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Summary

Bodies with exotic properties display material substructural complexity from nano to meso-level. Various
models have been built up in condensed matter physics to represent the behavior of special classes of complex
bodies. In general, they fall within the setting of an abstract model building framework which is not only
a unifying structure of existing models but - above all - a tool to construct special models of new exotic
materials. We describe here basic elements of this framework, the one of multifield theories, trying to furnish
a clear idea of the subtle theoretical and computational problems arising within it. We present the matter in
a form that allows one to construct appropriate algorithms in special cases of physical interest. We discuss
also issues related to the construction of compatible and mixed finite elements in linearized setting, the
extension of extended finite element methods to analyze the influence of material substructures on crack
growth, the evolution of sharp discontinuity surfaces in complex bodies. Concrete examples of complex
bodies are also presented with a number of details.

1 INTRODUCTION

Technological demands of devices with sophisticated performances require, to be satis-
fied, the use of materials with exotic properties. We call complex such materials when
their substructure from nano to meso-level influences drastically their gross behavior in
a way in which interactions due to substructural changes are prominent and cannot be
smeared out as in common homogenization procedures. Liquid crystals in nematic, smec-
tic or cholesteric phase, quasicrystals, ferroelectrics, elastomers, fullerene-based composites
even microcracked bodies and materials with strain gradient effects are prominent examples
and constitute basic chapters of condensed matter physics.

Here, we review critically aspects of the mechanics of complex bodies, focusing the
attention on the way in which theoretical instances need to be interpreted in constructing
numerical algorithms. Some issues are emphasized as in the list below.

• There exists a general model building framework (the one of multifield theories) that
unifies common models of complex materials and is also a theoretical tool to con-
struct new special models for the behavior of new complex materials produced in the
industrial practice. Such a framework is essentially the geometry and the mechanics
associated with maps between manifolds.

• The construction of computational schemes for multifield models of condensed matter
implies non-trivial aspects of interpolation over manifolds. Moreover, the treatment
of boundary conditions in concrete cases is not immediate and require physical inter-
pretations.

• Identification procedures from discrete models of prototype material elements may
be a useful tool to get explicitly the values of constitutive coefficients in absence of
adequate experimental data.

The number of explicit numerical simulations of the behavior of complex bodies in appropri-
ate special cases is rather limited in the current scientific literature. From a computational
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point of view, the mechanics of complex materials appears as a rather unexplored land: the
available results suggest that it deserves completely to be explored.

Our basic aim is to show how the general format of multifield theories can be arranged
in a form in which well known reliable numerical techniques can be applied with appropriate
modifications. In this way we try to suggest a computational program in the field.

1.1 The Point of View

When one analyzes the behavior of complex bodies, one faces situations that challenge in
some sense the direct application of (even basic) aspects of standard continuum mechan-
ics. The essential problem is that we are forced by physical evidences to try to describe
the influence at a gross scale of minute events occurring at finer scales and altering the
morphology of the body itself.

In the standard format of continuum mechanics, the one generated by Cauchy’s work,
a body is a collection of material elements whose morphology is identified just by their
place in space: they are pictured as material points (see [146]). In this way, the geometrical
description of the body skips details about the minute shape of molecular (or atomic)
aggregates. However, when one looks to real bodies, one realizes that the material element
is in fact not properly just a material point (an indistinct sphere, a ‘monad’ in Leibnitz’s
words), rather it is a system of (say) interacting molecules. To describe the morphology of
this system, we introduce a coarse grained morphological descriptor ν. It may be an element
of the unit sphere, a stretchable vector, a second-order tensor of various nature, a direction
etc., depending on the physical conditions envisaged. Of course, we could develop models
for each choice of the order parameter to describe different physical situations. Formally,
all of them arise from the same general model-building framework, the one of multifield
theories summarized here. Basically, we realize that to construct the formal structure of
models of complex bodies we need just to require that ν be an element of an abstract
manifold M of substructural shapes, endowed with ‘minimal’ geometrical properties. The
choice of M is the first step toward the construction of each special model, thus it has a
‘constitutive’ nature, in a sense wider than usual.

The introduction of morphological descriptors - to represent details of the morphology
of the body - allows us to account directly for interactions due to substructural events that
may change, even drastically, stress distributions. In fact, interactions within a body are
objects conjugated in the sense of power with the rates of its morphological descriptors.
Here these rates are the standard velocity and the rate of change of ν. Standard tensions
are associated with the former while micro-tensions with the latter. A new balance arises:
the local balance of substructural interactions, the one that we call Capriz balance.

Really, such a balance is not necessarily a local (i.e. pointwise) version of a new integral
balance assumed as a first principle. As we will show below, in general, an integral version
of the balance of substructural interactions does not make sense unless M is (isometrically)
embedded in a linear space so that one may freely move within it. In fact, the basic integral
balance laws still remain the integral balance of forces and the one of couples. However,
the latter is not standard and gives rise also to Capriz balance, but such a circumstance
does not mean that substructural interactions are couples (or better, micro-couples): their
geometrical nature is strictly determined by the nature of ν.

The isometric embedding of M in a linear space has a crucial role in constructing
numerical schemes. In fact, the basic difficulty in managing multifield theories is that in
general M does not coincide with a linear space. Then, interpolation over M by using the
standard scheme based on the interplay between nodal values and shape functions could
not make sense unless M is embedded in a linear space. However, although the embedding
is always available when M has finite dimension, it is not unique and the choice of it is
strict matter of physical modeling.
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1.2 A Brief Historical Panorama on Multifield Theories

Since the character of this review is not historical, we do not account in detail for the wide
list of contributions to special models of specific complex materials in an endless tedious
way. Rather, we follow briefly here below just the historical path along which the ideas
leading to the general model-building framework of multifield theories have been developed
(for additional bibliography one may refer to [113], [119]).

