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Summary

There is a growing awareness of the impact of non-deterministic model properties on the numerical simulation
of physical phenomena. These non-deterministic aspects are of great importance when there is a large
amount of information to be retrieved from the numerical analysis, as for instance in a numerical reliability
study or reliability based optimisation during a design process. Therefore, the non-deterministic properties
form a primordial part of a trustworthy virtual prototyping environment. The implementation of such
a virtual prototyping environment requires the inclusion of non-deterministic properties in the numerical
finite element framework. This articel gives an overview of the emerging non-probabilistic approaches for
non-deterministic numerical analysis, and compares them to the classical probabilistic methodology. Their
applicability in the context in engineering design is discussed. The typical implementation strategies applied
in literature are reviewed. A new concept is introduced for the calculation of envelope frequency response
functions. This method is explained in detail and illustrated on a numerical example.

1 INTRODUCTION

The finite element method nowadays has become an indispensable cornerstone of structural
design in engineering. The ability to numerically predict the behaviour of a structure
under static or dynamic loads is not only of great scientific value, it is also very useful
from an economical point of view. During the design process, a reliable finite element
analysis reduces the need for prototype production and, therefore, significantly reduces the
associated design validation cost. Furthermore, it enables a reliability driven optimisation
already in an early stage of the design process. It as such embodies the core of the evolution
towards a virtual prototyping environment. Such a numerical environment which provides
all necessary tools to reliably model, optimise and verify a design is the ultimate exponent
of numerical structural analysis.

There is, however, a general scepticism towards pure numerical design validation through
deterministic methods. A natural sense in the rational mind of any designer tells that a
single deterministic beneficial result provided by a numerical analysis does not suffice to de-
clare a design reliable. The foundation of this natural sense, be it conscious or subconscious,
lies in the presence of uncertainties in the numerical description of physical reality. In the
field of numerical design validation, this scepticism has inspired an alternative employment
of the ever growing computational capabilities of modern computers. Instead of spending
the extra computation time creating extremely fine models of deterministic design details,
it could be of much greater value when utilised for the inclusion of uncertainties in the
numerical model. From the viewpoint of the reliability analyst, this substantially increases
the credibility of the numerical analysis.

The non-deterministic approaches in numerical design validation have gained much pop-
ularity over the last decade. The aim of these analyses is to describe the behaviour of the
design in its working conditions taking into account every possible variation or uncertainty
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that could be present in the model or its environment. Classically, this results in a quantifi-
cation of the reliability of the design which expresses the presumed likelihood that the design
will successfully accomplish its intended task. The application of these methods to dynamic
finite element analyses of complex structures revealed the rather unpredictable nature of
the propagation of variations in design properties to the analysis result. Furthermore, the
numerical dynamic analyses often amplify rather small and, therefore, presumed harmless
model variations to a non-negligible variation in the outcome of the analysis. Therefore, a
representative numerical reliability analysis of a finite element model subject to uncertain-
ties is of particular interest in the global context of a virtual prototyping environment for
dynamic design optimisation and validation.

It is clear that a reliable identification and representative quantification of the sources
of uncertainty in the analysis form the basis of a trustworthy numerical reliability study.
The uncertainties present in the finite element procedure can be roughly divided in two
basic forms:

• A typical source of uncertainty is located in the mathematical equations that are
used to describe physical phenomena. Albert Einstein formulated his opinion on
the limitations of mathematical models in the following way: “As far as the laws
of mathematics refer to reality, they are not certain, and as far as they are certain,
they do not refer to reality”. By this he meant that mathematical equations only to a
certain degree reliably describe the relationship between structural properties and the
physical behaviour of the structure. This type of uncertainty is also inherent to the
finite element methodology. It requires the result of a finite element analysis always
to be treated with a sufficient amount of criticism.

• The input data for the finite element model form the second important source of
uncertainty in the finite element analysis. Many design properties that describe the
geometry, materials and environmental effects on the design are subject to uncer-
tainty. But even if the design and its environment are completely defined, production
inaccuracy and design tolerances introduce variability which inevitably leads to a
scatter on the nominal behaviour of the design. Guyader et al. [1] clearly illustrates
this by analysing the vibro-acoustic behaviour of industrially identical cars.

This work focusses on this second source of uncertainty. In order to quantify these
uncertainties, a number of possible numerical models have been developed throughout the
last decades. In this field, the structural stochastic analysis was the first well established
framework. Its popularity in the early days was mainly due to the relatively low compu-
tational effort involved in the manipulation of random variables when they are reduced to
their main statistical properties. However, due to the exponential increase in computational
capacities, the probabilistic simulation techniques recently have gained popularity. They
are nowadays the basis of most commercially available uncertainty analysis software. Their
popularity has initiated numerous research activities which focus mainly on an increase in
the method’s efficiency.

The validity of the result of a numerical procedure is always limited by the validity of
the input data of the model. The probabilistic methods generally require much informa-
tion about the input quantities. Therefore, they are limited in their applicability when
little information is present on the non-deterministic quantities in the model. An increas-
ing number of researchers nowadays acknowledges that this forms an important but often
underestimated limitation of probabilistic analysis. The feeling grows that other, less in-
formation intensive non-deterministic concepts could give more valuable insight into the
behaviour of a mechanical structure which is subject to uncertainties. This has given rise
to the application of alternative uncertainty models in numerical analysis. Elishakoff
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Figure 1. The uncertainty triangle as introduced by Elishakoff in 1990

in [2] introduces a general classification of the principal different methodologies using the
uncertainty triangle illustrated in Figure 1. Opposed to the universally accepted theory
of probability and random processes, he distinguishes between two fundamentally different
non-probabilistic concepts: fuzzy sets and the anti-optimisation approach. The latter is also
referred to as interval analysis. The application of these non-probabilistic concepts for un-
certainty description in numerical analysis is a rather recent evolution. It is the aim of this
work to contribute to this evolution by studying the applicability of these non-probabilistic
methods in the framework of dynamic finite element analysis.

As indicated by Klir [3], the development of a numerical analysis tool which includes
uncertainty consists of four major steps:

1. the selection of an appropriate mathematical representation of the uncertainty present
in the simulated physical model

2. the development of a calculus to manipulate this numerical representation of the
uncertainty properly

3. find a meaningful way to measure or quantify relevant uncertainty within the devel-
oped concept in any situation

4. the development of a methodology to perform a meaningful numerical simulation

Section 2 of this paper first focusses on the first two steps of this scheme in the context of
finite element analysis. Since the intention of this work is not to develop new numerical un-
certainty concepts, this section basically consists of a review of numerical concepts available
from literature, and their application for non-deterministic finite element modelling. This
literature study should give a clear and profound insight in the capabilities of the available
concepts. In order to enable a critical assessment of the non-probabilistic concepts, the
literature overview starts with a description of the probabilistic concept and its application
in non-deterministic finite element analysis. In Section 3, the applicability of the non-
deterministic approaches is discussed in the context of designing under uncertainty. This
requires first a terminology definition in order to clearly distinguish between uncertainties,
variabilities and errors. This section then describes how the available non-deterministic
modelling tools fit in these definitions. Each of these numerical representations has its
specific consequences for the interpretation of the non-deterministic analysis results in the
context of design optimisation or reliability analysis.

The remainder of the paper concentrates on step four in the above procedure, i.e.,
the development of numerical methodologies to perform the analysis. Since the interval



392 D. Moens and D. Vandepitte

deterministic input

non-deterministic input

non-deterministic finite
element analysis

non-deterministic
output

Figure 2. Non-deterministic finite element procedure

finite element analysis is the numerical core of the fuzzy analysis, the focus in entirely
on the numerical aspects of implementing and using the interval technique for dynamic
finite element analysis. The aim of Section 4 is to critically assess the state-of-the-art of
the interval finite element solution techniques found in literature. Section 5 introduces a
new hybrid methodology for the implementation of the interval finite element analysis, and
than describes how this hybrid procedure can be usefully applied to implement the interval
equivalent of the frequency response function analysis. Is is shown how this technique leads
to a good approximation of the envelope on the response functions of finite element models
with interval parameters. This technique is finally illustrated on a numerical example in
Section 6.

2 NUMERICAL CONCEPTS FOR NON-DETERMINISTIC FINITE ELE-
MENT ANALYSIS

The aim of this section is to give a general survey of numerical concepts for non-deterministic
finite element analysis. The generally accepted probabilistic approach is by far the most
popular in this context. However, during the last decade, some non-probabilistic alter-
natives succeeded in arousing the interest of numerous researchers working in the field of
non-deterministic finite element analysis. Lately, the interest has grown to a level which
resulted in the development of practical implementations of non-probabilistic finite element
analyses in various domains. The initial attempts to perform non-probabilistic finite ele-
ment analyses clearly demonstrated the added value to the existing probabilistic methods,
mainly manifested as a substantial reduction in computation time. This motivated further
development towards generalisation and refinement of the initial numerical procedures. In
order for this work to contribute to this development, this section first gives an overview
of the applicability of both the probabilistic and the non-probabilistic concepts within the
general framework of non-deterministic finite element analysis. The principal steps of the
underlying procedure is conceptually illustrated in Figure 2. This procedure is identical
for all non-deterministic numerical concepts discussed in this section. The deterministic
input first is completed with the information on the non-deterministic model properties
(e.g. material properties, element properties...) using a concept for the quantification of
non-deterministic numerical data. In the next step, a non-deterministic finite element code
solves the problem and produces the required non-deterministic output.

Sections 2.1, 2.2 and 2.3 give a description of the application of respectively the prob-
abilistic, interval and fuzzy concept for non-deterministic finite element analysis. All three
sections start from a brief description of the basic properties of the numerical concept, after
which the basic numerical methodologies for the corresponding non-deterministic imple-
mentation of the finite element procedure are discussed.
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2.1 Probabilistic Finite Element Methods
2.1.1 Basic properties of the probabilistic concept

The goal of a probabilistic quantity description is to define a domain of possible values
for the quantity, and to give information on the frequency of occurrence or likelihood of
the quantity inside this domain. This is typically done by defining a probability density
function fX(x) (PDF) for the probabilistic quantity X over the domain of possible values.
The probability that the quantity lies within the interval [a, b], indicated by P (a ≤ X ≤ b),
is directly derived from this probability density function:

P (a ≤ X ≤ b) =
∫ b

a
fX (x) dx (1)

The expectation of a function g(X) with respect to fX(x) is defined as:

E{g(X)} =
∫ ∞

−∞
g(x)fX(x)dx (2)

The mean value or average of the distribution fX(x) equals E{X}. The other most dom-
inant features of a probabilistic quantity are commonly described by the central moments
associated with the probability density function. The nth central moment mn follows from
the mean value using:

mn =
∫ ∞

−∞
(x − E{X})n fX (x) dx (3)

The second order central moment is the most commonly used, and referred to as the
variance of the distribution denoted by var(X). The standard deviation is defined as
σX =

√
var(X). It is a common measure for the dispersion of the distribution about the

mean value.
For multiple probabilistic quantities, the probability density function concept is ex-

tended to more dimensions using the joint probability density function fX1...Xn(x1, . . . xn).
The expectation is defined in an analogous manner as for the univariate distributions. The
covariance, the first order joint central moment, gives a measure of the interdependence
between the quantities. It is commonly represented by the covariance matrix Γ containing
all individual variances and covariances:

Γ =




var(X1) cov(X1,X2) . . . cov(X1,Xn)
cov(X2,X1) var(X2) . . . cov(X2,Xn)

...
...

...
...

cov(Xn,X1) cov(Xn,X2) . . . var(Xn)


 (4)

with
cov(Xi,Xj) = E{(Xi − mXi)(Xj − mXj)} (5)

Extensive literature exists on the subject of probability theory, treating a vast variety
of probability density function and their applicability for description of random quantities.
An overview of these can be found in [4] and [5]. The remainder of this section now
focusses on the application of the probabilistic concept for the non-deterministic quantity
representation in a general non-deterministic finite element framework.

Two principally different probabilistic finite element techniques can be distinguished,
depending on the type of the non-deterministic model properties that are described. The
first type refers to a variation on the numerical quantification of model properties which
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are considered to have a specific value in a single simulation of the physical behaviour of
the model, but show a variation in time or from unit to unit over the actual realisations
of the modelled product. Random variables are generally used to describe this first type
of non-deterministic properties. The second type refers to a possible spatial variation on
model properties inside a single simulation of the physical behaviour of the model. A typical
example is the possible variation of some geometrical dimensions like plate thicknesses or
material properties within the model. This type of non-determinism is generally modelled in
a probabilistic concept using random fields. Sections 2.1.2 and 2.1.3 discuss some numerical
procedures to process respectively random variables and random fields defined on a finite
element model.

Up to now, nearly all procedures to include non-determinism into finite element anal-
ysis start a non-deterministic representation of physical parameters in the model. These
parameters refer to actual unknowns or variations in the description of the finite element
model, as for instance in the geometrical or in the material properties. Both the random
variable and the random field approaches are based on this parametric approach. Recently,
an alternative non-parametric approach has been proposed [6]. In this approach, the non-
determinism is viewed as a global factor which influences the total model rather than an
effect which can be localised in specific model parts. As such, it accounts for general mod-
elling errors, as for instance errors in the used governing partial differential equations, or
the fundamental discretisation error. The application of this non-parametric approach in
a probabilistic context has been successfully illustrated. Still, it is unclear to what extent
this approach can be of service for a design engineer who has to deal with variability or
uncertainty on design properties which generally directly relate to model properties.

2.1.2 Random variables

The approach for dealing with random variables in the context of finite element analysis
has strongly evolved over the past decades. In the first publications on this subject, there
was a general tendency towards the use of a perturbational approach. In this approach,
result variations are expressed as a linear combination of input variations based on a Taylor
series expansion. The sensitivities expressing the influence of the non-deterministic input
properties on the analysed output quantity are used to calculate the variance on the result
based on the known variances of the inputs. Generally, this approach only aims at the
calculation of the first two statistical moments of the scatter on the result. Ibrahim [7]
gives a comprehensive review of the first applications of random variables in structural
dynamic analysis. Although other probabilistic methods are currently gaining popularity,
the perturbational approach remains under continuous research (see e.g. Manohar et al. [8]
for an overview of recent developments).

Although the perturbation analysis has proven its value in numerous applications, its
validity is limited by the approximation used in the Taylor series expansion. Mainly the
finite order of the expansion (generally limited to one) and the extrapolation of local sen-
sitivities, both of which are intrinsic to this approach, narrows its area of application.
Especially in designing for high reliability which is more and more demanded in modern
design processes, the perturbational approach becomes less interesting because of its limited
validity in predicting the tails of the output distribution. This has lead to a strong increase
of the application of simulation methods for random variable analysis in the context of
finite element modelling. The exponential growth of the capabilities of modern computers
over the last decades has strongly stimulated this evolution.

The history of the Monte Carlo simulation approach starts with Buffon, who in 1768
conducted an experiment to determine a value of π by casting needles on a ruled grid.
Since the early 1930’s, the method has become the basic tool for probabilistic numerical
calculations both in science and more industrial applications. With the recent exponential



Recent Advances in Non-probabilistic Approaches for Non-deterministic Dynamic Finite Element Analysis 395

increase of computational capacities, Monte Carlo simulation is often seen as the ultimate
probabilistic tool, capable of tackling all probabilistic computations of numerical analyses
without nearly an exception. A comprehensive introduction to the Monte Carlo simulation
methodology can be found in [9, 10].

The basic principle of Monte Carlo simulation is that the deterministic numerical anal-
ysis is performed repeatedly on a large number of samples of the input parameters. The
desired statistics of the response quantities, such as the mean value, variance and specific
event probabilities are then evaluated based on the generated output samples. The sam-
pling on the input quantities is conducted in such a manner that the samples represent
the probabilistic characteristic of each parameter. The sampling procedure is based on the
numerical description of the input probability density function of each parameter, and is
executed with the aid of a random number generator.

The most important aspect of a good Monte Carlo simulation is the availability of a
trustworthy representation of the probabilistic input through probability density function.
Whenever there exists correlation between the input quantities, ideally also the joint proba-
bility density function is required. In most cases, however, the interdependency between the
inputs is unknown and, therefore, neglected by presuming all input quantities as indepen-
dent. This assumption simplifies the simulation procedure. The availability of trustworthy
data is an important prerequisite for performing a meaningful probabilistic analysis, which
is gaining a lot of attention in recent literature. The effect of misjudging correlations on
results of a Monte Carlo simulation should not be ignored. To the contrary, Annis in [11]
shows that the standard deviation can be severely overestimated (up to 700% in his specific
example) when correlations are neglected. The impact of assumptions in probabilistic input
data specification is adressed more in detail in Section 3.3.2.

A number of enhancements and extensions of the initial Monte Carlo simulation have
been proposed:

• Importance sampling [12]: This approach aims at generating more samples in the
critical region in the design parameter space. To achieve this, samples are generated
from an altered probability density function, centered in the critical region of the
design parameter space. The sampling probability density function is afterwards
compensated in the approximation of the failure probability. This procedure reduces
the variance of the Monte Carlo simulation estimator.

• Adaptive sampling [13]: An initial sampling distribution is generated based on
the statistical moments of the failure region. During each following simulation, the
sampling distribution is adapted based on the result of all simulations thus far.

• Directional sampling [14]: In the normalised parameter space, sample direction
vectors are generated with uniformly distributed direction. The estimation of the
probability of failure then equals the average of the conditional probability of failure in
each sampled direction. This method is advantageous when this conditional probabil-
ity of failure has a closed-form expression. Directional sampling can be improved with
importance and adaptive sampling applied on the vector direction distribution [15].

• Latin hypercube sampling [16]: In this method, the sampling space is divided
into subsets of equal probability. The number of samples is reduced to represent each
subset of each independent variable only once.

In order to use Monte Carlo simulation on finite element analyses, the different sampling
methods have been implemented in software environments which provide the data manage-
ment of the input and output samples of the simulation. On the one hand, they generate
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the samples which serve as input for the finite element analysis, and on the other hand
they perform the statistical analysis on the output samples. The core of the analysis is still
the deterministic finite element code, which acts as a black box for the data management
software.

Driven by its popularity, Monte Carlo simulation is still under continuous research,
which nowadays is mainly focussed on the rationalisation of the computational cost of the
procedure by problem reduction or advanced parallel processing techniques [17] and new
methodologies to control the Monte Carlo simulation [18].

2.1.3 Random fields

The objective of a random field is to represent a spatial variation of a specific model
property by a stochastic variable defined over the region on which the variation occurs. The
underlying idea is that, although assumed to be constant over specific regions of a numerical
model, physical properties are generally not expected to have a single deterministic value
in an eventual realisation of the product. Random fields are the perfect tool to analyse
the effect of these internal model variations. A comprehensive overview of random fields
is given by Vanmarcke in [19]. In order to substantiate the discussion on the application
of non-probabilistic concepts in the framework of non-deterministic field variables later
in this work, the main principles of the probabilistic analysis of random fields are briefly
summarised here.

The principle of the random field approach is to express the non-deterministic model
property as a field variable v({x} , θ) in which {x} represents the spatial variation and θ
refers to its probabilistic behaviour. The specification of a random field generally comes
down to the specification of the spatial evolution of the first two statistical moments of the
field variable:

mv({x}) = E[v({x} , θ)] (6)
V ({x}) = var[v({x} , θ)] (7)

and a corresponding covariance function, expressing the spatial dependency of the field
variable:

C({x1} , {x2}) = E[(v({x1} , θ) − mv({x1}))(v({x2} , θ) − mv({x2}))] (8)

Different concepts have been proposed in literature to represent this spatial covariance
kernel, most popular of which are the first- and second-order autoregressive fields.

The application of the concept of random fields in a numerical modelling framework
requires some sort of discretisation of the spatially varying stochastic field over the defined
geometry. This conversion has been studied extensively in literature (see e.g. [8] for an
overview). All these discretisation techniques aim at a transformation of the continuous
field to a finite discrete representation which is manageable in a numerical context. The dis-
cretisation technique based on the Karhunen-Loeve expansion [20] has gained particular
attention in literature. It consists of a decomposition of the initial field into a superposition
of a finite number of orthogonal random variables which are weighted with deterministic
spatial functions:

v({x} , θ) ≈ mv({x}) +
M∑
i=1

√
λifi({x})ξi(θ) (9)

with M the truncation order of the Karhunen-Loeve decomposition, ξi(θ) an orthonor-
mal normal random space, and fi({x}) and λi the eigenfunctions and eigenvalues of the
covariance kernel: ∫

Ω
C({x1} , {x2})fi({x1})d {x1} = λifi({x2}) (10)
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It is clear from its definition in Eq. (8) that the covariance kernel determines the spatial
aspect of the random field. It also strongly influences the numerical approximation incorpo-
rated in most discretisation techniques, as can be seen directly for the Karhunen-Loeve
expansion from Eq. (10). Therefore, it is very important to impose a realistic covariance
function in order for the analysis to have a representative outcome. In order for the method
to have a predictive value in a design process, a well-founded assessment of the spatial cor-
relations intrinsically incorporated in the assumed covariance kernels is necessary. How
this can be achieved based on the limited data a designer generally has available is rather
unclear. On the other hand, if the assessment is impossible based on the limited available
information, the impact of the assumed covariance function should be clearly identified.

