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Evaluation of the Massive Superpropagator in the 
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S u m m a r y .  - -  Working within the framework of the strong gravity theory 
using nonpolynomial Lagrangians, we have investigated the massive 
superpropagator for a mixed tensor field consisting of Einstein's massless 
gravity field and the strong gravity field of the massive f-meson. The 
final compact expression fol the massive superpropagator in Euclidean 
co-ordinate space has the form of a one-dimensional integral characterized 
by poles and branch cuts. A similar integral representation has been 
derived for the ~pure ~ f-meson superpropagator. The reality of both 
integrals is guaranteed by an averaging prescription. Numerical calcula- 
tions of the massive superpropagator have been carried out both in 
Euclidean x-space and, for the corresponding Fourier transform, in the 
Symanzik region of the external momenta, 

1 .  - I n t r o d u c t i o n .  

One of the most  intractuble problems in theoret ical  physics during tlle past  

four deeudes h,~s been the subject  of the ul traviolet  infinities in the theory  of 

in terac t ing particle fields. Several ingenious methods have been developed to 

cope with these infinities, such us the successful renormulizat ion procedure in 
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q u a n t u m  e lec t rodynamics  (~), or the  per~t iz~t ion ~pprouch of ~FEI~BERG ~nd 
PA~s (~) in the  theo ry  of weak i n t e r ac t i ons .  Ye t  i t  is fa i r  to say t h a t  no indiv idual  

t echn ique  h~s been  sufficiently powerfu l  to deal consis tent ly  and  in a physical ly  

meaningfu l  m~nner  wi th  the  divergences ar is ing in all th ree  basic in teract ions:  

s t rong,  e lec t romagnet ic  and  weak.  W h a t  is crucial  in the  contex t  of this  ~rticle 

is the  f~et t h a t  the  only L~grangians  ser iously considered unt i l  recent ly  have  

been  polynomial Lagr~ngians.  The  r a t he r  l imi ted  success of po lynomia l  La- 

grangi~ns in renormal iza t ion  theo ry  has p r o m p t e d  E v ~ o v  (~), FgADK~ (') and  
others  to employ  nonpolynomial Lagrang ians  as a means  of d~mping  the  ul- 

t r av io le t  divergences.  I n  the  ease of a nonpolynomi~l  theory ,  this damp ing  is 

ach ieved  specifically b y  a sum of d is t r ibut ions  of the  fo rm (A~(x ~, m)) ~, called 

superpropaga tors ,  which describe the  p ropaga t ion  of N p~rtieles,  N----0,  1, 

2, ..., c~, of m~ss m be tween  two points  in space- t ime (A~(x ~, m) be ing  the  causal  

f ree  mass ive  propagator ) .  The use of superpropag~tors  is equ iva len t  to t~king 

all t e r m s  in the  p e r t u r b a t i v e  expansion.  Supe~propag~tors  will be  discussed 

more  ful ly near  the  end of this  Section. 

The  nonpo lynomia l i ty  men t ioned  above  m a y  be  in t roduced  in a v a r i e t y  of 
ways.  One prescr ip t ion ,  due to SA~A~ ~nd his col laborators  (~,~), is to m a k e  

the  Lugr~ngian genera l ly  covar iant .  This  in t roduces  in the  Lagrang ian  factors  

of the  fo rm ( - -de tg '~ )  -½, where  

is the  E ins t e in  g rav i t a t iona l  field, V'~ is the  Minkowski  met r ic  defined by  

di~g (1, - -  1, - -  1, - -  1) and  h ~ describes the  dev ia t ion  f rom ~"" and  contains ~ll 

the  physics  (*). The  nonpolynomia l  charac te r  or iginates  f rom the  nonl inear i ty  

of det  g'~ in the  field var iables  h ~" and  requires  ~ n o n p e r t u r b a t i v e  t r e a t m e n t  of 

the  modified Lagr~ngian.  I t  is ~n ~ppeal ing fea tu re  of S~]am~s prescr ip t ion  tha t  
the  inbui l t  cut-off ~ = 10 '9 GeV enters  the  theo ry  in ~ na tu ra l  way th rough  

the  g rav i t a t iona l  field g'~. I n  q u a n t u m  eleetrodyn~mies this  cut-off regular-  

(1) ]~. J.  DYSON: Phys. Rev., 75, 486, 1736 (1949); A. SALAZ: Phys. Rev., 82, 217 (1951); 
84, 426 (1951). 
(2) G. F]~INB~RG and A. PAIS: Phys. Rev., 131, 2724 (1963). 
(3) G. V. EFIMOV: SOV. Phys. JETP, 17, 1417 (1963); Phys. Lett., 4, 314 (1963); 
1Vuovo Cimento, 32, 1046 (1964); Nucl. Phys., 74, 657 (1965). 
(4) E. S. ~RADKIN: ~Cl. Phys., 49, 624 (1963); 76, 588 (1966). 
(s) R. D]~LBOURGO, A. SALAM and J. STRAT}ID]~]~: Lett. 5Vuovo Cimento, 2, 354 (1969). 
(6) ~k. SALAM and J. STRATHD]~]~: Lett. Nuovo Cimento, 4, 101 (1970). 
(*) We sh~ll employ natural units, h = c = 1, throughout this paper, iu which case 
the gravitational constant ~ ~ (SzG) ½ _~ 10 -~ (m~) -1 _~ 10 -~9 (GeV) -1, where G is the 
Newtonian constant and m~ the m~ss of the electron. 
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izes the  logar i thmic  infinit ies which appea r  in the  self-mass and  self-charge 

of the  e lectron,  as shown b y  ISH~M, SXLA~ and ST]~ATttDEE (I .S.S.)  (7). Non- 

po lynomia l  Lagrangians  have  of la te  been  discussed in severa l  papers ,  and  we 

re fe r  the  reader  to the  l i t e ra tu re  on this  subjec t  (8,~). 
Of immed ia t e  in te res t  to us is ano the r  ar t ic le  by  I.S.S. on the  f -dominance  

of g r a v i t y  (~o) in which they  descr ibe the  mix ing  of the  E ins te in  g rav i ton  field g~" 

with  the  mass ive  spin-2+ f-meson field J~. The  p resence  of the  s t rong g r av i t y  

field it" leads to a s t rong- in te rac t ion  cut-off ~ a f e w G e V ( ' ) ,  which is 
seen to be apprec iab ly  smaller  t han  the  weak g rav i t a t iona l  cut-off u~  = 10 ~9 GeV. 

The  f -meson in this  f-g mix ing  model  is t a k e n  to be  the  (~representative ~) of 
the( f° ,  o, o f , A2) complex  and  is shown to couple univers :dly  to the  hadronic  stress 
tensor  (lo.11). 

The purpose  of this  ar t ic le  is to ew~luate, wi th in  the  f r a m e w o r k  of the  f-g 

mix ing  hypothes is ,  the  massive supe rp ropaga to r  for a mixed  tensor  field con- 

s is t ing of E ins te in ' s  massless  g r a v i t y  field g~" and  the  mass ive  s t rong g r av i t y  

field J"'. We shall  now brief ly  descr ibe some of the  work  t h a t  has been  carr ied 

out  on superpropaga to r s .  
The massless grav i ton  supe rp ropaga to r  was first  eva lua ted  b y  DELBO~RGO 

and  HV~'T (~) in bo th  configurat ion and  m o m e n t u m  space,  and  subsequent ly  
b y  I .S.S.  (7) using v ie rbe in  ( te t rad)  fields and  the  complex  z-space approach .  

