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Summary. — Working within the framework of the strong gravity theory
using nonpolynomial Lagrangians, we have investigated the massive
superpropagator for a mixed fensor field consisting of Einstein’s massless
gravity field and the strong gravity field of the massive f-meson. The
final compact expression for the massive superpropagator in Euclidean
co-ordinate space has the form of a one-dimensional integral characterized
by poles and branch cuts. A similar integral representation has been
derived for the «pure» f-meson superpropagator. The reality of both
integrals is guaranteed by an averaging prescription. Numerical calcula-
tions of the massive superpropagator have been ecarried out both in
Euclidean x-space and, for the corresponding Fourier transform, in the
Symanzik region of the external momenta.

1. — Introduction.

One of the most intractable problems in theoretical physics during the past
four decades has been the subject of the ultraviolet infinities in the theory of
interacting particle fields. Several ingenious methods have been developed to
cope with these infinities, such as the successful renormalization procedure in

(*) Academie Visitor from the Department of Mathematics and Statisties, University
of Guelph, Guelph, Ont.

(**) Supported in part by the National Research Council of Canada under Grant
No. A8063 and C1006.
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quantum electrodynamics (1), or the peratization approach of FEINBERG and
PAIs (*)in the theory of weakinteractions. Yetitis fair to say that noindividual
technique has been sufficiently powerful to deal consistently and in a physically
meaningful manner with the divergences arising in all three basic interactions:
strong, electromagnetic and weak. What is crucial in the context of this article
is the fact that the only Lagrangians seriously considered until recently have
been polynomial Liagrangians. The rather limited success of polynomial La-
grangians in renormalization theory has prompted Ermmov (3), FRADKIN (4) and
others to employ nonpolynomial Lagrangians as a means of damping the ul-
traviolet divergences. In the case of a nonpolynomial theory, this damping is
achieved specifically by a sum of distributions of the form (4,(«? m))", called
superpropagators, which describe the propagation of N particles, ¥ =0, 1,
2, ..., 00, of mass m between two pointsin space-time (4,(?, m) being the causal
free massive propagator). The use of superpropagators is equivalent to taking
all terms in the perturbative expansion. Superpropagators will be discussed
more fully near the end of this Section.

The nonpolynomiality mentioned above may be introduced in a variety of
ways. One prescription, due to SALAM and his collaborators (5¢), is to make
the Lagrangian generally covariant. This introduces in the Lagrangian factors
of the form (—detg*)™}, where

g* =" Mgh’“

is the Einstein gravitational field, #* is the Minkowski metric defined by
diag (1, —1, —1, —1) and h*” describes the deviation from " and containg all
the physics (7). The nonpolynomial character originates from the nonlinearity
of det ¢* in the field variables h*” and requires a nonperturbative treatment of
the modified Lagrangian. It is an appealing feature of Salam’s prescription that
the inbuilt cut-off »'= 10" GeV enters the theory in a natural way through
the gravitational field ¢**. In quantum electrodynamics this cut-off regular-

(1) F.J.Dyson: Phys. Rev., 75, 486, 1736 (1949); A.SaraM: Phys. Rev., 82, 217 (1951);
84, 426 (1951).

(?) G. FrinBERG and A. Pa1s: Phys. Rev., 131, 2724 (1963).

(®) G. V. Ermvov: Sov. Phys. JETP, 17, 1417 (1963); Phys. Leit., 4, 314 (1963);
Nuovo Cimento, 32, 1046 (1964); Nucl. Phys., T4, 657 (1965).

() E. 8. FRADKIN: Nuel. Phys., 49, 624 (1963); 76, 588 (1966).

(3) R. DELBOURGO, A. Saram and J. STRATHDEE: Leitt. Nuovo Cimento, 2, 354 (1969).
(®) A. Savam and J. STRATHDEE: Lett. Nuovo Cimento, 4, 101 (1970).

(") We shall employ natural units, #=c¢ =1, throughout this paper, in which case
the gravitational constant x,= (82G)% ~ 1022 (m,)2 =~ 10-1* (GeV)-1, where G is the
Newtonian constant and m, the mass of the electron.
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izes the logarithmie infinities which appear in the self-mass and self-charge
of the electron, ag shown by IsEaM, SALAM and STRATHDEE (I.8.8.) (). Non-
polynomial Lagrangians have of late been discussed in several papers, and we
refer the reader to the literature on this subject (*°).

Of immediate interest to us is another article by 1.8.8. on the f-dominance
of gravity (1°)in whieh they deseribe the mixing of the Einstein graviton field g**
with the massive spin-2+ f-meson fleld f*. The presence of the strong gravity
field f** leads to a strong-interaction cut-off x;'~ afew GeV (*), which 1is
seen to be appreciably smaller than the weak gravitational cut-off »;* = 10*° GeV.
The f-meson in this f-g mixing model is taken to be the «representative » of
the (°, £, A?) complex and is shown to couple universally to the hadronic stress
tensor (11t),

The purpose of this article is to evaluate, within the framework of the f-g
mixing hypothesis, the massive superpropagator for a mixed tensor field con-
sisting of Einstein’s massless gravity field g and the massive strong gravity
field f**. We shall now briefly describe some of the work that has been carried
out on superpropagators.

The massless graviton superpropagator was first evaluated by DELBOURGO
and HUNT (2%) in both configuration and momentum space, and subsequently
by L.S.S. (%) using vierbein (tetrad) fields and the complex z-space approach.
Compared with the massless case, progress for the massive superpropagator
has been rather slow, owing largely to the difficulties connected with solving
multiple four-dimensional integrals. Nevertheless a number of definite results
have been published, for example, by VoLEOV (23}, who has studied the analytic
structure of the superpropagator in the coupling constant for massive scalar
particles, and by KAROWSKT (%), who investigated the mathematical properties
of a few specific superpropagators. Although SALAM and STRATHDEE (°) have
derived some useful rules for the momentum-space behaviour of these compli-
cated objects, an exact solution for the massive superpropagator in momentum

(1) C. J. Isuam, A. SaraM and J. STrRaATHDEE: Phys. Rev. D, 3, 1805 (1971).

(¢) R. DziBoURGO, A. SaraM and J. STrRATHDEE: Phys. Rev., 187, 1999 (1969);
A. 8avaMm: in Fundamental Interaciions at High Energy, Proceedings of the 1970 Coral
Gables Conference (New York, 1970), p. 221.

(®) A. Savam and J. STRATHDEE: Phys. Rev. D, 1, 3296 (1970).

(1% C. J. Isuam, A. Savam and J. StRATHDEE: Phys. Rev. D, 3, 867 (1971).