The starting point were W. Voigt’s suggestions [181], [182] that allowed in 1909 the
brothers E. and F. Cosserat [42] to develop sistematically a theory of elasticity in which
each material element is considered as a ‘small’ rigid body1 able to rotate freely with respect
to the neighboring material elements. This point of view constituted the first change of
the traditional Cauchy’s paradigm on the description of the morphology of deformable
bodies. In 1958, J. L. Ericksen and C. A. Truesdell realized that Cosserat’s ideas were
a reliable framework for the construction of ‘models’ of elastic structures such as beams,
plates, shells. Moreover, in their seminal paper [66] they developed further Cosserat’s
point of view by describing the ‘internal’ morphology of the material element by means of
a deformable director (in Cosserat’s scheme the director - or the triad - representing the
material element can only rotate; thus it may be substituted by a proper orthogonal tensor,
i.e. an arbitrary element of the Lie group SO (3))2.

Elements of the unit sphere with the identification of antipodes (i.e. elements of the
projective plane P 2) were also used as morphological descriptors by J. L. Ericksen in 1960-
1962 [60], [61], [63] to describe liquid crystals in nematic phase. Main developments of this
special multifield theory can be found in [105], [50], [20], [65]. Scalar order parameters have
been added later to account for layered structures characterizing liquid crystals in smectic
phase [18], [58].

Along this path, in a 1964 paper, R. D. Mindlin considered the material element as
a cell able to deform independently of the rest of the body [137] (in certain sense an
abstract version of macromolecules considered previously by Ericksen just for establishing
a rich kinematical description of them [62]). So that Mindlin introduced a second order
symmetric tensor as morphological descriptor and developed the relevant elasticity theory
in linear setting. Materials well described by Mindlin’s proposal or deformable directors
are called micromorphic. Such a scheme has been developed in higher order sense in [78]
by exploiting the principle of virtual work and in complete non-local sense in [67], [68]. A
review of this sub-area can be found in [69] (see also [100], [34]).

Scalar order parameters have been also used to describe solid-to-solid phase transitions
in shape memory alloys [73], isotropic damage [75] and granular flows [79]. For the latter
case, tensor order parameters provide a more detailed description [19], [24]. As regards
damage, it has been shown that a multifield approach to the description of damaged (or,
more precisely, microcracked) bodies may allow us to circumvent essential flaws of tradi-
tional internal variable models, above all in developing numerical schemes. Vector [108],
[109], [124], [125] and second order tensors [128], [120], [4], [111] may allow one to get a
rather careful description of the underlying physics. The difference with respect to analo-
gous choices in internal variable models (see [102] for a thoroughly critical review) is that
in multifield setting one accounts directly for true interactions of local (self-forces) and
gradient (microstresses) nature –associated with the rate of the morphological descriptors–
and this circumstance changes completely the stage.

The list of special multifield models could be enlarged for example by remembering

1The dimensions of such a rigid body become internal lengths in the continuum modeling.
2The literature about Cosserat’s scheme is abundant. The reader may find theoretical results in [180],[1],

[129], [153], [87], [59], [2], [3], [86], [84], [114], [99] and computational issues in [165], [168], [166], [167], [72],
[164], [174], [155].
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that vector order parameters have been also used to describe in a multifield setting the
polarization state in ferroelectrics (see [45], [158], [46], [80], [81], [82]), micromagnetics (see
[51], [77], [183], [11]), superconductivity (see [35] and also [92] for a different point of view),
also the rearrangements of collective atomic modes in quasiperiodic alloys (see [118], [126],
[98]).

Increasing furthermore the above sketched list with other examples of special cases,
without going in details, could be only of taxonomical interest. On the contrary, the
point that we find of crucial interest is that the cases listed above (together with other
multifield approaches not quoted here) are special (although important) realizations of a
unique theoretical structure.

A program of unification of existing multifield models was initiated by G. Capriz in
the late 1970’s. After a series of papers unifying different sub-areas (see [13], [14], [16],
[25], [26], [27], [28], [29]), in the seminal works [15] and [17] –the latter a treatise– Capriz
presented the first general formulation of multifield theories3 in continuum mechanics, by
accounting for abstract morphological descriptors. Really, abstract order parameters were
introduced in 1950’s in statistical physics by L. D. Landau and E. M. Lifshitz (see the
treatise [104] or subsequent editions) as a tool to describe thermodynamical properties of
phase transitions above all in complex bodies such as spin glasses or ferromagnetic alloys.
Moreover, such a point of view allowed the topological classification of defects in complex
bodies by exploiting the properties of the fundamental group of the manifold M of sub-
structural shapes (the papers of N. D. Mermin [132] and L. Michel [133] furnish a complete
critical review of the matter). However, it is with the above mentioned works [15] and [17]
that we find the first construction of a general model-building framework able to describe
the influence of substructural changes in complex bodies on the gross deformative behavior
in the circumstances we know. In these two works, a general point of view was indicated
and a lot of consequent basic questions (some of foundational nature) opened. Amid other
things, crucial questions are the nature of the balance of substructural interactions, its ori-
gin and its invariance with respect to classes of changes in observers. In fact, in [17] such a
balance is postulated in its pointwise form (in special cases it reduces to Ginzburg-Landau
equation). Really, restricted to the special case of micromorphic bodies, P. Germain [78]
derived the relevant special version of the balance of substructural interactions just by
postulating an appropriate version of the principle of virtual work involving microstresses
and self-forces. However, if one wants to follow this way, one is forced to postulate the
structure of the internal power, thus (as it will be clear in the development of this paper)
the existence of a self-force acting within each material element. A postulate of this type is
also necessary when one derives local balances from the balance of energy as proposed in
1995 by A. E. Green and P. M. Naghdi in the special situation in which the morphological
descriptor is a director (even deformable) [85] and in the general case by G. Capriz and E.
G. Virga [31] in 1994. Really, the latter authors, derived in [30] an integral version of the
balance of substructural interactions by developing appropriately the traditional algebra
of bodies [179], but they were forced to embedd M in a linear space. As anticipated in
Section 1.1, this is the sole case in which an integral version of Capriz’s balance can be
postulated (technical reasons shall be furnished later). However, as a matter of fact, the
question of the embedding is not trivial, because, although it always exists when M has
finite dimension, it is not unique, so when one uses it –for example as an essential tool to
construct finite elements– its choice becomes a strict matter of modeling and has in a wide
sense a constitutive nature.

The nature of the balance of substructural interactions was also investigated deeply by

3The term “multifield” for theories involving morphological descriptors of substructures was introduced
later in 1998 by one of us in the title of [120], then it started to walk with its legs.
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R. Segev in [156]. He showed how the geometrical properties of M influence the represen-
tation of substructural interactions and their meaning.