Compared  with the  m~ssless case, progress  for the  massive superpropaga tor  
has been  r a the r  slow, owing largely to the  difficulties connected wi th  solving 

mul t ip le  four-dimensiom~l integrals .  Never theless  a n u m b e r  of definite resul ts  

have  been  publ ished,  for example ,  b y  VOLKOV (~3), who has s tudied  the  ana ly t ic  

s t ruc tu re  of the  superprop~ga tor  in tile coupling cons tan t  for mass ive  scalar 

part ic les ,  and  b y  KA]~OWSKI (~), who iuvestig:~ted the  m a t h e m a t i c a l  p roper t ies  
of a few specific supcrpropaga to rs .  Although S~AM and  STRAT~DEE (9) have  

der ived some useful  rules for the  momen tum-sp~ee  behav iour  of these  compli- 
ca ted  objects ,  an  exact  solution for the  mass ive  superp ropaga to r  in m o m e n t u m  

(7) C. J. ISIIAM, A. SALAM ~nd J. STRATtlDE:E" Phys. ReV. D, 3, 1805 (1971). 
(s) 1~. DELBOURGO, A. SALAM ~nd J. STRATHDEE: Phys. Bey., 187, 1999 (1969); 
A. SALAg: in .Fundamental Interactions at High Energy, Proceedings o] the 1970 Coral 
Gables Con]erence (Ncw York, 1970), p. 22l. 
(9) A. SALAM and ft. STRATHDEE: Phys. Rev. D, 1, 3296 (1970). 
(lo) C. J. ISHAM, A. SALAM arid J. STRATHDEE: Phys. Rev. D, 3, 867 (1971). 
(*) We shall take the mass of the f-meson M :  1500 McV so that its coupling con- 
stant is approximately zf--~ M - l =  (1.5 GcV) -1. We thank Dr. P. ROTELLI for clari- 
fying remarks about the mass of the f-laeson. 
(xl) S. N. GUPTA: Phys. Rev., 96, 1683 (1954). 
(12) ]~. DELBOURGO and A. P. Hu~T: Lett. ~uovo Cimento, 4, 1010 (1970). 
(13) ~[. K. VOLKOV: Coy~m. Math. Phys., 7, 289 (1969); 15, 69 (1969); Ann. o/ Phys., 
49, 202 (1968). 
(la) !V[. KAROWSKI: Comm. Math. Phys., 19, 289 (1970). 
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space has not  been  found as ye t  (*). The pr ime obstacle h,~s been  the  lack of a 
sui table Four ie r  t ransform (~5) for 

(a,(x~, ~))-. 

The  out l ine of our  paper  is as follows. In  Sect.  2 we review briefly the  
cen t ra l f ea tu res  of the I.S.S. f-g mixing model.  We then  el iminate t he in t e r ae t i on  
t e r m  f f ~  by  diagonalizing the  to ta l  Lagrangian .5fto ~. The purpose of this  
diagonalization procedure  is to simplify the  vacuum expecta t ion  values occur- 
ring in the  in tegral  representa t ion  of the superpropagator  S(x). 

In  Sect. 3 we shall der ive a compact  expression for S(x) in Eucl idean co- 
ordinate  space. In  Sect.  4 we evaluate  the  Four ie r  t rans form of S(x) in the  
Symanzik  region of the  ex te rna l  momenta  (p2< 0). Sect. 5 consists of a br ie f  
summary  and discussion. 

2. - On the f-meson-graviton mixing hypothesis. 

I n  the  first pa r t  of this Section, we shall summarize the  salient features  of 
the  I.S.S. (~0) theory  on the  f-dominance of gravi ty .  We shall begin by  l ist ing 

the  Lagrangians for the  gravi ton and the  f-meson, together  wi th  u mixing 
t e r m  ~'f~ describing the  in te rac t ion  be tween leptonie ma t t e r ,  to which the  gray- 
iron couples, and  hadronic mat te r .  In  the  second par t  of this Section, begin- 
ning with (2.10), we shall define appropr ia te  fields which diagonalize the  to ta l  
Lagrangian.  This will simplify subsequent  calculations of the  massive super- 
propagator .  

For  the  pure  g rav i ty  Lagrangian,  we take  the  usual  Eins te in  Lagrangian 
wi th  the  second der iva t ives  of the  metr ic  tensor  g~" removed:  

(2.1) 1 ~r;~ ~ } . v .  = - -~ ( -  ~)-~ g~  { r ~ r ~ -  Fro I:.5 , 

where ~. is the  weak gravi ta t iona l  cons tant  and g ~ det  g~'. The Christoffel 

symbol  of the  second kind, F~ ,  may  be expressed in t e rms  of the  metr ic  tensor  by  

(2.2) 

(*) The method of generalized functions employed in finding the Fourier transform 
of the massless superpropagator (D~(x)) n fails in the massive case, where one needs to 
know the Fourier transform of (Kl(mr)[r)n; here K 1 is the modified Bessel function, 
m the mass and r = ~  +x~. 
(is) I. )/[. C~EL'FAND and G. E. SHILOV: Generalized .Functions, Vol. 1 (New York, 1964). 
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with  a comma  denot ing  the  ord inary  der iva t ive .  We have  t a k e n  g~" as the  
g rav i ton  field; the  covar i an t  tensor  (g-~),, is dependen t  on i t  and  satisfies 

g (g L,,=a,, (2.3) ,~, -1 l, 

where  6~ is the  K r o n e c k e r  symbol :  

b È = J  1 ,  if #----v, 

[ 0 , if ,uvav,  
#, v = O, 1, 2, 3.  

Is~_A~, SALAM and  STRAT~DEE now assume t h a t  the  pu re  f -meson p a r t  

of the  to t a l  Lagrang ian  has the  same form as (2.1): 

(2A) 1 1)-~t ~e ~ ~ v Z e r ~ }  

where  ] --= det  1~" and  F ~  has the  usual  definit ion in t e r m s  of 1~" us the  met r ic  

tensor .  
The  fo rm of the  mix ing  t e r m  is based  on the  mass  t e r m  for a spin- two field 

of mass  M: 

M 2 
(2.5) ~e . . . .  = ~ ( F ~ F  ~ - F ~ ) ,  

/F ~ be ing  a symmet r i c ,  pu re  spin- two field (lo,~7). A covar ian t  general izat ion 

of (2.5), in t e r m s  of 1 " and  gt,,, gives 

(2.6) 
i 2 

£f,, = z--~ (-- 1) -~ {/~p(g-1)~/~(g-1)z~_ (/~t~(g-9~,y + 6/~P(g-~)~p_ 12}. 

By  wr i t ing  

(2.7) V = V" + ~, F ~  , 

(2.8) g~" = ~ + x.h ~" , 

and  b y  work ing  to zeroth  order  in ~, and  u,,  one can show t h a t  the  

express ion  (2.6) reduces  to  (2.5). 

For  pu re ly  ealculat ional  reasons ,  we now express  the  to ta l  Lagrang ian  

(2.9) ~f*ot : .Lf,+ ~ ,  + ,Lf,, 

(18) W. ]:)AULI and M. FIERZ: Proc. Roy. Soc., A 173, 211 (1939). 
(1:) M. FIERZ: Helv. Phys. Acta, 12, 3 (1939). 
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£fto* = £f l  + £f~ ; 

the new fields 7 and ~, defined in terms of the original fields, ] and g, must  be 
chosen so as to diagonalize the Lagrangian (2.9). We proceed by expanding £ftot 
in terms of the  quan tum (in the  I.S.S. sense (10)) fields Fu, and h u' introduced 
respectively in (2.7) and (2.8). Working to first order in ~ we obtain 

(2.11) (g-~)u, = ~ - -  u h~,, 

in which case the  Christoffel symbol (2.2) reduces to (') 

(2.12) / ' ~ =  -- ~ (hw.~ + hv~.~-- h~o.v) + O(z~) . 

The factor ( _ g ) - t  appearing in (2.1) can be expanded according to the formula 

(2.13) g-~ = 1 --  a~, Tr (h ~') : O(n~). 

The final expression for (2.1) then  reads 

(2.14) .£~' = ~ (hu,.~,h~,v.~, - -  h~u.c,h . . . .  + 2hm,.~,h ....  - -  2hu,.~,h,~,.~, ) + O(u ) . 

For  the  f-meson field, we have similarly 

(]-~)u, = ~Tu,-- u , F  + higher-order te rms in u f F ,  (2.15) 

so t ha t  

(2.16) 

+ higher-order terms in F .  

The expansion of £g,, in (2.6) yields 

M * 
(2.17) ~ "  = 4~----~ (~(~¢F~,/~--  F ~ F ~ )  + : ~ ( h ~ h ~ - -  h ~ h ~ ) -  

--  2 ~ , u g ( F ~ h ~ - -  F ~ h ~ )  + higher-order terms) . 