The essence of the random field simulation, i.e., how to relate scatter on a numerical
outcome of the analysis to the actually occurring spatial variation of model properties, is
of very high value for a designer who is observing such model variations. However, it is
the overall impression of the authors that the developments in the area of random fields
are basically driven by mathematical assumptions, which are far from easy to verify in
a practical engineering situation. The question on how to derive or approximate actual
covariance functions in practical and realistic engineering applications seems far from an-
swered, and deserves some attention in order for the method to attain a place among the
non-deterministic virtual prototyping tools.

2.2 The Interval Finite Element Method
2.2.1 Basic properties of the interval concept

A number of concepts have been developed in order to represent non-deterministic quantities
with limited available information. These alternatives are generally lumped together as
non-probabilistic methods. This section describes the most simple form of non-probabilistic
numerical concepts: the interval model.

The history of interval analysis goes all the way back to Archimedes who defined
the irrational number π by an interval: 310

71 < π < 31
7 . Recent developments in interval

arithmetics are mainly based on the work of Moore [21], who introduced interval vectors
and matrices and the first non-trivial applications.

By definition, the range of an interval scalar consists of a single continuous domain in
the domain of real numbers R. This means that the range is bounded by a lower and an
upper bound. If both the lower and upper bound are members of the interval scalar, the
interval is closed. In this work, all interval objects are considered to be closed. The domain
of interval scalars defined over R is denoted by IR.

In order to facilitate the development of the mathematical background in the remainder
of this work, this section introduces a generalised notation for intervals and sets. There
exists no generally accepted convention concerning this notation. The proposed concept
enhances the readability of equations involving sets of matrices, vectors and scalars.

A general interval scalar is denoted by a boldface variable x. The lower and upper
bound of an interval scalar x are denoted by x respectively x. A real closed interval scalar
is defined as:

x =
{
x | (x ∈ R) (x ≤ x ≤ x)

}
(11)

An alternative notation for an interval x is [x, x]. The midpoint of the interval is defined
as:

x̌ =
x + x

2
(12)

The radius of an interval equals:

x̄ =
x − x

2
(13)
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A straightforward extension of an interval scalar is a general set scalar denoted by 〈x〉.
It consists of a number of disjoint interval scalars in IR:

〈x〉 =
⋃

i=1...n

xi (14)

with: ⋂
i=1...n

xi = ∅ (15)

The interval matrix [X] ∈ IR
n×m describes the set of all matrices for which each matrix

entry xij is contained within its corresponding interval scalar xij:

[X] =
{

[X] | xij ∈ xij

}
(16)

An interval vector similarly is denoted by {x} ∈ IR
n. The definitions of Eq. (12) and (13)

are easily extended to interval matrices and vectors by applying them on each entry in the
vector or matrix.

An interval matrix or vector requires that interval scalars are defined for each entry
in the matrix or vector. According to the definition of Eq. (16), an interval matrix or
vector includes any combination of the entries as long as they are within the bounds of
their interval scalar. This means that they implicitly presume independence between all
entries. Hence, an interval vector represents a hypercube in a general multidimensional
space. It as such cannot be used to give a precise description of a general convex set in a
multidimensional space.

The set matrix
〈
[X]
〉

describes the set of all possible matrices where each matrix entry
xij is contained within its corresponding set scalar 〈xij〉:

〈
[X]
〉

=
{

[X] | xij ∈ 〈xij〉
}

(17)

Again, the matrix elements are implicitly considered independent.
A conservative approximation of a general set object 〈x〉 is denoted by 〈〈x〉〉. Similarly,[[

x, x
]]

is a conservative approximation of the interval object x, with x and x the respective
conservative lower and upper bound approximation.

A final convention is introduced for the notation of the range of a general function
f (x1, . . . xn) with reference to the set vector

〈
{x}
〉
, which is defined as the set of all results

of the function considering all possible combinations of the function’s argument inside the
defined vector

〈
{x}
〉
:

〈f (x1, . . . xn)〉〈{x}〉 =
{

f (x1, . . . xn) | (xi ∈ 〈xi〉, i = 1 . . . n)
}

(18)

This definition of the range of a function considers the argument sets mutually independent.
This is of great importance when considering the conservatism of the resulting range of the
function for specific applications. This will be addressed more in detail in Section 4.2.

2.2.2 Extension to convex modelling

The definition of the interval objects states that the uncertain values lie within a hypercube,
the vertices of which are defined by the lower and upper bounds on each component of the
object. For instance, if the object consists of two components x1 and x2, the possible
values of x1 and x2 are represented by a rectangle in the (x1, x2)-space. If it is thought to
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Figure 3. Comparison between the interval and general convex representation of
an uncertain 2-dimensional object

be unlikely that the bounds on the components of the object are reached simultaneously, an
alternative ellipsoidal description could be a more realistic representation of the uncertain
object, as shown in Figure 3. More generally, any region could be defined within this
(x1, x2)-space. When this region is convex for all uncertain objects, it is referred to as
convex modelling [22] of uncertain objects.

A typical convex description of a set of uncertain parameters {x} is the elliptical region
defined by:

{x}T Ω {x} ≤ a (19)

with Ω a positive definite matrix and a a positive constant.
More complex convex sets could be used to bound properties derived from the uncertain

parameters rather than the parameters themselves. Ben-Haim et al. [23] for instance
applies energy bounds on the inputs and bounds on the Fourier transform to describe the
uncertain input of a seismic analysis by convex sets.

The added value of the convex model is that it enables the representation of correlations
between interval values. This could be of great importance, but complicates strongly the
analysis phase. The concept proves to be of great value for describing an uncertain excita-
tion bounded in a convex set [23, 24], but also geometrical imperfections have been modelled
successfully using this concept [25, 26]. However, only very few practical applications have
been studied so far. Therefore, this work focusses on the basic interval concept

2.2.3 Basic concept of the interval finite element analysis

The finite element analysis at this point is considered in its most general form, i.e., a numer-
ical procedure to simulate a physical phenomenon which is described by partial differential
equations. The finite element procedure basically consists of the discretisation of the con-
tinuous domain in which the equations are defined, and the solution of a set of equations
representing the partial differential equations of the original problem in this discretised
space. Generally, a number of assumptions are necessary to obtain a numerically feasible
solution strategy.

The goal of the interval finite element analysis is to obtain the maximal meaningful
information on the simulated physical behaviour based on a given interval description of the
uncertainty on some input parameters of the problem. Since the interval input uncertainty
description gives no information on the frequency of occurrence of the uncertain parameters
within the interval bounds, the problem reduces to finding the range of the analysis result.
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Numerically, this means that the solution procedure should focus on finding the minimal
and maximal deterministic analysis results taking all possible models into account that lie
within the interval uncertainty description.

Considering the parameter vector {x} defined to be contained within an interval vector
{x} and the deterministic finite element analysis generally represented by the function
f
(
{x}
)

applied on these parameters, the interval finite element procedure is numerically
equivalent to finding the following solution set:

〈
{y}
〉

=
{
{y} |

(
{x} ∈ {x}

)(
{y} = f

(
{x}
))}

(20)

with {y} a general multidimensional result of the finite element analysis. The correct
interpretation of this expression is that the set

〈
{y}
〉

contains all vectors {y} which are
obtained from applying the function f(.) on all vectors within the interval vector {x}. If an
analytical expression of the analysis result is available and the interval vector of the input
quantities is analytically expressed in a closed-form, this solution set can be derived through
the use of the Lagrange multipliers [27]. This, however, does not apply for general finite
element analysis.

There is only limited information on the output set of an interval finite element analysis,
since there is generally no analytical expression of the input-output relation. Some basic
observations are:

• If the output consists of physical quantities, all components of the output vector are
generally continuous functions of the input. Consequently, an interval input will result
in a continuous output domain.

• The components of the output vector are related through the design parameters.
Therefore, the solution set can basically adopt any form in the output space.

From these observations it is clear that an exact description of the solution set is ex-
tremely difficult to find. Generally, however, only the individual ranges of some components
of the result vector are really of interest. Therefore, most research focusses on calculating
an interval vector which approximates the exact solution set

〈
{y}
〉
, but neglects the inter-

dependencies between the output vector components. This is referred to as a hypercubic
approximation of the result. It describes a range for each vector component, but not all
combinations of vector components within these ranges are part of the exact solution set.
Ideally, the approximation should be the smallest hypercube around the exact solution set.
If the result is used for reliability analysis, the hypercube should be conservative. This
means that the hypercube should contain the complete exact solution set. Figure 4 gives
a two-dimensional illustration of an exact solution set and the corresponding approximate
hypercubes.

Research nowadays focusses on three different numerical solution strategies to calculate
a hypercubic approximation of the exact solution set: the global optimisation approach,
the interval arithmetic approach and the vertex approach, described respectively in Sec-
tions 4.1, 4.2 and 4.3. This work later introduces a new hybrid approach in Section 5.1.

2.3 The Fuzzy Finite Element Method
2.3.1 Basic properties of the fuzzy concept

Zadeh [28] introduced the theory of fuzzy logic as a scientific concept for representing uncer-
tainty. While the concept was invented in 1965, it resulted mainly in practical applications
during the last two decades. The works of Dubois and Prade [29, 30, 31] contributed to
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Figure 4. Hypercubic approximations of a continuous two-dimensional output set
of an interval finite element analysis

a large extent to this evolution. The concept has been most successful in the application to
controller design, known as fuzzy control [32]. In a fuzzy controller, the fuzzy concept is the
basis for a human-like decision process for choosing an appropriate process control value
based on fuzzily described state variables. This human-like concept does not require strict
mathematical control rules, but is capable of handling linguistic rules often based on expert
knowledge rather than strict objective data. The fact that the theory is capable of handling
linguistic and, therefore, incomplete information, lately has inspired research activities in
the field of numerical analysis. This section describes the most important aspects of the
application of fuzzy numbers in such a numerical environment.

First, it is very important to understand what a fuzzy set exactly is. This is best
explained by interpreting a fuzzy set as an extension of a classical set. A classical set
clearly distinguishes between members and non-members of the set. The fuzzy set, on the
other hand, introduces a degree of membership, represented by the membership function,
which describes the grade of membership to the fuzzy set for each element in the domain.
The difference with the classical (or also called crisp) set is that the fuzzy concept allows
for membership values different from zero and one. This enables the representation of a
value that is only to a certain degree member of the set. The membership function of a
fuzzy set x̃ is defined as µx̃ (x):

x̃ =
{(

x, µx̃ (x)
)
|
(
x ∈ X

)(
µx̃ (x) ∈ [0, 1]

)}
(21)

for all x that belong to the domain X. If µx̃ (x) = 1, x is definitely a member of the subset x̃.
If µx̃ (x) = 0, x is definitely not a member of the subset x̃. For every x with 0 < µx̃ (x) < 1,
the membership is not certain. This concept softens the distinction between members to
non-members in a classical set, and as such enables the definition of a zone in which there
is a gradual transition of members to non-members. This gradual transition can be used to
represent the uncertainty one would like to attach to parameters in a numerical analysis.

In the context of numerical analysis, a class called normal fuzzy numbers is generally
used. For these fuzzy numbers, there is at least one point where the membership is equal
to one, and the membership is strictly increasing and decreasing to the left respectively the
right of this point. The most frequently applied shapes for the membership functions are
the triangular and Gaussian shape. Figure 5 illustrates the concept of fuzzy numbers on
an uncertain Young’s modulus . In this figure, Ẽ1 is a fuzzy representation of a classical
interval defined as a five percent error margin on the nominal value of 2.1 GPa. The
membership function of Ẽ2 introduces uncertainty on the bounds on the interval, whereas
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Figure 5. Some typical membership functions that describe linguistic variables

Ẽ3 demonstrates a Gaussian membership function.
In his later work, Zadeh [33] extended the theory of fuzzy sets to a basis for reason-

ing with possibility. In this interpretation, the membership function is considered as a
possibility distribution function, providing information on the values that the described
quantity can adopt. More generally, the possibility is defined as a subjective measure that
expresses the degree to which the analyst considers that an event can occur . It provides
in a system of defining intermediate possibilities between strictly impossible and strictly
possible events. Through this interpretation, the fuzzy concept has become a tool to model
subjective knowledge numerically in a non-probabilistic concept. This has drawn the at-
tention of the numerical community, since knowledge of uncertainties in a numerical model
is commonly based on expert opinion. This has lead to applications of the fuzzy concept
in miscellaneous numerical physical process simulations, ranging from multi-body kinemat-
ics [34] over uncertainty modelling of imprecise parameters in water flow simulations [35]
to fuzzy modelling of powder snow avalanches [36]. Of particular interest is the application
of the fuzzy concept in a non-deterministic finite element framework for numerical analysis
of non-deterministic models. Section 2.3.2 now focusses on the general principle and some
numerical aspects of this fuzzy finite element method.

2.3.2 Basic concept of the fuzzy finite element analysis

The goal of the fuzzy finite element analysis [37, 38] is to obtain a fuzzy description of some
output quantities of a finite element analysis in which the non-deterministic input is mod-
elled using the fuzzy set model. It consequently aims at the derivation of the membership
function of the output quantities given the membership functions of all input quantities:

{ỹ} = f(x̃1, x̃2, . . . x̃n) (22)

The fuzzy finite element analysis requires first of all a concept to handle the combina-
tion of the input sets, i.e., a definition of a Cartesian product combining different fuzzy
sets. The membership function of a Cartesian product of variables described by individual
membership functions has been defined in literature [39]:

µx̃1×...×x̃n(x1, . . . xn) = min
(
µx̃1(x1), . . . µx̃n(xn)

)
(23)

This definition states that the possibility of a combination of fuzzy events equals the mini-
mum of the possibilities of all individual events.

Next to the Cartesian product, the fuzzy finite element analysis also requires an arith-
metic which handles the numerical evaluation of functions of fuzzy sets. A general concept
follows directly from Zadeh’s extension principle [40], which is one of the most basic ideas
of fuzzy set theory. It provides a general method for extending crisp mathematical concepts
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Figure 6. Scheme of the numerical procedure to perform a fuzzy finite element analysis by
discretisation of the range of the membership function using 4 α-sublevels

in order to deal with fuzzy quantities. It allows to calculate the fuzzy output ỹ of the crisp
function f(x1, x2, . . . , xn) applied to n fuzzy numbers x̃i:


µỹ (y) = sup

x1,...xn

y=f(x1,...xn)

(
min

(
µx̃1(x1), . . . µx̃n(xn)

))

µỹ (y) = 0 if f−1(y) = ∅

(24)

This means that the membership value of the fuzzy result ỹ for a specific value y∗ equals
the largest among the membership values µx̃1×...x̃n of all input combinations (x1, . . . xn)
resulting in y∗. The input combinations which result in y∗ are referred to as realisations
of y∗. The possibilistic interpretation of the extension principle is that if a value y∗ can
be achieved for different combinations of the input quantities, it will adopt its degree of
possibility from the realisation with the highest degree of possibility.

A major drawback of the extension principle as defined in Eq. (24) is that it is not readily
implementable in a numerical context. For each value y of the observed output domain,
it requires the complete set of realisations in the input domain to derive the membership
value. An alternative approach consists of searching in the output domain for sets which
have an equal degree of membership. This is achieved by analysing the input domain on a
specific level of membership α. At this level, the α-cuts of the input quantities are defined
as:

xiα =
{
xi ∈ Xi, µx̃i(xi) ≥ α

}
(25)

This means that an α-cut is the interval resulting from intersecting the membership function
at µx̃i(xi) = α (see Figure 6). After deriving the α-cuts of all input quantities at a specific
level, a general interval analysis as described in section 2.2.3 is performed on these intervals:

yα =
{

y |
(
xi ∈ xiα,∀i

)(
y = f

(
{x}
))}

(26)

It can be proven [41] that the obtained output interval is an intersection of the output
membership function at the α-level, and consequently represents an α-cut of the output.
This means that a discretised approximation of the output membership function can be
obtained from repeating the α-level procedure at a number of levels, as shown in Figure 6.
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Based on this α-cut strategy strategy, a number of fuzzy finite element applications have
been published in specific research domains: static structural analysis [38, 42, 43], dynamic
analysis [44, 45], geotechnical engineering [37, 46, 47], solid mechanics [48] and analysis of
smart structures [49]. Recently, the fuzzy finite element approach has also been applied
to non-linear analysis for fatigue life predictions based on the modelling of interlaminar
cracks [50]. Since, through the α-cut strategy, the interval finite element analysis forms the
corner stone of the fuzzy finite element method, this work will focus on the implementation
of the interval finite element analysis in sections 4 and 5.

At this point, it is important to note that the definition of the Cartesian product as
in Eq. 23 does not provide a concept for dealing with mutual relationships that might
exist between the fuzzy input properties. In fact, the fuzzy concept totally lacks a way
of dealing with correlation. It is clear that this has a major impact on its application in
numerical analysis, especially when spatially varying fields are to be taken into account.
As discussed in section 2.1.3, the spatial correlation of the random field variable has a
very high impact on the analysis. This explains why there currently is no research activity
that the authors know of on the application of non-probabilistic concepts for random field
analysis. However, as discussed above, the importance of the assumed correlation of the
field necessitates trustworthy data to derive the spatial correlation kernel. If the information
is rather limited, a less data-intensive but conservative approach as presented by the non-
probabilistic concepts could be a valuable alternative, even for random field analysis.

3 APPLICATION OF THE NON-DETERMINISTIC FINITE ELEMENT
ANALYSIS IN DESIGN

The introduction of the non-probabilistic approaches for non-deterministic numerical anal-
ysis has initiated a profound discussion in literature. On one side, some claim that the prob-
abilistic approach is only a subcategory of the more universal fuzzy concept (see e.g. [51]).
Therefore, the latter would represent a more unified approach for non-deterministic analy-
sis. On the other side, some argue that probabilistic methods are able to model anything
the non-probabilistic approach can. The goal of this section is not to choose either side
in this discussion, but merely to review the applicability of the non-probabilistic concepts
from an objective viewpoint. This is done based on a definition of different classes of
non-determinism typically occurring in a finite element problem, described in section 3.1.1.
Then, for each non-deterministic numerical modelling concept, its compatibility with the
non-deterministic classes is discussed in section 3.2. This discussion focusses on the ability
to objectively represent the available information. Finally, section 3.3 gives an overview of
possible applications of the non-probabilistic approaches in a typical design process.

3.1 Sources of Non-Determinism in General Finite Element Modelling

3.1.1 A classification of non-determinism in numerical analysis

In literature treating non-deterministic numerical analysis, different researchers apply the
same terminology in a rather inconsistent manner. This work applies the definitions of error,
uncertainty and variability as proposed by Oberkampf et al. in [52], which enable a clear
classification of non-deterministic aspects in numerical analysis. Section 3.1.2 gives some
additional nuances which are necessary to enable a profound discussion of the applicability of
the probabilistic and non-probabilistic concepts in non-deterministic finite element analysis
in sections 3.2 and 3.3.

Variability is defined as the variation which is inherent to the modelled physical system
or the environment under consideration. Referring to numerical analysis, a variability is
generally described by a distributed quantity defined over a range of possible values. The
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exact numerical value attached to the representation of the variable model property is as-
sumed to be within this range, but it will vary from unit to unit or from time to time.
Ideally, objective information on both the range and the likelihood of the quantity within
this range is available. Others in literature refer to this variability as aleatory uncertainty
or irreducible uncertainty. The term irreducible refers to the fact that even when all in-
formation on the particular property is available, the quantity cannot be deterministically
determined. Typical examples of variability are manufacturing variability, environmental
effects (temperature, humidity, . . . ), properties of non-uniform materials, . . .