(*) We shall take the mass of the f-meson M = 1500 MeV so that its coupling con-
stant is approximately ;= M-'= (1.5 GeV)-1. We thank Dr. P. Rorerir for clari-
fying remarks about the mass of the f-meson.

(**) 8. N. Gupra: Phys. Rev., 96, 1683 (1954).

(*?) R. DELBOURGO and A. P. Hunt: Lett. Nuovo Cimento, 4, 1010 (1970).

(*) M. K. VoLkov: Comm. Math. Phys., 7, 289 (1969); 15, 69 (1969); Ann. of Phys.,
49, 202 (1968).

() M. Karowskr: Comm. Math. Phys., 19, 289 (1970).

40 — Il Nuovo Cimenio A.
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space has not been found as yet (). The prime obstacle has been the lack of a
suitable Fourier transform (%) for

(A 22, m))" .

The outline of our paper is as follows. In Sect. 2 we review briefly the
centralfeatures of the I1.8.8. f-g mixing model. We then eliminate theinteraction
term £, by diagonalizing the total Lagrangian %#,,. The purpose of this
diagonalization procedure is to simplify the vacuum expectation values oceur-
ring in the integral representation of the superpropagator S(z).

In Sect. 3 we shall derive a compact expression for S(z) in Euclidean co-
ordinate space. In Sect. 4 we evaluate the Fourier transform of S(«) in the
Symanzik region of the external momenta (p?<C0). Sect. 5 consists of a brief
summary and discussion.

2. — On the f-meson-graviton mixing hypothesis.

In the first part of this Section, we shall summarize the salient features of
the I.8.8. (1) theory on the f-dominance of gravity. We shall begin by listing
the Lagrangians for the graviton and the f-meson, together with a mixing
term %, describing the interaction betweenleptonic matter, to which the grav-
iton couples, and hadronic matter. In the second part of this Section, begin-
ning with (2.10), we shall define appropriate fields which diagonalize the total
Lagrangian. This will simplify subsequent calculations of the massive super-
propagator.

For the pure gravity Lagrangian, we take the usual Einstein Lagrangian
with the second derivatives of the metric tensor ¢g** removed:

(2.1) Lo=— S (— P T Tps— I I},

Kol =

where #, is the weak gravitational constant and g =det g**. The Christoffel
symbol of the second kind, I , may be expressed in terms of the metric tensor by

(2.2) e =300 g0 + 00— (T}

(*) The method of generalized functions employed in finding the Fourier transform
of the massless superpropagator (Dy(z))" fails in the massive case, where one needs to
know the Fourier transform of (K, (mr)/r)*; here K, is the modified Bessel function,

m the mass and r =Va® 4 «.
(%) 1. M. GEL’FAND and G. E. SHILOV: Generalized Functions, Vol. 1 (New York, 1964).
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with a comma denoting the ordinary derivative. We have taken ¢g** as the
graviton field; the covariant tensor (g7*),, is dependent on it and satisfies

(2.3) 9" )= 0,
where 6% is the Kronecker symbol:

1, ifu=vw,
o = Hy=0,1,2,3.
0, if p=#v,

IsHAM, SALAM and STRATHDEE now assume that the pure f-meson part
of the total Lagrangian has the same form as (2.1):

1
(2.4) L= — i NPTy — Tip Ty}
1

where f=det f* and I has the usual definition in terms of f** as the metric
tensor.

The form of the mixing term is based on the mass term for a spin-two field
of mass M:

M2
(25) gma" —_ (thﬂthﬁ__ FaocFﬁﬂ) ,
4

F*# being a symmetric, pure spin-two field (1¢17). A covariant generalization
of (2.5),in terms of f** and ¢**, gives

WZ
(2.6) ZLu= i_z% (= NPT o PHI o — (P20 ap)” + 6fP(g)ap— 12} .
By writing
(2.7) e R L
(2.8) g =" + » b,

and by working to zeroth order in x, and % , one can show that the
expression (2.6) reduces to (2.5).
For purely calculational reasons, we now express the total Lagrangian

(2.9) gtot:gl+$g+$,,

(1) W. Pavwr and M. Fierz: Proc. Roy. Soc., A 173, 211 (1939).
(") M. Fierz: Helv. Phys. Acta, 12, 3 (1939).
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in the form

(2.10) Lw=L311+ L5

the new fields f and §, defined in terms of the original fields, f and g, must be
chosen so as to diagonalize the Lagrangian (2.9). We proceed by expanding £, ,

in terms of the quantum (in the I.8.8. sense (1)) fields F** and #* introduced
respectively in (2.7) and (2.8). Working to first order in », we obtain

(2.11) (7Y 0 = Mpp — %Py

in which case the Christoffel symbol (2.2) reduces to (%)

(212) Tls=— 2 (byas + hypoa— hosy) + 0(:3)

The factor (—g)~* appearing in (2.1) can be expanded according to the formula
(2.13) g*=1—ax, Tr (B*") = O(<2) .

The final expression for (2.1) then reads

(2.14) L=t b, —h b 42 b —%h, k. )+ O@x).

uv. oy, 0 B v, o wp, ol e,y v, e v, u

For the f-meson field, we have similarly

(2.15) (f™)y = Ny — % F,, + higher-order terms in #,F,
so that
(2‘16) gt = %(va,anv.a— ;m,och,o: + 2F/m,aFav,v —2va,athx,,ﬁ) +

+ higher-order terms in F .
The expansion of %, in (2.6) yields
M2
(2.17) Lu=1a (U FapFap— FouFpp) + sg(hphiop— hoslipp) —

— 2045tg(Fuphap— Fanhpg) + higher-order terms) .

(*) For simplicity, we use a Euclidean metric, replacing 7,, by J,, and removing minus
signs from determinants. The change back to the Minkowski metric may be made at
the end of the calculation.



EVALUATION OF THE MASSIVE SUPERPROPAGATOR ETC. 617

In order to diagonalize .#, ,, we define new fields F» and b by

tot

o~ 1
(2.18) FI‘V - aim (%‘Fﬁ“‘_ H‘hlw) y
1
(2.19) B = @+ )} (2 ™ - ss ™)
in terms of which
(2.20) Lt Eo=HEF Ryt
+ terms with other indices, as in (2.14) and (2.16)}
and
M2 s+ o o S
(2.21) Fu=— g FepFug— FusF).