(*) For simplicity, we use a Euclidean metric, replacing ~v by 6~v and removing minus 
signs from determinants. The change back to the Minkowski metric may be made at 
the end of the calculation. 
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In  order  to diagonalize ~etot, we define new fields _F~' and ~ '  by  

(2.18) ~ , ,  = 1 

(2.19) ~.~ _ 1 (u] + z~)~ ( z , F "  + x,h ") , 

in t e rms  of which 

(2.20) 

and 

(2.21) 

+ t e r m s  wi th  other  indices, as in (2.14) and (2.16)} 

ze,,_ M~4 ~: ~i + ~'~ (F~F~-- P~F~) 

We see t ha t  all factors bi l inear  in h have vanished  f rom .~q~, and t h a t  the  (~ new ~) 

mass in our to ta l  Lagrangian  is g iven by  

(x ~, + ~ ) t  
(2.22) m -- M 

where M is the  mass of the  f-meson. We also note  t h a t  the  diagonalization 

of Lfto t has been  carr ied out  up to t e rms  quadrat ic  in the  fields ~ '  and h " .  
Since _P~' and ]~" are,  in general ,  n o t  tensors ,  i t  is desirable to rewri te  these 

fields in t e rms  of the  (diagonalized) t ensor  fields ] "  and ~ ' .  I t  follows f rom (2.7) 
and (2.8), toge ther  wi th  (2.18) and (2.19), t ha t  

(2.23) 

(2.24) ( )'( ) 
The lef t -hand sides of these equations,  being tensor  expressions, can now be 
defined as the  new fields ]~" and ~"~ respec t ive ly :  

(2.25) [~'=- ~,~"" 

and 

(2.26) ~ "  = ~ "  -]- ~ , ~ ' ,  

where  

(2.27a) )l, ---- (~  q- u=)t, 

(2.37b) ~t, = ~tu, 
) . t  " 
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Relations between ], ~ and the original fields /, g, can be derived with the 
aid of (2.23)-(2.26). The result is 

(2.28a) W = ad"" + W,  

(2.28b) gU, = a21~,, -4- ~u ,  , 

with 
2 ~gf 

z I  (2.29a) a~ = ~ + ~, 

2 

- -  2 ° 
(2.29b) a2 ~ q_ ~, 

In summary, we have shown how to write 

(2.30) 

with 

(2.31) 

and 

(2.32) 

~=~.1 (G o#,. . . . . . . . .  o -  G o#,,,  + 2G ~#..,- 2G oP..) + 

_~ .~ + .~ 

.v~= ~ ( ~ , . d ; , . , - G . d ;  .... +2G.olzo,..-2~,,, .A,.,).  

und ~ are related to T and ~ respectively by  (2.25) and (2.26). The diago- 
nalized fields ] and ~ have no direct physical interpretation in terms of the 
f-meson and graviton fields, but  have been introduced for purely eMculationM 
purposes. They remove the need for evaluating expressions like (0lT(lU'(xl) • 

• g~¢(x~))  ]0>. Such terms would occur in the superpropagator if we were to work 
with a Lagrangian involving cross-terms in f and g. The diagonalized Lagrangian 
(( conceals ,) such interaction terms. 

3. - Eva lua t ion  o f  the  m a s s i v e  superpropagator.  

3"1. I n t e g r a l  r e p r e s e n t a t i o n .  - The massive superpropagator for the 
f-meson-graviton fields, corresponding to the Lagrangian (2.9), is defined by 

'°'(") / 
(3.1) S~" .¢¢(x l  - x~) -= ~ V ' - -  det ],'(x,)" V-- detg,"/~(x2)- 10>' 
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where T is the eovariant  t ime-ordered product .  Since the general  expression (3.1) 
cannot  be handled computat ional ly  at  this juncture  with any degree of exact- 
ness, we shall consider tile simpler form 

(3.2) S~'~ '~(Xl  - -  x2)  = ~ ' ~ ' ~ S ( x  1 - -  x~) , 

(3.3) S(x~-- x2) = <0IT v / -  det  P"(xl) %/" detg~(x2) 10} ' 

which contains the  basic features  of the general superpropagator  (3.1). 
Our plan is first to wri te  down an integral  representa t ion for S(Xl--X~) 

and then to compute  the  result ing paramete r  integrals. Using the formula (12) 

af (3.4) ~ / +  d e t A  ~ -- ~ d4u exp [-- ~,u~A~¢],  

where the integrat ion contours for the  u~,, ~ = 1, 2, 3, 4, depend on the form 
of A ~ and ~re chosen to make  the  integral  converge,  we ~rrive a t  the following 
integrM representa t ion for S(xx - -  x~): 

(3.5) S(x1-- x~) = -~ f f d'ud~v <O[T {exp [-- u~,~ ?'~(x~) ] exp [-- v~,v~g~¢(x~)]} lO> 

with ~, fl, ~u, v = 0, 1, 2, 3. I t  is convenient  to express the  fields f~ and g~" 
in te rms of ~ "  and ~'~ with the  aid of (2.25), (2.26) ~nd (2.28). The result  is 

(3.6a) ] ~  = V ~" -~ a ~ -  ~"~ ~- ~,h~,  

where the coefficients 2f, ~ ,  a~ and a 2 have already been defined in (2.27) and 
(2.29), which show tha~t 

(3.6c) al a2 ,~ : __ ) . 2  

Subs t i tu t ing  (3.6) into (3.5) and not ing tha t  

<0 IT{exp [%#U~(xl)] exp [b~ ff~(x2)] }I0> : <0[ exp [%~bo,~T{cfU~(Xl). ~(x~)}]  [0>, 

we obtain 

(3.7) S ( x ~ - - x ~ ) : l  ~ d ~ q ~ d ' v e x p [ - - u ~ - - v 2 ]  • 
7 ~ j j  
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Before we can per form the integrat ions  in (3.7) i t  is necessary to evaluate 

<o I T(P.ql ~) Io> (3.8a) 

and 

(3.8b) <o I T(~."".~'% Io>, <o l T()~.""]~ ~',8) lo>. 

We shall discuss first the  t ime-ordered  produc t  (3.8a). 

i) The quanti ty <OlT(P ' (X l )~#(x2) )10>. -  The diagonalized free fields ] "  
and ~ "  possess the  following vacuum-expec ta t ion  values:  

<OlP'lO> = o ,  <olg"lo> - -  v ' ,  (3.9) 

where  we have t aken  

(3.10) <ol~ ' lo> = o = <o1~'1o> 

in order  t ha t  <0 []"~]0> coincide wi th  the  fiat-space value (similarly <0 ]g~']0> = ~ ' ) .  
F u r the r more  

(3.11) <o IT(]~'(x,)#~(x~))]o> = o,  

in view of the  absence of an in te rac t ion  t e rm  in the  diagonalized Lagran- 
gian (2.30). Subs t i tu t ing  (2.25), (2.26) into the  1.h.s. of (3.11) and using (3.10), 
we obta in  immedia te ly  

(3.12) <o li"(P.'(xl)~(x~))Io5 = o.  

ii) The propagator <oIT(P.~(xl)~#(xD)[O>. - For  the  massive tensor  
field z p~" = (1/2f) 7 ~" we find t h a t  (is) 

(3.13) <0 [T( /~/~ ' (Xl)~a#(X2))[0> = 

= 1 (dt,~d,# + d~#d,~ __ ~d~,d~#) A , ( x  ~ - - i~ ,  m ) ,  

where m is given by  (2.22), x = (xl--xz)~, , ~t = 0, 1, 2, 3, and 

1 ~ 
(3.14) d~" = ~t . . . . . .  . 

m 2 8x~ 8x, 

(is) B. S. DE WITT: in Relativity, Groups and Topology (New York, 1964), p. 622. 
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The general  form of the  causal p ropaga tor  A~,(x 2 - i ~ ,  m) reads (~9) 

(3.15) 1 imo(,~) H,/)(~Vx ~ is)+ 
A,.(x 2-" is, m) = -4~i a(x~) + 87tVx ~_ is 

-4- toO(-- x ~) K l ( m ~ / -  x ~ ~- is) ; 
4~r2V - x 2 + is 

here  O(x ~) is the  usual  step funct ion,  x ~ = x ] - - x  2, while H~ 2) and K~ denote  
the  t t a nke l  and modified Bessel funct ions respect ively.  

We shall work in the  Symanzik region of the  ex te rna l  momenta  (p2< 0) 
in which case i t  is sufficient to consider S(x) or, more specifically, zJ~(x 2 - i s ,  m) 
for Eucl idean x-space only (8). In  this region the  contour  of in tegra t ion  over xo 
for the  Four ie r  t rans form 

(3.16) 

(3.17) 

S. . .~(p)  = v . . v ~ , 3 ( p ) ,  

=-fexp [ ip. x] S(x) d4x , 

may be ro ta ted  counterclockwise through 90 ° wi thout  crossing a pole. Thus 
_ _-- 2 =  while A~(x~--is, m) in (3.15) reduces to x o ~ i x  4 so t ha t  x 2 x 2 + x  4 r ~, 

A~(x 2 -  is, m) = mKl(m%/-- x2 -? is) 
4~ ~ V - -  x ~ ÷ is 

e > O  . 