In two works developed independently, namely [23] and [113], it was shown at the end
that the invariance requirement just of the external power with respect to the action of
the special orthogonal group SO (3) allows one to get as a consequence (i) the existence
of the substructural self-force and (ii) the pointwise balance of substructural interactions.
The procedure makes use of a notion of observer enlarged with respect to the traditional
one. However, the sole requirement of SO (3) invariance - that is invariance with respect to
observers differing by rigid body motions - induces an indeterminacy in the substructural
self-force. In Hamiltonian setting the problem has been eliminated in [21] by proving the
covariance of Capriz’s balance - that is its invariance with respect to observers differing in
the evaluation of M by the action of arbitrary Lie groups.

The discussion about the nature of the balance of substructural interactions is just
an example of the basic questions that one faces in managing multifield theories. The
clarification of these theoretical points has concrete interest because they are crucial in
constructing special models for specific classes of complex bodies and also to understand
how one may build up appropriate numerical schemes. In other words, the clear knowledge
of theoretical structures opens the way to clear computational paths.

To complete the tale, we mention a class of problems for which the set of available
numerical examples is very narrow, but there are reasons that push to conjecture that it
could be a fruitful area of numerical experiments. Namely, multifield theories allow us to
describe the influence of diffuse interfaces or the branching of substructures on macroscopic
sharp defects, such as (moving possibly) macroscopic discontinuity surfaces and their pos-
sible junctions. Such surfaces may be structured or unstructured. In the former case they
are endowed by surface energy, in the latter they are free of such an energy. Surface sub-
structural interactions accrue over structured surfaces in complex bodies. They have been
introduced by one of us in [110], [113], [112]. Moreover, it has been proven in [49] that the
related interfacial balances are still covariant. Such balances allow us to describe phenom-
ena like the evolution of paraelectric-ferroelectric interfaces as well as interfaces between
isotropic and nematic phases in liquid crystals, damage fronts etc. Over junctions, appro-
priate line substructural interactions may be accounted for [22]. Finally, cracks in complex
bodies deserve to be mentioned a part because experimental results about the influence of
the material substructure on crack evolution are available in many special cases and justify
the construction of unified treatments [116].

1.3 Structure of the Paper

In Section 2 we introduce basic issues of the general format of multifield theories. The point
of view adopted is the one of non-linear theory. The reason is that multifield theories are
essentially non-linear. Linearization is in general not immediate (unless M coincides with
a linear space) and requires the use of non-trivial geometrical tools.

In Section 3 a model of elastic microcracked bodies is discussed in detail as a paradig-
matic example of multifield theory of complex bodies. Due to the particular choice of M,
such a model can be easily linearized. Elementary two-dimensional finite element simula-
tions display the unusual richness of possible results. They deal with both the case in which
the microcrack distribution is deterministic and the one in which it is random; in the latter
case, the combined use of finite element and Monte Carlo techniques is necessary.

General issues about the linearization of multifield theories are presented in Section 4
with reference to the elastic behavior. In this setting, various finite element schemes are
constructed: compatible models and mixed models.

Section 5 deals with the analysis of the interaction between diffuse interfaces and sharp
macroscopic ‘defects’. The treatment of both macroscopic discontinuity surfaces and cracks
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in complex bodies is sketched. For macroscopic sharp defects like cracks, extended finite
elements are a reliable tool to analyze their behavior. Their common formulation can be
generalized to multifield theories: the way is shown with reference to the special case of the
interaction between diffuse microcracking and a macroscopic crack.

1.4 Notations

Some standard notations used in the body of the paper are summarized here.
Let A and B be tensors of type (p, q). We denote with A · B the standard scalar product

given by Ai1...ip
j1...jq

B
i1...ip
j1...jq

. In particular, if A and B are second order tensors, we denote with
AB the product which contracts only one index and bears a second order tensor; for
example, we have (AB)ij = AikB

k
j . If A is a tensor of the type (p, q), with p, q > 0, and

B is another tensor of the type (r, s), with r, s > 0 and r < p, s < q, or (r = p, s < q) or
(r < p, s = q), we indicate by AB (with some slight abuse of notation with respect to the
product between second order tensors) the product which contracts all the indices of B; in
particular, if p = 0 or q = 0 we take r = 0 or s = 0 respectively. Given two vectors a and b,
a ⊗ b denotes their tensor product. In particular, if A and B are second order tensors we
have AB· (a ⊗ b) = AT a · Bb. For any pair of vector spaces A and B (with duals A

∗ and
B∗), Hom (A,B) is the space of linear maps from A to B. For any manifold M , TmM is the
tangent space of M at m ∈M , while T ∗

mM the relevant cotangent space. We will make use
of two different regular bounded regions of the three-dimensional Euclidean point space E3,
namely B0 and B and of an abstract manifold M. Capital letters A,B,C... used as indices
denote coordinates on B0, while i, j, k... coordinates on B; finally, α, β... indicate coordinates
on M. The differential operators Div and ∇ indicate respectively divergence and gradient
calculated with respect to coordinates in B0 while div and grad are their counterparts with
respect to coordinates in B. The superscript T means transposition. The symbol ∂y means
partial derivative with respect to the entry ‘y’. We indicate by the term part any subset of
B0 with non-vanishing volume and the same regularity properties of B0. For any region b
of the space, ∂b represents its boundary. Let Σ be any smooth surface in B0 oriented by
the normal m at each point, for any field e (·) defined on B0 and differentiable there, we
indicate by ∇Σ its surface gradient along Σ, namely ∇Σe (X) = ∇e (X) (I− m⊗ m), with
I the second-order unit tensor. The trace of ∇Σe is the surface divergence of e, namely
DivΣe. Other notations shall be explained later.