We see that all factors bilinear in / have vanished from &, and that the «new »
mass in our total Lagrangian is given by

2 2}
(2.22) m = T

%t
where M is the mass of the f-meson. We also note that the diagonalization
of #,, has been carried out up to terms quadratic in the fields F** and h*.
Since F* and &* are, in general, not tensors, it is desirable to rewrite these
fields in terms of the (diagonalized) tensor fields f** and §**. It follows from (2.7)
and (2.8), together with (2.18) and (2.19), that

(2.23) o —g" = (2P

_’_f__: - ny i: uy § v HiHg w
(2.29) (1+%§) (g +af )—n +oE A

The left-hand sides of these equations, being tensor expressions, can now be
defined as the new fields 7 and §” respectively:

(2.25) o = 3 Fer
and

(2.26) g ="+ Ak,
where

(2.27a) A= (2 + ),
(2.27b) A= e

S
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Relations between f, § and the original fields f, 9, can be derived with the
aid of (2.23)-(2.26). The result is

(2.28a) = e + g,
(2.280) 9" = a, " + G
with
2
X
(2.29a) ay = m ,
2
— %
2.29b =,
( ) 42} 2 ¥ "i

In summary, we have shown how to write

(2.30) Zz

tot g;_l_ ,7;
with

1 ~ o - ~ o - o
(2'31) g; = 1 (va,aF;w,zx- Fyu,aFw,a + 2Flm,aFow.a_ 2F,uv.thnx,p) +

M2 -
+ 4 = :; = (FopFup— FonFpp)
1
and
(232) g&' = % (ﬁ/w,aﬁuv,a - ﬁﬂy,aﬁw,zx + 2E’u;¢,aﬁzxv.v - 27”;“’,0‘%7“,”) .

F and % are related to f and g respectively by (2.25) and (2.26). The diago-
nalized fields f and § have no direct physical interpretation in terms of the
f-meson and graviton fields, but have been introduced for purely calculational
purposes. They remove the need for evaluating expressions like <O|T(f*(,)-
-9 (@,))[0)>. Such terms would oceur in the superpropagator if we were to work
with a Lagrangian involving cross-termsin f and g. The diagonalized Lagrangian
« conceals » such interaction terms.

3. — Evaluation of the massive superpropagator.

3'1. Integral represemtation. — The massive superpropagator for the
f-meson-graviton fields, corresponding to the Lagrangian (2.9), is defined by

fer(an) g (@)
3.1 Spneb (@, — @) = <O|T ' v
(3.1) Fretla— @) = O] (\/—detf’"’(wl) V- detg"’(wz))l>
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where T'is the covariant time-ordered product. Since the general expression (3.1)
cannot be handled computationally at this juncture with any degree of exact-
ness, we shall consider the simpler form

(3.2) g7, —,) = oy S (0, — )

1 1
3.3 IR W/ ] . — 0>,
(3.3) (2, — @) = <0] (\/_ Gt o (a) v detg"‘ﬁ(mz))l >

which contains the basic features of the general superpropagator (3.1).
Our plan is first to write down an integral representation for S{w;—x,)
and then to compute the resulting parameter integrals. Using the formula (%)

1 1
oy Vid w)er A,

where the integration contours for the u,, « =1, 2, 3, 4, depend on the form
of A*® and are chosen to make the integral converge, we arrive at the following
integral representation for S(@; —®,):

3.5) S@,—wm) = %ffd}u A% (O[T {exp [— u,u, f*(15,)] exp [— 24039 (%,) ]} |0

with «, f, #, v =0, 1, 2, 3. 1t is convenient to express the fields f** and g**
in terms of F* and A* with the aid of (2.25), (2.26) and (2.28). The result is

(3.60) = 4 a A P A
(3.6D) g = + a, 3, A

where the coefficients 4,, 4, @, and @, have already been defined in (2.27) and
(2.29), which show that
(3.6¢) aa, 2 =—22.

1% 44
Substituting (3.6) into (3.5) and noting that

COIT{exp [a,,*(@,)] €xD [, 2°*(2)1}10> = <O] exp [, b, T {9(@)) - (a,) }] 10,

we obtain

(3.7) S(xy— x,) = y%ffd“u d exp [— u?— v?]

- exP [, 20405 (0| T((ar A Fw + Ahm) (a, M FF + 2,5°8))]0)] .
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Before we can perform the integrations in (3.7) it is necessary to evaluate

(3.8a) 0| T(F* h*)]0>
and
(3.8b) QITEF=FH)0y,  <O|TEE*)0) .

We shall discuss first the time-ordered product (3.8a).

i) The quantity {0|T(F*(x,)h**(x,))|0>. - The diagonalized free fields f*
and §* possess the following vacuum-expectation values:

(3.9) 0|10y =0, 0[g**10> = »n*,
where we have taken
(3.10) 00> =0 = 0|F*)0>

in order that (0|f*”|0) coincide with the flat-space value (similarly <0]g*|0> = 5**).
Furthermore

(3.11) <O (@) g (2)) 05> =0,

in view of the absence of an interaction term in the diagonalized Lagran-
gian (2.30). Substituting (2.25), (2.26) into the L.h.s. of (3.11) and using (3.10),
we obtain immediately

(3.12) O|T(F* (@) h*(2,)) 0> =0 .

ii) The propagator <O|T(F*(x,)F**(2,))[0). — For the massive tensor
field F** = (1/4,) f* we find that (1)

(3.13) O|T(Fe (@) T (w,))|0) =

=} (@@ + P — 3P At —is, m), £>0,

where m is given by (2.22), @, = (0, —x,),, p=0, 1, 2, 3, and

1 o
3. uy —— iy . .
(5-14) @ = m? 0x, O,

(**) B. 8. DE Wirt: in Relativity, Groups and Topology (New York, 1964), p. 622.
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The general form of the causal propagator A,(x®*—is, m) reads (1°)

: 1 imb(w* e
(3.15) Arlar— e, m) = 8(@) + 87:’3%; HP (mVa*— ie) +
mb(— a?) —
L K (mV— & H
/g mY )

here 6(«?) is the usual step function, #* = «} —«*, while H;® and K, denote
the Hankel and modified Bessel functions respectively.

We shall work in the Symanzik region of the external momenta (p?<C0)
in which case it is sufficient to consider S(x) or, more specifically, 4,(x*—ic, m)
for Euclidean x-space only (*). In this region the contour of integration over x,
for the Fourier transform

(3.16) Serob(p) =y y*? S(p)

~

(3.17) S(p) = |exp [ip-x] S(x)d*x ,

may be rotated counterclockwise through 90° without crossing a pole. Thus
x, —ix, so that —a® = x* + &} = »*, while 4, (@*—ig, m) in (3.15) reduces to

mE,(mV— x+ ic)
b

e>0.
47tV — g2+ e

AF(;TZ— ’iE, m) -

We shall use the following single-valued branch of A, which is analytic for »>0:

R __ mK,(mr)
(3.18) Ap(@?, m) = amr

For momentum values which lie outside the Symanzik region, S(p) in (3.17 )
is obtained by analytic continuation.