We shall use the  following single-vMued branch of A~ which is analyt ic  for r > 0 :  

mKl(mr) 
(3.18)  A,(x~,  m) - 

4~2r 

For  m o m e n t u m  values which lie outside the  Symanzik  region, ~(p) in (3.17) 
is ob ta ined  by  analy t ic  cont inuat ion.  

I t  is clear f rom (3.13) t ha t  the  major  technical  complication in the  evaluat ion 

of S(x) can be expec ted  to arise f rom the mass-dependent  d~-operators  in the  
~" -p ropaga to r .  Despite  the i r  t roublesome character ,  the  operators  d ~ are 

essential  in determining the  ~nalytic  s t ruc ture  of the  massive superpropagator .  
I t  follows f rom (3.13) and (3.14) tha t  this s t ruc ture  will be affected not  only 

by  the  mass of the f-meson, bu t  more decisively by  the  differential  operators 
~'$ ' ,  which will a l ter  the  s ingular i ty  s t ruc ture  of (3.13) and hence of S(x). 

(1,) X. N. BOGOLIUBOV and D. V. S~mKOV: Introduction to the Theory o] Quantized 
.Fields (New York, 1959), p. 650. 
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The operators  ~ "  will have  a par t icu lar ly  strong effect in the  v ic in i ty  of the 

l ight-cone,  where  

_ x ~ x  • 
(3.19) ~'~zJ~, ~ 4r~2x~ , x ~ --~0 , 

as compared  wi th  A B ~--(4~r~x~) -~. We shall r e t u r n  to a discussion of the  
ana ly t ic  s t ruc tu re  of S(x) a t  a la ter  point .  

iii) The propagator <0 ]T(]~'(x~)~(x~))]0>. - The propagator  for the massless 
field ]g" is much  simpler and is given, in a specific gauge (~o), by  

(3 .2o)  <OlT(~"'(x~)~"~(x~)) lO> = ½ (V"~V '~ + V"~V "~ - -  V ' V ~ )  D,(x), 

where  

- - 1  
(3.21) D~(x) 4~2x ~ -  is ' s >  0 ,  

is the  well-known causal propagator  for massless particles.  In  the  Eucl idean 
region of x-space, the  funct ion  

1 
(3.22) D~(x) -- 4vr2r ~ , r > 0 ,  

is everywhere  posi t ive and differentiable.  
Before subs t i tu t ing  (3.12), (3.13) and (3.20) into the  double in tegral  (3.7), 

we r emark  t ha t  the  computa t ion  of our four-dimensional  integrals over  u- and 
v-space is simplified by  replacing the  Minkowski metr ic  ~ with a Euclidean 
metr ic  ~ "  (/~, v = 1, 2, 3, 4). Af ter  the  integrat ions have been performed one 
ma y  (~ conver t  ~ back to Minkowski space (cf. footnote  (*) on p. 616). Wi th  this 

a l te ra t ion  in the  metr ic  the  r.h.s, of (3.7) assumes the  form 

(3.23) 

- - 5  d" ' d~  AF + 

o,)] 

(20) T . W . B .  KIBBLE: in High-Energy Physics and Elementary Particles (Vienna, 1965), 
p. 885. 



I~.VALUA_TION OF THE MASSIVE SUP]~Rt~ROt'AGAT0tt ETC. 623 

Remember ing  t ha t  d ~' = ( ~ ' - -  m-" ~ ' c  ~', we finally obta in  

(3.24) 

where  

(3.25) 

g J J  

+ {u~(v. 0)~ + v~(u. O)~}~+ (u.v)(v.O)(u.O)a,+ (u. O)~ (~. ~)~a~)], 

al = ½ala24~Zll,-}- ½ 4,DF2 , 

a2 = - -  ala2),~zlF-- 4~D~ , 

aa = - -  ½ ala~(4 , /m):  A~. , 

2 o~ a 
O~ 5 = 

m 2 

3"2. S t r u c t u r e  o / S ( x )  i n  E u c l i d e a n  co-ordinate  space.  - Le t  us wri te  (3.24) as 

f {f 1 (3.26) S(x) = ~ _d~u exp [--u ~] d4v exp [-- F(v)] 
~ J  

and in tegra te  over  v-space first. The  in tegral  in square brackets  is essentially 
Gaussian in charac ter  and may  therefore  be evaluated  exac t l y  by  diagonalizing 
the  quadrat ic  form F(v) wi th  the  ~id of the  l inear  t rans format ion  

(3.27) 

v ~ - ~ j ,  j = 1 ,  .. . ,  4 ,  

4 

i = 1  

4j are the  eigenvalues of (7(~) which sat isfy 4142 48 4~ = ~ ,  where  ~ is the  de- 
t e r mina n t  of the  quadrat ic  form F(v). For  4 j >  0, subs t i tu t ion  of (3.27) into 
(3.26) leads to 

-{-co cO 

S(x) = 55 d4u exp [-- u 2] d~l ... d~J (v ,  ~) exp --  ~ ;t~j , 

- - c o  - co  

or, as the  Jacobian  J ( v ,  ~) can be shown to equal  un i ty ,  

giving 

(3.28) 

if } S(x) = =-~ d 'u  exp [-- u 2] (~[4j) ½ , 
~ J  
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I f  the  2's are not  all s t r ic t ly  posi t ive,  each ~-integration must  be t aken  along 
a contour  a t  45 ° to the  real  axis to ensure convergence.  

The expression (3.28) for the  massive superpropagator  is exact: no approxi-  

mations have been  made be tween  (3.5) and (3.28). The explici t  computa t ion  
of the  de t e rminan t  ~ involves a n u m b e r  of tedious though e lementa ry  steps 
and will not  be r epea ted  here.  The final form of ~ reads 

(3.29) 

where  

A =  

= A a 2r- A 3 E 1  -[- A2E2 + AE3 + E~, 

1 + ~u~ + (u. a )~3 ,  

~ u ~ -  (a~c) + u ' g ,  

~ = _ ~ ( ~ 2 ( a ~ e ) _  (~.  a)2c) + ((g. a)(~.  a)c) - (~.g)(a2c)  + 

1 1 (~t,3,c)(~,~,c) ' + ~ (a~c)~- -j 

1 a.v) -- (~e) 2) + ~)~c)(a2c) -- u2((a# a.c)(a,, 

}1 
- -  ( (u .  3 ) (a~,c) ) ( (u-a) (a~,c) )  - ~ (u .g ) ( (~ ,  ~,c)(O, a,c) - (a~c) 2) - 

1 - ( (g.  a ) (u .  a ) e ) ( ~ c ) +  ( (u .  a)(a,,c)) ((g.  a)(~,, c)) - ~ (as c), + 

1 + ~  

E4 = - -  ~,  u ~ g (O~c) ~ -  ~ (a~o)(a~,a,,c)(a~,~,,c) + g (0~ ,a ,c ) (a , ,0°c ) (0 ,a ,c )  + 

1 + ~ ((,~. a)~c)((a,,a.c)(a,,a.c)- (a~c)o) + 

+ ((~. a)(a,,c)) [((,. a)(a,,c))(a2c)- ((,~. a)(a. c))(a, a.c)]}- 

- (u .g ) .  (a~c)L ~ (a~c)(a"a'°)(a~'°~c) + 5 (0~,~.c)(a.a.c)(a.~,,c) - 

((g. a)(,~, a)~). ((~,, a,c)(a,, a,~)- (~c )~ )  - 

- ((~. a)(a,c)) (((g. a)(~,,c))(a~)- ((g. ~)(a,c))(~,, a.c)} + 

1 (a,,a,o)(a, a,c)) + + (a~)~(~ (~c)~- ~ 

) i  
+(a.a.o)(aoa°e) ( ~ , c ) ( a . a ° c ) - i ( a . O . c ) ( O . a ~ c )  +g(~.a.c)(a~,~.c)(a,,a~c)(a~a.c) 
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with  

(3.30a) 

(3.30b) 

c = - - ~ . u  ~ - ( u ' o ) ~ ,  

The de t e rminan t  ~ may  be cast into a somewhat  different  form by  applying 
the  differential  operators  ~" ~ 8/Sxf, in A, E~, ..., E ,  to the  co-ordinate-de-  
penden t  coefficients a~, ..., a~. Although the  l a t t e r  are general ly  funct ions 
of bo th  A~ and D~, der iva t ives  in ~ occur only wi th  respect  to A n. Differen- 

t ia t ion  of (3.18) yields 

m 2 x ' K ~ ( m r )  _ x ~ r ~ 
~ A ~ ( x  2, m )  - -  4 ~  ~ r~ , = , 

and 

(3.31) 
m~ ~5"" K2(mr )  m x ¢ x "  ] 

~ u ~ A F ( x 2  , m 2) - -  47~ [ r ~ ~ K3(mr )  I " 

also contains higher  der iva t ives  of A~ which will not  be l is ted here.  We 
note  tha t  the  number  of ~ ' -operators  occurring in ~ is always even. 