Uncertainty is defined as a potential deficiency in any phase or activity of the modelling
process that is due to lack of knowledge. The word potential stresses that the deficiency
may or may not occur. This means that there may be no deficiency even though there is
some lack of knowledge, i.e., when the numerical model of the phenomenon happens to be
correct rather by chance than due to exact knowledge. This definition basically states that
uncertainty is caused by incomplete information resulting from either vagueness, nonspeci-
ficity or dissonance [53]. Vagueness characterises information which is imprecisely defined,
unclear or indistinct. It is typically the result of human opinion on unknown quantities
(“the density of this material is around x”). Nonspecificity refers to the availability of a
number of different models that describe the same phenomenon. The larger the number of
alternatives, the larger the nonspecificity. Dissonance refers to the existence of conflicting
evidence of the described phenomenon, for instance when there is evidence that a quantity
belongs to disjoint sets. Possibly, limited objective information is available, for instance
when a range of possible values is known. In most cases, however, information on uncer-
tainties is subjective and based on some expert opinion. Others in literature refer to this
uncertainty as reducible, epistemic or subjective uncertainty. In a finite element context,
uncertainties typically exist in the parts which are difficult to model, like non-rigid bound-
ary conditions, joints, material damping. But also other unpredictable model changes over
time can belong to this category, like ageing, loading, . . .

Finally, an error is defined as a recognisable deficiency in any phase of modelling or
simulation that is not due to lack of knowledge. The fact that the error is recognisable
states that it should be identifiable through examination, and as such is not caused by
lack of knowledge. This means that the error could be avoided by an alternative approach
which is known to be more accurate, but which is possibly limited in practical applicability
by computational cost or other practical considerations. A further distinction between
acknowledged and unacknowledged errors is possible. Unacknowledged errors are blunders
or mistakes, for instance where the analyst tries to model one phenomenon but as a result
of human error, applied the wrong governing equations. These unacknowledged errors
cannot be corrected. An example of an acknowledged error is the error associated with the
conversion of partial differential equations into discrete equations using the finite element
methodology. Other typical examples of acknowledged errors in finite element modelling
are the use of linear models, the use of partial differential equations for the description of
the analysed phenomenon, the representation of the displacement inside an element by a
polynomial shape function, . . . It is clear that the acknowledged errors are all inherent to
the finite element analysis methodology as for any numerical analysis tool which tries to
describe physical reality. This means that remedying these errors implies an alternative
approach to the classical finite element principles. This, however, lies not within the scope
of this paper.

Figure 7 summarises the definitions in this section with their main characteristics in the
context of the finite element methodology.
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Figure 7. Occurrence of variabilities, uncertainties and errors in the finite element
procedure

3.1.2 Discussion and extension of the definitions

The definitions of uncertainty and variability above are not mutually exclusive, since a
variability could be subject to lack of knowledge when information on its range or likelihood
within the range is missing. This is for instance the case for every design dimension subject
to tolerances, but without further specification of manufacturing process or supplier. The
tolerances represent the bounds on the feasible domain, but there is no information on the
likelihood of the possible values within these bounds. Consequently, because there is a lack
of knowledge, such a variability is also an uncertainty. It is referred to here as an uncertain
variability. Some vague knowledge may be available (“the mean value is approximately
x”) but also nonspecificity may play an important role in the uncertainty, for instance in
choosing an appropriate model to describe a random quantity. Opposed to the uncertain
variability, a certain variability refers to a variability the range and likelihood of which are
exactly known.

Also, it appears logical to state that every property in a numerical model corresponding
to a physical quantity is a variability, since it will eventually have a range of possible
values and a likelihood inside this range in the physical realisation of the model. This
argumentation implies that all uncertainties are also variabilities. In practice, however,
the majority of model properties are implemented as constant deterministic values in the
numerical model. Though they are subject to variation, the influence of their variability
on the analysis result is considered to be negligible. Often, uncertainties refer to a possible
lack of knowledge in these deterministic properties. This type of uncertainty is referred
to as invariable uncertainty . Note that invariable in this case does not mean that the
property cannot change over different analyses. According to the definition of uncertainty,
it will change when information that decreases the amount of uncertainty is acquired. The
invariable uncertainties typically occur in model properties for model parts that are difficult
to describe numerically, but considered constant in the final physical product (connections,
damping, . . . ). Other examples are design properties which have negligible variability but
which are not defined exactly in an early design stage. Figure 8 gives a graphical illustration
of the proposed subdivision of the definitions for uncertainty and variability.

3.1.3 Example

The above definitions give a clear distinction between the different classes of non-deterministic
model properties. In order to do a meaningful analysis, it is very important to determine
the right class of the non-deterministic properties present in the treated problem. The
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Figure 8. Classification of variabilities and uncertainties in numerical modelling

following small example illustrates that this classification is not always obvious, and can be
influenced by the intention of the non-deterministic analysis.

Consider of a tank design, which is designed to carry a prescribed amount of fuel.
Suppose that we want to assess the structural design of this tank through numerical analysis,
using the amount of fuel in the tank as a non-deterministic parameter. In other words, we
want to analyse the effect of the amount of fuel in the tank on its structural behaviour.
In the most conventional interpretation of this problem, the purpose is to account for all
possible uses of the tank, from being empty to completely filled. In that case, the mass of
the fuel in the tank can be interpreted as a variability, since there clearly will be a variation
over time or from unit to unit in the amount of fuel the tank contains. This means that
the analysis indeed should focus on the effect of this variation in fuel mass between the
absolute minimum and the absolute maximum.

On the other hand, the problem is totally different when we want to analyse the same
tank when it is designed for a single mission, e.g., as a fuel supply tank in a space mission.
In that case, the difference between the actual carried amount of mass and the amount the
tank is designed for can be expected to be very small. The amount of fuel now no longer
represents a variability. It could however be useful to analyse its influence on the design,
for instance to assess the robustness of the design, or to determine the range of allowable
usage. In that case, the fuel mass becomes an invariable uncertainty, the range of which
can be chosen by the analyst according to his own expert knowledge or preference.

3.2 Numerical Representation of Non-Determinism
3.2.1 Probabilistic variability and uncertainty representation

In most available non-deterministic finite element software codes, the probabilistic concept
is applied to describe both variabilities and uncertainties in a model. This is mainly due
to the fact that there exists a large number of numerical analysis procedures based exclu-
sively on probabilistic input quantities. Therefore, every non-deterministic quantity in a
model is readily replaced by a probabilistic quantity by introducing an appropriate prob-
ability density function. However, the probabilistic concept does not necessarily represent
the available objective information. For the study of the applicability of the probabilis-
tic concept, distinction between certain variabilities, uncertain variabilities and invariable
uncertainties is necessary.

It is clear that the probabilistic concept is most appropriate to represent certain vari-
abilities, since in the frequentist interpretation, the probabilistic description using a prob-
ability density function is completely consistent with the definition of a variability as in
section 3.1.1. The information on the range and the likelihood of a certain variability can
be unambiguously incorporated in the probability density function. Furthermore, the prob-
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abilistic outcome of the analysis will give an indication of the actual expected frequency
of occurrence of the analysed phenomenon. It is, however, important that all information
is available in order for the model to realistically represent the variability. For instance,
if more than one variable property is present in the model, the correlation between the
different variabilities might play an important role in the probabilistic analysis. Ideally,
the joint probability density function describing the likelihood and interdependence of all
non-deterministic model properties is available. Since this is almost never the case, the prob-
abilistic description of variability interdependence is generally limited to some moments of
low order. Often, when cross correlations are unknown, the variabilities are assumed to be
independent of one another.

For uncertain variabilities, a representation by a single random quantity is generally
not sufficient. Engineering scientist Freudenthal [54] who was one of the pioneers of
probabilistic methods in engineering states that “ . . . ignorance of the cause of variation
does not make such variation random.”. By this, he means that when crucial information
on a variability is missing, it is not good practice to model it as a probabilistic quantity
represented by a single random probability density function. On the contrary, in this case
it is mandatory to apply a number of different probabilistic models to examine the effect of
the chosen probability density function on the result. For instance, when the range of the
variability is known but the information on the likelihood is missing, all possible probability
density function over the range should be taken into consideration in the analysis. The
analyst will generally select only a few probabilistic models which he considers consistent
with the limited available information or most appropriate to obtain as much knowledge as
possible on the result.

Most often, invariable uncertainties are represented by random quantities in probabilis-
tic analysis. As such, the analyst tries to express his lack of knowledge of the property.
This means that some probability density function is chosen which to the knowledge of
the analyst represents best the uncertain nature of the quantity, but which is not based on
available objective information. It is clear that in this case, the information contained in the
random quantity does not represent the actual variation of the quantity in the final product,
since by definition, the invariable uncertainties are considered to be constant. The random
quantity in this case merely represents the presumed likelihood that a model parameter will
adopt a value. As such, the lack of knowledge is filled by subjective information provided
by the analyst, expressed in the form of a probability density function. This is sometimes
referred to as a subjective probability density function. In this context, Bayesian methods
are becoming increasingly popular for the modelling of subjective uncertainty. The main
advantage of using the probabilistic approach for subjective uncertainty modelling is that
the available probabilistic procedures can be readily applied for the analysis. It should be
kept in mind, however, that the main strength of the Bayesian approach is its capability
of incorporating objective information that becomes gradually available. When this is not
the case, the Bayesian approach remains a fully subjective representation of reality.

At this point, it is very important to emphasize the consequences of the difference in the
use of the probabilistic concept for variabilities on the one hand, and invariable uncertainties
on the other hand. The former represents variability defined as a variation from unit to
unit or in time for the final product, while the latter clearly may not be interpreted in
this sense. Consequently, when interpreting the results of a probabilistic analysis based
on both uncertainties and variabilities, it is imperative to distinguish between the different
meanings attached to both. Though this seems straightforward, neglecting this distinction
is a very common mistake in probabilistic uncertainty analysis. Section 3.3.2 elaborates
further on the implications of this problem for probabilistic reliability analysis.

Recently, some criticism on the general application of probabilistic methods is aris-
ing. A first argument concerns the necessity of the probabilistic analysis. In some cases,
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non-deterministic analysis is merely a tool to enhance or optimise the expected physical
behaviour of a design based on (limited) knowledge of external non-deterministic influences.
While probabilistic analyses are applicable for this purpose, probabilistic information on the
behaviour of a design is not always primordial. Especially when subjective information is
present in the analysis, other non-probabilistic techniques could give a valuable, maybe even
additional insight into the non-deterministic nature of the simulated behaviour. Whether
or not these techniques are valuable alternatives depends on the added value of the results.
A second often heard argument against probabilistic analysis relates to its computational
time-efficiency. This refers to the popular implementation using a Monte Carlo simulation,
which is a rather time consuming technique, as it uses a high number of deterministic cal-
culations to simulate the probabilistic process. Therefore, its computational efficiency will
always lag behind the efficiency of the corresponding deterministic analysis.

Combining both arguments above, the criticism comes down to the fact that for some
cases, the added value of the results of a probabilistic analysis does not justify the compu-
tational effort required to obtain them. In order to objectively assess this criticism as an
argumentation in favour of non-probabilistic concepts, a clear insight in the added value of
the alternative techniques is necessary. Therefore, the next sections describe the applica-
bility of the interval and the fuzzy concept for variability and uncertainty representation.
Section 3.3 will then discuss their added value for engineering design purposes.

3.2.2 Interval variability and uncertainty representation

The information represented by an interval object depends on the type of modelled non-
deterministic quantity. Also here, distinction between certain variabilities, uncertain vari-
abilities and invariable uncertainties is necessary.

For certain variabilities, the input interval objects are derived from the support of the
corresponding input probability density function. Consequently, the result of an interval
analysis only represents the actual range of the variable outcome of the analysis. The
available information on the likelihood inside the range is lost, which is an important disad-
vantage. Especially for a variability with a justifiable probability density function support
that is very large, using the support as input for the interval analysis will generally result
in an extremely wide output interval. While it is theoretically correct to state that the final
result will range over this output interval, disregarding the probability of the probability
density function tails in this case clearly strongly devaluates the interval analysis.

When the upper and lower bounds of a non-deterministic property are well-defined but
information on the type of the distribution is missing, it belongs to the class of uncertain
variabilities. In this case, the interval model represents perfectly the available information.
However, especially for variabilities with a very large probability density function support,
the determination of the corresponding interval bounds is not always unambiguous, since
the probability of the values that are located in the tails of the commonly applied probability
density function with large support is typically very low. If these tails cannot be justified
adequately with experimental data, there is no reason to unconditionally use the probability
density function support for the interval analysis. In this case, the analyst should implement
the bounds which he considers realistic with respect to the available experimental data.
Often, the 3σ-bounds are assumed to be realistic interval bounds. This conversion does
not necessarily reduce the truthfulness of the uncertainty representation when there is little
information on the actual tails of the probability density function. Still, if the tails of
the probability density function are expected to have little probability, the impact of the
subjective interval bounds on the interval analysis result is much larger than the impact of
subjective probability density function support limits on the probabilistic analysis result.
Therefore, variabilities with unknown probability density function support but a well-known
normal-like behaviour near the center of the probability density function are best modelled
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probabilistically.
For invariable uncertainties, generally a subjective interval is required. In this case, care

should be taken not to interpret the interval quantity as the actual range in the physical
product. It merely represents the values the analyst considers possible at the time the
analysis is performed. Therefore, similar to the application of the probabilistic concept
for invariable uncertainties, it is important to acknowledge the subjectivity in the result of
the analysis. However, since the interval concept requires less subjective information to be
added to the problem description, there is less room for misinterpretation of the results.

To conclude, we can state that the probabilistic concept remains the most valuable for
the representation of certain variabilities and uncertain variabilities with unknown support
but known normal-like behaviour. The omission of a known probability density function
through the interval concept can only be justifiable when probabilistic information is not
required, or the computational cost of the interval analysis is significantly lower. The
interval concept is most valuable when dealing with uncertain variabilities with known
support but unknown distribution, or invariable uncertainties.

3.2.3 Fuzzy variability and uncertainty representation

The application of the fuzzy concept for non-deterministic numerical modelling is not
straightforward. The main problem of the representation of a model property through
a fuzzy set, is that the membership function does not relate to an objective measurable
quantity. The level of membership that is assigned to different members of a fuzzy set is
completely based on the subjective beliefs of the analyst. Therefore, also the fuzzy results
obtained from the analysis will be biased with the subjective input. Hence, these results
may only be interpreted in reference to the assumed fuzzy input. This poses an important
restriction on the use of the fuzzy approach for numerical design validation purposes. The
practical consequences of this restriction will be further addressed in section 3.3. First, the
applicability of the fuzzy concept for variability and uncertainty representation is discussed.

For a fuzzy representation of certain variabilities, the known probability density function
has to be converted to a compatible membership function. A number of methods have been
developed for this purpose [31, 55]. The basic law for the conversion follows from the
consistency principle, which states that the degree of possibility of an event is greater than
or equal to its degree of probability. This principle implies the following rule for conversion
of probabilistic into possibilistic distributions:∫

B
fX(x) dx ≤ max

x∈B

(
µx̃ (x)

maxµx̃ (x)

)
(27)

for any set B in the feasible domain. This means that even a completely known probabilistic
quantity has an infinite number of possibilistic representations. Therefore, these conversion
techniques always rely on some sort of subjective judgement. Still, it is the author’s opinion
that forcing the application of fuzzy sets into the domain of certain variabilities through a
conversion of probability density function as described above is rather irrational. Available
objective probabilistic data is replaced by a subjective description, resulting in the loss of
very valuable information. This loss is generally unjustifiable. Therefore, the conversion of
a probability density function to a membership function should not be done.

For uncertain variabilities, the fuzzy concept can be used for a hybrid uncertainty
model. It stems from an alternative interpretation of a possibility distribution introduced
by Dubois and Prade [56] based on the Evidence Theory [57]. In this approach, a fuzzy
number is used to represent a class of probability random quantities that have a cumulative
distribution function in between boundaries derived directly from the possibility distribu-
tion. The left boundary on the compatible cumulative density functions coincides with the
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Figure 9. Possibility distribution of a fuzzy number and corresponding lower and upper
boundaries for a cumulative density function compatible with the fuzzy number

increasing branch of the fuzzy number. The right boundary coincides with the complement
of the decreasing branch of the fuzzy number. Figure 9 clarifies this approach. In this
concept, the possibilistic approach becomes a tool to simultaneously examine the effect of
a set of different probability density function in a single analysis. While the ability of this
concept to model classes of probabilistic data seems extremely powerful, it has only been
applied very rarely in uncertainty analysis.

Finally, an invariable uncertainty requires a fuzzy set that represents the subjective
expectation of the analyst. When the invariable uncertainty represents an open design
decision subject to optimisation, the analyst can express his preference of the quantity
through the possibility distribution. Still, when interpreting the results, reference to the
chosen input membership functions is imperative.

Considering the explicit subjective nature of a fuzzy set, it is concluded that it is most
useful to describe uncertainties. The more objective information becomes available on a
non-deterministic model property, the less the fuzzy concept is appropriate to describe it.

3.3 Application of Non-Deterministic Finite Element Analysis in Design

From the discussion above, it is clear that non-deterministic approaches can be very valuable
to model non-deterministic properties in a finite element model in absence of crucial prob-
abilistic information. Still, the decision on which non-deterministic concept to use should
not be based exclusively on the available information at the analysis input. As shown in
the example in Section 3.1.3, the clear definition of the objective of the analysis is at least
equally important in the determination of the most appropriate non-deterministic analy-
sis tool. Therefore, this section now focusses on a number of practical non-deterministic
analysis types that concern a design engineer. Again, in order to evaluate the possibilities
of the non-probabilistic approaches in specific applications, references will be made to the
corresponding probabilistic treatment of the non-determinism.

3.3.1 Numerical non-determinism in a design process

The main objective of the application of numerical tools in a design process is to assess the
product quality at a specific design stage by simulation of its realistic physical behaviour.
Still, an exact quantification of the design quality based on the numerical predictions is not
always straightforward. This is mainly due to the non-determinism implicitly contained
in the numerical analysis results. Analysing the design quality over time, very often an
evolution as illustrated in Figure 10 is observed [58].

The design quality is expected to increases over time. Still, there always is a scatter on
the predicted design quality, represented by the grey area in the figure. This scatter tends
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to decreased over the process, since additional information acquired over time will decrease
the amount of uncertainty. On the other hand, the scatter will generally not disappear
because of the presence of irreducible variability. Figure 10 indicates the evolution of the
applicability of design analysis tools over time. The upper bound on the useful range of
numerical methods is induced by the limit on the realism in numerical simulation of physics.
There are currently two fundamentally different approaches that aim at moving this upper
bound forward into the design process. On the one hand, there is a tendency towards
integrated numerical analysis, aiming mainly at multi-physics simulations that incorporate
all physics relevant for the design into a single simulation. On the other hand, it is more and
more acknowledged that the introduction of non-determinism in the numerical analysis is
equally, if not more important in influencing this upper bound. Therefore, it is imperative
to have insight in the numerical analysis tools that can be of use to incorporate non-
determinism in the analysis during design. This will not only extend the useful range of
numerical methods, but should simultaneous lead to a better understanding of the sources
of the scatter on the predicted behaviour. This information on its turn can be extremely
important to improve the design quality obtained after the numerical design cycle. Figure 11
summarises these envisaged effects of numerical analysis of non-determinism in a design
process.

Generally, there is an evolution of the type of non-determinism encountered during a
typical design process, or as formulated by Ross et al. [59]: As more information about a
problem becomes available, the mathematical description of non-determinism can transform
from one theory to the next in the characterization of the uncertainty as the uncertainty
diminishes or, alternatively, as the information granularity increases and becomes specific.
In an early stage, objective information on model properties is often difficult to obtain, since
a large number of model properties have yet to be defined. Some design decisions are even
intentionally postponed in order to be able to study their effect on the design quality. Fur-
thermore, early design improvements are commonly the result of expert knowledge rather
than detailed numerical procedures. This means that the amount of objective information
on average is low, and therefore subjectiveness is substantially present in the analysis. This
leads to the conclusion that in early design stages, most non-determinism belongs to the
uncertainty class. Through the course of a design process, the amount of information gen-
erally increases. In some cases, the non-deterministic properties can be more objectively
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described, e.g., when certain design aspects are fixed, or component manufacturers are cho-
sen. The classification of the remaining non-determinism gradually moves towards to what
has been defined as model variability, i.e., design independent variations in the product or
its environment.

The evolution of non-determinism in a typical design process as described above is
illustrated in Figure 12. This figure also indicates the evolution of the numerical concepts
that are most appropriate for the dominant class of the occurring non-determinism. In
the early stages, the non-determinism in the numerically predicted design quality is mainly
driven by model uncertainties, which leads to the conclusion that non-probabilistic concepts
are most appropriate in these early stages. Later in the design process, variability becomes
more important, leading to a more prominent application of the typical variability modelling
tool, i.e., the probabilistic concept.