Itis clear from (3.13) that the major technical complication in the evaluation
of §(x) can be expected to arise from the mass-dependent d**-operators in the
F’””-propagator. Despite their troublesome character, the operators d* are
essential in determining the analytic structure of the massive superpropagator.
It follows from (3.13) and (3.14) that this structure will be affected not only
by the mass of the f-meson, but more decisively by the differential operators
0“9%, which will alter the singularity structure of (3.13) and hence of S(x).

(**) N. N. Bogoriusov and D. V. SHIrRROV: Introduction to the Theory of Quantized
Fields (New York, 1959), p. 650.
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The operators 0#0” will have a particularly strong effect in the vicinity of the
light-cone, where

— o

VY ~
(3.19) Ay or

x*—0,

as compared with A, ~— (4n?x®)~*. We shall return to a discussion of the
analytic structure of 8(x) at a later point.

iii) The propagator <0 ]T(ﬁ”"(xl)ﬁ"‘ﬁ(%)) |0>. — The propagator for the massless
field A* is much simpler and is given, in a speecific gauge (), by

(3.20) OIT (R (@)h*(2,)) 0> = § ("> + o™ — " n™) D),

where

—1

(3.21) Delw) = s i

e>0,

is the well-known causal propagator for massless particles. In the Euclidean
region of z-space, the function

1

(3.22) Dy(z) = yprwt

r>0,

is everywhere positive and differentiable.

Before substituting (3.12), (3.13) and (3.20) into the double integral (3.7),
we remark that the computation of our four-dimensional integrals over - and
v-space is simplified by replacing the Minkowski metric * with a Euclidean
metric 6* (u,v=1,2,3,4). After the integrations have been performed one
may «convert » back to Minkowski space (cf. footnote (*) on p. 616). With this
alteration in the metric the r.h.s. of (3.7) assumes the form

629 Sa)=2 [[auaves [— sty 87— 0,036 +

2
+ Uy Uy Vs Vg (agh jj (d!mdvﬂ -+ dﬂﬁdva_ g d/wdaﬁ) AF +

+ % 2a(07* 8% 1 P 57— 6% 6°F) DF)} .

(2) T.W. B. KiBBLE: in High-Energy Physics and Elementary Particles (Vienna, 1963),
p. 885.
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Remembering that d** = " —m™20#0", we finally obtain

1
(3.24) S(x) = — fd“u dw exp [— u?— 02— (o u?v? + ap(u-v)2 +

4

+ {u(v- 0)* + v*(u- )% oty + (- 0)(v- 0)(w- 0) oy + (w-0)* (v-0)°ass)] ,

where
o= Yaa,2i4,+ 14Dy,
0y =— a,a, i Az — 13Dy ,
(3.25) oy = — L a,a,(Aefm)? 4p
oy = — Bty ,
LA
%B=

3°2. Structure of S(x) in Euclidean co-ordinate space. — Let us write (3.24) as

(3.26) S(z) = n—l—‘_‘fdm exp [—u?] { fd“v exp [— F('v)]}

and integrate over v-space first. The integral in square brackets is essentially
Gaussian in character and may therefore be evaluated exactly by diagonalizing
the quadratic form F(v) with the aid of the linear transformation

;> Uy, j=1,...,4,

(3.27) .
F(o) - G@) =Y 1,%;

A; are the eigenvalues of G(v) which satisfy A,4,A;4, = 2, where 9 is the de-
terminant of the quadratic form F(v). For ;> 0, substitution of (3.27) into
(3.26) leads to

+oo ©
1 4
S(z) = ;J‘d“u exp [— %] { fdz‘;l ...fd@J(v, v) exp [— > lﬁﬁ]} )
j=1
or, as the Jacobian J(», ) can be shown to equal unity,

S(x) = nl;fdm exp [— u?] {E (ﬂ/l,)*} ,
giving
. _}_ d*u exp [— u?]
(3.28) S(x) = par ————«@ .
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If the A’s are not all strictly positive, each v-integration must be taken along
a contour at 45° to the real axis to ensure convergence.

The expression (3.28) for the massive superpropagator is exact: no approwi-
mations have been made between (3.5) and (3.28). The explicit computation
of the determinant & involves a number of tedious though elementary steps
and will not be repeated here. The final form of £ reads

(3.29) 9 =A*+4 ASE, + A*E, + AE, + E,,
where

A= 1+ o ut+ (4-0)%a,

B = o,u*— (0%)+u-g,

By = — ay(u?(0%¢) — (- 0)%¢) + ((g-0)(u- 0)0) — (u-g)(d%¢) +

1 1
+ 5 (820)2— 5 (apavc)(ayavc) ’
E,= “2{1 u2((0,0,¢)(0, 0,¢) — (9%¢)?) + ((u-0)*¢)(02¢) —
— ({0200, (- 2)0u0) | § (0-)((Bu 8,000, 010) — (0%01) —
— (g O 3)) (@) + ((w0)(D,0)) (g D)(Bu0) — 5 (820)* +
+ % (820)(8,,8,0)(%8,0)—% (848,0)(3, 200)(3,300) ,
1 1 1
Bi=—u, {uz (.6 (02¢)3— 5 (02¢)(0, 0,¢)(0u 0y€) + 3 (0 0v0) (0 8,0)(8,800)) -+

+ ((ua)zc) ((ayavc)(a,uavc)_ (820)2) +

b=

F (- 9600 (D300 (o) — (0 00BN ]| —
— (w0)-(§ 00— A + § (ure)0200)0000) —

—-3 ((g- 0)(u-0)¢) - ((8,0,0)(0,0,0) — (02¢)2) —
— ((w-3)(240)) {((g- 0)(24¢)) (92€)— ((g° 9)(,0)) (Cu Oue)} +

1
+ (@0 (55 @or—§ Gu200.80) +

+(3,3,6)(8,800) (% (026)(, Bac) — } (3, 8:6)(2 a,c)) + %(a,, 3,6)(3, 2, 0) (34 3+) (20 340)



EVALUATION OF THE MASSIVE SUPERPROPAGATOR ETC. 625

with
(3.30a) e ——oqzu?—(u-0)%c;,
(3.30b) 9, =—6(0,(w-9)) .