2 ELEMENTS OF THE GENERAL FORMAT OF THE MECHANICS OF
COMPLEX BODIES

2.1 Deformations and Morphological Descriptors of the Substructural
Complexity

We indicate by B0 the regular4 region of the three-dimensional Euclidean point space oc-
cupied by the body in its reference place. A mapping x̃, acting as

B0 � X x̃�−→x = x̃ (X) ∈ E3, (1)

4Regularity is here intended in the sense of D-regions (see [52]). Roughly speaking, B0 is regularly open,
coincident with the interior of its closure and is endowed with a surface-like boundary where the outward
unit normal is well defined everywhere, except a finite number of corners and edges. From one hand such
requirements serve to guarantee the applicability of divergence theorem while from the other hand to cover a
class of regions of space sufficiently large to include gross shapes of bodies that we encounter in the physical
world, the ones that engineers would like to menage to construct objects of different type. In this sense,
the origin of the requirements of regularity for B0 are of various nature. They are not only restricted to the
technical need to menage the divergence theorem because such a theorem (expressed in a rather abstract
form) holds also for more exotic regions like, e.g., fractals.
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is a deformation (or better a transplacement) and indicates the current place x of a generic
material element resting at X in B0. It is assumed to be one-to-one, continuous and
piecewise continuously differentiable; at each X, the gradient of x̃ is indicated by F, namely
F :=∇x̃ (X) ∈ Hom (TXB0, TxB).

One presumes also that x̃ be orientation preserving that is equivalent to prescribe
det F >0 at each X. Such a inequality is the major source of analytical difficulties in stan-
dard non-linear elasticity (see related discussion in [129], [36]). This kind of picture is
not always sufficient to account for the morphology of substructural shapes. For instance,
when one considers the equilibrium of a non-linear elastic body and analyzes it through the
relevant non-convex energy depending just on F, one may find minimizers describing lam-
inates [150] (as in some typologies of shape memory alloys) or, say, tent-like (or rouf-like)
microstructures [101]. However, when the material can undergo polarization, just to speak
about a special example, one should introduce directly a descriptor of the polarization state,
namely the polarization vector at each X [47].

Different physical circumstances may then require different descriptors of various math-
ematical nature. Moreover, for the same material substructure different morphological
descriptors can be chosen. Each choice allows one to account for some aspects of the
morphology of the material substructure and not for others.

A list of possible examples of special choice of morphological descriptors is furnished
later. Here, instead of selecting a specific order parameter, we remark once more the basic
fact that, to construct the whole mechanical format for analyzing the behavior of complex
bodies, one needs just to require that the morphological descriptor ν be an element of a
(paracompact) differentiable manifold M that we presume here without boundary, so that
we have a map ν̃ given by

B0 � X ν̃�−→ν = ν̃ (X) ∈ M, (2)

that we presume here (for the sake of simplicity) to be continuous and piecewise continuously
differentiable.

A question arises at this point: What is the necessity to consider a so general object
like an abstract manifold as M?

The answer has articulated aspects. First, physical circumstances impose often that at
each point the morphological descriptor ν does not belong to a linear space. A common
example is the one of magnetostrictive materials in which ν describes a local magnetic spin
and is naturally an element of the sphere S2. Of course S2 is a non-linear space because
the sum of two arbitrary elements of it does not belong to S2 itself.

Moreover, the geometrical properties of M have often physical meaning and are related
to specific circumstances envisaged. More precisely, when own kinetic energy can be at-
tributed to the material substructure, the expression of such an energy induces a metric
over M and, vice versa, the choice of a metric over M influences the representation of
the kinetic energy. Moreover, a connection over M allow us to represent contact interac-
tions (i.e. weakly non-local interactions of gradient nature) associated with the influence
on the substructure in a given material element of substructural changes in the neighbor-
ing elements. Also, in going toward more subtle topological issues, one may note that the
homotopy fundamental group of M allows us to ‘classify’ substructural defects (see the
comprehensive review [132]).

So, to have a theoretical setting able not only to unify known models of condensed
matter physics but, above all, to be a tool to describe new exotic materials (that industrial
needs may push to produce), we should attribute to M geometrical structure as less as
possible. However, we need to maintain the elements strictly necessary to build up the
representation of interactions and their balance. The choice that M be a differentiable
manifold, as required above, fits all these requirements.
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2.1.1 Elementary notions about manifolds

The reader acquainted with primary notions of differential geometry may in principle skip
this section in his reading. Here, some basic definition and elementary remarks are collected
just to render the paper self-contained and to introduce clearly the reader to non-trivial
aspects of the matter.

A topological space is a set M together with a family τ of subsets of it (that we call
open sets of M; their complements in M are then closed) such that (i) the empty set ∅

and M belong to τ , (ii) the union of any collection of elements of τ is also an element of τ ,
(iii) the intersection of any pair of elements of τ is also in τ . M is also Housdorff if for any
pair of distinct elements ν1 and ν2 of it one may find neighborhoods Iν1 and Iν2 of ν1 and
ν2 (namely open sets containing respectively ν1 and ν2) which do not intersect each other.

A subclass τB of τ is called basis for the topology τ if any open set of M (i.e. any element
of τ) can be represented by means of the union or the finite intersection of elements of τB.
Here we assume that each element of M has a countable basis. We say that a topological
space M is locally Euclidean of dimension m if each point of it has a neighborhood U
homeomorphic to an open subset V of R

m. This means that, for any ν ∈ M, there is U ⊆M
containing ν and a one-to-one mapping ϕ from U onto V , namely ϕ : U → V ⊆ Rm. The
map ϕ induces a local coordinate system on a piece of M so that the pair (U , ϕ) is called
chart. Precisely, να = ϕα (ν) is in this sense the α-th coordinate of ν, being ϕα (ν) the
α-th coordinate of the m-dimensional vector ϕ (ν) ∈ R

m. Roughly speaking, a topological
space M is locally Euclidean of dimension m when we may establish around each point of
it a local Euclidean coordinate system. For different points the relevant coordinate systems
are in principle different but they have the same dimension. In particular, let us consider
a collection F = {(Ui, ϕi)} of coordinate systems (with i belonging to an index set I ) such
that the union of all Ui –that may partially overlap with each other– is a cover of M, i.e.⋃
i∈I

Ui = M. If for all i, j∈ I, we get

(i) ϕi ◦ ϕ−1
j : Ui ∩ Uj → Vi ∩ Vj ⊆ Rm is of class Ck with 1 ≤ k ≤ +∞, and

(ii) for any coordinate system (U ϕ) such that ϕi ◦ ϕ−1
j and ϕi ◦ ϕ−1 are of class Ck for

all i ∈ I, one gets (U , ϕ) ∈ F,
then F is called differentiable structure of class Ck over M.