Subst i tu t ing  expressions like (3.31) into (3.29), we find t h a t  the  re- 
modelled ~ ,  though simpler in form than  (3.29), contains ~ much larger collec- 
t ion  of te rms (several hundred,  in fact).  In  view of this unwieldy na tu re  of 

and the  number  of in tegrat ions  ye t  to be p e r f o r m e d - - e v e n  af te r  comput ing  
the  u-space integral ,  we still have  to take  the  Four ie r  t r ans form of S ( x ) - - w e  

have decided to simplify 2 as follows. We shall approx imate  expressions 
of t ype  (3.31) and the i r  h igher-der iva t ive  analogues,  by  wri t ing 

(3.32) x" x ~ ~ (~'~ r 2 . 

This approximat ion  is necessary at  this  stage if we are to gain any  detai led 

insight  into the  general  s t ruc ture  of the  massive tensor  superpropagator .  We 
note  first of all theft (3.32) does not  a l ter  the  damping power of the  superprop- 
agator.  (We shall see la ter  f rom (3.55) t h a t  S ( x ) . - ~ - - r  ~2 as r - + 0 ,  r ~ =  
------x2~ 0.) This follows f rom the  f~ct t ha t  the  d e t e rm in an t  (3.29) behaves 

essential ly like r -2~ as r - + 0 ,  whe ther  an approx imat ion  is made or not.  On 

the  o ther  hand,  if we consider only the  massive scalar  superpropagator ,  t hen  
the  corresponding de t e rminan t  behaves  like r -8 as r -+ 0. Secondly, the  approxi-  

mat ion (3.32) does not  a.ffect in any  way the  mass iveness  of S ( x ) .  

Final ly,  (3.32) allows us to re ta in  in our superpropagator  a t  least  cer ta in  

aspects of spin, including those which are character is t ic  of the  propagat ion of 

a massless spin-2 field. To see this,  we observe tha t  we can rewr i te  the  r.h.s. 

of (3.13) in the  form 

(3.13a) ( 0  { T [ l ~ ' ~ ( x l ) / ~ ( x 2 ) ]  10) = ½ (~7/~- ~ + ~,~ ~ _ ~,~?~Z) zJ~ + H "~z zJr, 
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where the quanti ty H ~'~ contains the differential operators ~ ,  8~, 8" and 8~. 
~eur  the origin, the first expression on the r.h.s, of (3.13a) corresponds to the 
propagator for a massless tensor field (we recall that  A , ~ D ,  for r--->O), 
and is seen to remain unaffected by the approximation (3.32). 

If  we now use the above approximation on the r.h.s, of (3.31), we obtain 

m 2 ~P~ 
(3.33) ~ ~'AB(X 2, m) ~_ -- 4~r~r---~ ~ {K2(mr) -- mrKa(mr)} . 

In applying this simplification to expressions like d*'d "p A, = ~ ~" ~"~ A~ +. . . ,  
we combine ~ with 8", and 8~ with 8~ (i.e. we pair 8~ and ~', because they arise 
from the same operator d ~,  similarly for 8~ and ~) .  After a considerable 
amount of algebra, with the aid of (3.6c), the determinant (3.29) reduces to 

(3.34) 

where 

(3.35a) 

(3.35b) 

= {1 + ,.,, + B(r, ,n, ) , . } ,  

.~2[4Ko(mr) ( 8 ) Kt(mr) 
A(r,m,~,)=--A(r)=--oA,  i ~ + 1 + ~  mr 

( 8 ) K l ( m r )  B(r, m, ~,) ~-- B(r) ~-- +10~2,I ~K°(mr) + 1 +-~r2  
[ m2r 2 mr 

1} 
f0 D~, 

D,, 

Dz(r) being given by (3.22). I t  is evident from (3.35) that  both A(r) and B(r) 
become negative for certain values of r, although these coefficients are never 
negative simultaneously. Specifically we find that 

(3.36) A(r)~ 0,  B(r)> 0 for r ~ / ~ ,  

(3.37) A(r) > 0, B(r)> 0 for R ~  r</~2 

and 

(3.38) A(r) > 0, /~(r) < 0 for R2 < r ,  

where 1.689~ R I ~  1.690 and 1.926~/~2"~ 1.927. 
In deriving the expressions for A(r) and /~(r) we have made repeated 

use of the following formulae for the modified Bessel functions (21) K,(z), 
= 1 , 2 ,  3,...: 

(1 d )  K,(z) _ K,+~(z) 
(3.39) ~zz z" z '+1 

(31) I. S. GRADSHT~.YN and I. M. I~YZttIK: Tables o/ Integrals, Series and Products 
(New York, 1965). 
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and 

(3.40) 
2 ~  

K,+~(z) K,_~(z) + z K , ( z )  . 

(In Appendix A, we describe a shorter,  but  less instruct ive way of deriving 
(3.34)-(3.35).) Subst i tu t ing (3.34) into (3.28) we obtain for the massive super- 
propagator 

1 / '  d4u exp [-- u 2] 
(3.41) S(x) = "~2 J(1 ~- A(r)u2) ~ (1 + B(r)u2) ½" 

In  terms of four-dimensionM spheriea,1 eo-ordim~tes with the volume element  

d~u : 9 3 sin 0 sin s ~vdgd0 d~vd~v , ]u? = e~, 

the r.h.s,  of (3.41) becomes 

1 o3 

o 

~ 2~ 

f f ~yf 1 exp [-- o~]d9 sin0d0 sin2Fd d~ (1 + A(r)02) t (1 -k B(r)o2) ~' 
0 0 o 

or finally 

(3.42) 
( v exp [-- v] dv 

S(x) = 1 + A(r)v)~ (1 -t- B(r)v)½ " 
0 

Although the last  integral  cannot  be ewduated  in closed form, wc may 
gain considerable insight into the nature  of S(x) by examining the analytic 
s t ructure  of (3.42). I t  can be seen tha t  the in tegrand in (3.42) becomes singular 
when ei ther  A(r)< 0 or B(r)< O. We shall discuss these two singularities in 
tu rn  now. (I t  will be recalled t ha t  the possibility A <  0 and B <  0 does not  
O c c u r .  ) 

Case 1) A ( r ) > 0  and B(r)<O. The crucial factor is (1 + B y )  ½ with tile 
onset  of a branch cut  at  the branch point  v = - - I / B .  For 0 < v < - - l / B ,  S(x) 
is real so tha t  no difficulties arise, bu t  for values of v in the  domain - - 1 / B <  
< v< c~ S(x) is seen to become complex (purely imaginary,  to be precise). 
To ensure t ha t  the  superpropa.gator (3.42) be real for M1 r 2 = x 2 + x], we shall 
take  the  ~verage value of S(x) ~bove and below the  branch cut  (9.~2). To il- 
lus t ra te  this procedure, consider Fig. 1, which depicts the contours C and D 
lying respectively above and below the cut. I t  may  be shown rigorously tha t  

(22) B. W. LEE and B. ZUMINO: Nucl. Phys., 13 B, 671 (1969). 
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the contribution from the branch point v = - - I / B  is equal to zero for either 
contour C1 or D1. Above the cut (contour C2) the value of the massive super- 
propagator is 

(3.43a) S(x) =- 0 -F iSx(x), 

while below the cut (contour D2) it  is 

(3.43b) S(x) ---- 0--iS~(x),  

Irn v 

. ~  C2 
) 

> 
D 2 

Dt 

Re v 

~ig. 1. - Possible contours of integration in the v-plane for the integral (3.42). 

where Sl(x) denotes the imaginary par t  of S(x). Averaging (3.43) we find that  
the real part of S(x) is indeed zero. I t  is this vanishing of the real part  of S(x) 
for all v > - - l / B  which permits us to terminate  the integral (3.42) effectively 
at the onset of the branch cut, i.e. at v = - - I / B .  Hence (3.42) becomes 

(3.44) 

--l iB 

f vexp[- -v]dv  
=Ji  7 " 

0 

I t  is now convenient, for computational reasons, to integrate (3.44) by 
parts  in such a manner tha t  the factor (1 + By) ½ appears in the numerator 
of the integrand rather  than in the denominator. The final expression 

-lIB 

(3.45)  +IA v--Av  exp[--v]dv 

can be treated numerically with the aid of a computer. The results indicate 

tha t  S(x) has the constant value of 1 within the computational accuracy for 
all B < 0 .  We mention here tha t  S(x) is also constant for A >  0, B >  0. 