The evolution of a property from one class of non-determinism to another can be clarified
using a simple example. Take for instance the design of a new car body. The start point
of the structural design is generally a conceptual design inspired esthetically rather than
mechanically. In this initial design, there is a lot of non-determinism on the dimensions of
structural components, such as for instance plate thickness. Since there is no information
whatsoever on the exact plates that will be used, numerical analysis in this phase can only
incorporate subjective knowledge based on other designs. Alternatively, a designer could
be interested in the impact of a certain plate thickness on the behaviour of the design.
In that case, a preferred range could be defined for the thickness in order to identify the
most appropriate value. In either case, there is no clear objective information on the actual
property in the final product. Hence, if non-determinism on this property is to be taken
into account, this can only be achieved through modelling of subjective knowledge. Later,
at a certain point in the design process, a specific reference value will be chosen for the
thickness of the plates in the car body structure. Tolerances are chosen, which define the
allowable region for these properties in the actual product. At this point, the range of
the thickness in the actual product is known, but there’s no information on the likelihood
inside the range. The property is clearly evolved to an interval. Finally, when the design
is finalised up to the detailed description of the manufacturing process, information on the



414 D. Moens and D. Vandepitte

functional

quality of

design

time

fuzzy probabilistic
interval

convex

uncertainty

variability

Figure 12. Typical occurrence of non-determinism in the product quality predic-
tions during a design process

variation of the plate thickness within the bounds of the tolerances could become available.
The value for the thickness then becomes a variability.

3.3.2 Probabilistic reliability analysis

The reliability of a product is defined as the likelihood that it will successfully fulfil its
intended task over a predefined period in time under specific environmental conditions.
Numerical reliability analysis is very popular in a structural design context because it can
provide a designer with crucial information on the likelihood of failure of the analysed
design. As such, it can be usefully applied in an economical product analysis taking into
account the cost associated with failure.

Reliability analysis of non-deterministic structures using the probabilistic concept has
been studied extensively in literature. Very powerful software codes exist supplying the
analyst with a vast arsenal of probabilistic reliability analysis procedures. See Casciati et
al. [60] for a comprehensive overview of probabilistic reliability methods. Most commonly,
the probabilistic reliability analysis results in a probability of failure, defined as the likelihood
that the structure will successfully fulfil its intended task over a predefined period in time
under specified environmental conditions. This probabilistic reliability analysis is broadly
applied and already incorporated in generally accepted design specifications in civil engi-
neering. However, its application in mechanical engineering is far less standardised. This is
mainly due to the plentitude of different mechanical products, which all require a different
amount of reliability under very different environmental and loading conditions. Hence,
there are very few standards for reliability in mechanical design. Each product designer
applies rules which are based on experience rather than on general engineering standards.

Mathematically, the probabilistic reliability analysis requires the definition of a perfor-
mance criterion based on the relevant load and resistance parameters. This performance
function generally is referred to as the limit state function and is described as:

Z = g(X1,X2, . . . ,Xn) (28)

The failure surface is then defined as Z = 0. It represents the boundary between what are
considered to be unsafe and safe design regions in the parameter space. The limit state can
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be an explicit or implicit function of the parameters. This characteristic has an important
influence on the analysis procedure.

Using the definition of Eq. (28) the probability of failure Pf equals:

Pf =
∫

. . .

∫
g(X1,X2,...,Xn)<0

fX(x1, x2, . . . , xn) dx1dx2 . . . dxn (29)

with fX(x1, x2, . . . , xn) the joint probability density function for the considered parameters.
This equation forms the basis of probabilistic reliability analysis. However, it is in most
cases impossible to solve because the necessary information to describe the joint probability
density function is missing. But even if it was available, evaluating the multiple integral
is extremely difficult. In this context, approximation methods have been developed. Each
of these methods has its own requirements concerning the performance function. Only the
most common are listed here:

• First Order Reliability Methods (FORM): After transformation to a standard
normal parameter space, each limit state function is replaced with a first-order poly-
nomial approximation at a specific point in the parameter space. This point is usually
the point on the failure surface nearest to the origin, and is generally referred to as
the design point or most probable point. The probability of failure follows directly
from the distance from the origin to the design point.

• Second Order Reliability Methods (SORM): This method is completely similar
to FORM, with the exception that a second-order polynomial is used for the limit
state function approximation. (see [61] for a general introduction to FORM and
SORM)

• Mean Value Based Methods (MVBM): This method constructs a first-order
Taylor series expansion of the limit state functions around the mean values of the
random variables.

• Simulation Methods (SM): The approximation of the probability of failure results
directly from a series of analysis runs using samples of each variable.

The FORM, SORM and MVBM require information on the derivatives of the limit
state function to the parameters. Therefore, they are most appropriate when an analytical
closed-form expression of the limit state function is available. This is generally not the case
for reliability assessment based on finite element analysis, where the relation between the
model parameters and the limit state function is implicit. This has led to the development
of specific algorithms for sensitivity analysis which directly aim at the calculation of these
derivatives, either analytically or based on numerical approximations. This is already pro-
vided in a number of commercial finite element codes nowadays. When there is no explicit
relation between design parameters and the limit state, response surface methods are com-
monly applied to approximate the limit state function in the design space. With these, a
limited number of analysis runs is performed at several points in the design space based
on a design of experiments strategy. The approximation of the true limit state function
then generally results from a second-order polynomial fitted through the resulting points.
These developments induced implementations of FORM, SORM and MVBM around a fi-
nite element code. The computational burden for these implementations, however, remains
large. Furthermore, the exactness of these methods decreases rapidly when the range of the
parameter variabilities increases because the approximations are based on local information.

Currently, the simulation methods are by far the most popular numerical tool to predict
the probability of failure of a given design. This is mainly due to the fact that they are
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easy to use, straightforward, and require little background in probability theory. Their
main disadvantage is that they are computational expensive. However, in combination
with a response surface approximation of the limit state, their efficiency can be increased.
Simulation methods are described more in detail in section 2.1.2. The probability of failure
can be derived numerically based on a Monte Carlo simulation by rewriting Eq. (29) to:

Pf =
∫ ∞

−∞
I (g (x)) fX(x)dx = E {I (g (x))} (30)

with:

I (g (x)) =

{
1 if g(x) ≤ 0
0 if g(x) > 0

(31)

Therefore, it can be estimated from N Monte Carlo samples using:

Pf ≈ 1
N

N∑
i=1

I (g (Xi)) (32)

with Xi the numerical value of the samples. From this approximation it is also clear how
a good preceding response surface procedure could greatly improve the efficiency of Monte
Carlo simulation. Recently , Schuëller et al. [62] give a clear overview of the recent
advances in Monte Carlo based simulation procedures for application in reliability analysis
of high dimensional problems.

According to its definition, reliability belongs clearly to the probabilistic framework in
the frequentist context. On the one hand, this complicates probabilistic analysis of designs
intended for limited production, since the fact that the product is only produced in lim-
ited quantity strongly complicates a decent aposterior verification of the non-deterministic
numerical predictions. Furthermore, for most designs intended for limited production nowa-
days, an unverifiably high reliability is requested (e.g. spacecraft). The current tendency
towards designing for 6-σ clearly illustrates this evolution. However, such specifications
require an extremely high accuracy of the predicted probabilistic behaviour, especially in
the tails of the obtained probability density functions. This is extremely difficult to achieve.
Furthermore, even if a mass production is envisaged, such high reliability requirements can
never be verified. Therefore, it is the authors opinion that it is rather irrational to attach
any objective meaning to reliability values of 1−10−9 or more. The reliability specification
in this case comes down to requiring an extremely reliable product, which is a clear step
towards treating reliability in a subjective non-deterministic context.

As discussed in section 2.1.1, while applying the probabilistic concept for the represen-
tation of subjective information is possible, results from such an analysis should definitely
not be interpreted as indication for an absolute frequency of occurrence. This means that
the subjectiveness devaluates the use of the probabilistic results in a reliability context.
It is important to note that the subjectiveness incorporated in the information on which
the analysis is based is not always detected. For instance, neglecting unknown correlation
between properties by assuming them as independent is a common simplification that is
sometimes implicitly made, but that can have important consequences. This implicit as-
sumption of independence between probabilistic quantities was one of the important errors
that were the source of the Challenger space shuttle disaster [63]. In this case, the im-
pact of different extreme weather conditions on the launch was analysed for each condition
individually beforehand. The impact of a combination of more than one of these events,
however, was never checked. Although each of the events had a very low probability of
occurring, the probability of their combination proved to be not simply a multiplication of
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the probabilities of the single events. The correlation between the conditions was clearly
misjudged, leading to a plausible but unaccounted for weather situation with disastrous
consequences.

The lack of credibility of numerical predictions of reliability is generally compensated by
safety factors. However, one could argue that using these safety factors after applying so-
phisticated and computationally expensive numerical procedures is not a really economical
situation. Much effort is spent on a numerical prediction, which, in the end, still has to be
corrected based on practical experience. In this context, the non-probabilistic approaches
could prove their value. The remainder of this section briefly discusses possible applications
of the non-probabilistic concepts for numerical reliability analysis.

3.3.3 Non-probabilistic reliability analysis

The application of the interval concept in numerical reliability studies is often referred
to as anti-optimisation. This name stems from the fact that from all numerical models
within the interval input boundaries, the one with the least favourable analysis result is
the most interesting from reliability point of view. Finding this least favourable result is
mathematically equivalent to performing a numerical optimisation aimed at the worst case
result with respect to the input intervals.

The concept of anti-optimisation has been introduced as the basis for a non-probabilistic
reliability framework [64]. This requires an evolution from a reliability concept as probability
of failure towards range of acceptable behaviour . This means that the design must assure
that the performance remains within an acceptable domain, without specifying a likelihood
of failure. Reliability then becomes a crisp criterion distinguishing between either acceptable
or unacceptable designs. The most important benefit of the anti-optimisation concept is
that it broadens the objectivity of reliability studies to uncertain variabilities with known
range, because the interval model perfectly represents these uncertainties without the need
for subjective input. For instance, this enables a fast assessment of dimension tolerances
on a design, without knowing the actual distribution of the dimension within the bounds
of the prescribed tolerance. For some cases, it can be shown that the anti-optimisation
procedure results in the same choice of design parameters as a probabilistic analysis if the
required reliability tends to one [65]. The anti-optimisation in this case proves to be far
less expensive in computation time.

The numerical implementation of the anti-optimisation approach is subject to an impor-
tant requirement. Since the result of the analysis is the source of a crisp decision between
acceptable and unacceptable designs, approximate results should always be kept on the safe
side of the exact result. This means that if approximate solution procedures are used in
the numerical implementation, they should guarantee conservatism in their result. On the
other hand, this conservatism should not be excessively high in order for the result to be
of any practical value.

Also the fuzzy concept has been introduced as a numerical reliability assessment tool [66]
. In the interpretation of the membership function as a degree of possibility, the fuzzy
outcome of an analysis could be used to define a possibility of failure. This possibility is
clearly influenced by the subjectiveness that is implicitly incorporated in the fuzzy input
of the analysis. This means that for the same problem, different analysts can and generally
will end up with different possibilities of failure. This could be compensated by defining
a personal threshold value for the allowed possibility of failure in the final decision on
acceptable or unacceptable designs. However, due to the necessary amount of personal
interpretation of the analyst, possibility of failure only has a relative value. Therefore, this
approach is extremely difficult to standardise in a general reliability framework.

Still, based on the α-sublevel technique as described in Section 2.3.2, the fuzzy approach
becomes very useful when the effect of interval bounds on the anti-optimisation result has
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Figure 13. Example of the application of the fuzzy outcome of a fuzzy finite ele-
ment analysis to predict bounds on the probability of failure

to be analysed. In this context, the fuzzy analysis can serve as a tool to derive the α-
level on which the required safety margins are reached on the crisp failure modes. The
input intervals derived from the input membership functions intersected at this α-level then
define the allowable range for the non-deterministic input properties. The fuzzy reliability
analysis as proposed by Biondini et al. [67] is based on this principle. The same approach
was applied by Catallo [68] for reliability assessment based on a fuzzy analysis of limit
state load multipliers of a precast concrete structure.

A different application of the fuzzy concept in reliability analysis is based on the use of
the membership function as limit cumulative density functions as explained in Section 3.2.3.
It was shown by Ferrari et al. [69] that if the input membership functions represent bound-
aries on the cumulative density functions of the input parameters, the membership function
resulting from fuzzy analysis on this input forms reliable boundaries on the actual cumu-
lative density function of the result. Therefore, the fuzzy result of a fuzzy finite element
analysis can be used to derive bounds on the probability of failure. A simple example illus-
trates this. Suppose that a fuzzy finite element analysis results in a membership function
µλ̃ (λ) representing a crucial eigenfrequency of a design as illustrated in Figure 13. Suppose
furthermore that a crisp criterion states that the design is acceptable if this eigenfrequency
is kept below the value λ∗. The fuzzy result envelopes the exact cumulative density function
of the eigenfrequency. This means that the bounds on the probability that the eigenfre-
quency of the design lies below λ∗ can be derived from the fuzzy result. The probability
interval is obtained from taking the value of the envelope curves at λ∗ as indicated in the
figure by P ′

f and P ′
f . The most conservative statement resulting from the analysis is that

the probability of failure equals (1 − P ′
f ) in the worst case.

It is clear that also the above non-probabilistic reliability methods are subject to the
limitation that whenever there is subjective information involved in the problem definition,
the results can not be interpreted as absolute measures of design quality. In an absolute
reliability context, the amount of expert knowledge required in the distinction between a
good or bad design is proportional to the amount of subjectiveness incorporated in the
description of the non-determinism. Still, subjective analysis can be of great value when
used in a relative framework, as for instance a design optimisation procedure. This will be
discussed in the next section.

3.3.4 Numerical design optimisation

The principal goal of design optimisation is to define the best possible product under certain
restrictions. These restrictions can be anything from manufacturing cost to limitations
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placed on physical properties of the design. The ingredients of the goal function and their
relative weights determine the final result of the optimisation. Reliability can be used as
an indication for the design quality, and therefore can be an important part of the goal
function. Classically, this is approached from a probabilistic view point, and referred to
as reliability based design optimisation. Youn et al. [70] gives an overview of different
approaches that aim at an increase in design quality or robustness through an optimisation
based on numerical reliability predictions.

Still, when reliability is used as a design quality indicator in an iterative design op-
timisation process, the demands on the objectivity are much lower than when it is used
for absolute design assessment. A relative reliability improvement during an optimisation
process can already be very valuable, even though the absolute reliability is only roughly
approximated. This means that also subjective analysis can be usefully applied in a design
optimisation context. While applying subjective probability for this purpose is possible, it
is not always the most advisable approach. In some cases, especially in design optimisation,
a probabilistic reliability measure is not required. For instance, if the range on some param-
eters is all information that is available, placing subjective probability density function on
these ranges only complicates the numerical problem, while it doesn’t necessarily add any
valuable meaning to the analysis. In that case, it doesn’t really make sense to transform
the problem to the probabilistic concept. Or as formulated by Ross et al. [71]: Sometimes,
striving for precision can be expensive, or adds little or no useful information, or both.
This indeed holds for the application of reliability calculations in an iterative optimisation
procedure, where the numerical efficiency becomes very important. It is now discussed to
what extend the non-probabilistic approaches can be considered as valuable alternatives for
design analysis in an optimisation framework.

For the interval concept, the most useful application lies in modelling invariable un-
certainties. Though they are assumed to be constant, they could play an important role
during design optimisation. The analyst may ask the question whether the defined ranges
for the invariable uncertainties result in an allowable range for the behaviour, without re-
ally being interested in the likelihood of occurrence within the defined interval bounds. Or,
alternatively, the invariable uncertainty represents an open design decision, i.e., a model
property that has yet to be quantified, and the value of which will be optimised. Pure
probabilistic analysis in both cases seems like an unnatural thing to do, since it requires
information that is not available (probabilistic input) to produce information that is not
requested (probabilistic output). The interval procedure is limited to the definition of the
intervals on the uncertainties the analyst would like to take into account. Subsequently, the
design can be assessed from an interval analysis by reassuring that the worst case output
is still within the range of acceptable physical behaviour. This comes down to a worst-case
oriented design optimisation.

A commonly formulated criticism on this approach is that the worst-case behaviour gen-
erally results from the combination of extremely rare events. Taking these combinations
into account in a design assessment procedure could lead to severe over dimensioning. This
criticism only holds if you can objectively verify the actual probability of occurrence of the
model properties which are considered to be extreme events. But even more important, if
you want to give a realistic weight to the actual occurrence of such an extreme combination
of events, it is imperative to incorporate the exact mutual interdependence between these
extreme events in the procedure, as discussed for the Challenger case in section 3.3.2. In
such cases, worst case analysis could be a tool for identification of extreme events which
lead to failure, without the need for a prediction of the actual probability of this extreme
event. This identification should not necessarily lead to adapted designs and the generally
associated over dimensioning. In the Challenger case, accustomed launch protocols incorpo-
rating identification of possible disastrous extreme weather conditions would already have
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Figure 14. Illustration of the application of fuzzy concept for design tolerance analysis

been of great value.
As discussed in the previous section, due to its implicit subjective nature, the value of

fuzzy finite element analysis as an absolute reliability analysis tool is rather limited. In an
optimisation procedure, however, the complete process is generally conducted or followed
up by one and the same analyst. This means that the subjective possibility measure can
be interpreted in a consistent manner throughout the optimisation procedure. Therefore,
the possibility of failure can be used as a quality measure in an optimisation procedure.
In this context, Choi et al. [72] recently introduced a possibility-based design optimisation
procedure based on a fuzzy representation of the uncertain design aspects.

Apart from reliability optimisation, an important aspect of designing under uncertainty
is to define a robust design, i.e., a design whose critical properties have a minor sensitivity to
changes in the uncertain influences like for instance external loading. Also in this context,
the fuzzy approach can be of value. By placing fuzzy membership functions as loading
factors on the crucial loading components, the sensitivity of some design quality indicators
to these external influences can be analysed. Using this approach, the robustness of the
design can be assessed by measuring the width of the resulting membership function on the
critical design quality indicators.

Another practical approach of the fuzzy analysis is in the study and choice of tolerances
placed on design dimensions. From the α-cut strategy, it is clear that the fuzzy finite
element analysis is actually a large-scale sensitivity analysis of the combined effect of the
bounds defined on some interval design variables on critical design properties. By placing
membership functions on the design properties subject to tolerances, the effect of their range
on the design behaviour can be analysed. This can be helpful in defining tolerance intervals
in the model. For instance, at a certain α-level, an allowable range could be identified in
the fuzzy outcome of the analysis. The corresponding input intervals at this α-level can
then be chosen as the set of tolerances on the analysed design properties. This procedure
is clarified in Figure 14, where the design specification is assumed to be an upper bound
λ∗ on an eigenfrequency. The analyst can control the analysis by defining the possibility
distributions on the input according to personal preference or practical limitations. A
different possibility distribution for the design variables will yield a different possibility
distribution of the analysis result, and consequently also different tolerances for the design
variables. The design based on these alternative allowable ranges, however, is equally safe.
In this context, again, the possibility distribution is rather a useful tool to control the
allowable range for the uncertainties than an absolute quality measure.
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3.4 How are probabilistic, interval and possibilistic analyses related?

Elishakoff [73] compares the concepts of probabilistic analysis, fuzzy sets and anti-
optimisation applied on finite element analysis. He concludes that each of the methods
has its own advantages and could be preferred above the others under specific circum-
stances. De Lima et al. [74] compared the result of a probabilistic finite element analysis
and an equivalent fuzzy finite element analysis analysis on a simple example. He concludes
that the fuzzy method leads to less expensive qualitative results which are adequate for
practical engineering purposes.

To compare the applicability of the different methods, it is of interest to study the
performance of each of the different concepts when applied to the same design problem.
After all, they are all aimed at providing the analyst with enough information on the
influence of the non-deterministic input on the numerical analysis to draw conclusions
regarding the performance of the design. Maglaras et al. [75] compares experimentally
the designs resulting from optimising reliability in both a probabilistic and possibilistic
framework. He concludes that the design acquired through probabilistic analysis is better
when there is enough information to describe the probabilistic data realistically. Another
comparison of probabilistic and possibilistic design under uncertainty by Nikolaidis et
al. [76] demonstrates that a fuzzy set method yields safer designs than probabilistic design
methods when very limited information is available. Both these conclusions confirm the
main drawback of probabilistic analysis, i.e., the fast devaluation of its result with increasing
lack of information on the non-deterministic input.