In other words, we have a differentiable structure over M when we may cover it with
an atlas of charts and we may go from any local coordinate system to the neighboring one
(when the ‘passage’ is defined, i.e. when item (i) above applies) with the same degree of
regularity.

A differentiable manifold M of finite dimension m and class Ck is a locally Euclidean
space of dimension m endowed with a m-dimensional differentiable structure of class Ck .

When the degree of regularity (i.e. the class) is not specified (as in the case we treat in
this paper) it is intended that M is of class C∞.

Figure 1 is a sketch of the situation described above.
Paracompactness of M (a property required just above (2)) means that every open

cover of M has a locally finite open refinement (i.e. roughly speaking a subcover such that
every point of M has a neighborhood that meets only a finite number of the elements of
the subcover). This property assures that M admits partitions of unity for any open cover.

To think about more familiar things, commonly the region B0 occupied by the body
in its reference place is a sub-manifold of the three-dimensional point space E3 and is
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Figure 1. Local overlapping charts over a manifold. The dashed line means that
M and its local representations in Euclidean space are in principle not
parts of the same space

paracompact. So, the possibility to build up always over B0 a partition of unity is a crucial
point, for example, to construct extended finite elements (see [5]).

A few additional notions complete this section. Let f : [−s̄, s̄] �−→ M be a not self-
intersecting curve over M, with s̄ a positive real number, and indicate with ν the value
f (0). We say that f is differentiable if in some chart (U , ϕ) the map ϕ◦f is differentiable. If
f1, is another differentiable curve as f , we say that two curves are equivalent if f (0) = f1 (0)
and d

ds (ϕ ◦ f)
∣∣
s=0

= d
ds (ϕ ◦ f1)

∣∣
s=0

. We call then tangent vector to M at ν the equivalence
class of curves over M agreeing at ν up to the first order as defined just above and indicate
with ν̇ such class. Of course ν̇ exists intrinsically because the equivalence relation is chart
independent (see any standard textbook on differential geometry). The α-th component of
ν̇ in the chart (U , ϕ) is given by ν̇α = d

ds (ϕα ◦ f)
∣∣
s=0

. In other words we should imagine
the counterpart of U in R

m, namely V = ϕ (U), select over V the point ϕ (ν), evaluate the
tangent vector to the curve ϕ◦f in V and consider it as the image in the coordinate system
(U , ϕ) of ν̇. Of course, if ν̇β is the component of ν̇ at ν in another coordinate system, say(
U , ϕ̄

)
, the circumstance that M is endowed with a differentiable structure allows us to say

that ν̇β = ∂ϕ̄β

∂ϕα ν̇
α due to the change of coordinates from (U , ϕ) to

(
U , ϕ̄

)
in a neighborhood

of ν. The components of ν̇ changes in such a way that ν̇ itself is left invariant. The set
TνM of all equivalent classes of curves at ν is the tangent space to M at ν. It is a linear
space, the union TM of all tangent spaces to M, namely TM =

⋃
ν∈M

TνM, is the tangent

bundle of M. It has the natural structure of a differentiable manifold and its dimension is
equal to 2m: in fact, a generic element of TM is the pair (ν, ν̇). TM does not coincides in
general with a linear space although each TνM is a linear space.

Each ν̇ cannot be separated by its pertinent ν unless a parallelism is defined over M.
Sometimes the choice of the parallelism (or better, the connection) over M implies subtle
physical questions.
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For each TνM, its dual counterpart is indicated by T ∗
ν M and called cotangent space of

M at ν. It is a linear space with dimension equal to m. The union T ∗M of all cotangent
spaces of M, namely T ∗M =

⋃
ν∈M

T ∗
ν M, is the cotangent bundle, is naturally endowed with

the structure of a differentiable manifold with dimension equal to 2m since the generic
element of T ∗M is the pair (ν, z) with z ∈ T ∗

ν M.
Notice that, if z ∈ T ∗

ν M and ν̇ ∈ TνM, the (scalar) product z · ν̇ is naturally defined
(without adding additional algebraic structure) because it is the value of z at ν̇.

Notice that, although each T ∗
ν M is a linear space, the cotangent bundle T ∗M does not

coincide in general with a linear space.

2.1.2 Configuration space and motions

As remarked in defining (1) and (2), two sufficiently smooth maps characterize the mor-
phology of the body, namely the transplacement map x̃ and the morphological descriptor
map ν̃. So, the configuration space C of a complex body is the space of pairs (x̃, ν̃). It
is a product space of the type Cx × Cν with x̃ belonging to Cx and ν̃ to Cν . The analyti-
cal properties5 of C are essential in building up numerical schemes and in evaluating their
convergence. In particular, C has a non-trivial structure that depends on the geometrical
properties of M (that is on the special choice of M that physical circumstances impose in
concrete cases). Examples of how the nature of C may be intricate are discussed in [49].

In our picture, motions are then sufficiently smooth time parametrized curves over C.
With reference to a given interval of time [0, t̄], we have then mappings

[0, t̄] � t �−→ (x̃t, ν̃t) ∈ C (3)

and - with some slight abuse of notation - we indicate by x = x̃ (X, t) the current place of
a material element resting at X when t = 0 and with ν = ν̃ (X, t) the value at the time t
of the morphological descriptor.

Moreover, we denote with ẋ and ν̇ the rates given by

ẋ =
dx̃
dt

(X, t) , ν̇ =
dν̃

dt
(X, t) . (4)

Of course, at each X and t, ẋ ∈TνB, ν̇ ∈ TνM.
This representation of the motion is Lagrangian in the sense that the rate fields con-

sidered just above are defined over B0. However, since x̃ is assumed to be one-to-one
everywhere in B0 (exception is for example the case in which macroscopic cracks are con-
sidered, a case that will be treated later), a complete spatial (Eulerian) representation of
the motion is available.