Case 2) A(r )<  0 and B(r )>  0. In  this instance, the integrand in (3.42) 
contains a branch point at v------1/A, due to the factor (1 ÷ Av) -t, with a 

branch cut to the right of v = - - I / A .  The integral has a cut in the r-plane 
between r = 0 and r----R1. In contrast  with Case 1), the - - ~  exponent of 
the  i ÷ Av factor implies tha t  the singularity of the integrand at v = - - 1 / A  
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is nonintegrable .  We the re fore  redefine S(x) in the  region 0 <  r <  R~ (where 
the s ingular i ty  is wi th in  the  range of in tegrat ion)  by  ana ly t ic  cont inuat ion.  

Le t  us wri te  the  factor  v exp I--v]/(1 ÷ By) ½ in the  in tegrand  in (3.42) 
as the  sum of i ts value at v = - - I / A  plus a t e r m  which vanishes  there :  

(3.46) 

where 

(3.47) 

(3 .48)  / (v ,  r) - 

Then (3.42) becomes 

(3.49) 

wi th  

(3.50) 

(3.51) 

v e x p [ -  v] 
(1 + Bv)~ -- V(r) + ](v, r ) ,  

C(r) = -- ( l /A) exp [ l /A] 
(1-- B/A)½ ' 

v exp [-- v] (l /A) exp [I/A] 
(1 + By)½ + (1 -- B/A)½ 

S(x) = C(r)Ii(r) + I~(r) 

co 

f I~(r) ~ ( 1 ÷  Av)~ '  
o 

co 

X (r) : r r) 
j ( 1  + Av)~ " 
0 

The integral  I~(r) contains the  nonintegrable  s ingular i ty  f rom S(x). Giving 
r a small imaginary  par t ,  we obtain the  well-defined in tegral  

co 

f_ 2 (3.52) I i ( r ÷ i e ) =  l ÷ A ( r ÷ i e ) v ) e - - A ( r ÷ i e ) '  e > O .  
0 

By analyt ic  cont inua t ion  to the  rea l  axis,  we ma y  take  

2 
(3.53) II(r) -- A(r) " 

The s ingular i ty  s t ruc tu re  of I~(r) depends on the  behav iour  of ](v, r), which 
we have chosen to vanish at v = - - I / A .  I t  is s t ra ight forward  to show tha t  

/(v, r )~ (1  ÷ A v )  as v-->-- l / A  , 

so tha t  the  in tegrand  in (3.51) behaves  like (1 + Av) -½ near  v =- - : l /A ,  the  

original s ingular i ty  having been  reduced  to the  type  discussed in Case 1). We 

41 - I l  N u o v o  Oimen to  A .  
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again  t ake  the  ave rage  value  of the  in tegra l  above  and  below the  cut  and  t hen  
t e r m i n a t e  the  in teg ra t ion  a t  v = - - l / A ,  b y  ana logy wi th  Case 1): 

- - l lA  

( 3 . 5 4 )  z ~ ( , )  = [/(~' ~) J(1 + Av) j dr.  
o 

This is a convergen t  in tegra l  and  can be  eva lua ted  on a compute r .  

The  resul ts  of the  numer ica l  in t eg ra t ion  of the  final expression 

--I/A 

(2/A 2) exp [1/.4] , ~" ](% r) dv 
(3.55) s(~) = -  ( 1 -  B/A)~ *J(i~--Av)~ 

o 

I0 

~0.5 

0 - - ~ ~  

-0.5 
0.5 1.0 

Fig. 2. - Numerical results for S(x), the massive superpropagator for the f-meson- 
graviton fields, in Euclidean co-ordinate space. 

for 0 < r = ~ / ~ " - ~ x 2 < 1 0  -4 a re  shown in Fig.  2. Fo r  l O - t < r < R 1 ,  we find 

t h a t  S(x)----1 with in  the  com pu t a t i ona l  accuracy.  We no te  t h a t  the  uni ts  
of r are  inverse  GeV, so t h a t  for r = 10 -4 (GeV) -~ = 2 .10 -is cm, we are a l ready  

well wi th in  the  s t rong- in te rac t ion  region. 

The  a s y m p t o t i c  behav iou r  of S(x) is easi ly deduced wi th  the  help of (3.35). 

i) For  r-->c~, A-->0 +, while  B-->O-, so t h a t  

- - l i b  o~ 

f vexP[--v]dv +f v (3.56) S(x)l~-,~ = l im ~ ( l + A v ) ~ ( l + B v ) t  exp [-- v]dv = 1 .  

o o 

This l imi t ing  value  is the  same as for the  massless superpropaga tor  (1~). 
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ii) For  r-+O, B-+r -6, while A-->--r -6, so t h a t  S(x), defined b y  (3.55), 
behaves  l ike - -  r ~2. 

I t  is in te res t ing  to compare  the  basic s t ruc tu re  of the  f -meson -g rav i t on  
superpropaga tor  in co-ordinate  space wi th  the  mass ive  pure  f -meson superprop-  

agator ,  which has been  worked  out in Append ix  B. I t  is shown the re  t h a t  the  

coefficient .4 ( r ) - -cor responding  to A(r) in this Sec t ion - - i s  a lways nonnegat ive ,  

possibly zero, whereas /~( r )  can become nega t ive  for ce r ta in  r values.  I t  follows 

t h a t  the  factor  (1 q- Av) -~ gives r ise  to no s ingular i t ies ,  while the  s ingular i t ies  
of the  t e r m  (1 q-/~v) -½ m.~y be  t r e a t e d  jus t  as in Case 1) of this  Section.  

4. - Fourier transform in the Symanzik  region. 

The Four ie r  t r ans fo rm of the  mass ive  supe rp ropaga to r  S(x) is defined by  

(4.1) S(p) = ifd4x S(x) exp [ip.x]. 

We have  seen in Subsect .  3"2 t h a t  for r>~10 -4 (GeV) -~, S(x) has the  cons tan t  

value u n i t y  (to the  accuracy  to which we are  able to work  computa t iona l ly) ,  

so t h a t  we m a y  wr i t e  

(4.2a) 

(4.2b) 

where  r ~ = q- x 2 q- x~>  O. 

(4.3) 

wi th  

(4.4) 

S(x) = 1 + & ( x ) ,  

Sdx) = 0 for r~>10 -~ (GeV) -~ , 

I t  follows f r o m  (4.1) and  (4.2) t h a t  

S(p) = (,.)~)4 44(p) + Sl(p) 

SI(P) = if  d4xSd x) exp [ / p ' x ] .  

I n  the  Syman z i k  region of the  ex te rnM m o m e n t a  (p2< 0), ~I(P) assumes  

the  fo rm 

(4.5) 

c o  

4ze~/" 
SI(P ) = q -  J dr r2 Jl(rq) Stir), 

0 

where  q~ = _ p 2 > 0  and  r 2 = +  x ~ &x~. The  in tegra l  (4.5) m a y  be cut  off 

a t  r = 10 -4 since Sl(X) vanishes  for larger  r. The  change of va r iab le  

, [1 + u~ 
r = - -  ,og t - - y -  J 
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in (4.5) leads to 

1 

q 1 + ~  log • 
2 exp [--10 - t ] - 1  

which can now be evaluated numerically,  by  using the  form for S(x) in Sub- 
sect. 3"2 and  taking  its real par t  (9,22). A plot of the computer  results for ~ql(p) 
is shown in Fig. 3. 