It could be useful to do an analysis using a mixture of different uncertainty models,
for instance when there is sufficient statistical data to describe some variabilities, but also
uncertainties are present in the model. For this purpose, a hybrid finite element analysis has
been developed by Langley [77]. It consists of a single mathematical algorithm to analyse
all three models of non-deterministic quantities simultaneously, based on a SORM or FORM
approach for reliability. A different approach for combined uncertainty and variability
analysis was proposed by Rao et al. [78]. It is based on a separate probabilistic and non-
probabilistic analysis run, after which both results are unified to a hybrid-uncertainty mean
value and variance.

Based on the discussion in Sections 3.1, 3.2 and 3.3, it is concluded that the mutual
relationship between the probabilistic and the non-probabilistic approaches is rather weak.
While both can be put to use in a numerical design procedure, their application field is
strongly dependent on the available information and the intention of the numerical analysis.
Considering a design process as given in Figure 12, this leads to the conclusion that the
non-probabilistic approaches should be regarded as complementary rather than competitive
to the probabilistic approach.

4 NUMERICAL IMPLEMENTATION OF THE INTERVAL FINITE ELE-
MENT METHOD

The previous section clearly shows that the interval and fuzzy approach can be very valuable
concepts for modelling incomplete information under specific circumstances. It is clear
that, using the α-level strategy as described in Section 2.3, the interval analysis forms the
numerical backbone of the fuzzy implementation. This section now focusses exclusively on
the implementation of the interval finite element methodology. Sections 4.1, 4.2 and 4.3
describe three principle strategies to tackle the general problem as defined in Eq. (20) in
Section 2.2. Section 4.4 then gives an overview of the application of these strategies for
selected finite element analysis types.
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4.1 The Global Optimisation Approach

In essence, calculating the smallest hypercube around the solution set expressed in Eq. (20)
is equivalent to performing a global optimisation, aimed at the minimisation and maximi-
sation of the components of the deterministic analysis results {y}. The deterministic finite
element analysis is the goal function of the optimisation and the uncertain parameters are
the design variables. The interval vector in which the uncertain parameters are contained
defines the constraints for the variables. The optimisation is performed independently on
every element of the result vector {y}. Therefore, the solution set of Eq. (20) becomes an
interval vector {y} describing the hypercube around the exact solution:

{y} =




y1

y2
...

yn


 (33)

with:

y
i

= min
{x}∈{x}

fi

(
{x}
)
, i = 1 . . . n (34)

yi = max
{x}∈{x}

fi

(
{x}
)
, i = 1 . . . n (35)

An efficient and robust optimisation algorithm is primordial for this solution strategy. Rao
et al. [38] applied Powell’s method to tackle the optimisation. Köylüoğlu et al. [79]
defined a linear programming solution for this purpose. Möller et al. [80] introduces a
genetic approach to perform the global optimisation efficiently on every α-level. The in-
put interval vector defines the number of constraints and, therefore, strongly influences the
performance of the procedure. Also, because of the required execution of the deterministic
finite element analysis in each goal function evaluation, the optimisation approach is nu-
merically expensive. Therefore, this approach is best suited for rather small finite element
models with a limited number of input uncertainties.

4.2 The Interval Arithmetic Approach

The interval arithmetic approach consists of translating the complete deterministic numer-
ical finite element procedure to an equivalent interval procedure. This translation is based
on the interval arithmetic operations for addition, subtraction, multiplication and division
of interval scalars:

a + b =
[
a + b, a + b

]
(36)

a − b =
[
a − b, a − b

]
(37)

a × b = [min(a × b, a × b, a × b, a × b) max(a × b, a × b, a × b, a × b)] (38)

a/b = a ×
[

1
b
, 1

b

]
, if 0 /∈ b (39)

By replacing each of the basic operations in a deterministic code with its interval arithmetic
counterpart, the corresponding interval code is generated. This means that the outline of
the interval procedure corresponds completely to the deterministic procedure. The main
difference is that each substep of the interval algorithm calculates the range of the interme-
diate subfunction instead of the deterministic result. Application of this principle on the
complete algorithm results in the range of the output of the analysis.
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There is an important drawback for this method. The inclusion property for ranges
of nested functions states that an arithmetic interval operation introduces conservatism in
its result if it neglects correlation that exists between the operands. A simple example
illustrates this. Consider the function:

f
(
{x}
)

=
(
(x1 + x2) (x1 − x2)

)2 (40)

applied on the intervals:

{x} =
{

x1
x2

}
=
{

[−1, 2]
[−2, 3]

}
(41)

Using the global optimisation approach, it is easily checked that the exact range of the
above function equals:

〈f〉{x} = [0, 81] (42)

The interval arithmetic approach now consists of the translation of all operations in the
function as defined in Eq. (40) to their interval arithmetic counterparts. By rewriting
Eq. (40) as f ({x}) = z2

2 with:

z2 = z11 × z12 (43)
z11 = x1 + x2 (44)
z12 = x1 − x2 (45)

and translating these subfunctions, we obtain:

〈z11〉{x} = [−3, 5] (46)

〈z12〉{x} = [−4, 4] (47)

〈〈z2〉〉{x} = [−20, 20] (48)

〈〈y〉〉{x} = [−400, 400] (49)

It is immediately observed that although this is a very easy implementable procedure, the
final result is subject to a very large amount of conservatism, caused by the artificial inde-
pendence between the operands x1 and x2 of the subfunctions. In an automatic computer
procedure, this phenomenon cannot be avoided because it is impossible to keep track of the
relationships between all intermediate results of the algorithm. Consequently, each interval
substep results in an enclosure of the exact substep range. Therefore, also the final result
is a conservative approximation of the exact range. Generally, the degree of conservatism
is unknown. It possibly can be too high to be useful for practical applications. In order to
be of any practical use, it is imperative that any newly developed interval procedure based
on the interval arithmetic approach is thoroughly checked on its vulnerability to artificial
conservatism in its results.

The implementation of the interval finite element approach based on this interval arith-
metic approach consists of two parts:

1. The translation of the input intervals {x} to an interval system description in the
form of interval system matrices. These are obtained by translating the deterministic
assembly procedure to interval analysis. In a first step, the element interval matrices
are obtained. For instance, for undamped structural dynamic analysis, these are
denoted by [Kei ] and [Mei ]. The interval arithmetic equivalent of the assembly phase
then results in the interval system matrices [K] and [M].



424 D. Moens and D. Vandepitte

{x}

[Ke1 ] [Me1 ] [Ke2 ] [Me2 ] [Ken ] [Men ]

. . .

[K] [M]

〈{y}〉[K][M]

element 1 element 2 element n

assembly of the interval system matrices

interval analysis

Figure 15. Scheme of the interval arithmetic implementation of an undamped
structural dynamic interval finite element analysis

2. The approximation of the solution of the analysis expressed as an interval problem
using the interval system matrices. . The exact solution set then becomes:

〈{y}〉[K][M] =
{
{y} |

(
[K] ∈ [K]

)(
[M ] ∈ [M]

)(
{y} = f

(
[K] , [M ]

))}
(50)

with f the function representing the calculation of the analysis result based on the
system matrices.

The interval arithmetic finite element procedure is graphically summarised in Figure 15.
It is clear that through the numerous basic operations that are required in a general

finite element solution procedure, the amount of conservatism introduced by the inclusion
property can be substantial. The interval matrix assembly phase was shown to have a very
important contribution to this conservatism in the final analysis results [41]. So far, there
is very little effort in literature to remedy, study or even acknowledge the sources of con-
servatism inherent to the interval arithmetic procedure. Nearly all current research in this
area starts from the interval system matrix formulation of the problem, totally disregarding
the interval matrix assembly phase. One fact remains too often covered in silence: even if
the exact interval solution of the interval arithmetic equivalent of the deterministic analysis
can be obtained, there remains a substantial amount of conservatism with respect to the
original problem due to the conservatism in the matrix assembly phase. In order to real-
istically assess any interval finite element implementation based on the interval arithmetic
approach, it is imperative to analyses all sources of uncertainty, including those resulting
from the assembly phase.

From a numerical point of view, the applicability of the interval arithmetic strategy
mainly depends on the availability of a calculation procedure for the hypercubic approxi-
mation of the solution set of Eq. (50). This procedure strongly depends on the numerical
properties of the intended finite element analysis, as will be discussed in Section 4.4.

4.3 The Vertex Method

Dong et al. [81] introduced the vertex method as a tool for the approximation of the bounds
on the exact set resulting from a general operation on one or multiple interval numbers. The
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approximation results from introducing all possible combinations of the boundary values
of the input intervals into the analysis. For N input intervals, there are 2N vertices for
which the analysis has to be performed. These vertices are denoted by {cj} , j = 1, . . . 2N .
Each of these represents one unique combination of lower and upper bounds on the N input
intervals. The approximate analysis range of a function f(.) applied on these intervals is
deduced from the extreme values of the set of results for these vertices:

{y} ≈
[
min

j
f
(
{cj}

)
,max

j
f
(
{cj}

)]
(51)

In literature, the vertex method is by far the most applied numerical procedure to calcu-
late output sets of interval and fuzzy finite element analyses. Hanss et al. [82] formulates a
transformation method in order to organise the vertex method such that the fuzzy solution
can be efficiently calculated. Despite its simplicity, this method has some disadvantages. It
is clear from Eq. (51) that the computational cost increases exponentially with the number
of input intervals. This limits the applicability of the vertex method to rather small sys-
tems, or systems with few interval uncertainties. The main disadvantage of this method is
that it cannot identify local optima of the analysis function which are not on the vertex of
the input space. To illustrate this, the vertex method is now applied on the problem stated
in Eq. (40) and (41). By substituting the four vertex combinations into the function, we
obtain the solutions {0, 9, 25, 64}, and therefore:

〈y〉{x} ≈ [0, 64] (52)

This means that in this case, the vertex solution is an inner approximation of the actual
range of the function as given by the global optimisation solution of Eq. (42). More gen-
erally, we can state that the vertex method only results in the smallest hypercube if the
analysis function is monotonic over the considered input range. This is a strong condition
that is difficult to verify for finite element analysis because of the complicated relation of
analysis output to physical input uncertainties. The approximation obtained when mono-
tonicity is not guaranteed is not necessarily conservative. This fact reduces the validity of
this method for design validation purposes. Recently, Hanss [83] suggested an extension
of the classical vertex procedure in order to deal with this problem of non-monotonicity.

4.4 Implementation of the Interval Methodology for Selected Finite Element
Analysis Types

4.4.1 Static finite element analysis

In the case of static finite element analysis, the second phase of the interval analysis consists
of an equilibrium or steady-state problem. This is numerically equivalent to a matrix
equation which requires the solution of a system of equations. Historically, this problem
has been addressed most frequently in its interval arithmetic formulation. Using the interval
arithmetic approach, the interval matrix problem yields:

〈
{y}
〉

=
{
{y} |

(
[A] ∈ [A]

)(
{b} ∈ {b}

)(
[A] {y} = {b}

)}
(53)

with {b} the interval vector representing the uncertain generalised loading of the considered
model. This solution set contains all vectors {y} which are a solution of the matrix equation
[A] {y} = {b} with [A] and {b} ranging respectively over the interval objects [A] and {b}.
From the world of interval arithmetic, this solution set is referred to as the united solution
set [84] and denoted by Σ∃∃

(
[A], {b}

)
. In general, the components of this united solution
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Figure 16. Exact output set of a 3D static interval finite element problem

set are related because they result from common interval coefficients in the equations. The
exact solution set is described analytically by the Oettli-Prager lemma [85]:

{y} ∈ Σ∃∃
(
[A], {b}

)
⇔
∣∣∣[Ǎ] {y} − {b̌}∣∣∣ ≤ [Ā]∣∣∣{y}∣∣∣+ {b̄} (54)

In order to illustrate the complex form of the united solution set, a simple example is
analysed. Consider the following interval system of equations:

 3.5 [0, 2] [0, 2]
[0, 2] 3.5 [0, 2]
[0, 2] [0, 2] 3.5






y1

y2

y3


 =




[−1, 1]
[−1, 1]
[−1, 1]


 (55)

For this problem, the description of the exact united solution set as defined in Eq. (53)
is possible using the Oettli-Prager lemma. The inequality in the right-hand side of
Eq. (54) defines a polyhedron in the output space. Figure 16 illustrates this polyhedron for
this specific case. This figure clearly illustrates the complex nature of the united solution
set. This complexity further increases for systems of a higher order. Neumaier [86] shows
that the Oettli-Prager lemma is of little use for numerical implementation of a solution
procedure for physical relevant structures. Furthermore, it has been shown in literature that
any iterative solution scheme which pursues this exact solution set is extremely hard even
for small academic problems. Consequently, there is no generally applicable procedure for
the exact calculation of the united solution set. Therefore, current research in this domain
focusses on the development of efficient calculation procedures of hypercubic approximations
of the exact solution set.

Based on the interval arithmetic approach as described in Section 4.2, basically any
deterministic procedure that solves the system of equations is a possible candidate for step-
by-step translation to an interval procedure. One of the first efforts to give a hypercubic
approximation of the united solution set is given by Alefeld et al. [87], who derived the in-
terval equivalent of the standard Gaussian elimination scheme. Neumaier [86] formalises
and extends the Gaussian approach by preconditioning the interval matrices. However,
due to the large number of required interval operations, this method is subject to ex-
treme conservatism as far as realistic finite element models are concerned. More recently,
Shary [88, 84] introduced an algebraic approach for the problem. His approach, however,
poses strong restrictions on the properties of the interval matrix. These properties are sel-
dom met by a generalised stiffness matrix resulting from a finite element model description.
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Rao et al. [89] proposes a strategy to limit the large amount of conservatism introduced by
the Gaussian approach. It consists of placing a maximum on the width of the intervals in
each substep of the algorithm. The truncation threshold is determined based on the width
of the input variables. While this is a simple approach, it is a rather artificial and unsafe
method to reduce conservatism. Many other approaches have been proposed to approxi-
mate the exact united solution set, among which a Taguchi design of experiments based
approach [90], an iterative solution based on inclusion method of Rump [91] and interval
perturbation analysis [92]. See also Rao et al. [89] and McWilliam [93] for an elaborated
comparison and numerical examples of some strategies.

Still, as mentioned above, it is imperative to check the conservatism introduced by any
method that is based on the interval arithmetic approach. One has to keep in mind that
the conservatism of the solution increases with every interval operation. Therefore, the
amount of conservatism depends strongly on the chosen algorithm, as clearly demonstrated
by Hanss et al. [82] comparing the result of the interval equivalent of a finite element
analysis using the direct matrix inversion and decomposition technique. Furthermore, it
was shown that, even if the smallest hypercube surrounding the united solution set can be
calculated, there remains a substantial amount of conservatism due to the matrix assembly
phase [94]. This is caused by neglecting the correlation between the entries of the finite
element matrices which is generally very high. For instance, an interval on a geometrical
uncertainty will affect all matrix entries that relate to this property. Although it is clear
that the different matrix entries that are related to a single uncertain model property
are strongly coupled, the interval arithmetic approach totally disregards this correlation by
posing independent intervals in the matrix. This means that the problem stated in Eq. (53)
already incorporates a high amount of conservatism. The only possible remedy for this is
to shortcut the matrix assembly by inserting the interval quantities directly as physical
properties into the analysis. This can be achieved using either the vertex or the global
optimisation approach.

The global optimisation approach requires a solution of the full system for each iteration
within the optimisation procedure. This can become an extremely expensive task, especially
for large models. Furthermore, the optimisation has to be repeated for each individual
output quantity (nodal displacement, reaction force) the analyst is interested in. Therefore,
the vertex analysis is far more popular in current literature on interval finite element solution
strategies. However, it is important to stress that the validity of the vertex analysis results
relies entirely on the response quantity having a monotonic relationship with respect to the
input uncertainties. This is very hard to check, and certainly not generally true for static
analysis. Therefore, vertex results of static interval finite element problems should always
be interpreted with caution.

4.4.2 Eigenvalue analysis

The deterministic procedure of the finite element eigenvalue analysis consists of the assem-
bly of the system stiffness and mass matrices [K] and [M ], after which the deterministic
eigenvalue λi satisfies the equation:

[K] {φi} = λi [M ] {φi} (56)

with {φi} the corresponding eigenvector. In the corresponding interval procedure, the aim
is to calculate the bounds on specific eigenfrequencies, given that the uncertain parameters
are within their defined ranges {x}. Using the function Λx

i :

λi = Λx
i ({x}) (57)

which explicitly relates the eigenvalue to the uncertain input parameters, the solution set
of the interval problem can be written as 〈Λx

i 〉{x}.
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The equivalent interval arithmetic interval finite element procedure requires the calcu-
lation of the solution set:{

λi |
(
[K] ∈ [K]

)(
[M ] ∈ [M]

)(
[K] {φi} = λi [M ] {φi}

)}
(58)

with [K] and [M ] incorporating implicitly the dependency of the system matrices on the
input parameters. Condensing Eq. (56) to an explicit function of the system matrices:

λi = ΛKM
i ([K] , [M ]) (59)

the solution set of Eq. (58) is rewritten as:〈
ΛKM

i

〉
[K][M] (60)

It can be shown that, assuming independent interval system matrices, the exact bounds
of this solution set are achieved for vertex matrix combinations [95]. This means that,
based on the assumption that all interval entries appearing in the system matrices are
independent, the exact solution of the interval eigenvalue problem can be found. Some
algorithms have been developed which efficiently calculate this exact vertex solution of the
interval eigenvalue problem. Chen et al. [95] introduced a non-iterative procedure based on
the Rayleigh quotient, which states that the lower and upper bound on the ith eigenvalue
follow directly from two deterministic eigenvalue problems:([

Ǩ
]
+
[
Si
] [

K̄
] [

Si
]) {

φi

}
= λi

([
M̌
]
−
[
Si
] [

M̄
] [

Si
]) {

φi

}
(61)([

Ǩ
]
−
[
Si
] [

K̄
] [

Si
]) {

φi

}
= λi

([
M̌
]
+
[
Si
] [

M̄
] [

Si
]) {

φi

}
(62)

with
[
Si
]

= diag
(
sgn(φ1

i ), . . . sgn(φn
i )
)

and {φi} the ith eigenvector from the deterministic
analysis at the midpoints of the matrices. This method requires all the components of
the eigenvector to have a constant sign over the considered domain and does not allow
the occurrence of an eigenfrequency cross-over in the input parameter space. An enhanced
methodology was developed by El-Gebeily et al. [96]. It provides a solution for the original
problem with an extra restriction of symmetry on the considered system matrices:{

λi |
(
[Ks] ∈ [K]

)(
[Ms] ∈ [M]

)(
[Ks] {φi} = λi [Ms] {φi}

)}
(63)

with Ks and Ms symmetric. The most important effect of this extra restriction is that
it intrinsically removes the conservatism resulting from allowing artificial non-symmetric
system matrices. The numerical procedure is based on the interval translation of the deter-
ministic Sturm sequence. It proves to be an efficient iterative algorithm. Unfortunately, it
is limited to tridiagonal system matrices. This makes it only applicable for specific cases.

Currently, a number of research activities aiming at approximating the solution of the
problem stated in Eq.(58) are still ongoing. Chen et al. [97] proposed a method based on
an interval perturbation strategy. More recently, Qiu et al. [98] introduced a procedure
for the calculation of interval eigenvalues based on a non-negative decomposition of the
stiffness and mass matrices. However, similar as for the interval arithmetic approach for
static problems discussed in Section 4.4.1, also here there is a substantial amount of conser-
vatism incorporated in the interval matrix problem stated in Eq.(58) since the entries of the
system matrices are implicitly decoupled. Furthermore, in this case, there is an additional
source of conservatism due to the independent treatment of the mass and stiffness matrices.
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These matrices indeed could be strongly mutually related, for instance when geometrical
uncertainties are considered. Again, neglecting this coupling can introduce a severe over-
estimation in the obtained interval eigenvalue results, as also illustrated in [94]. Therefore,
we have: 〈Λx

i 〉{x} ⊆
〈
ΛKM

i

〉
[K][M] (64)

The exact amount of this conservatism is strongly problem-dependent. Therefore, it is very
difficult to assess the results obtained from the interval matrix problem, no matter how
close the exact solution set is approximated.

