
The abnormalities of the skeleton that can occur
in association with chronic kidney disease are
termed “renal osteodystrophy” and reflect a broad
spectrum of skeletal abnormalities (1–3). At one end
of this spectrum are the effects of high levels of
parathyroid hormone (PTH) on bone, which are
associated with a high bone turnover. Other abnor-
malities can lead disturbances at the opposite end of
the spectrum, and are characterized by an abnor-
mally low bone turnover, known as adynamic bone.
A second form of low bone turnover disease, osteo-
malacia, also occurs in some cases, although it is less
prevalent in the United States in the present era.
These abnormalities of bone may occur together
such that there are features of impaired mineraliza-
tion together with evidence of high bone turnover,
and this mixed picture is known as mixed renal

osteodystrophy. Although these broad categoriza-
tions of skeletal abnormalities encompass most of
the abnormalities seen, the skeleton can also be
affected by many other processes associated with
advanced kidney disease, such as the accumulation
of �-2 microglobulin. The skeletal picture can also
be modified by other systemic abnormalities, includ-
ing postmenopausal osteoporosis, or osteoporosis as
a result from steroid or immunosuppressive therapy
directed toward the underlying kidney disease. In
addition, the metabolic acidosis that may occur in
the presence of chronic kidney disease can also
influence bone metabolism.

Pathogenesis of High Turnover Renal
Osteodystrophy

Hyperplasia of the parathyroid glands and high
levels of PTH in blood have been known to occur
early in the course of chronic kidney disease and
progressively increase with the duration of the kid-
ney disease (4,5). It is now known that many factors
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contribute to the overactivity of the parathyroid
glands in this clinical setting. These abnormalities
can be categorized into five broad groups, each of
which may have several contributing factors as illus-
trated in Fig. 1. These are (1) phosphate retention, 
(2) low levels of calcitriol, (3) intrinsic abnormali-
ties of the parathyroid gland, (4) hypocalcemia, and
(5) skeletal resistance to the actions of parathyroid
hormone. These abnormalities are often closely
interrelated and one or more of these factors may be
predominate during the course of kidney disease.

Phosphorus Retention
Phosphorus retention as a result of decreased

kidney function has been proposed as an important
factor in the pathogenesis of secondary hyperparathy-

roidism (6–8). Substantial experimental and clinical
observations over many years have given support to
this process. Although it was originally proposed
that phosphorus retention can stimulate parathyroid
function by causing a decrease in the levels of ion-
ized calcium, subsequent work has shown that
hypocalcemia is not necessary for hyperparathy-
roidism to occur, and these observations have led the
way to further evaluation of the potential effects 
of phosphorus on the parathyroid glands (9). It is
now known that phosphorus can directly affect 
the parathyroid gland to increase the rate of growth
and increase the secretion of parathyroid hormone.
Two groups of investigators have demonstrated in
vitro that changes in extracellular phosphorus con-
centration resulted in increased PTH secretion, in
spite of the absence of alterations in ionized calcium

Fig. 1. The pathogenesis of hyperparathyroidism: major factors involved (LEFT PANEL) and their contributing abnor-
malities (RIGHT PANEL).
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in the medium (10,11). These observations demon-
strate clearly that phosphorus can directly increase
PTH secretion, although the mechanism of this
effect is not fully understood at the present time. It
appears that the effect of phosphorus to increase
PTH secretion is posttranscriptional and recent stud-
ies have indicated that phosphorus may have an
important effect on stabilizing the messenger ribonu-
cleic acid (RNA) for parathyroid hormone and
decrease its degradation within the parathyroid
gland, thereby setting the stage for increased PTH
secretion (12–14). The signaling mechanisms
involved in this effect may be related to phosphate
regulation of the production of arachadonic acid by
parathyroid tissue (15).

Phosphorus also affects the parathyroid gland by
regulating its growth. Thus, it has been shown that
changes in dietary phosphorus have an important
effect on parathyroid cell proliferation. Using the
technique of proliferating cell nuclear antigen
(PCNA) staining of parathyroid tissue in rats in vivo,
it has been shown that a high-phosphorus diet is
associated with increased rates of parathyroid
growth, whereas a low-phosphorus diet is associated
with rates of cell division that are close to normal
(16). A low-phosphorus diet is extremely effective in
preventing parathyroid growth. This process of
phosphate-regulated parathyroid growth appears to
be of extreme importance in the management of
hyperparathyroidism, since studies in animals have
shown that this effect of phosphorus in increasing
parathyroid hyperplasia is extremely rapid and
occurs within days of the induction of renal insuffi-
ciency (17).