1.5 

1.0 

"o 

-100 1 2 3 z. 5 6 
q=-~p2[(GeV ) 10 -7] 

Fig. 3. - Numerical results for the Fouzier transform of S(x) in the Symanzik region. 

The value of SI(P) varies ext remely slowly with respect to q for q <10 3 GeV. 
The reason for this is tha t ,  wi th  the  integrat ion cut oil at  r = 10 -4, rq is so 
small for q~<10 3 t ha t  Jl(rq) may  be approximated  by  rq/2; this cancels the 
other q-dependence in Lql(p). 

For  l~rger values of q, SI(P) displays an  oscillating behaviour.  I t  is also 
apparent  from the  form of (4.5) t ha t  the magni tude  of SI(P) tends to zero as q 
tends to infinity.  (We note  t h a t  J~(x),,~v/2/z~xcos(x--~)as [xl-->c~. ) 
The absolute value of SI(P) is less than  10 -~3(GeV) -4 everywhere;  this is due 
to the smallness of the coupling constant  2~ = 10 -19 (GeV) -1. 

5 .  - C o n c l u s i o n .  

We have succeeded in obtaining a one-dimensional integral  representation 
for the massive superpropagator both  in Euclidean x-space and in momentum 
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space. From the structure of the co-ordinate-space integral we were able to 
deduce, within the approximation (3.32), the presence of poles and branch 
cuts in S(x), as well as its asymptotic behaviour for large and small values 
of r: S(x) -~ l  as r ->c~ and S(x) ,~--r  12 as r->O. For finite, nonzero r, 
however, it  is hard-- in  view of the complexity of the coefficients A, A and B, 
/~--to learn anything specific about the behaviour of S(x). In order to fill this 
gap for nonasymptotic r, and since it is not feasible to integrate (3.42) and 
(B.8) explicitly, we have computed the one-dimensional integrals numerically 
In this way we obtain considerable information about the behaviour of a) S(x) 
for general Euclidean x values and b) S(p) for general values of q in the Sy- 
manzik region (q2 = _ p 2 >  0). Needless to say, the presence in S(x) of two 
disjoint branch cuts makes the numerical computation rather complicated. 
The co-ordinate representation of the pure f-meson superpropagator, discussed 
in Appendix B, has only one branch cut and is much easier to handle, because 
the infinity arising from the factor (1 + Bv) -~, when /~< 0, may conveniently 
be integrated out. The reality of either superpropagator is guaranteed by taking 
the average value above and below the cut. 

The Fourier transform of S(x) differs from the usual delta-function term 
by the addition of an oscillating factor which becomes damped as q--~ + c~ 
and whose amplitude is very small (< 10 -23 (GeV)-4). As for its singularity 
structure in p-space, we note from (4.3) that,  apart from the delta-function 
singularity, S(p) appears to be analytic for Re (_p2)>  0. 

We now discuss briefly several features which are not deducible from the 
present calculations, but which might emerge with further effort. 

In the first place, we believe that  an exact evaluation of the four-dimen- 
sional integral (3.28) would reveal a singularity structure for S(x) more com- 
plicated than the present one. Such an exact computation--with all aspects 
of spin retained--would also tell us the relative importance of tensor propa- 
gation as compared with the massive scalar case. Concerning our calculations 
in p-space, it  should be evident that  if a closed expression for the Fourier trans- 
form of [Kl(mr)/r] ~, z complex, could be found, its rise would both improve 
and simplify the study of the analytic structure of S(p). The structure of S(p) 
for general values of p could then be obtained by analytic continuation from 
the Symanzik region. 

Finally, we would like to be able to investigate the analytic behaviour of 
S(x) in the coupling constant ~2. The complexity of the four-dimensional 
integral (3.28), however~ in its present form prevents any conclusive statement 
in this regard. Such analytic behaviour would, among other things, make 
more explicit the role of 1/~, as an effective cut-off. 

The expression for the massive superpropagator may now be utilized to 
damp the most virulent infinities in the theory of strong interactions. We 
expect that  this damping effect will be rather large, in view of the extremely 
rapid fall-off of S(x) in the ultraviolet limit. (We recall from Appendix B that  
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ISf(x)l, like [S(x)t , behaves like r 12 as r-->0.) We list here some of the physical 
problems to which our results may be applied: 

1) ~ decay: the calculation of this process, using a gravity-modified 
phenomenological weak-interaction Lagrangian, should provide a good test 
of the ability of the strong gravity theory to suppress the leading infinities; 

2) ]urther calculation o/ hadronic mass dilTerences: such as m,:,--m~, (23) 

and m~o~-- mxos; 

3) gravitational collapse o/ hadronie matter (0.:4): an investigation of 
whether the effective force produced by the superpropagator has a short-range 
repulsive component would throw light on Salam's speculation that  (( hadrons 
are (nearly) collapsed objects in the f-gravity field ~ (~4). The validity of this 
hypothesis would have far-reaching implications. 

I t  is a pleasure to thank Prof. A. SA~AM for suggesting this problem and for 
his continued interest in our work. We should also like to thank Prof. T. W. 
]3. KIBBLE for his reading of the manuscript, and Drs. 1~. DELBOImGO and 
C.J .  ISH~I~ for several helpful discussions. We are grateful for programming 
advice from several of our colleagues, especially Mr. P .A.  COLLI~S. 

One of us (G.L.) wishes to thank Profs. P. T. MATTI~EWS and T. W. B. KIBBLE 
for their hospitality during his stay in the theoretical physics department 
at  Imperial College. Two of us (D.M.C. and R.M.W.) acknowledge financial 
support from the Science I~esearch Council. 

APPENDIX A 

The result (3.34) may also be obtained by applying the approximation (3.32) 
directly to the propagator (3.13). Since 

(A.1) 

= 4~ 2 Kl(mr) + ~ K 2 ( m r ) -  - -  m2x~'X'm,rS K3(mr)) 

(2s) M. J. DufF, J. HUSKINS and A. I{OTHERY: Phys. Rev. D, 4, 1851 (1971). 
(24) A. SALAM: Lecture at the 1971 Coral Gables Conference on .Fundamental Inter- 
actions at High Energy (Trieste preprint No. IC/71/3). 
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we find, using (3.32), tha t  

(A.2) d,'~J~ ~ m26~ (Kdmr) K~(mr) Ka(mr)l 
4~ - - - ~  \ mr + (mr) ~ mrr / "  

Similarly, the expression 

(A.3) m 2 I~ '~b~(  K2(mr)~ 
d'~d~z]~= 4~ ~ [ mrr Kx(mr) + mr ]--  

_ t 
(mr) ~ -m2 \ ~ + (mr) 2 ] + ~ \  (mr) ~ ]1 

reduces to 

(A.4) d~d~aAe 15~" 5~'~ 14K°(mr) 8 ~Kl(mr) l .  
+ (1 + (mr)~] mr J 

In  deriving (A.4) we have employed the relation (3.40) for the modified Bessel 
functions K,, v =  1, 2, 3, . . . .  The propagator (3.13) for the F , '  field (recall 
tha t  /~" = 27~]~ ") becomes 

(A.5) (OlT(~(x~)_P~(x~))lo~ _~ ~ ( ~  + ~ , ~ -  ~ ~,(~) c ,  

where 

(A.6) C =  15 I4go(mr) (mr) 2 ~ J  4 ~ r 2 [  ( ~  + 1 +  

2 r 2 = x 2 + x, and x~, -- (xl-- x2)~ , /~ = 1, 2, 3, 4 . 

Substituting (A.5) and (3.20) into the r.h.s, of (3.7), and following the method 
outlined between (3.23) and (3.28), we obtain the same results as given in the 
text ,  namely (3.34) and (3.35). 

A P P E N D I X  B 

The pure f-meson massive superpropagator. 

I t  is possible to evaluate the pure f-meson massive superpropagator 

S~o~'~(Xl - x~) = ~" ~ S , (x l -  x2) , 

( 1  ) 
(B.1) Sdxz--x~) = (OIT V--  det/"~(xl) V-- det/~(x~) 10) 
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by  modifying slightly the method of Sect. 3. The calculation is in fact  simpler 
since only a single field is involved. In  this Appendix,  we shall outline the 
basic steps and state  the  results. 