The determinant & may be cast into a somewhat different form by applying
the differential operators ¢*=0/dz, in A, E,,..., E, to the co-ordinate—de-
pendent coefficients «;,..., a;. Although the latter are generally functions
of both A, and D, derivatives in & occur only with respect to 4,. Differen-
tiation of (3.18) yields

m* " K,(mr)

0 Ap(w?, m) = — e e , —pr=r,
and
2 Y
(3.31) 818" Ap(w?, m?) = — % {5"” Zﬁg’:"”— @F"’i Ks(mr)} )

2 also contains higher derivatives of 4, which will not be listed here. We
note that the number of ¢*-operators occurring in £ is always even.

Substituting expressions like (3.31) into (3.29), we find that the re-
modelled 2, though simpler in form than (3.29), contains a much larger collec-
tion of terms (several hundred, in fact). In view of this unwieldy nature of &
and the number of integrations yet to be performed—even after computing
the u-space integral, we still have to take the Fourier transform of S(z)—we
have decided to simplify 2 as follows. We shall approximate expressions
of type (3.31) and their higher-derivative analogues, by writing

(3.32) il R

This approximation is necessary at this stage if we are to gain any detailed
insight into the general structure of the massive tensor superpropagator. We
note first of all that (3.32) does not alter the damping power of the superprop-
agator. (We shall see later from (3.55) that S(#)~—7r"* as r—0, *=
=—u?>0.) This follows from the fact that the determinant (3.29) behaves
essentially like 7724 as r —0, whether an approximation is made or not. On
the other hand, if we consider only the massive scalar superpropagator, then
the corresponding determinant behaves like 8 as r — 0. Secondly, the approxi-
mation (3.32) does not affect in any way the massiveness of S(x).

Finally, (3.32) allows us to retain in our superpropagator at least certain
aspects of spin, including those which are characteristic of the propagation of
a massless spin-2 field. To see this, we observe that we can rewrite the r.h.s.
of (3.13) in the form

(3.13a) <O{T[F’“”(ml) F""ﬂ(%)] 0> =13 (77"“77"‘3 + 77“‘3 7 —77’“'77"‘5) a4, + Hwob 4,,
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where the gquantity H** contains the differential operators 0¥, ¢*, 0* and &%,
Near the origin, the first expression on the r.h.s. of (3.13a) corresponds to the
propagator for a massless tensor field (we recall that 4,~ D, for r—0),
and is seen to remain unaffected by the approximation (3.32).

If we now use the above approximation on the r.h.s. of (3.31), we obtain

mzé‘"’

(3.33) 8" 8" Ayla*, m) = — T,

{K,(mr) — mrK,(mr)} .

In applying this simplification to expressions like d**d*® 4, =¢#o* 8% 4, + ...,
we combine 0 with &%, and 0% with of (i.e. we pair o* and ¢”, because they arise
from the same operator @*, similarly for 0* and ). After a considerable
amount of algebra, with the aid of (3.6¢), the determinant (3.29) reduces to

(3.34) D, ={1+ A(r, m, 2)u*}{1 + B(r, m, A )ut},

where

(3.35a) Afr, m, i)

i

Ar )=—-512{41;:(72)+(1+ 8 )Kl(mr)__l_}D“

m2r2]  mr 10
B o [A K o(m) 8 \Ky(mr)
(3.35b)  B(r,m, ) = B(r) = +101{ oy +(1+ "‘“mzrz) mr 20 Dry

D,(r) being given by (3.22). It is evident from (3.35) that both A(r) and B(r)
become negative for certain values of r, although these coefficients are never
negative simultaneously. Specifically we find that

(3.36) A(r)< 0, B{r)>0 for r<R,,
(3.37) A(r) >0, B(r)>0 for B <r<R,
and

(3.38) A(r)>0, B(ry< 0 for R,<r,

where 1.689< B, < 1.690 and 1.926< R,<1.927.

In deriving the expressions for A(r) and B(r) we have made repeated
use of the following formulae for the modified Bessel functions (3) K (2),
v=1,2, 3,.

(3.39) (1 d‘) W) Eou(e)

zdz] 2 Fiduts

(*1) I. 8. GrapsaTEYN and I. M. Ryzuig: Tables of Integrals, Series and Products
(New York, 1965).
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and

(3.40) Fonfe) = Koale) + 2 Ko(e)

(In Appendix A, we describe a shorter, but less instructive way of deriving
(3.34)-(3.35).) Substituting (3.34) into (3.28) we obtain for the massive super-
propagator

1 d%u exp [— u?]
(8.41) S(w) = f( 1+ A (1 + Biryu)t

In terms of four-dimensional spherical co-ordinates with the volume element
dtu = p3sin O sin? pdpdfdedy, |u|* = o2,

the r.h.s. of (3.41) becomes

2n

1 [ i !
S(w)=7;fe* exp [— ez]defsinﬁdﬁfsinzwdwfmp(1 + A(r)e®)t (1 + B(r)o?)?’

0

or finally

(3.42) f e [ v]dv

o)t (1 4 B(r)v)’

Although the last integral cannot be evaluated in closed form, we may
gain considerable insight into the nature of S(x) by examining the analytic
structure of (3.42). It can be seen that the integrand in (3.42) becomes singular
when either A(r)<< 0 or B(r)<< 0. We shall discuss these two singularities in
turn now. (It will be recalled that the possibility A< 0 and B<< 0 does not
occur.)

Case 1) A(r) >0 and B(r)<< 0. The crucial factor is (1 + Bv)} with the
onset of a branch cut at the branch point v =—1/B. For 0 <v<<—1/B, S(z)
is real so that no difficulties arise, but for values of » in the domain —1/B<
<wv<oo S(z) is seen to become complex (purely imaginary, to be precise).
To ensure that the superpropagator (3.42) be real for all r* = x* + &3, we shall
take the average value of S(z) above and below the branch cut (*22). To il-
lustrate this procedure, consider Fig. 1, which depicts the contours € and D
lying respectively above and below the cut. It may be shown rigorously that

(**) B. W. LEe and B. ZumMiNo: Nucl. Phys., 13 B, 671 (1969).
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the contribution from the branch point » =—1/B is equal to zero for either
contour C, or D,. Above the cut (contour C,) the value of the massive super-
propagator is

(3.43a) 8(x) =0 + i8,(x),

while below the cut (contour D,) it is

(3.43b) 8(x) = 0—i8 (»),
Imv
,Cu C‘2
Re v
—\>D/ 0,
|

Fig. 1. — Possible contours of integration in the v-plane for the integral (3.42).

where 8,(x) denotes the imaginary part of 8(w). Averaging (3.43) we find that
the real part of 8(x) is indeed zero. It is this vanishing of the real part of S(x)
for all v>—1/B which permits us to terminate the integral (3.42) effectively
at the onset of the branch cut, i.e. at v =—1/B. Hence (3.42) becomes

-1/B

v exp [— v]do
(3.44) f (14+ Av)¥(1 + Bo)t~

It is now convenient, for computational reasons, to integrate (3.44) by
parts in such a manner that the factor (1 4 Bv)! appears in the numerator
of the integrand rather than in the denominator. The final expression

~1/B
3
(3.45) S(x) =—%f%—%(l—— (1 +%A)0—sz) exp [— v]dw

can be treated numerically with the aid of a computer. The results indicate
that S(@) has the constant value of 1 within the computational accuracy for
all B<C0. We mention here that 8(z) is also constant for 4> 0, B> 0.