A spatial field ν̃a of morphological descriptors is then defined by ν̃a = ν̃ ◦ x̃−1 so that
νa = ν̃a (x,t). Correspondingly, we have the spatial counterparts of the rates ẋ and ν̇,
indicated by v and υ: they are the values at x and t of fields ṽ and υ̃ defined formally by

B× [0, t̄] � (x, t) ṽ�−→ v = ṽ (x, t) ∈ TxB, (5)

B× [0, t̄] � (x, t) υ̃�−→ υ = υ̃ (x, t) ∈ TνM. (6)

5For example, as in standard non-linear elasticity, one may imagine that Cx ⊆ W 1, p
(B0, E3

)
for some

p ≥ 1, i.e. that x̃ be an element of the sobolev space W 1,p
(B0, E3

)
of point valued functions even if we

might basically require in some circumstances that x̃ be continuous and piecewise continuously differentiable
(namely PC1

(B0, E3
)

)[36], [129], [163], a request that could apply also to Cν that we may consider thus

coincident with PC1 (B0,M).
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We have

ẋ = v and υ = ν̇+(grad ν)v. (7)

We may write also

υ = ν̇+(∇ν)F−1v = ν̇− (∇ν) Ẋ, (8)

where Ẋ is the material velocity −F−1v derived from the inverse mapping X = x̃−1 (x, t)

so that Ẋ =
·

(x̃−1) (x, t).

2.1.3 Measures of deformations

At the beginning of Section 2 we have reminded that the requirement that x̃ be orientation
preserving is tantamount to prescribe that F has positive determinant everywhere. F is
a part of the tangent map T x̃ :TB0 → TB whose peculiar elements are pairs of the type
(x,F); in other words, T x̃ (X) =

(
x̃ (X) , F̃ (X)

)
≡ (x,F). The reason for which we consider

in common practice just F independently of the corrisponding x is that the geometry of
the regions that the body may occupy is so ‘nice’ that allow us to separate invariantly6 x
from F. It is not so for the tangent map T ν̃ :TB0 → TM which is such that T ν̃ (X) =
(ν̃ (X) ,∇ν̃ (X)) ≡ (ν,∇ν). In this case, in principle, M may be so exotic that we cannot
separate invariantly ∇ν from its relevant ν. This is one of the reasons for which below
we shall encounter in general the pair (ν,∇ν) in the list of constitutive entries of the free
energy unless some special cases may allow us to consider ν or ∇ν separately. At each X,
we then get ∇ν ∈Hom (TxB0, TνM), i.e. ∇ν transforms linearly tangent vectors to B0 at
X in tangent vectors to M at ν. We indicate with ∇ν∗ the adjoint of ∇ν. It is such that
∇ν∗ ∈ Hom (T ∗

ν M, T ∗
ν B0). If we consider ν̃a, i.e. the counterpart of ν̃ over B, we have

another tangent map T ν̃a : TB →TM such that T ν̃a (x) = (νa, grad νa).
It is easy to check by chain rule that grad νa = (∇ν) F−1.
The picture of the kinematics described up to here is summarized roughly in the diagram

of Figure 2.

Figure 2. Summary of the description of body morphology

6Technically, one realizes that TB0 and TB are trivial bundles and a natural connection is available over
them.
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A few remarks about measures of deformations may clarify further the matter.
Let g be the matric in the ambient space (more properly in B) and γ the material metric

in B0. Both g and γ are symmetric, definite positive, second order tensors. These metrics
may be even flat, i.e. they may coincide with the identity tensor I. By indicating by FT

the transpose of F, the mapping

B0 � X �−→ (
FTF

) ≡ C∈ Sym+ (TXB0, T
∗
xB) (9)

is the pull-back of g from B to B0 by means of the deformation x̃ and in components we
have CAB =

(
FT

)i
A

gijF
j
B.

In standard continuum mechanics, at each X, the difference (C − γ) is twice the non-
linear deformation tensor E measuring relative changes of lengths by using B0 as paragon
setting. In components we get 2EAB = CAB − γAB even if a more familiar expression is
given by 2EA

B = CA
B − δA

B with CA
B = γADCDB and δA

B = γADγDB the Kronecker symbol.
In complex bodies, the special nature of the substructure (more specifically the choice

of the morphological descriptor) may or may not influence directly the measures of de-
formation. In fact, when for example ν represents a microdisplacement, an indepenen-
dent rotation or an independent deformation, its gradient may enter the expression of the
measures of deformation together with ν itself. Cosserat and micromorphic materials are
well-known special cases in which the order parameter and its gradient appear explicitly
in the expression of measure of deformations (see all references about Cosserat and micro-
morphic materials quoted in the introduction). Other cases are microcracked bodies and
quasiperiodic alloys: They will be treated explicitly in subsequent sections.

We could summarize in a unique statement the variety of situations envisaged by af-
firming that in general there is a map of the type

(F,g, ν,∇ν) �−→ G (F,g, ν,∇ν) ∈ Sym+ (TXB0, T
∗
XB0) (10)

with G a metric in B0 involving the pull-back of g. Consequently, we could define an
(extended) deformation tensor Ẽ by an expression of the type 1

2 (G− γ), erasing ν and/or
∇ν in the list of entries of G each time in which the specific physical circumstances envisaged
suggest such a cancellation. In particular, when the morphological descriptor represents
aspects of the substructure not related directly to local - even microscopic - changes of
lengths, standard C and E, or their spatial counterparts, are sufficient to measure the
macroscopic deformation. This is for example the case in which ν represents the volume
fraction of a phase in two-component medium, the local orientation of stick molecules in
nematic phase etc.

In any case, only specific physical circumstances may render concrete (10) that, on the
contrary, would remain vague.

2.1.4 Observers and their classical changes

The notion of observer and the requirements of invariance of balance principles with respect
to changes in observers are crucial points in mechanics: We need, in fact, that basic rules
do not depend on any particular frame attached to some laboratory, but may be managed
in all circumstances they may apply.

In classical mechanics, an observer is a slicing of space time, i.e. a representation of the
interval of time and of the ambient space in which the motion of the body may develop (see
[129] and [146] for a detailed treatment). It is essential to note that in standard context
the interval of time and the ambient space are the sole geometrical ingredients necessary
to describe the shape of the body and its motion. This remark is the starting point to
formulate the more enlarged notion of observer necessary in the mechanics of complex
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bodies. Here we follow strictly the point of view in [119] (see also [49], [21]) and state the
following definition:

An observer O is a representation of all geometrical environments necessary to describe
the morphology of a body and its motion.