Additional studies have shown that a high-
phosphorus diet results in an increase in the expres-
sion of transforming growth factor (TGF)-�, which
is a growth factor for parathyroid cells (17–20). The
increase in TGF-� parallels the increase in PCNA
expression. It appears that the effects of TGF-� are
mediated through the epidermal growth factor (EGF)
receptor, which on activation leads to activation of
the mitogen activated protein (MAP) kinase path-
way, resulting in the stimulation of cell proliferation.
The effect of a low-phosphorus diet in preventing
parathyroid growth appears to be associated with an
increase in the cyclin-dependent kinase inhibitor,
P21, which will prevent parathyroid cell division
(20).

Decreased Synthesis of Calcitriol
Since the kidney is the principal site for the pro-

duction of calcitriol, it follows that a decrease in renal
mass should lead to a decrease in the ability of the kid-
ney to produce calcitriol (21). Decreases in calcitriol
will lead to increases in PTH secretion both directly
and indirectly. The indirect effects are mediated by the
important effect of calcitriol in regulating intestinal
calcium absorption, which has been well described to
gradually fall in patients with chronic kidney disease.

Decreases in calcitriol will also directly affect the
parathyroid gland, as there is substantial evidence
over the past fifteen years that calcitriol affects many
processes within the parathyroid (22–27). Thus, there
is evidence that calcitriol can directly affect PTH
gene transcription, the regulation of parathyroid vit-
amin D receptors, the regulation of parathyroid cell
growth, the expression of the calcium-sensing recep-
tor, and perhaps the regulation of the setpoint for
calcium-regulated PTH secretion.

In recent years, an additional mechanism that
could limit the production of calcitriol in the course
of kidney disease has been emphasized by work that
has delineated the pathways by which 25-hydroxyvi-
tamin D is delivered to the 1-alpha-hydroxylase (28).
This process has been demonstrated to involve the
uptake of the vitamin D-binding protein bound to 25-
hydroxyvitamin D, following glomerular filtration,
by megalin in the proximal tubule. This complex is
then internalized and following the digestion of vita-
min D-binding protein, the 25-hydroxyvitamin D can
be delivered to the mitochondria for 1-hydroxylation.
This pathway appears to be the rate-limiting step for
the production of 1,25-vitamin D by the kidney tis-
sue, and accordingly, with decreases in glomerular
filtration rate (GFR) where the delivery of the pre-
cursor is impaired, this could limit the ability of the
kidney to produce 1, 25-vitamin D.

Calcitriol has been shown in vitro to be a regula-
tor of parathyroid cell growth. Thus, bovine parathy-
roid cells in culture, when stimulated to grow, have
been demonstrated to have decreased rates of growth
with calcitriol added to the medium (29). Further
studies have shown that the antiproliferative effects
of calcitriol appear to be related to the up-regulation
of the cyclin-dependent kinase inhibitor, P21. This
appears to involve atranscriptional mechanism regu-
lated by the vitamin D receptor (20).
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In addition to decreases in calcitriol production,
there may also be resistance to the actions of cal-
citriol that occur in the uremic state (30). Studies
have shown that there appear to be substances in the
uremic milieu that appear to interfere with the abil-
ity of the vitamin D receptor complex to bind to
deoxyribonucleic acid (DNA), which, consequently,
may result in resistance to the actions of calcitriol.
Some work has suggested that this resistance may
involve decreases in the binding partner for the vita-
min D receptor, that is, RXR, which is an essential
partner to form a functional heterodimer that inter-
acts with vitamin D response elements (31).