Case 2) A(r)<<0 and B(r)>0. In this instance, the integrand in (3.42)
contains a branch point at v =—1/4, due to the factor (1 + Av), with a
branch cut to the right of v =—1/4. The integral has a cut in the r-plane
between r =0 and r=E,. In contrast with Case 1), the — 2 exponent of
the 1 + Av factor implies that the singularity of the integrand at v =—1/4
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is nonintegrable. We therefore redefine S(x) in the region 0< r< R, (where
the singularity is within the range of integration) by analytic continuation.
Let us write the factor vexp [—wv]/(1 -+ Bw)t in the integrand in (3.42)

a8 the sum of its value at v =—1/4 plus a term which vanishes there:
(3.46) ?;fjp—;fﬁ = C(r) + f(v, 1),
where

__(1jA)exp[1/A]
(3.47) Cr) =— B}

_vexp[—-o]  (1/A)exp[l/A]
(3.48) 101 = T3 gy (1— BJA)?
Then (3.42) becomes
(3.49) 8(z) = O()L(r) + L(r)
with
r do
(3.50) I(r) :fm ’
B mf(v, r) do

(3.51) I(r) *J‘(—*—l ik

0
The integral I,(r) contains the nonintegrable singularity from S(x). Giving

r & small imaginary part, we obtain the well-defined integral

o

(3.52) I(r + ie) :f(

0

dv 2

1—{—A(r+is)v)?:A(r—|—ie)’ e>0.

By analytic eontinuation to the real axis, we may take
(3.53) Lir)y=—.

The singularity structure of I,(r) depends on the behaviour of f(v, #), which
we have chosen to vanish at v =—1/4. It is straightforward to show that

fo, r)~ (1 + Aw) as v—>—1/4,

so that the integrand in (3.51) behaves like (1 4+ Av)"} near v =—1/4, the
original singularity having been reduced to the type discussed in Case 1). We

41 — Il Nuovo Oimento A.
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again take the average value of the integral above and below the cut and then
terminate the integration at » =—1/4, by analogy with Case 1):

—=1/4

| flo,r)
(3.54) L) = | gt 07

This is a convergent integral and can be evaluated on a computer.
The results of the numerical integration of the final expression

—1/4

S &
10;
g;:O.S
0
-05(;. S

r =V=x2[00° Gev)]

Fig. 2. — Numerical results for S(z), the massive superpropagator for the f-meson-
graviton fields, in Eueclidean co-ordinate space.

for 0<r=4/"27<107* are shown in Fig. 2. For 10~¢ <r< R,, we find
that S(x) =1 within the computational accuracy. We note that the units
of 7 are inverse GeV, so that for r = 1074 (GeV)™ 1 =2-1072% ¢m, we are already
well within the strong-interaction region.

The asymptotic behaviour of 8(z) is easily deduced with the help of (3.35).

i) For r »>o0, A —0f, while B->0", so that

-1/8 «©
. —v]d
(3.56) 8(2) rse = lim f a ieﬁ)g (IZ]L ng)* N f vexp[— vjdo=1.

0 ]

This limiting value is the same as for the massless superpropagator (12).
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ii) For » -0, B —7r-% while 4 >—r% so that S(x), defined by (3.55),
behaves like —ri2.

It is interesting to compare the basic structure of the f-meson-graviton
superpropagator in co-ordinate space with the massive pure f-meson superprop-
agator, which has been worked out in Appendix B. It is shown there that the
coefficient 4 (r)—corresponding to A(r) in this Section—is always nonnegative,
possibly zero, whereas B(r) can become negative for certain # values. It follows
that the factor (1 + Av)~! gives rise to no singularities, while the singularities
of the term (1 -- Bv)"* may be treated just as in Case 1) of this Section.

4. — Fourier transform in the Symanzik region.

The Fourier transform of the massive superpropagator S(x) is defined by

(4.1) J(p) = ifd‘w S(x) exp [ip-2] .

We have seen in Subsect.3'2 that for »>107%(GeV)™, S(x) has the constant
value unity (to the accuracy to which we are able to work computationally),
so that we may write

(4.2a) S(z) =1 + 8,(x),
(4.2b) Sy(z) =0 for r>107% (GeV)™1,

where 7* =+ x? + 22> 0. It follows from (4.1) and (4.2) that

(4.3) S(p) = (27)26%(p) + Si(p)
with
(4.4) Sip) =i f d4w8,(w) exp [ip o] .

In the Symanzik region of the external momenta (p?<0), Si(p) assumes
the form

@

(4.5) 8u(p) = 4—? f drred ) Sufr) |

9

where ¢>=—p*>0 and r* =+ x* ;. The integral (4.5) may be cut off
at r=107* since S;(x) vanishes for larger ». The change of variable

(4.6) r——log (1 ; “)
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in (4.5) leads to

N [ d 1+ )
(4.7) Sl(p)z—q’-’~ f 1:”%(10;;( ”2”‘))

2 exp [-10741—1
Jy (— q log (1%0)) {S (— log (1 _2’_ u))_ 1} )

which can now be evaluated numerically, by using the form for S(x) in Sub-
sect. 3'2 and taking its real part (*2). A plot of the computer results for S,(p)
is shown in Fig. 3.

15

T T

05}

T

5o la0*cev) ™

o

|
[~
w

1 2 3 4 5 6
q=V-p'[GeV) 107

Fig. 3. - Numerical results for the Fourier transform of S(x) in the Symanzik region.

ST T T T T T T

N
=)

The value of §,(p) varies extremely slowly with respect to ¢ for <102 GeV.
The reason for this is that, with the integration cut off at r =107¢, rq is so
small for ¢ <103 that J,(rq) may be approximated by r¢/2; this cancels the
other ¢g-dependence in Si(p).

For larger values of ¢, Si(p) displays an oscillating behaviour. It is also
apparent from the form of (4.5) that the magnitude of S,(p) tends to zero as ¢
tends to infinity. (We note that Jy(x)~+/2/m® cos (#— §m) as |&|—>o0.)
The absolute value of S;(p) is less than 10723 (GeV)~™* everywhere; this is due
to the smallness of the coupling constant A, = 1071°(GeV)™%

5. — Conclusion.