Using the  integral  representat ion (3.4) for determinants ,  we obtain 

(B.2) Sf(xl--  x2) ---- 

= -~j jd'ud'v<Ol~r{exp [-- u~u.l exp 

The expression (2.7) for ]~" in terms o f / ~ "  m ay  now be subst i tu ted into (B.2) 
to yield 

7 ~ j j  

• exp [u~u,u,v~v~<O[T(F'~(x~)E~(x2))10>]. 

B y  analogy wi th  (3.13), the propagator  <O[T(F~(x~)F~(x2))lO> is given by  

(B.4) <0[r(~'(x,)F~(x2)) 10> = 1 (a.~a~ + a ~ x ~ _  ~ a..d-p) A.(x ~_ i~, M),  

where M is the mass of the f-meson, 

and 

1 ~ 
d"" = ~ " - -  M ~ ~x,~x,  " 

As in Sec~. 3, we use the  following single-valued branch of the causal propa- 
gator At which is analyt ic  for r > 0: 

M K I ( M r )  
(B.5) A~,(r 2, M) = 4~2r 

Subst i tu t ion of the r.h.s, of (B.4) into (B.3) leads to (17) 

(B.6) 1 
S,(x) = : ,  ! d ' u d ' v  exp  [-- v 2 _  

~ J  

- (~lu2v ~ + ~2(u.v)~+ (u~(v. ~)~ + v~(u. ~)~)~, + 

+ (u.~)(u. ~)(v. ~)~, + (u. ~)~(v. ~)~)], 
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where 

(B.7) 

2 

~ =  ~ 
3 ~'~ 

o22 = - -  3z21 , 

1 

~ : M~ ~1 , 

6 
~ = ~-~ ~ ,  

~ 5  - -  M 4  ~1 • 

Proceeding now exactly as in Subsect. 3 ' 2~ th i s  includes the approxima- 
tion (3.22)~we are able to reduce (B.6) to the integral 

(B.8) 
oo 

f (  v exp [-- v] dv 
S,(x) = 1 + ] (r )v )~( i+~(r)v )  ~ 

0 

with 

5~ 2 /4Ko(Mr) 
(B.9a) A(r) 4~2r2 [ M~r2 

(B.9b) /~(r) = -- 2A(r).  

~ J  

Before discussing the general features of the integral (B.8), we note (of. 
Subsect. 3"2) : 

i) As r-+0,  A(r)- ->+c~ and /~(r)-+--cx3 so that IS,(x)],-,r 12. This 
extremely rapid fall-off in the ultraviolet limit implies a large damping effect 
by the massive superpropagator. Another surprising feature is the largeness 
of the exponent in r 12. 

ii) For very large r, both -4(r) and/~(r) decrease rapidly so that S~(x)-+1. 

The singularity structure of (B.8) is certainly less complicated than in the 
case of the mixed f-meson-graviton superpropagator. According to (B.9a), 
A(r) is positive for all r so that  no singularity arises from the factor 
(1 +A(r)v)-~. The term (1 +/~(r)v)-½, on the other hand, produces a branch 
cut in the v-plane, since B(r) is negative for all values of r under consideration. 
We again follow the averaging prescription for obtaining a real-valued super- 
propagator; the method is equivalent to terminating the integration at 
v = - -  l / B >  O. 

A plot of the numerical values obtained for 

(B.10) 
--lIB 

f v exp [-- v] dv 
s~(x) = (~ + ~ ( r ) v y  (1 + ~(r)v)~ 

0 



is given in Fig. 4. I t  shows tha t  the  region of grea tes t  interest  is 0.4 (GeV)- I<  
~<r< l . 2  (GeV) -1, corresponding to 0.8-10 -14 cm~<r~<2.4-10 -14 cm. 

The Fourier  t r ans form of Sf(x) in the  Symanz ik  region (p~< 0) m a y  now 
be computed,  using the  me thod  described in Sect. 4. We obta in  

(B.11) 

1.0 

~q,(p) = (2u) '~ ' (p)  ÷ ~q~,(p) 

0.5 
o3 

II I I I I I I I I  

0 1.5 2.0 
i i i i 

0.5 1.0 
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Fig. 4. - Numerical results for Sf(x), the pure f-meson massive supcrpropagator, in 
Euclidean co-ordinate space. 
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T L . ~ I  L L T 
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5 10 15 20 

q= _~p2 (GeV) 

Fig. 5. - Numerical results for the Fourier transform of S,(x) in the Symanzik region. 

wi th  the  numerical  values shown in Fig. 5. I t s  large magni tude  compared  
with  SI(P) for the  f-g case, follows f rom the difference in coupling constants  
~ and 2, (~,/2, _~ 1019). 
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• R I A S S U N T O  (*) 

L a v o r a n d o  en t ro  lo s c h e m a  del la  t eor ia  del la  g rav i t~  fo r te  u sando  l ag rang ian i  non  poli-  
nomia l i ,  si ~ s t u d i a t o  il superpropaga toI ' e  con m a s s a  p e r  un  campo  tensoriale  mis to  
cons i s t en te  nel  c ampo  g r av i t a z i ona l c  senza  massa  di E in s t e in  e nel  c ampo  del la  g r av i t k  
fo r te  del mesone  f con massa .  L ' c sp ress ione  c o m p a t t a  f inale p e r  il s u p e r p r o p a g a t o r e  
con massa  nello spazio delle coord ina te  cuc l id iano  h a  la  f o r m a  di un  i n t eg ra l e  unid i -  
mens iona le  c a r a t t e r i z za t o  da  pol i  e t ag l i  di  d i ramaz ion i .  Si ~ d e d o t t a  una  r a p p r e s e n t a -  
zione in t eg ra l e  s imile  pe r  il <(pu~o >) s u p e r p r o p a g a t o r e  del mcsone  f. Chc e n t r a m b i  gli 
i n t eg ra l i  s iano rea l i  ~ g a r a n t i t o  d~ u n a  prcscr iz ione  di media .  Si sono csegui t i  calcoli  
numer i c i  del SUlgerpropag~torc con ~ a s s a  sia nello spazio x euc l id iano  che, pe r  la  cor- 
r i s p o n d e n t e  t r a s f o r m a t a  di Four ie r ,  ne l la  regionc di S y m a n z i k  degl i  impul s i  es terni .  

(*) T r a d u z i o n e  a cura del la Redaz ione .  

Bbl,mcJ~e~He MaCCHBHOFO cynepnponaraTopa n Mo~e~IH cMemtmamm f-Me3OH--UpaBHTOH. 

Pe3ioMe (*). - -  Pa60Taa  B paMKaX TeopnH CI, IJIbHO~ rpaBnTatInn,  ncnonb3y~ nenonnHo-  
MHaYlbHbIe JlarpaH>rd4anr~i, MbI I~ccne~oBanr~ .&taccusnbltl c y n e p n p o n a r a T o p  )Inn cMemaH- 
HOFO mett30pttoeo n o ~ ,  COCTOfln~ero ~3 rpaBHTatlHOHnOrO noJI~ 3~nmTef ina  c nyaeBo~ 
Macco~ rI CHZIbHOFO rpaBHTatIaoHuoro rionfl MaCCHBHOFO f-Me3oI~a. OKonqaTenbHoe 
KOMrlaKTHOe Bbipa~eHHe 2~n~i MaccI4BHOFO c y n e p n p o n a r a T o p a  B 3BI(Yln]~OBOM I ( o o p ~ H -  

HaTHOM tIpOCTpaHcTae nMeeT qbopMy O~nOrpaTHOrO nHTerpa~a,  xapaKTepn3yromerocn 
noa~ocaMn n pa3pe3aMH BeTBYleHHIYI. AHanorr Iqaoe  nnTerpanbHoe npe~cTaBneHr~e 6bino  
BbIBe~eHO ~YlSl << qFICTOFO >> f-Me3OHHOFO cynepnpona raTopa .  PeaYlbHOCT/~ O6OHX nnTerpa-  
nOB rapaHTnpyeTc~ pe~eriTOM ycpe~HeH~Ie, t{HcnenHbie BblqtlcJIeHFffl MaCCtlBHOFO cyaep-  
n p o n a r a r o p a  6b~nn npoBe~eHb~ H B 3BKYlYI]IOBOM x-npocTpaHCTBe H ~J/fl COOTBeTCTBytoI~ero 
qbypbe-npeo6pa3oBann~ B o 6 n a c r ~  CrlMan314Ka ,finn BIaetunnx !4MnynbCOB. 

(*) 1-lepesedeno pe3amlueS .  