When applying the vertex approach to remedy the conservatism, again it should be
verified whether the eigenvalues have a monotonic behaviour over the interval input space.
Although this is generally the case, it is very hard to check this condition. The global
optimisation approach on the other hand comes down to a minimisation and maximisation
for each considered eigenfrequency:

〈Λx
i 〉{x} =

[
min

{x}∈{x}
(
Λx

i ({x})
)
, max
{x}∈{x}

(
Λx

i ({x})
)]

(65)

The main advantage of the optimisation strategy is that it returns the exact range of the
eigenvalues without any conservatism if performed successfully. Any numerical optimisa-
tion algorithm can be used to do this optimisation. The performance of most optimisation
algorithms increases substantially when analytical expressions are available for the deriva-
tives of the goal function to the design parameters. For the eigenvalue optimisation, these
derivatives can be calculated analytically based on the system matrices derivatives [99]:

∂λi

∂xj
=

{φi}T
(

∂[K]
∂xj

− λi
∂[M ]
∂xj

)
{φi}

{φi}T M {φi}
(66)

Accordingly, the optimisation approach for interval eigenvalue analysis generally is not com-
putationally expensive when the system matrices derivatives are known. But also when the
derivatives have to be approximated numerically, generally a good convergence is observed.
The numerical efficiency combined with the total absence of conservatism in the obtained
results make the optimisation approach by far the most interesting for interval eigenvalue
analysis.

5 A NOVEL APPROACH FOR INTERVAL FREQUENCY RESPONSE
FUNCTION ANALYSIS

Different experimental studies show that the variability of physical properties of nomi-
nally identical structures can cause a large variability in the frequency response func-
tion [100, 101]. This substantially influences the predictive quality of deterministic nu-
merical frequency response function analyses of these structures. There have been some
attempts to study the scatter on the frequency response function in a probabilistic way.
Worden [102] derives confidence bounds on the response function using a Monte Carlo
simulation approach. Next to the fact that this procedure is computationally very expen-
sive, the calculated probabilistic characteristics of the response proves to be very sensitive
to variations in the probabilistic data used at the input of the problem. This stresses
the necessity of the use of trustworthy probabilistic input data and encourages the use of
alternative uncertainty models when incomplete knowledge is present. Therefore, the de-
velopment of an alternative non-deterministic frequency response function analysis method
based on the interval uncertainty representation embodies a very useful extension of the
interval finite element analysis capabilities.



430 D. Moens and D. Vandepitte

In order to achieve this, a new hybrid solution strategy is first introduced. This strategy
combines the global optimisation approach with the interval arithmetic approach. The
basic principle of this procedure is described and illustrated on an example in Section 5.1.
Section 5.2 then shows how this hybrid strategy can be usefully applied to calculate the
envelope frequency response function of an interval finite element model through the modal
superposition principle.

5.1 A Hybrid Approach for the Interval Finite Element Implementation

In limited cases, a possible remedy to the conservatism in an interval arithmetic procedure
is to perform as much as possible of the deterministic procedure analytically. The goal is to
obtain an analytical description of some intermediate result in the algorithm, expressing the
parametric dependency of this intermediate result to the uncertain model properties. By
substituting the intervals in the obtained parametric expression, all sources of conservatism
which occur before the point in the algorithm where the intermediate result occurs will be
neutralised. Computing local element matrices of simple elements based on the analytical
description rather than a numerical integration is an elementary illustration of this principle
in the framework of the interval finite element analysis. For instance, for a bar element in
a two-dimensional finite element analysis, the analytical description of the stiffness matrix
in the local coordinate system yields:

[Ke
local] =

EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


 (67)

Interval uncertainties defined on the element properties appearing in this matrix now can
be directly substituted in this analytic expression. The main advantage of this approach is
that intervals on properties that are brought outside the matrix now no longer introduce
conservatism through a decoupling of the matrix entries.

A possible extension of this strategy is to perform both the deterministic element ma-
trix calculation and the total system matrix assembly analytically. This enables a similar
procedure as described on the element level for global properties which can be brought out-
side the total system matrices. This approach was introduced by Enling [103] and later
used by Dessombz et al. [91] to decrease the conservatism resulting from a globally defined
uncertain Young’s modulus. Mullen et al. [42] used a method based on an analytical
description to introduce uncertainty on the load vector in the final step of an algorithm.
While it is theoretically exact, this parametric approach is limited to small models with
uncertain parameters that allow for a parametrical expression of the system matrix.

In order to extend the applicability of the interval finite element method, a more gen-
erally applicable remedy to excessive conservatism is derived from this principle. Instead
of a partial analytical procedure, it consists of a partial optimisation in the first part of
the analysis. This means that an optimisation is applied to calculate the interval result at
some intermediate step of the total algorithm. In the second part, the interval analysis is
performed on these intermediate results.

This method has two major advantages:

• because of the global optimisation, all conservatism prior to the optimised intermedi-
ate result is neutralised

• the performance of the optimisation step is controllable by adequately choosing the
level on which to perform it
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deterministic
algorithm

interval arithmetic
algorithm

hybrid algorithm

z11 = x1 + x2

z12 = x1 − x2

z2 = z11 × z12

y = z2 × z2

〈z11〉{x} = [−3, 5]

〈z12〉{x} = [−4, 4]

〈〈z2〉〉{x} = [−20, 20]

〈〈y〉〉{x} = [−400, 400]

〈z2〉{x} = [−9, 4]

〈〈y〉〉{x} = [−36, 81]

Figure 17. Comparison of the interval arithmetic and hybrid approach for the approxi-
mation of the result of an interval problem

The effect of the hybrid approach can be illustrated using the simple numerical example
of Eq. (40) and (41). Figure 17 gives the deterministic algorithm and the pure interval
arithmetic solution sequence as discussed in Section 4.2. It also describes the solution of
the same problem using the hybrid procedure with an optimisation performed on the result
z2 of the second substep of the deterministic algorithm. This optimisation is mathematically
expressed as:

〈z2〉{x} =

[
min

{x}∈{x}
(
x2

1 − x2
2

)
, max
{x}∈{x}

(
x2

1 − x2
2

)]
(68)

The hybrid approach clearly results in a substantial improvement of the conservative result
approximation compared to the pure interval arithmetic approach.

Section 5.2 now illustrates how this hybrid procedure can be of use in the context of
an interval finite element frequency response function analysis. In the first part of this
procedure, the optimisation is used to translate the interval input parameter space to the
exact ranges of the modal stiffness and mass parameters of the structure. The calculation
of the envelope frequency response functions in the second part is done by applying the
interval arithmetic equivalent of the modal superposition procedure on these interval modal
parameters. This procedure neutralises all conservatism in the matrix assembly phase, since
it directly uses the modal parameters as goal functions in the optimisation part.

5.2 Hybrid Envelope Frequency Response Function Calculation

The frequency response function between DOF j and DOF k of a finite element model is
obtained taking the jth component of {X} satisfying the dynamic equilibrium equation of
undamped structures: (

[K] − ω2 [M ]
)
{X} =

{
F k
}

(69)

with

F k
i =

{
1 for i = k

0 ∀ i �= k
(70)

The basic problem of the envelope frequency response function procedure is the calculation
of the range of the jth component of the response vector taking into account the interval
ranges of the non-deterministic model properties in the interval vector {x}:

〈Xj〉 =
{

Xj |
(
{x} ∈ {x}

)((
[K] − ω2 [M ]

)
{X} =

{
F k
})}

(71)
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with [K] and [M ] incorporating implicitly the dependency of the system matrices to the
input parameters. Although this solution set consists of only one component of the response
vector, its exact calculation is not straightforward. The solution set is clearly a function of
the frequency ω. Therefore, the most straightforward solution strategy is to calculate this
set at a large number of discrete frequency lines in the considered frequency domain. The
corresponding algorithm consists of a sequence of interval finite element problems defined
on the deterministic linear systems of equations resulting from substituting discrete values
for the frequency ω in Eq. (69).

The translation of the deterministic frequency response function procedure to interval
arithmetics requires the solution of a sequence of interval systems of equations. As dis-
cussed in Section 4.4.1, there exists no generally applicable exact solution procedure for
this problem. Furthermore, the approximate solution procedures are all computationally
expensive and certainly not suited for application in a procedure that requires an iteration
of interval solutions at a large number of discrete frequencies. On the other hand, also the
application of the global optimisation strategy in this case is not advisable, since it requires
two global optimisations at a high number of discrete frequencies in order to have a global
view on the total envelope function. Clearly, the optimisation procedure for this analysis
becomes excessively expensive. Finally, also the vertex approach is not very appropriate in
this case. Since the response result generally is a highly non-linear function of the input
parameters, the response limits taken from the set of vertex results will generally not coin-
cide with the global interval bounds. Furthermore, the error on the vertex approximation
is very difficult to estimate. To conclude, neither the vertex, nor the optimisation nor the
interval arithmetic approach appear to be suited to solve the envelope frequency response
function problem. All are computationally expensive and in the end they do not guarantee
a useful result.

This conclusion leads to the application of the hybrid approach described in Section 5.1.
In order to apply this principle, a suitable algorithm has to be selected, i.e., an algorithm
exhibiting intermediate analysis results that are appropriate for a global optimisation proce-
dure. The modal superposition procedure has been selected for this purpose. Section 5.2.1
first briefly summarises the classical deterministic form of this algorithm, after which Sec-
tion 5.2.2 describes how it is translated to an interval procedure for the analysis of un-
damped structures. Sections 5.2.3 and 5.2.4 give two enhancements of the basic algorithm,
both aiming at a reduction of the conservatism. Finally, Section 5.2.5 describes how the
method can be extended to damped response analysis.

5.2.1 The deterministic modal superposition procedure

The modal superposition principle is easily derived from the basic dynamic equilibrium
Eq. (69) using the eigenvectors resulting from a preliminary eigenvalue analysis on the
system. The eigenvectors are assembled in a matrix [Φ] = [{φ1} , {φ2} , . . . {φn}]. After
premultiplying both the left- and right-hand side of Eq. (69) with [Φ]T and substituting
{X} with [Φ] {Y }, the equation becomes:

[Φ]T
(
[K] − ω2 [M ]

)
[Φ] {Y } = [Φ]T

{
F k
}

(72)

Due to the orthogonality of the eigenvectors, the matrix on the left-hand side is a diagonal
matrix for every frequency value. Using the definition of Eq. (70) for

{
F k
}

in the right-hand
side of this equation, the components of the vector {Y } yield:

Yi =
φik

{φi}T [K] {φi} − ω2 {φi}T [M ] {φi}
(73)
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with φik the kth component of the ith eigenvector. Introducing these components of {Y }
in {X} = [Φ] {Y }, the jth component of the vector {X} equals:

Xj =
n∑

i=1

φij φik

{φi}T [K] {φi} − ω2 {φi}T [M ] {φi}
(74)

According to the definition, this last expression equals the frequency response function
between DOFs j and k of the model. It is a function of ω and will be referred to as FRFjk.
Equation (74) is easily rewritten as:

FRFjk =
n∑

i=1

1
k̂i − ω2m̂i

(75)

=
n∑

i=1

FRF i
jk (76)

with FRF i
jk the ith modal frequency response function and k̂i and m̂i the normalised modal

parameters:

k̂i =
{φi}T [K] {φi}

φij φik

(77)

m̂i =
{φi}T [M ] {φi}

φij φik

(78)

The main advantages of this approach over the direct formulation as in Eq. (69) are that the
complete frequency domain is processed simultaneously, and that the computational effort
can be limited by only incorporating the modes within the frequency domain of interest.
Furthermore, the appearance of the modal mass and stiffness parameters as intermediate
results in the analysis makes this algorithm very appropriate for the application of the
hybrid approach.

5.2.2 Hybrid implementation of the envelope frequency response function analysis

The modal superposition procedure as described above can be divided in three consecutive
steps:

1. the calculation of the modal mass and stiffness parameters k̂i en m̂i for each mode
taken into consideration

2. the calculation of the modal response contributions FRF i
jk

3. the summation of all considered modal contributions

The hybrid approach now is applied on this procedure, taking the modal parameters as
intermediate results. This means that the exact ranges of the modal parameters of each
mode will be calculated using a global optimisation approach, resulting in:

〈
k̂i

〉
{x} =

{
k̂i |

(
{x} ∈ {x}

)(
k̂i =

{φi}T [K] {φi}
φij φik

)}
(79)

〈m̂i〉{x} =

{
m̂i |

(
{x} ∈ {x}

)(
m̂i =

{φi}T [M ] {φi}
φij φik

)}
(80)
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Figure 18. Scheme of the interval procedure resulting from applying the hybrid
approach to the modal superposition algorithm

The modal parameters ranges then are used to calculate the response ranges of the modal
contributions based on an interval arithmetic procedure. Finally, also the superposition is
performed using an interval arithmetic summation of the modal envelope response functions
from the previous step. Figure 18 summarises this procedure.

Since the optimisation is performed on the modal parameters, all sources of conservatism
that would appear prior to this point are neutralised. This includes the generally non-
negligible conservatism implicitly contained in the interval system matrices assembly phase.
On the other side, this means that the system matrices will have to be assembled for each
goal function evaluation. The remainder of this section now briefly summarises the most
important aspects of the three consecutive steps of this procedure.

Step 1: Modal parameter ranges

The first step of the procedure consists of the calculation of the modal parameter ranges〈
k̂i

〉
{x} and 〈m̂i〉{x}. An optimisation directly on the modal parameters, however, is not

possible because the expressions for the modal parameters given in Eq. (77) and Eq. (78)
can become singular if one of the modal vector components φij or φik equals zero within
the optimisation domain. However, based on their definitions of Eq. (77) and Eq. (78),
it is easily shown that the inverse of the modal parameters will always have a continuous
behaviour with respect to physical model parameters. Therefore, the optimisation will be
performed on the inverted modal parameters. Using the mass and stiffness normalised
modal vectors, this yields:

k̂−1
i =

[
min

{x}∈{x}

(
φK

ij φK
ik

)
, max
{x}∈{x}

(
φK

ij φK
ik

)]
(81)

m̂−1
i =

[
min

{x}∈{x}

(
φM

ij φM
ik

)
, max
{x}∈{x}

(
φM

ij φM
ik

)]
(82)
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with {
φK

i

}T
[K]

{
φK

i

}
= 1 (83){

φM
i

}T
[M ]

{
φM

i

}
= 1 (84)

The result of the optimisation could be a completely positive or completely negative interval,
or an interval ranging over zero if one of the eigenvector components reaches zero inside
the parameter space. Because of the possible inclusion of zero in the optimisation result,
the modal parameter range is obtained using the Kahan inversion [104]:〈

k̂i

〉
{x} = K−1

(
k̂−1

i

)
(85)

〈m̂i〉{x} = K−1
(
m̂−1

i

)
(86)

The result of this Kahan inversion is either a single interval with a constant sign or the
union of a positive and negative interval including respectively plus and minus infinity.
A mode for which the range of both normalised modal parameters k̂i and m̂i is entirely
positive or negative is referred to as a positive respectively negative mode. A mode the
modal parameters of which range over infinity is referred to as a switch mode. The result
of this part of the total algorithm is summarised as follows:

〈
k̂i

〉
{x} =

[
1

k̂−1
i

,
1

k̂−1
i

]
(87)

〈m̂i〉{x} =

[
1

m̂−1
i

,
1

m̂−1
i

]
(88)

for positive and negative modes, and:

〈
k̂i

〉
{x} =

[
−∞,

1

k̂−1
i

]
∪
[

1

k̂−1
i

,+∞
]

=
〈
k̂i

〉−
{x} ∪

〈
k̂i

〉+

{x}

(89)

〈m̂i〉{x} =

[
−∞,

1
m̂−1

i

]
∪
[

1

m̂−1
i

,+∞
]

= 〈m̂i〉−{x} ∪ 〈m̂i〉+{x}

(90)

for switch modes.
For the further development of the algorithm, the modal parameter ranges are combined

in a set vector for each mode:

〈
{p̂i}

〉
=



〈
k̂i

〉
{x}

〈m̂i〉{x}


 (91)

For a positive or negative mode, this is an interval vector which represents a rectangle in
the

(
k̂i, m̂i

)
-space. Therefore, this algorithm is referred to as the Modal Rectangle method

(MR).
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Step 2: Modal envelope frequency response function

The requested output of this step of the algorithm is the range of the modal response
function FRF i

jk taking into account the range of the modal parameters in the vector
〈
{p̂i}

〉
:〈

FRF i
jk

〉〈
{p̂i}

〉 =
{

1

k̂i − ω2m̂i

|
(

k̂i ∈
〈
k̂i

〉
{x}

)(
m̂i ∈ 〈m̂i〉{x}

)}
(92)

This step of the algorithm aims at the calculation of the modal envelope response function
in a continuous frequency domain. This means that it does not consider discrete frequency
values, but calculates the function range for the complete frequency range in one step. The
procedure consists of the calculation of the function range of the denominator of the modal
response contribution:

D(ω) = (k̂i − ω2m̂i) (93)
The range of this function then is inverted in order to obtain the actual modal envelope
response function. The procedure differs for switch modes and positive or negative modes.

For switch modes, it is immediately clear that any value can be obtained in the de-

nominator function using only the positive modal parameter ranges
〈
k̂i

〉+

{x} and 〈m̂i〉+{x}
since both vary from a finite value to infinity. In other words, the modal response denom-
inator function range equals [−∞,+∞] over the entire frequency domain. Therefore, also
after inversion of the denominator, a switch mode’s response function ranges over the entire
domain of real values.

For positive and negative modes, the modal parameter ranges form an interval, and,
therefore, the modal response denominator function range is easily derived from the bounds
on these intervals. For the entire frequency domain, the range of the denominator D(ω)
equals:

〈D(ω)〉〈{p̂i}
〉 =

[
k̂i − ω2m̂i, k̂i − ω2m̂i

]
(94)

This modal response denominator function range is an interval for every frequency in the
frequency domain. This interval contains zero for frequencies within the interval ω0 with:

ω0 =




[√
k̂i/m̂i,

√
k̂i/m̂i

]
for positive modes[√

k̂i/m̂i,
√

k̂i/m̂i

]
for negative modes

(95)

This means that the Kahan inversion is required to invert the modal response denominator
function range of Eq. (94):

〈
FRF i

jk

〉〈
{p̂i}

〉 =




[
FRF i

jk, FRF i
jk

]
∀ω /∈ ω0

[
−∞, FRF i

jk

]
∪
[
FRF i

jk,+∞
]

∀ω ∈ ω0

(96)

with

FRF i
jk =

1

k̂i − ω2m̂i

(97)

FRF i
jk =

1
k̂i − ω2m̂i

(98)
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〈
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(b) Modal envelope FRF

Figure 19. Modal denominator function range and response function envelope using the MR
strategy

The double under and over score indicate that the modal envelope response functions con-
structed in this step are conservative approximations of the actual modal envelope response
functions with respect to the input parameters. Figure 19 illustrates the result of the de-
nominator inversion in the frequency domain. This figure demonstrates that the obtained
modal envelope response function has the basic form of a deterministic modal frequency
response function with some scatter added to the response value at every frequency. From
this observation it is also clear that the interval ω0 contains the eigenfrequencies which
correspond to all modal response functions which compose the obtained modal envelope
response function. Consequently, the ω0 intervals obtained through this procedure are
conservative approximations of the actual eigenfrequency ranges with respect to the model
parameter input space.

Step 3: Total envelope frequency response function

The final step for the computation of the total envelope frequency response function consists
of the summation of all modal envelope frequency response functions resulting from the
previous step. The required result is formulated as:

〈FRFjk〉〈{
FRF i

jk

}〉 =
{ n∑

i=1

FRF i
jk |

(
FRF i

jk ∈
〈
FRF i

jk

〉〈
{p̂i}

〉, ∀i
)}

(99)

The range of the modal envelope frequency response function of switch modes is the
entire domain of real values. This means that including a switch mode’s contribution in
the summation causes the total envelope frequency response function to range over the
entire domain of real values at every frequency, which of course renders the result useless.
Therefore, an important restriction of the modal rectangle method is that no switch modes
should appear within the model input parameter space. This fairly strong restriction will
be addressed in Section 5.2.3.