In this sense, in our point of view an observer is a representation of (i) the interval
of time, (ii) the ambient space, (iii) the manifold M of substructural shapes and (iv) the
reference place B0. For the sake of simplicity, we deal with changes in observers agreeing
about the measure of time and B0. However, the representation of the ambient space E3

and of M may be altered in different manners. In general (see [49]), we should consider
the action over E3 of its group of authomorphisms7 (i.e. changes in observers differing by
arbitrary “deformations” of the ambient space itself) and the action over M of an arbitrary
Lie group G. This would be the most general ‘reasonable’ family of changes in observers
agreeing about the measure of time.

We consider here just classical changes in observers. For them, the ambient space un-
dergoes only isometric changes ruled by SO(3) and the same copy of the special orthogonal
group SO(3) acts also over M. In other words we are describing in our enlarged setting
the counterpart of the common motion of ‘observers differing by rigid body motions’.

Let t �−→ Q (t) ∈ SO (3) be a one parameter family (smooth with respect to the
parameter that we may identify with time) of elements of SO(3) altering isometrically the
ambient space E3 with Q (0) coincident with the identity in SO(3). If ẋ∗ is the value of
velocity ẋ after a change in observer ruled by Q (t), we have

ẋ∗ = ẋ + c (t) + q̇× (x − x0) (11)

where8 c (t) is the translational velocity - constant in space - of one observer with respect
to the other, q̇ the relevant rotational velocity and x0 a point chosen arbitrarily in E3.
Moreover, if we consider that SO (3) itself acts also over M and indicate with ν̇∗ the image
of the rate ν̇ of the morphological descriptor after the change in observer induced by Q (t),
we get

ν̇∗ = ν̇+Aq̇ (12)

where, at each ν ∈M, the linear operator A (ν) belongs to Hom
(
R

3, TνM
)
, i.e. it maps

linearly vectors into elements of the tangent space TνM. At each ν, A (ν) is represented
by a matrix with three columns and a number of lines equal to dimM. In particular, if
νq indicates the value of ν after the rigid action of SO (3) over M, we have A = dνq

dq

∣∣∣
q=0

,

where the vector q is associated with Q ∈SO (3) by the exponential map and we have
Q = exp (−eq), with e the Ricci’s permutation index.

7The same reasonings apply when the ambient space is E2 or E1.
8Consider as above a smooth curve [0, t̄] � t �−→ Q (t) ∈ SO (3) starting from the identity, i.e.

Q (0) =IdSO(3). Let O be a given representation of E3 at t = 0. By means of Q (t) we may associate
to any t an observer O′

t isometrically related to O. The map from O onto O′
t is such that any generic point

x in O is mapped in a point x′ = w (t) + Q (t) (x − x0) in O′
t, where w (t) is the value of an arbitrary

point-valued function smooth in time and x0 an arbitrary point. If we calculate the rate of x′, namely ẋ′,
and pull-back it in O by means of the inverse transformation QT (t), by putting c = QT ẇ and ẋ∗ = QT ẋ′,
we get (11).

In particular, for any vector d, we have also QT Q̇d = q̇×d because QT Q̇ is a skew-symmetric tensor.
Roughly speaking, c + q̇× (x − x0) is the rigid body motion of the observer O′ with respect to O superposed
to ẋ.
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2.2 Balances of Standard and Substructural Interactions

In standard continuum mechanics we make distinction between bulk and contact forces in
representing interactions. These forces are defined to be objects conjugated in terms of
power with the standard velocity, i.e. with the rate of the sole morphological descriptor
involved, namely the placement of each material element. When multiplied by the velocity
(even virtual) they furnish the power developed along a certain mechanical process at a given
time. In the case of complex bodies, even if a material element is at rest, the substructure
inside it may undergo changes measured by the rate ν̇. So that interactions of substructural
nature arise. We assume that they are of bulk and contact nature as in the standard case
and are defined by objects conjugated in the sense of power with ν̇. As a consequence, since
ν̇ belongs to the tangent space TνM to M at ν, we should select elements (indicated by
letters µ, β or z indifferently) of the cotangent space T ∗

ν M in order the product by ν̇ be
defined.

Previous remarks summarize roughly the line of reasoning we follow below to represent
the external power of all interactions over a generic part of the body and to derive related
integral and pointwise balances.

As usual, we call part any subset b of B0 with the same regularity properties of B0 itself.
Moreover, we indicate by P (B0) the set of all parts of B0 and by velc (B0) the set of pairs

of velocity fields, namely
( ·
x̃,

·
ν̃

)
with compact support in B0.

We call then power a map

P : P (B) × V elc (B0) → R (13)

such that

(i) P (·, ẋ, ν̇) is additive and

(ii) both P (b, ẋ, ·) and P (b, ·, ν̇) are linear.

For any fixed part b chosen arbitrarily in B0, we indicate by Pext
b (ẋ, ν̇) the power of all

external actions over B. To represent explicitly Pext
b (ẋ, ν̇) in Lagrangian setting (all fields

are in fact defined over B0), we distinguish bulk and surface contributions and write

Pext
b (ẋ, ν̇) =

∫
b

(
b̄ · ẋ + β̄ · ν̇) d3X+

∫
∂b

(Pn · ẋ+Sn · ν̇) dH2 (14)

where n is the outward unit normal to the boundary ∂b of b, d3X the usual volume mea-
sure and dH2 the two-dimensional Haussdorff measure over ∂b. Standard interactions are
measured by the vector of bulk forces b̄ and the first Piola-Kirchhoff stress P.

(a) b̄ includes inertial (in) and non-inertial (ni) effects in additive way so that b̄ =
bin + bni and we shall write just b instead of bni to simplify notations. At each X
we get b̄ ∈T ∗

xB, and TxB is isomorphic to R3.

(b) At each X, the tensor P belongs to Hom (T ∗
XB0, T

∗
xB), which is isomorphic to R3⊗R3.

In other words, P maps normals to ideal surfaces in B0 into tensions placed at the
actual counterpart x of X.

Substructural interactions are measured by β̄ and the microstress by S.
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(c) β̄ accounts for external bulk agencies acting directly on the substructure as in the case
in which external electromagnetic fields alter the polarization state in ferroelectrics.
Moreover β̄ includes also inertial effects when they can be attributed to the substruc-
ture in a way independent of the bulk inertia. At each X, we realize that β̄ is an
element of T ∗

ν M.