Altered Parathyroid Function
As discussed earlier, abnormal parathyroid

growth is a common feature of chronic kidney dis-
ease, and it is now realized that the enlarged
parathyroid glands removed from patients with
severe hyperparathyroidism appear to have numer-
ous nodules within the tissue. Studies by Fukuda
and others have demonstrated that the staining 
for vitamin D receptor appears to be markedly
decreased in these nodules (32), and there is evi-
dence to suggest that some of these nodules repre-
sent monoclonal expansions of parathyroid cells
(33). Subsequent studies by other investigators have
shown that these nodules may also have a marked
decrease in the expression of the calcium receptor
(34). Accordingly, since parathyroid hormone secre-
tion is regulated by calcium receptors and by vita-
min D receptors, these nodules, as a result of
reduced expression of these regulator pathways,
will secrete PTH at an increased rate and be poorly
responsive to these normal regulatory pathways. An
important question is whether the loss of vitamin D
receptors or calcium receptors leads to the acceler-
ated growth of the parathyroid cells, or whether the
accelerated growth is a result of the loss of these
receptors. This issue was investigated by Ritter 
et al., who showed that parathyroid cell prolifera-
tion appears to precede the loss of the calcium
receptor from the parathyroid glands of rat with ure-
mia (35). However, there is also evidence that the
calcium receptor may be involved in the regulation
of parathyroid growth, thus, administration of a cal-
cimimetic agent has been demonstrated to suppress
and prevent the development of parathyroid hyper-
plasia in experimental animals (36,37).

Hypocalcemia
Hypocalcemia is a powerful stimulus for PTH

secretion, as well as for parathyroid growth, and
although hypocalcemia may occur in patients with
renal failure, it is not essential for the development
of hyperparathyroidism (9). The calcium receptor
pathway is important in the regulation of PTH secre-
tion, and accordingly, the decrease in calcium recep-
tor expression discussed above is important for the
regulation of PTH by calcium in this setting. Some
studies have shown that the setpoint for calcium-
regulated PTH secretion has shifted to the right in
patients with severe hyperparathyroidism, although
others have not confirmed these observations
(38–44). There is now evidence that several factors
may regulate the set point for calcium-regulated
PTH secretion, including not only the baseline
serum calcium, but also, the size of the parathyroid
glands, the rate of change in the serum calcium, and
the polymorphisms of the calcium-sensing receptor
gene. Thus, there are many factors that may explain
the apparently conflicting results that have been
obtained from clinical studies.

Skeletal Resistance to the Action of PTH
Forty years ago, it was demonstrated that patients

with chronic kidney disease had a decreased cal-
cemic response to PTH, thereby suggesting that the
skeleton had become resistant to the actions of
parathyroid hormone (45). There appear to be sev-
eral mechanisms involved in this decreased calcemic
response to PTH. There is evidence that phosphorus
retention can play a role in this regard using a model
of experimental uremia in the rat (46). These obser-
vations in vivo are supported by in vitro studies that
show that elevated phosphorus concentrations can
decrease calcium mobilization from bone.

Some investigators have suggested that decreased
levels of calcitriol may also contribute to the reduced
calcemic response to PTH (47). Others have not
been able to confirm this effect in other experimen-
tal settings (48,49). Studies have suggested that there
might be a down-regulation of PTH receptor in the
target tissues in uremia and this could lead to an
impaired response to PTH (50,51). Recent obser-
vations have extended these studies by demonstrat-
ing that the expression of the PTH receptor mRNA
appears to be reduced in the skeleton of patients with
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chronic kidney disease (52). Interestingly, the reduced
levels of PTH receptor mRNA did not appear to
change after parathyroidectomy, suggesting that other
factors might be regulating PTH receptor mRNA. 

In recent years, an additional mechanism that may
contribute to skeletal resistance to the actions of PTH
has been uncovered. Thus, it has been demonstrated
that N-terminal truncated PTH fragments, such as
PTH 7-84, can exist in the circulation and may have
biological effects that have not been recognized before
(53,54). Administration of PTH 7-84 has been demon-
strated to blunt the calcemic effect of PTH 1-84, and
these and additional studies have suggested that there
may be direct effects of PTH 7-84 on bone cells
(55–57). These observations are related to a large body
of work, which suggests that there is a presence of
receptors for the C-terminal region of PTH, and thus
there may be a potential biological pathway by which
C-terminal fragments of PTH accumulate in the circu-
lation of patients with chronic kidney disease as a
result of decreased GFR, and these fragments may
contribute to blunting of the calcemic effects of PTH.

Pathogenesis of Low Bone Turnover
Renal Osteodystrophy

The low bone turnover skeletal problems in
patients with chronic kidney disease include ady-

namic bone, which is characterized by extremely
low bone formation. An additional bone turnover
type of skeletal abnormality is osteomalacia,
which is also characterized by a low rate of bone
formation, but there is marked evidence of defec-
tive bone mineralization. Osteomalacia occurring
in the setting of chronic kidney disease has been
most often related to the accumulation of alu-
minum in the era when aluminum-based phosphate
binders were widely utilized, and water purifica-
tion techniques were evolving, and this is not often
seen in the United States at the present time (58).
The adynamic bone lesion, without aluminum
accumulation, is common in patients with chronic
kidney disease on dialysis, although cases have
been described with chronic kidney disease before
dialysis is required (59,60). This type of skeletal
abnormality appears to be especially prevalent in
patients on peritoneal dialysis (3,61). The patho-
genesis of this nonaluminum-related adynamic
bone disease is not well understood, but many fac-
tors have been implicated in its pathogenesis (62).
This is illustrated in Fig. 2.