For positive and negative modes, the response range differs for frequencies within and
outside ω0 as indicated in Eq. (96). Therefore, the summation distinguishes between three
subcases:

• for frequencies outside the ω0 interval of every mode, the range of all terms in the
summation is an interval:

〈FRFjk〉〈{
FRF i

jk

}〉 =

[
n∑

i=1

FRF i
jk ,

n∑
i=1

FRF i
jk

]
(100)
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• for frequencies inside exactly one ω0 interval, one term in the summation is the union
of two disjoint intervals over infinity:

〈FRFjk〉〈{
FRF i

jk

}〉 =

[
−∞,

n∑
i=1

FRF i
jk

]
∪
[

n∑
i=1

FRF i
jk,+∞

]
(101)

• for frequencies inside more than one ω0 interval, two or more terms are the union of
two disjoint intervals over infinity:

〈FRFjk〉〈{
FRF i

jk

}〉 = [−∞,+∞] (102)

5.2.3 The modal rectangle method with eigenvalue interval correction

The main shortcomings of the modal rectangle method are:

• the real eigenfrequency intervals do not show up in the final envelope frequency re-
sponse function result

• switch modes are not allowed, which is equivalent to stating that none of the mode
shapes of the modes used in the superposition is allowed to have a node in the input
or output DOF of the considered frequency response function somewhere in the input
parameter space

• the conservatism on the modal parameter level is high when there is a high correlation
between the modal parameters through the input parameters

This section shows how the modal rectangle methodology can be enhanced in order to
cope with these shortcomings.

A first enhancement is accomplished by the introduction of the exact eigenvalue bounds
in the modal rectangle method. The effect of adding these eigenvalue bounds to the proce-
dure is best illustrated by considering the two-dimensional modal space of each mode. In
this

(
k̂i, m̂i

)
-space of each mode, the model interval uncertainties {x} define a domain of

feasible modal parameter combinations:

〈k̂i, m̂i〉 =
{(

k̂i, m̂i

)
|
(
{x} ∈ {x}

)}
(103)

This exact domain, however, is not known. The modal rectangle method as described in
Section 5.2.2 computes the modal parameter ranges independently, resulting in an approx-
imate rectangle for the 〈k̂i, m̂i〉-domain, as illustrated in Figure 20.

The bounds on the eigenvalues λi and λi now introduce additional mathematical limits
for the modal parameters, since they state:

λi ≤
k̂i

m̂i
≤ λi (104)

This inequality corresponds to two extra delimiters for the 〈k̂i, m̂i〉-domain approximation
in the modal space, as illustrated in Figures 21.

This enhanced 〈k̂i, m̂i〉-approximation is referred to as the Modal Rectangle with Eigen-
value interval correction (MRE), and forms the basis of an enhanced modal envelope re-
sponse function calculation. Figure 22 summarises the resulting algorithm.



Recent Advances in Non-probabilistic Approaches for Non-deterministic Dynamic Finite Element Analysis 439

〈k̂i, m̂i〉

k̂i

m̂i

〈
k̂i

〉
{x}

〈m̂i〉{x}

Figure 20. Illustration of the actual 〈k̂i, m̂i〉-domain (grey) and its rectangular approximation
through independent optimisatoin of the modal stiffness and mass parameters
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Figure 21. Effect of the addition of the exact eigenvalue bounds to the 〈k̂i, m̂i〉-domain ap-
proximation

The eigenvalue ranges can be obtained from an extra eigenvalue minimisation and max-
imisation for each mode. The crucial part in this algorithm, however, is in the next step,
i.e., the calculation of the enhanced modal frequency response function contributions based
on the MRE 〈k̂i, m̂i〉-domain approximation. The remainder of this section will focus en-
tirely on this part of the algorithm. Since the final summation of the modal contributions
to the total envelope frequency response function is completely similar to the procedure
described in step 3 of the MR algorithm in Section 5.2.2, it is not repeated here.

In order to show how the conservatism in the modal frequency response function en-
velopes can be reduced, step two of the modal rectangle approach is first illustrated in the
modal space. Graphically, the denominator function k̂i − ω2m̂i = D∗ represents a straight
line in the

(
k̂i, m̂i

)
-space. All k̂i, m̂i-pairs on this line represent structures with equal val-

ues D∗ for the modal frequency response denominator function. This value is graphically
equivalent with the ordinate of the intersection of the line and the k̂i-axis. This is illustrated
in Figure 23.

Using this graphical interpretation, the exact range of the modal response denominator
function 〈D〉{x} follows from constructing both lines with a slope ω2 tangent to the exact

〈k̂i, m̂i〉-domain, as illustrated in Figure 24. However, since the exact 〈k̂i, m̂i〉-domain is
unknown, the denominator function range has to be approximated using a 〈k̂i, m̂i〉-domain
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Figure 22. Scheme of the interval procedure resulting after the addition of the exact eigen-
value bounds
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Figure 23. Graphical interpretation of the modal denominator function in the modal space

approximation. For the modal rectangle approach, this is done using the upper left and
lower right corner of the rectangular approximation as also indicated in Figure 24.

Similarly, the range 〈D〉{x} can be derived for the MRE approach by constructing lines

tangent to the new 〈k̂i, m̂i〉-domain approximation. In this case these lines pass through
the corner points of the polygonal 〈k̂i, m̂i〉-domain approximation indicated with triangles
in Figure 21. The approximation of the upper bound of the modal frequency response
denominator function range uses c1 for ω2 ≤ λi and c2 for ω2 ≥ λi, and the lower bound
uses c3 for ω2 ≤ λi and c4 for ω2 ≥ λi. For positive modes, this results in the following
analytical description of the modal frequency response denominator function ranges:

〈D(ω)〉〈{q̂i}
〉 =




[
k̂i

(
1 − ω2

λi

)
, k̂i

(
1 − ω2

λi

)]
for ω2 ≤ λi

[
m̂i

(
λi − ω2

)
, k̂i

(
1 − ω2

λi

)]
for λi < ω2 < λi[

m̂i

(
λi − ω2

)
, m̂i

(
λi − ω2

)]
for λi ≤ ω2

(105)
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Figure 24. Conservatism in the modal frequency response denominator function range calcu-
lation using the modal rectangle method

with:

〈
{q̂i}

〉
=




〈
k̂i

〉
{x}

〈m̂i〉{x}
〈λi〉{x}


 (106)

For negative modes, a similar derivation yields:

〈D(ω)〉〈{q̂i}
〉 =




[
k̂i

(
1 − ω2

λi

)
, k̂i

(
1 − ω2

λi

)]
for ω2 ≤ λi

[
k̂i

(
1 − ω2

λi

)
, m̂i

(
λi − ω2

)]
for λi < ω2 < λi[

m̂i

(
λi − ω2

)
, m̂i

(
λi − ω2

)]
for λi ≤ ω2

(107)

In order to analyse the effect of the introduction of the eigenvalue intervals on the
contribution of the switch modes to the total envelope frequency response function, the
eigenvalue range is split in two parts similar to a switch mode’s modal parameter range:

〈λi〉{x} = 〈λi〉−{x} ∪ 〈λi〉+{x} (108)

with

〈λi〉−{x} =
{
λi |

(
{x} ∈ {x}

)(
k̂i < 0

)}
(109)

〈λi〉+{x} =
{
λi |

(
{x} ∈ {x}

)(
k̂i > 0

)}
(110)

These parts of the total eigenvalue range consist both of a positive interval. They are not
disjoint since the eigenvalue range of a mode is always a single closed interval for physical
input parameters. They can be calculated separately by introducing the sign of one of
the modal parameters as extra constraint during the eigenvalue optimisation. Figure 25
illustrates the resulting approximation of the 〈k̂i, m̂i〉-domain in both the first and third
quadrant.
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Figure 25. Effect of the exact eigenvalue interval introduction in the MRE method
on the 〈k̂i, m̂i〉-domain approximation of a switch mode

The modal frequency response denominator function range is calculated for the first
and third quadrant in the modal space separately, after which both are combined to obtain
the total modal frequency response denominator range:

〈D(ω)〉〈{q̂i}
〉 = 〈D(ω)〉〈{

q̂−i
}〉 ∪ 〈D(ω)〉〈{

q̂+
i

}〉 (111)

with

〈{
q̂−i
}〉

=




〈
k̂i

〉−
{x}

〈m̂i〉−{x}
〈λi〉−{x}




(112)

and

〈{
q̂+
i

}〉
=




〈
k̂i

〉+

{x}
〈m̂i〉+{x}
〈λi〉+{x}




(113)

The advantage of this strategy is that the analytical descriptions of the modal frequency
response denominator range for the positive and negative modes obtained in Eq. (105)
and (107) are readily extended to the first respectively third quadrant contributions of a
switch mode. This is achieved by substituting in Eq. (105) and (107) the upper bounds
on the modal parameters by plus infinity in the first quadrant, the lower bounds by minus
infinity in the third quadrant, and the eigenvalue bounds by the corresponding eigenvalue
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bounds in the analysed quadrant. This results in:

〈D(ω)〉〈{
q̂+
i

}〉 =




[
k̂+

i

(
1 − ω2

λ+
i

)
,+∞

]
for ω2 ≤ λ+

i

[−∞,+∞] for λ+
i < ω2 < λ+

i[
−∞, m̂+

i

(
λ+

i − ω2
)]

for λ+
i ≤ ω2

(114)

for the first quadrant, and:

〈D(ω)〉〈{
q̂−i
}〉 =




[
−∞, k̂−

i

(
1 − ω2

λ−
i

)]
for ω2 ≤ λ−

i

[−∞,+∞] for λ−
i < ω2 < λ−

i[
m̂−

i

(
λ−

i − ω2
)

,+∞
]

for λ−
i ≤ ω2

(115)

for the third quadrant. Both contributions yield disjoint intervals for frequencies outside the
quadrant’s eigenfrequency range, and the entire range of real values inside the eigenvalue
range. Therefore, their union is straightforward.

The modal envelope frequency response function of a switch mode is finally obtained by
inverting the modal frequency response denominator function range. Since the domain to
be inverted for frequencies outside the total eigenfrequency range consists of a positive and
negative interval over infinity, the inverse of the Kahan inversion is applied. It yields a
single interval ranging over zero. For frequencies inside the total eigenfrequency range, the
result of the inversion is again the entire range of real values. The results are summarised
as follows:

〈
FRF i

jk

〉〈
{q̂i}

〉 =





 λ−

i

k̂−
i

(
λ−

i − ω2
) ,

λ+
i

k̂+
i

(
λ+

i − ω2
)

 for ω2 ≤ λi

[−∞,+∞] for λi < ω2 < λi


 1

m̂+
i

(
λ+

i − ω2
) ,

1

m̂−
i

(
λ−

i − ω2
)

 for λi ≤ ω2

(116)

Figure 26 illustrates the first and third quadrant’s modal frequency response denomina-
tor function range contributions and the corresponding modal envelope frequency response
function resulting from the inverse Kahan inversion of this modal frequency response de-
nominator function range. Clearly, switch modes are allowed in the MRE method because
their modal frequency response function range has finite bounds outside the eigenfrequency
range. This is a very important extra benefit from the introduction of the exact eigenvalue
intervals.
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Figure 26. Modal frequency response denominator function range and envelope
frequency response function of a switch mode using the MRE method

5.2.4 The locally optimised modal rectangle method

The locally Optimised Modal Rectangle method (OMR) aims at a decrease of the conser-
vatism in the modal envelope frequency response function approximation through a tighter
polygonal circumscription of the exact 〈k̂i, m̂i〉-domain. This is achieved by the addition of
extra lines which delimit the 〈k̂i, m̂i〉-domain. The procedure distinguishes between switch
and non-switch modes.

The OMR procedure for positive and negative modes

Using the graphical representation, adding delimiters to the 〈k̂i, m̂i〉-domain is equivalent
to the minimisation and the maximisation of the modal frequency response denominator
function in the input parameter space at a discrete frequency ωι. For a positive or negative
mode, the required extra optimisation yields:

〈D(ωι)〉{x} =

[
min

{x}∈{x}

(
k̂i − ω2

ι m̂i

)
, max
{x}∈{x}

(
k̂i − ω2

ι m̂i

)]
(117)

with the modal parameters depending on the input parameters through the eigenvalue anal-
ysis using their definitions of Eq. (77) and (78). The optimisation can be repeated for a
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∆ι

k̂i − ω2
ι m̂i = ∆ι
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Figure 27. Effect of the extra global modal frequency response denominator optimisation at
the frequency ωι on the 〈k̂i, m̂i〉-domain approximation of a positive mode

number of discrete frequencies {ω1, ω2, . . . ων} inside the considered frequency domain. The
optimisation results in a set of exact denominator function ranges expressed as intervals
at these frequencies, referred to as {∆1,∆2, . . . ∆ν}. Figure 27 illustrates the lines repre-
senting the result of this extra optimisation step for one single optimisation at the discrete
frequency ωι. The hatched area indicates the improvement of the polygonal circumscription
compared to the MRE method.

The results of the optimisation have to be combined in a continuous analytical de-
scription of the modal frequency response denominator function range in order to obtain
a conservative approximation of the exact range for all intermediate frequencies. For this
purpose, a quadratic interpolation through the optimisation results in the frequency domain
is proposed. Taking two consecutive frequencies ωι < ωι+1, the lower bound on the modal
frequency response denominator function range of a positive mode for all ω∗ ∈ [ωι, ωι+1] is
approximated using:

D(ω∗) =

(
ω2

ι+1 − ω∗2
)
∆ι +

(
ω∗2 − ω2

ι

)
∆ι+1

ω2
ι+1 − ω2

ι

(118)

The corresponding upper bound approximation yields:

D(ω∗) =

(
ω2

ι+1 − ω∗2
)
∆ι +

(
ω∗2 − ω2

ι

)
∆ι+1

ω2
ι+1 − ω2

ι

(119)

The analysis in the third quadrant yields identical expressions for a negative mode. It can
be proven that this quadratic interpolation preserves the guaranteed conservatism in the
approach at all frequencies. The proof is given in Appendix 1.

Graphically, this procedure is equivalent to deriving the denominator range for frequen-
cies between two discretely optimised frequencies ωι and ωι+1 by using the cross point
between the lines representing the optimisation results at these two discrete frequencies.
From the cross point taken at both the lower and upper boundaries of the polygon, two lines
with slope ω∗2 are constructed. The interval bounded by the intersections of these lines
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Figure 28. Conservative approximation of the upper bound of the modal frequency
response denominator function range at frequencies ω∗ ∈ [ωι, ωι+1]

with the k̂i-axis yields the approximated modal frequency response denominator function
range. Figure 28 illustrates the procedure for the upper bound and shows that the resulting
approximation is conservative.

By repeating this procedure for all cross points obtained in the polygonal 〈k̂i, m̂i〉-
domain approximation, the total frequency response function is assembled for the complete
continuous frequency domain between ω1 and ων. It is clear that after inverting the modal
frequency response denominator function range, the extra delimiter lines reduce the con-
servatism in the modal envelope frequency response function. The effect of such an extra
optimisation step is not unpredictable. It will be most efficient when applied at frequencies
for which the 〈k̂i, m̂i〉-domain approximation of the MR method is the worst. This could
be observed by comparing the MR 〈k̂i, m̂i〉-domain approximation with a sampled approx-
imation of the exact 〈k̂i, m̂i〉-domain. Furthermore, the OMR procedure does not require
that the optimisation for the lower and upper bound are performed at the same discrete
frequencies. Therefore, the procedure is easily generalised in order to enable a more efficient
approach when the 〈k̂i, m̂i〉-domain approximation needs optimisation for different slopes
at the lower and upper side of the approximate MR rectangle.

When the complete frequency domain is analysed, ω1 equals zero and ων equals infinity.
It is easily shown that the optimisation stated in Eq. (117) at zero and infinity is equivalent
with the optimisation of the modal parameters and graphically represents the horizontal
respectively vertical boundaries of the polygonal circumscription. The MR method is con-
sequently a special case of the OMR method with only two discrete frequencies, one at
zero and one at infinity. Similarly, the addition of the eigenvalue delimiters to the proce-
dure as described in Section 5.2.3 is equivalent with introducing the eigenfrequency lower
and upper bounds as discrete points for an optimisation of the lower respectively upper
modal frequency response denominator function in the OMR procedure. This results in the
OMRE procedure, which represents the combination of the MR method with the eigenvalue
interval and locally optimisation enhancements.

The OMR procedure for switch modes

For a switch mode, Figure 26 indicates that the modal frequency response denominator
function range is not a continuous interval for frequencies outside the eigenfrequency inter-
val. The modal envelope frequency response function on the other hand is. Therefore, if the
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modal envelope frequency response function is to be improved using extra optimisations at
discrete frequencies, these should be performed directly on the modal response value rather
than on the modal frequency response denominator range value as for the positive and
negative modes. Consequently, the direct optimisation for a switch mode yields:

〈
FRF i

jk

〉
{x} =

[
min

{x}∈{x}

(
1

k̂i − ω2
ι m̂i

)
, max
{x}∈{x}

(
1

k̂i − ω2
ι m̂i

)]
(120)

with the modal parameters depending on the input parameters through the eigenvalue
analysis using their definitions of Eq. (77) and (78). The optimisation can be repeated for
a number of discrete frequencies {ω1, ω2, . . . ων} inside the considered frequency domain,
but outside the eigenfrequency range of the considered mode. The optimisation results in
a set of exact modal response ranges expressed as intervals at these frequencies, referred to
as {Ψ1,Ψ2, . . .Ψν}. Again, this optimisation is equivalent to constructing extra delimiters
to the 〈k̂i, m̂i〉-domain approximation similar to those for a positive mode in Figure 27.

The results of the optimisation yield a description of the modal envelope frequency
response function in a continuous function domain using the inverse of the expressions
obtained for the modal frequency response denominator function bounds in Eq. (118)
and (119). Taking two consecutive frequencies ωι < ωι+1, the lower bound on the modal
frequency response function range for all ω∗ ∈ [ωι, ωι+1] is conservatively approximated
using:

FRF i
jk =

Ψι Ψι+1

(
ω2

ι+1 − ω2
ι

)
Ψι

(
ω2

ι+1 − ω∗2
)

+ Ψι+1

(
ω∗2 − ω2

ι

) (121)

The corresponding upper bound approximation yields:

FRF i
jk =

Ψι Ψι+1

(
ω2

ι+1 − ω2
ι

)
Ψι

(
ω2

ι+1 − ω∗2
)

+ Ψι+1

(
ω∗2 − ω2

ι

) (122)

Again, by repetitively constructing these modal envelope frequency response function ap-
proximations for small continuous parts in the frequency domain, an improved modal en-
velope frequency response function is obtained which incorporates less conservatism as the
corresponding MR modal envelope frequency response function.

5.2.5 Extension of the hybrid algorithm to the analysis of damped structures

Very often there is insufficient information to describe the damping properties of a structure
exactly. Furthermore, it is extremely difficult to experimentally determine and quantify the
exact sources of the energy dissipation. Usually there is more than one damping mechanism
present. All of these contribute to some unknown extent to the total damping. Therefore,
modelling the damping mechanisms numerically proves to be an extremely difficult task.

The lack of information to numerically describe the damping in a model exactly has
given rise to a number of simplified damping models. These are inspired by mathematical
considerations rather than by physical representation of the damping phenomena. One of
the most popular mathematical concepts to model damping is the proportional or Rayleigh
damping model. In this concept, the damping matrix is assumed to be a linear combination
of the system mass and stiffness matrices:

[C] = αK [K] + αM [M ] (123)

with αK and αM proportional constants to be defined for each analysis. This is one of
the most common models of damping. The assumption of proportional damping is purely
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made for mathematical convenience as it simplifies the solution process. The proportional
damping model has been proved to be reliable for structures with damping below 10% of
critical [105].

This proportional damping model has been selected for the first development in the
area of damped interval finite element frequency response function analysis. A constant
damping model is considered, using constant values for αK and αM for the entire analysis.
The proportional coupling propagates the interval uncertainties present on the stiffness and
mass properties of the model to the damping properties. It is clear that any damping
interval can be obtained through the appropriate choice of the proportional constants. The
remainder of this section summarises the main implications of the addition of damping to
the existing envelope frequency response function procedures. A more detailed description
of this extension to damped structures can be found in [94].

The frequency response function between DOF j and DOF k of a damped finite ele-
ment model is obtained taking the jth component of X satisfying the dynamic equilibrium
equation of the damped structure:

(
[K] +  ω [C] − ω2 [M ]

)
{X} =

{
F k
}

(124)

with F k as defined in Eq. (70) and  =
√
−1. This means that in this case, the response is a

complex value for each frequency. Consequently, there are a number of different possibilities
for the definition of the required envelope frequency response function. Generally, most
interest is paid to the amplitude of the response. The basic problem of the interval finite
element frequency response function procedure is then the calculation of the range of the
amplitude of the jth component of the response vector taking into account the interval
ranges of the non-deterministic model properties in the interval vector {x}:

〈‖Xj‖〉{x} =
{
‖Xj‖ |

(
{x} ∈ {x}

)((
[K] +  ω [C] − ω2 [M ]

)
{X} =

{
F k
})}

(125)

with [K], [C] and [M ] incorporating implicitly the dependency of the system matrices to the
input parameters. Similar, the range of the corresponding phase of the complex response
result yields 〈ϕ (Xj)〉{x}. Other possibilities for the definition of the set are the range of
the real or imaginary part of the response value, referred to respectively as 〈� (Xj)〉{x}
and 〈� (Xj)〉{x}.

