. These suggest that,
in diabetic ketoacidosis, the observed severe nega-
tive calcium balance occurred through diminished
bone formation mediated by metabolic acidosis per
se and increased bone mineral dissolution and bone
resorption because of severe insulin deficiency and
secondarily via metabolic acidosis.

Many studies suggest that bone mineral serves as
a proton buffer. In in vitro bone organ culture sys-
tems, bone carbonate and phosphate content falls
when exposed to extracellular acidosis (150). At first,
metabolic acidosis stimulates mineral dissolution
through a physical–chemical reaction and subse-
quently induces cellular events, which lead to bone
resorption. Acidosis suppresses the activity of bone-
resorbing cells, osteoblasts, and decreases gene
expression of specific matrix proteins and alkaline
phosphatase activity. There is concomitant acid stim-
ulation of prostaglandin production by osteoblasts,
which acting in a paracrine manner increases synthe-
sis of the osteoblastic receptor activator of nuclear
factor kappa B ligand (RANKL). The acid induction
of RANKL then stimulates osteoclastic activity and
recruitment of new osteoclasts to promote bone
resorption and buffering of the proton load. Both the
regulation of RANKL and acid-induced calcium
efflux from bone are mediated by prostaglandins
(150). Hence metabolic acidosis associated with
renal failure or renal tubular acidosis results in an
increase in urine calcium excretion. The apparent pro-
tective function of bone to help buffer systemic pH
comes partly at the expense of its mineral stores (150).
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