There is one group of factors that seems to 
be associated with the relative hypoparathyroidism,
which in turn will lead to decreased bone forma-
tion rate. There is a second group of factors that 
can directly affect bone formation rate, and many

Fig. 2. The pathogenesis of adynamic bone in uremia.
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abnormalities in uremia may contribute to this path-
way. Some aspects of this pathogenetic scheme may
relate to treatment of hyperparathyroidism, which, in
general principle, is related to phosphate control, the
administration of vitamin D sterols, and efforts to
raise serum calcium to normal. All of these maneu-
vers may reduce parathyroid function to a degree
that bone formation rate is reduced.

Other Factors that May Affect the
Skeleton in Chronic Kidney Disease
Metabolic Acidosis

Metabolic acidosis is a common finding in chronic
kidney disease and may have important effects on
the skeleton (63–65). Acidosis is associated with
increased calcium efflux from bone, which occurs by
a variety of mechanisms. One mechanism involves
the buffering of hydrogen ions by bone, which results
in the solubilization of bone mineral. Acidosis has
also been shown to increase bone resorption, as well
as to depress bone formation (66–70). Acidosis may
also have systemic effects that affect the skeleton, by
altering the biological activity of PTH, as well as by
altering the metabolism of vitamin D (71). The mech-
anism by which metabolic acidosis appears to aug-
ment the action of PTH and osteoblast-like cells has
been shown to be associated with an increase in the
expression of PTH receptor mRNA in the presence of
metabolic acidosis (72). Acidosis-induced osteoclas-
tic-mediated bone resorption appears to involve the
increased expression of RANKL mRNA (69).
Clinical studies have shown that the treatment of
metabolic acidosis in patients on hemodialysis
appears to result in improved manifestations of
hyperparathyroidism in bone (73).

Corticosteroids
Corticosteroid-induced bone loss has been rec-

ognized for many years (74). Corticosteroids
decrease the rate of bone formation and result 
in rapid loss of bone during the first few months of
treatment, followed by a more prolonged phase 
of steady bone loss. Corticosteroids have been
shown to promote aptosis in both osteoblasts and
osteocytes, and it is believed that this process
contributes to the pathogenesis of glucocorticoid-
induced osteopenia (75–77).

Growth Factors
Increasing evidence suggests that the process 

of osteoblast development and differentiation is reg-
ulated by multiple systemic and local factors, includ-
ing parathyroid hormone, insulin-like growth
factor-1, (IGF-1) the bone morphogenetic proteins,
fibroblast growth factor, TGF-�, and epidermal
growth factor (78–80). Many of the hormone sys-
tems are altered in the presence of kidney disease
and can therefore possibly contribute to the patho-
genesis of renal bone disease. Thus, abnormalities in
the IGF-1 and IGF-binding protein systems have
been described and can potentially contribute to
altering the manifestations of renal bone disease
(81,82). The bone morphogenetic proteins may also
influence the skeleton and it has been suggested that
the basic metabolic panel-7 bone morphogenetic
protein-7 (BMP-7) might be particularly involved in
this process, as BMP-7 administration has been
shown to modify high turnover renal osteodystrophy
(83) and, under some circumstances, may actually
alter the manifestations of adynamic bone (84).

Cytokines
Alterations in cytokines may also affect the skele-

ton. There is substantial evidence that there is an
increase in pro-inflammatory cytokines in uremia
(85–88). These cytokines may modulate the bone
remodeling process by affecting the RANK/
RANKL/OPG system that is essential for the normal
metabolism of bone (89). IL-6 levels have also been
associated with bone disease in uremia, but its pre-
cise contribution remains unclear at the present time
(87,90). Circulating levels of OPG may also be
increased in patients with advanced kidney disease
and also have the capacity to influence bone turnover
(91,92). Further studies are necessary to analyze the
precise contribution of these cytokines to the final
manifestations of renal bone disease.
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