We have succeeded in obtaining a one-dimensional integral representation
for the massive superpropagator both in Fuclidean z-space and in momentum
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space. From the structure of the co-ordinate—space integral we were able to
deduce, within the approximation (3.32), the presence of poles and branch
cuts in S{x), as well as its asymptotic behaviour for large and small values
of #: S(x)—>1 as r >oo and S(z)~—1r? as r 0. For finite, nonzero r,
however, it is hard—in view of the complexity of the coefficients 4, 4 and B,
B—to learn anything specific about the behaviour of S(x). In order to fill this
gap for nonasymptotic r, and since it is not feasible to integrate (3.42) and,
(B.8) explicitly, we have computed the one-dimensionalintegrals numerically
In this way we obtain considerable information about the behaviour of a) S(z)
for general Euclidean « values and b) S(p) tor general values of ¢ in the Sy-
manzik region (g2 =—p?>0). Needless to say, the presence in S{(x) of two
disjoint branch cuts makes the numerical computation rather complicated.
The co-ordinate representation of the pure f-meson superpropagator, discussed
in Appendix B, has only one branch cut and is much easier to handle, because
the infinity arising from the factor (1 + Bv)~?, when B< 0, may conveniently
beintegrated out. Thereality of either superpropagator is guaranteed by taking
the average value above and below the cut.

The Fourier transform of S{x) differs from the usual delta-function ferm
by the addition of an oscillating factor which becomes damped as ¢+ oo
and whose amplitude is very small (< 10723 (GeV)™%). As for its singularity
structure in p-space, we note from (4.3) that, apart from the delta-funetion
singularity, S(p) appears to be analytic for Re (—p?)> 0.

We now discuss briefly several features which are not deducible from the
present calculations, but which might emerge with further effort.

In the first place, we believe that an exact evaluation of the four-dimen-
sional integral (3.28) would reveal a singularity structure for S(x) more com-
plicated than the present one. Such an exact computation—with all aspects
of spin retained—would also tell us the relative importance of temnsor propa-
gation as compared with the massive scalar case. Concerning our calculations
in p-space, it should be evident that if a closed expression for the Fourier trans-
form of [K,(mr)/r], z complex, could be found, its use would both improve
and simplify the study of the analytic structure of S(p). The structure of S(p)
for general values of p could then be obtained by analytic continuation from
the Symanzik region.

Finally, we would like to be able to investigate the analytie behaviour of
S(z) in the coupling constant A}. The complexity of the four-dimensional
integral (3.28), however, in its present form prevents any conclusive statement
in this regard. Such analytic behaviour would, among other things, make
more explicit the role of 1/4_as an effective cut-off.

The expression for the massive superpropagator may now be utilized to
damp the most virulent infinities in the theory of strong interactions. We
expect that this damping effect will be rather large, in view of the extremely
rapid fall-off of S(z) in the ultraviolet limit. (We recall from Appendix B that
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18,(x)], like |S(x)|, behaves like % as r —0.) We list here some of the physical
problems to which our results may be applied:

1) B decay: the calculation of this process, using a gravity-modified
phenomenological weak-interaction Lagrangian, should provide a good test
of the ability of the strong gravity theory to suppress the leading infinities;

2) further calculation of hadronic mass differences: such as m . —m, (*%)
and My, — Mx, g5

3) gravitational collapse of hadronic matter (***): an investigation of
whether the effective force produced by the superpropagator has a short-range
repulsive component would throw light on Salam’s speculation that « hadrons
are (nearly) collapsed objects in the f-gravity field » (3*). The validity of this
hypothesis would have far-reaching implications.
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APPENDIX A

The result (3.34) may also be obtained by applying the approximation (3.32)
directly to the propagator (3.13). Since

(AL) @ Aylat, m) = (6”'— ama) Ay, m) =

m2 o guv mexhay
T 4m2

p K, (mr) + it Ky(mr) — mers Ka(mr)) ’

(33) M. J. Duyr, J. HuskiNs and A. RoTtHERY: Phys. Rev. D, 4, 1851 (1971).
(2%) A. Saram: Lecture at the 1971 Coral Gables Conference on Fundamental Inter-
actions at High Energy (Trieste preprint No. IC/71/3).
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we find, using (3.32), that

(A.2) aw Ay ~

m? o (Kl(pw) K,(mr) Ky(mr)
4\ mr (mr)2  mr )

Similarly, the expression

2 gy §oB Ky(mr)
vdsB A m” AN T
(A.3) dmd~* Ay 47[2{ - (Kl(mr)—l— o )
K. (mr) o K (mr)  K,{mr) whxy K (mr)
_ 2 Saf w 0V T/ 7 AxAfB adQf T TSN 7
m: ot (mr)® mZa d ( mr + (mr)? ) +9°9 ( (mr)? )}
reduces to
1584 58 [4 K y(mr) 8 \ K (mr)
v Jaff ~ T 1
(A4 A d? Ay 4mzre { (mr)? +(1 +(mr)2) mr }

In deriving (A.4) we have employed the relation (3.40) for the modified Bessel
functions K,, »=1,2,3,.... The propagator (3.13) for the F» field (recall

that Fu = 27 fwr) becomes

(A.5) O (Fwv(wy) FoB(w,)) |05 ~ § (00 &P - uB ov=— § ow §6) ',
where
15 [4Kq(mr) 8 \ Ky(mr)
A. -2 _S
(A9 ¢ 4n2r2{ (mrye (1 *m )2) mr }
r=x'+2 and @, =@— ), u=1,2,34.

Substituting (A.5) and (3.20) into the r.h.s. of (3.7), and following the method
outlined between (3.23) and (3.28), we obtain the same results as given in the
text, namely (3.34) and (3.35).

APPENDIX B

The pure f-meson massive superpropagator.

It is possible to evaluate the pure f-meson massive superpropagator

St’)‘v'ap(wl_ Ty) = 7]””77“‘3 Se(w,— ;) ,

(B.1)

1 1
Sr 17 Y2/ = 0T @) ’
(o= m) = <0 (\/— det f*(x,) V'— det f“ﬁ(xz)) v
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by modifying slightly the method of Sect. 3. The calculation is in fact simpler
gince only a single field is involved. In this Appendix, we shall outline the
basic steps and state the results.

Using the integral representation (3.4) for determinants, we obtain

(B.2) S, — @) =

= ni‘ fd‘u d*v {0|T {exp [— u,u, [ (x,)] exp [— 2,05 f‘”ﬂ (%)T3 10> .