For damped structures, there exists an alternative procedure for the frequency response
function calculation similar to the modal superposition procedure described in Section 5.2.1,
which yields:

FRFjk =
n∑

i=1

1(
k̂i − ω2m̂i

)
+ 

(
αK k̂i + αMm̂i

)
ω

(126)

with FRF i
jk the ith modal frequency response function and k̂i and m̂i the normalised modal

parameters as defined in Eq. (77) and (78). Equation 126 shows that the damped frequency
response function calculation through the modal superposition principle is very similar to
the undamped case. Compared to the undamped frequency response function modal super-
position described in Section 5.2.1, the only difference caused by the addition of damping
is that the modal frequency response function contributions FRF i

jk are complex functions.
As for the undamped case, these modal frequency response function contributions depend
only on the model input parameters through the modal stiffness and mass respectively k̂i

and m̂i. Therefore, the damped envelope frequency response function calculation procedure
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Figure 29. Scheme of the MRE interval procedure for damped structures

inherits the concept of the hybrid interval finite element procedure of the undamped case.
Consequently, all the 〈k̂i, m̂i〉-domain approximations derived in the previous sections can
be used to calculate conservative approximations of the damped modal envelope frequency
response functions.

Compared to the undamped case, the main difference is in the fact that the modal
frequency response function contributions now are complex functions. The procedure han-
dles this by treating the real and the complex parts of the response separately. For both
parts, the response range is calculated for each mode. The superposition then constructs
the range of the real and imaginary parts of the total response by adding together all real
respectively imaginary modal frequency response function contributions. Finally, based on
these results, the amplitude and phase are directly derived from the total real and imagi-
nary envelope frequency response functions. Figure 29 summarises this procedure for the
MRE 〈k̂i, m̂i〉-domain approximation.

This algorithm requires the calculation of the range of the real and imaginary part of
the modal frequency response function contributions taking into account that the variables
are inside the used 〈k̂i, m̂i〉-domain approximation. For the MRE approximation, this is
mathematically expressed as:〈

�
(
FRF i

jk

)〉〈
{q̂i}

〉 =
{

k̂i − ω2m̂i

(k̂i − ω2m̂i)2 + ω2(αK k̂i + αMm̂i)2
|
(
{q̂i} ∈

〈
{q̂i}

〉)}
(127)

〈
�
(
FRF i

jk

)〉〈
{q̂i}

〉 =
{

−ω(αK k̂i + αM m̂i)

(k̂i − ω2m̂i)2 + ω2(αK k̂i + αMm̂i)2
|
(
{q̂i} ∈

〈
{q̂i}

〉)}
(128)

with
〈
{q̂i}

〉
defined as in Eq. (106). It has been shown that these envelopes can be de-
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scribed analytically based on the MR or MRE 〈k̂i, m̂i〉-domain approximation. The reader
is referred to [94] for a comprehensive description of this analytical derivation.

Finally, the total amplitude and phase envelope frequency response function are cal-
culated using the total real and imaginary envelope frequency response functions. These
result from the summation of the modal contributions derived in the previous section:

〈� (FRFjk)〉 =
n∑

i=1

〈
�
(
FRF i

jk

)〉
(129)

〈� (FRFjk)〉 =
n∑

i=1

〈
�
(
FRF i

jk

)〉
(130)

This summation is easily implemented because the modal response contributions all describe
a finite interval both for the real and the imaginary part of the frequency response function.
Consequently, the summation of all lower respectively upper bounds yields the bounds on
the total frequency response function.

The result of the summation is an interval range for the real and imaginary part of the
complex response for every frequency. This means that it defines a rectangle in the complex
space in which the response vector is contained. Based on this rectangle, an approximation
of the amplitude range of the complex response is easily obtained by taking the points on
the rectangle which are respectively the nearest and most distant from the origin. The
phase range is derived in a similar way. Figure 30 illustrates this procedure. This results
in:

〈‖FRFjk‖〉〈{C}〉 (131)

〈ϕ (FRFjk)〉〈{C}〉 (132)

with 〈
{C}
〉

=

{ 〈� (FRFjk)〉

〈� (FRFjk)〉

}
(133)

It should be noted that this final conversion to amplitude and phase envelope frequency
response functions as shown in Figure 30 considers the imaginary and real part of the fre-
quency response function independently. Although the situation in the figure is exaggerated
in order to clarify this point, this introduces an additional source of conservatism. This
source is due to the fact that not every combination of real and imaginary parts within the
rectangle is feasible. This is equivalent to the decoupling of the modal mass and stiffness
in the modal space as discussed for the MR method. However, while in the modal domain
the conservatism was introduced in the analysis of each individual mode, in the amplitude
and phase conversion, the conservatism is introduced only through a single operation on
the final response. Therefore, the introduced conservatism is limited, as will be shown in
the numerical test cases in Section 6 of this paper.

6 NUMERICAL EXAMPLE

6.1 Deterministic Reference Model

This section illustrates the presented methodology for frequency response analysis of struc-
tures with interval and fuzzy uncertainties. The mechanical structure under investigation
is part of the satellite designed for the COROT space mission (COnvection ROtation and
planetary Transits) conducted by the European Space Agency. This mission is scheduled



Recent Advances in Non-probabilistic Approaches for Non-deterministic Dynamic Finite Element Analysis 451

� (FRFjk)

〈� (FRFjk)〉〈{q̂}〉

� (FRFjk)

〈� (FRFjk)〉〈{q̂}〉
〈‖FRFjk‖〉〈{C}〉

〈ϕ (FRFjk)〉〈{C}〉

Figure 30. Conversion of the real and imaginary frequency response function range
to the amplitude and phase frequency response function range

Figure 31. Nominal finite element model of the baffle of the COROT telescope,
courtesy of Centre Spatiale de Liège (CSL), Belgium

for launch in June 2006, and its main objectives are to enable detailed stellar seismology,
e.g. detection and measurement of stellar vibrations, and secondly, to search for small,
rocky planets around stars other than the sun. The presented analysis focusses on the
effect on the dynamic behaviour of uncertain parameters that actually occurred during the
design phase of the telescope baffle. Figure 31 shows the nominal finite element model of
the baffle used as the reference in the conducted analysis.

The nominal model contains 96210 degrees of freedom, and consists mainly of plate and
beam elements. In its final launch configuration, the baffle is attached to the satellite struc-
ture at three interface zones indicated in Figure 31. Before launch, a satellite component
of this size is typically tested for its dynamical behavior in a hardmounted vibration test
with the component fixed to the shaker at its interfaces. The numerical analysis performed
here corresponds to this base excitation test through the application of the large mass mod-
elling concept. For this purpose, an additional large point mass is introduced in the model,
rigidly connected to the structure at the interface degrees of freedom. The mass of the
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added element equals 106 times the mass of the original structure. A harmonic excitation
force on the large mass serves as input for the dynamic analysis. The analysis focusses on
the dynamic response at the lower interface point between the telescope and the flange on
the smaller cylindrical part of the model (see also Figure 31). The response analysis takes
the first ten modes into account. Rayleigh damping is applied, with proportional constants
chosen such that the damping ratios of the considered modes are in the range between 0.5
and 1%.

Section 6.2 now first describes the procedure for envelope frequency response function
analysis of the COROT baffle model with five uncertain parameters. The concept of the
〈k̂i, m̂i〉-domain and its approximation using respectively the MR, MRE and OMRE ap-
proach is illustrated. Section 6.3 then extends the procedure to a full fuzzy analysis using
the α-cut strategy.

6.2 Interval Analysis with Five Uncertainties

Five uncertain interval parameters are identified, as listed in Table 1. The first two uncer-
tainties arise from a variability of 5% on the thickness of the aluminum sheets in the baffle.
Typical production tolerances are considered on the thickness of the vanes and mounts.

uncertain parameter unit nominal value uncertainty interval
sheet thickness for tulip shape mm 0.8 [0.78, 0.82]
sheet thickness for thinner baffle part mm 0.4 [0.39, 0.41]
vane 1 thickness mm 0.8 [0.79, 0.81]
vane 1 bis thickness mm 1.2 [1.19, 1.21]
mounts thickness mm 1.8 [1.79, 1.81]

Table 1. Uncertain parameters in the COROT baffle model

First, the 〈k̂i, m̂i〉-domain approximations resulting from the three different envelope
frequency response function procedures are analysed. Since the exact 〈k̂i, m̂i〉-domain is
unknown, the amount of conservatism in the approximations cannot be determined. There-
fore, in order to assess the approximated 〈k̂i, m̂i〉-domains, they are compared to the cloud
of modal parameter combinations resulting from a Monte Carlo simulation with 100 sam-
ples following a uniform distribution over the uncertain input intervals given in table 1. A
comparison of the MR, MRE and OMRE 〈k̂i, m̂i〉-domain approximations with this cloud
will give a clear indication of the quality of the approximations.

Figure 32 compares the cloud of 100 samples from a Monte Carlo simulation with the
MR and MRE 〈k̂i, m̂i〉-domain approximation for the first mode of the structure. The dots
represent the Monte Carlo samples, while the squares (�) indicate the 32 modal parameter
combinations resulting from a vertex analysis. This figure indicates that this mode sub-
stantially benefits from the addition of the eigenfrequency bounds since the conservatism
of the MRE approximation is much lower than for the MR approximation. This is due to
the fact that the exact 〈k̂i, m̂i〉-domain is diagonally oriented with respect to the modal
rectangle. Furthermore, this figure indicates that for this mode, no explicit benefit is to be
expected from the introduction of an extra local optimisation for any discrete frequency,
because the MRE approach already results in a close approximation of the region indicated
by the Monte Carlo samples.

The situation is different for the seventh mode. For this mode, the Monte Carlo samples
clearly indicate that the MRE 〈k̂i, m̂i〉-domain approximation leaves room for improvement
at both the upper and lower side of the sample cloud, as indicated in Figure 33(a). From
this figure, one can easily derive the optimal discrete frequency to perform the extra op-
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Figure 32. Comparison of MR and MRE 〈k̂i, m̂i〉-domain approximation of the
first mode
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Figure 33. Comparison of MRE and OMRE 〈k̂i, m̂i〉-domain approximation of the
seventh mode

timisation step in the OMRE procedure by taking the square root of the slope of the line
which approximately describes the upper bound of the sample cloud. In this case, a fre-
quency of 75.8 Hz is chosen for an extra modal frequency response denominator function
range optimisation at both the upper and lower 〈k̂i, m̂i〉-domain approximation boundaries.
Figure 33(b) gives the corresponding OMRE 〈k̂i, m̂i〉-domain approximation, which is a sub-
stantial improvement compared to the MRE approximation. For the OMRE calculation, a
similar procedure is applied for modes 1, 2, 4, 8 and 10, resulting in a substantial reduction
of the 〈k̂i, m̂i〉-domain approximations.

Figure 34 compares the real and imaginary parts of the MR and MRE envelope frequency
response functions with the frequency response functions resulting from the Monte Carlo
samples. This figure clearly shows the effect of the addition of the exact eigenfrequency
intervals in the MRE procedure. The amount of conservatism in the MRE approach is
clearly reduced compared to the MR approach. Figure 35 gives the corresponding calculated
MRE bounds on the amplitude and phase of the frequency response function. Finally,
Figure 36 illustrates the effect on the envelope of the amplitude of the frequency response
function resulting from the additional OMRE local optimisations for the modes specified
above. Since the improvement of the OMRE approach is hardly visible on the full envelope



454 D. Moens and D. Vandepitte

30 35 40 45 50 55
−5

0

5
x 10

−14

30 35 40 45 50 55
−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−13

envelope FRFs
Monte Carlo samples 

〈〈	
(F

R
F

)〉〉
M

R
〈〈


(F
R

F
)〉〉

M
R

Hz

Hz

(a) MR envelope FRFs

30 35 40 45 50 55
−5

0

5
x 10

−14

30 35 40 45 50 55
−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−13

envelope FRFs 
Monte Carlo samples

〈〈	
(F

R
F

)〉〉
M

R
E

〈〈

(F

R
F

)〉〉
M

R
E

Hz

Hz

(b) MRE Envelope FRFs

Figure 34. Comparison of the MR and MRE envelope frequency response functions

frequency response function plot, this figure gives the proportional reduction of the response
interval at every frequency. The response interval indeed is reduced over the complete
observed frequency domain.

6.3 Fuzzy Analysis with Five Uncertainties

A fuzzy analysis is performed with symmetrical triangular membership functions. These
are defined such that the intervals as specified in Table 1 appear exactly in the center of the
membership range (at α = 0.5). A total of 5 α-levels are examined. The resulting envelope
response functions are assembled to a fuzzy frequency response function in Figure 37. Only
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Figure 35. Envelope on the amplitude and phase of the frequency response func-
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Figure 36. Proportional reduction of the OMRE response interval compared to the
MRE response interval

the evolution on the upper bound of the response curves is shown, as this is the most
interesting result from a designer point of view.

This figure shows that the deviation of the obtained upper response bound at a specific
α-level from the nominal case is not constant over the frequency domain. This indicates
that the sensitivity of the structural response at the output location is varying over different
regions in the frequency domain. In this case, the amplitude sensitivity to the introduced
uncertainties increases with increasing frequency. This can be very valuable information
in a design validation process. For instance, when a design criterion is placed on the
amplitude, it can be seen that the first mode at about 36 Hz is the most important one in
the deterministic case. However, in the fuzzy analysis, the maximum response level at this
first eigenfrequency proves to be little sensitive to the present uncertainties. The response
amplitude in the neighbourhood of the eigenmode at 47 Hz is much more sensitive, and
therefore could play an important role in the dynamic assessment of the design subject to
uncertainty.
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Figure 37. Fuzzy evolution of the upper bound on the frequency response function
of the baffle between a large base mass and flange displacement

7 CONCLUSION

In this paper, the different available concepts for the analysis of parametric model un-
certainty in the finite element framework are discussed. A survey of non-deterministic
numerical models indicates two valid alternatives for the probabilistic concept: the interval
and the fuzzy model. The main advantage of the interval model compared to the proba-
bilistic model is that it requires less information and, therefore, is less vulnerable to the
influence of subjective data. The result of a numerical interval analysis defines a crisp bor-
derline between possible and impossible analysis outcomes, without attaching probability
values to the occurrence of the analysis results within their range. The fuzzy uncertainty
model requires more information than the interval model. This information is put in an
explicitly subjective form, which prohibits the translation of the outcome to objective reli-
ability measures. Furthermore, it is shown that through the extension principle, the fuzzy
analysis can be regarded as a large-scale sensitivity analysis of the interval analysis result
to the bounds on the interval properties.

It is than discussed how these alternative concepts for numerical uncertainty represen-
tation can be put to use in a design process. In this context, distinction between two
fundamentally different kinds of non-deterministic properties is made. Variabilities repre-
sent model properties which will actually vary in the final product. Uncertainties on the
other hand represent model properties that cannot be described exactly with the available
information. It is shown how the alternative models for uncertainty representation in nu-
merical analysis could be of great value in an engineering design process. Especially in
an early design stage, the information necessary to construct a representative probabilistic
analysis is mostly missing. Furthermore, the probabilistic analysis in this case produces
probabilistic information which is often not requested in this stage of the design process.
The crisp distinction between possible and impossible analysis results produced by the in-
terval analysis enables a worst-case analysis which could be of great value for a design
engineer. Furthermore, the extension to an iterative procedure using the fuzzy approach
enables a worst-case oriented design optimisation.

From a numerical viewpoint, the application of the interval uncertainty model requires
an interval finite element methodology which is able to propagate intervals defined on in-
put parameters to a range of possible analysis outcomes. This interval analysis forms also
the core of the implementation of the fuzzy finite element method. The exact solution of
the interval finite element problem can be formulated as a global optimisation problem.
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However, the limited practical applicability of the optimisation strategy has lead to the
development of an alternative interval arithmetic approach. This approach, however, is ex-
tremely vulnerable to conservatism especially during the interval system matrices assembly
phase. This conservatism causes the interval finite element result to be a severe overestima-
tion of the exact range of the finite element analysis with respect to the input intervals. It
is concluded that, due to the problem of conservatism implicitly incorporated in the inter-
val arithmetic approach, the vertex and global optimisation strategies are the only viable
alternatives for interval finite element procedure developments that envisage application to
realistically sized and industrially relevant finite element models.

The paper then focusses on the specific application of the interval or fuzzy finite ele-
ment analysis to frequency response function analysis. In order to cope with the excessive
conservatism, a hybrid solution strategy is introduced which consists of an optimisation
step followed by an interval arithmetic procedure. This hybrid approach cancels all sources
of conservatism captured in the optimisation step. In order to reduce the impact of the re-
maining sources of conservatism in the interval arithmetic part of the algorithm, the results
of an eigenvalue optimisation are introduced in the procedure. The resulting method proves
to be a very good trade-off between computation time and exactness of the result. If there is
special interest in the response at specific frequencies, the method can be further enhanced
using the results of an exact modal response optimisation at discrete frequencies. The
method is first developed for undamped structures and later generalised to proportionally
damped structures. The effectiveness of the interval finite element frequency response func-
tion methodology is demonstrated by comparing the resulting envelope frequency response
function functions with compatible Monte Carlo simulations.
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Appendix 1

This appendix shows that using the results of the maximisation and minimisation of the
undamped modal frequency response denominator function at discrete frequencies, conser-
vative bounds on the modal frequency response function can be derived for the complete
frequency domain. Only the proof for the upper bound is given here. The proof for the
lower bound is completely similar.

Consider that D(ω) represents the modal frequency response denominator function:

D(ω) = k̂i − ω2m̂i (134)

Given the exact optimized values of the goal function D(ω) for two distinct values of ω:

max
{x}∈{x}

D (ωι) = ∆ι (135)

max
{x}∈{x}

D (ωι+1) = ∆ι+1 (136)

with ωι < ωι+1, it can be shown that for all ω∗ ∈ [ωι, ωι+1]:

D (ω∗) ≤
(
ω2

ι+1 − ω∗2
)
∆ι +

(
ω∗2 − ω2

ι

)
∆ι+1

ω2
ι+1 − ω2

ι

(137)
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Proof

If this theorem would be false, there exists a ω∗ ∈ [ωι, ωι+1] for which:

D (ω∗) >

(
ω2

ι+1 − ω∗2
)
∆ι +

(
ω∗2 − ω2

ι

)
∆ι+1

ω2
ι+1 − ω2

ι

(138)

Stating that D (ω∗) is achieved for {x} = {x∗} and using the definition of D(ω), this is
equivalent to stating that there exist values for the modal parameters k̂∗

i = k̂i ({x∗}) and
m̂∗

i = m̂i ({x∗}) for which:

k̂∗
i − ω∗2m̂∗

i >

(
ω2

ι+1 − ω∗2
)
∆ι +

(
ω∗2 − ω2

ι

)
∆ι+1

ω2
ι+1 − ω2

ι

(139)

Since ∆ι and ∆ι+1 are the results of the maximisation of D(ω) at respectively ω = ωι and
ω = ωι+1, they satisfy:

k̂∗
i − ω2

ι m̂
∗
i ≤ ∆ι (140)

k̂∗
i − ω2

ι+1m̂
∗
i ≤ ∆ι+1 (141)

Therefore, equation 139 is equivalent to:

k̂∗
i − ω∗2m̂∗

i >

(
ω2

ι+1 − ω∗2
) (

k̂∗
i − ω2

ι m̂
∗
i

)
ω2

ι+1 − ω2
ι

. . .

+

(
ω∗2 − ω2

ι

) (
k̂∗

i − ω2
ι+1m̂

∗
i

)
ω2

ι+1 − ω2
ι

>
k̂∗

i

(
ω2

ι+1 − ωι
2
)
− m̂∗

i

(
ωι+1

2ω∗2 − ω2
ι ω

∗2
)

ω2
ι+1 − ω2

ι

> k̂∗
i − ω∗2m̂∗

i (142)

The assumption in equation 138 must thus be invalid. This proves the theorem ad absur-
dum. �
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