The expression (2.7) for f in terms of I may now be substituted into (B.2)
to yield

(B.3) Siw,— )= 7—:—‘J‘J‘d‘u d% exp [— u?— v%]-

- XD [ 7%, %, 0,05 <O[T(F‘”’(m1)1i""p(wz)) [0>].
By analogy with (3.13), the propagator (0|T(F*(z,)F**(x,))|0> is given by
(B4)  <O|T(F” (@) F* () [0y = § (@@ + d*@°— § & dP) Ap(a®—ie, M)

where M is the mass of the f-meson,

and

P S
KT oz, 0m,

As in Seet. 3, we use the following single-valued branch of the causal propa-
gator Ay which is analytic for r> 0:

ME,(Mr)

(B.5) Aylr, M) = =2

Substitution of the r.h.s. of (B.4) into (B.3) leads to (%)

(B.6) Si(x)= %4 fd“ud‘*v exp [—u2 — 2 —

— (o’zluzvz + Go(u-0)2+ (u2(v-0)2 + v2(u-0)2) & +
+ (we ) (w- B)(0- )& + (u-2)X(0-8)°%)|
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where
2
5 %
alz—g‘A,,
X, = — 3¢, ,
_ 1 _
oy = ———
(B.7) T
_ 6 _
0‘4:@“1’
_ 2 _
055:—FOCI.

Proceeding now exactly as in Subsect. 3'2—this includes the approxima-
tion (3.22)—we are able to reduce (B.6) to the integral

@

(B.8) Silw) = f 1+ %gﬁ)g_(lvid%“)”)*

with 0

(B.9) A(r)= fn}:—iz {UE}%@ + (1 + Mim) %ﬁ} ’
(B.95) B(r) =—24(r).

Before discussing the general features of the integral (B.8), we note (cf.
Subsect. 3°2):

i) As r—0, A(r)>+ oo and B(r)->—oco so that |Six)|~r2. This
extremely rapid fall-off in the ultraviolet limit implies a large damping effect
by the massive superpropagator. Another surprising feature is the largeness
of the exponent in r2,

ii) For very large r, both A(r) and B(r) decrease rapidly so that S.(x) —1.

The singularity structure of (B.8) is certainly less complicated than in the
case of the mixed f-meson—graviton superpropagator. According to (B.9a),
A{r) is positive for all r so that mo singularity arises from the factor
(14 A(r)v)-t. The term (1+ B(r)v)~*, on the other hand, produces a branch
cut in the v-plane, since B(r) is negative for all values of » under consideration.
We again follow the averaging prescription for obtaining a real-valued super-
propagator; the method is equivalent to terminating the integration at
v=—1/B> 0.

A plot of the numerical values obtained for

—1/B

v exp [— v]dv
(B.10) Si(w) = f (1 4 A(r)0)f (1 + B(r)o)?

0
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is given in Fig. 4. It shows that the region of greatest interest is 0.4 (GeV)-1<
<r<1.2 (GeV)-1, corresponding to 0.8-10-% ecm<r<2.4-10-1¢ cm.

The Fourier transform of Sg«) in the Symanzik region (p*< 0) may now
be computed, using the method described in Sect. 4. We obtain

(B.11) Si(p) = (27)¢64(p) + Sulp)
10+
=2 o5}
I
0 lll0'511\1114111f51(112.0

10
r=Vx? [(Gev)]

Fig. 4. — Numerical results for Sy(x), the pure f-meson massive superpropagator, in
Euclidean co-ordinate space.
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Fig. 5. — Numerieal results for the Fourier transform of S(x) in the Symanzik region.

with the numerical values shown in Fig. 5. Its large magnitude compared
with 8,(p) for the f-g case, follows from the difference in coupling constants
He and }.g (h’g/).z >~ 1019).
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® RIASSUNTO (%

Lavorando entro lo schema della teoria della gravita forte usando lagrangiani non poli-
nomiali, si & studiato il superpropagatore con massa per un campo tensoriale misto
consistente nel campo gravitazionale senza massa di Einstein e nel campo della graviti
forte del mesone f con massa. I ’espressione compatta finale per il superpropagatore
con massa nello spazio delle coordinate euclidiano ha la forma di un integrale unidi-
mensionale caratterizzato da poli e tagli di diramazioni. Si ¢ dedotta una rappresenta-
zione integrale simile per il « pwo » superpropagatore del mesone f. Che entrambi gli
integrali siano reali & garantito da una preserizione di media. Si sono eseguiti caleoli
numerici del superpropagatore con massa sia nello spazio # euclidiano che, per la cor-
rispondente trasformata di Fourier, nella regione di Symanzik degli impulsi esterni.

(*) Traduzione o cura della Redazione.

Briunciienne MacCHBHOIO cynepnponaraTopa B MOJeM CMelMBaHusa f-Me30H—TPABHTOH,

Pestome (*). — Paboras B paMkaxX TeOpuM CHJIBHOM TPABUTALMH, HUCIOJB3Ys HEMOJIMHO-
MuanbHele JlarpamxuaHel, MBI UCCIICAOBAIIH MACCUGHbIH CYNEPIPONIATATOP AN CMEIIaH-
HOTO MEeH30pPHO20 TIOJISl, COCTOSIIETO U3 I'PABUTALIHOHHOTO MO JiHuITEHHA ¢ HYNEBOH
Maccol W CHUIBHOTO TIPaBATALMOHHOTO MOJiA MaccuBHOTO f-Me3zoma. OxoHYaTeNnbHOE
KOMIIAKTHOE BBIPAXEHHE I MACCHBHOTO CYHEPUPONATaTopa B 3BKIMIOBOM KOOPIH-
HAaTHOM IPOCTPAaHCTBE ¥mMeeT (OpMY OJHOKPATHOTO WHTErpasa, XapakTepH3YIOHIErocs
TOMIOCAaMM W pa3pe3aMH BETBICHUHA. AHAJOIMYHOE WHTErpanbHoe TpencTaBieHue OBLIO
BBIBEACHO TS « YHCTOTO » f-ME30HHOTO cymepiponararopa. PeasbHOCTh 06omX MHTErpa-
JIOB TAPAHTHPYETCS PELENITOM ycpejHeHue. UucreHHble BLIYACICHAS MAaCCHBHOIO CyIEp-
mpomnararopa Oblid IPOBEAEHE! U B 9BKJIAAOBOM 2-MPOCTPAHCTBE U ISl COOTBETCTBYFOIIETO
®ypre-npeobpazoBanua B o0nactd CHMaH3MKa JNisl BHELIHMX WMIYJIbCOB.

(*) Iepesederio pedaryuel.