(d) At each X, the microstress S maps linearly vectors of R3 (normals to virtual surfaces
in B0) in elements of T ∗

ν M, i.e. S belongs to Hom (T ∗
XB0, T

∗
ν M) ∼= Hom

(
R3, T ∗

ν M
)
.

More precisely, consider a smooth virtual surface in B0 containing X and oriented
there by the normal n. The product Sn is a ‘generalized traction’: Sn · ν̇, in fact,
measures the power exchanged between two adjacent material elements through the
surface of normal n as a consequence of substructural changes.

Remark 1. The proof of the existence of P is classical and available in very weak con-
ditions (see [162]). Moreover in standard continuum mechanics, the addition of a few
analytical conditions to the definition of the power indicated above may allow one to ob-
tain directly a representation of Pext in terms of P without resorting directly to Cauchy
theorem (see [142]) but making use of techniques of geometric measure theory. As regards
the microstress, a Cauchy-like theorem cannot be obtained in the standard way (tetrahe-
dron and so on), in general, because M does not coincide with a linear space. The usual
procedure can be applied only by assuming that M is embedded in an appropriate linear
space (see [30]). The embedding is always available (by Whitney theorem) because M is
finite dimensional; the embedding can be also isometric (by Nash theorems) but it is not
unique. An intrinsic explicit proof of the existence of S without resorting to the embedding
of M is not yet available. Techniques proposed in [157] indicate a way of reasoning. Here
we just claim the existence of the microstress. In any case we note that in Lagrangian-
Hamiltonian setting it arises naturally by exploiting the principle of least action on a total
energy depending on ∇ν. However, in this case constitutive issues would be involved while
here, in this section, we are treating the matter without resorting to them. The representa-
tion of interactions, in fact, belongs to a family of classes of materials while the specification
of constitutive issues selects just a specific class.

Balance equations follow from a basic axiom of invariance of the power with respect to
classical changes in observers. The way of reasoning follows the standard path [146], dif-
ferences are (i) the presence of measures of substructural interactions and (ii) the enlarged
notion of observer that we have introduced above.

Axiom. Pext
b (ẋ, ν̇) is invariant with respect to classical changes in observers for any b,

i.e.

Pext
b (ẋ∗, ν̇∗) = Pext

b (ẋ, ν̇) (15)

for any choice of c, q̇, b.

By introducing the relations (11) and (12), in the explicit expression of Pext
b (ẋ∗, ν̇∗),

the arbitrariness of c (t) and q̇ (t) allows us to obtain the standard integral balance of forces∫
b
b̄ d3X+

∫
∂b

Pn dH2 = 0 (16)

and a generalized integral balance of moments, namely∫
b

(
(x − x0) × b̄+A∗β̄

)
d3X+

∫
∂b

((x − x0) × Pn+A∗S) dH2 = 0, (17)
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where A∗ is the adjoint of A and at each ν we get A∗ (ν) ∈ Hom
(
T ∗

ν M,R3
)
, i.e. A∗ maps

linearly co-vectors over M into three-dimensional vectors (see [113]). Notice that measures
of substructural interaction do not appear in (16). In fact, a “translational velocity” does
not appear in (12) because the translation group does not act transitively over M as it
acts over the point space E3. Moreover, the arbitrariness of b allows us to obtain pointwise
balances. In fact, we get from (16) the standard pointwise balance of forces (Cauchy
balance)

b̄+DivP = 0 (18)

and from (17) the equation

A∗ (β̄+DivS) = ePFT − (∇A∗)S (19)

with e Ricci’s alternating index. Since at each X the sum β̄+DivS is an element of T ∗
ν M,

i.e. it is co-vector of M at ν = ν̃ (X) (that is a linear form over the tangent space TνM)
we see from (19) that the vector ePFT − (∇A∗)S belongs to the range of A∗. We find then
two information from (19):

(i) There exists an element of the cotangent space of M at ν, say z, such that

A∗z = ePFT − (∇A∗)S (20)

(ii) The co-vector z (called self-force) is just equal to β̄+DivS, i.e.

β̄ − z+DivS = 0. (21)

This last equation represents the pointwise balance of substructural interactions (Capriz
balance). It is invariant with respect to changes in observer governed by SO(3) because we
have required exactly this kind of invariance to derive it. However, this requirement alone
introduces a form of indeterminacy in the self-force because if we add to z any element of
the null space of A∗ - that is any co-vector z̄ such that A∗z̄ = 0 - the sum z + z̄ satisfies
also (20), then (21). Such an indeterminacy is eliminated by a stronger requirement of
invariance, namely covariance, i.e. invariance with respect to the action of arbitrary Lie
groups over M. The covariance of the balance of substructural interactions can be proven
in Lagrangian-Hemiltonian setting by making use of an appropriate version of Noether
theorem (the proof can be found in [21]). We remind that in the same setting one may
prove that also Cauchy balance of forces is covariant, where covariance means in this case
invariance with respect to the action of the group of automorphisms of the ambient space.
Roughly speaking we may say that observers deforming one with respect to the other read
the same structure of the balance of forces.

As regards equation (20), if we premultiply it by Ricci’s alternating symbol e, we get

skewPFT =
1
2
e (A∗z+ (∇A∗)S) . (22)

Remark 2. The balance of substructural interactions (21) has a rather subtle nature.
Its physical interpretation is as follows: locally (i.e. at each point) to sustain external bulk
and contact substructural actions, the latter induced by neighboring matter, a self-force is
generated in principle within each material element.

We may ask whether (21) is a localized version of an integral balance principle. In other
words, may we postulate the integral version of (21) on any arbitrary part b of B0 and



Computational Aspects of the Mechanics of Complex Materials 407

assume it as a primitive integral balance of substructural interaction? The answer is in
general negative. To explain clearly the reason we need a brief digression.

Really, when we write the integral over A of a certain map ξ, two geometrical envi-
ronments are involved: the domain A of ξ and its co-domain B. Although A could be
even a manifold, B should be a linear space in order the integral be defined. When we
consider for example the map X �−→ (

β̄ (X)−z (X)
)
, we see that it takes values in T ∗M;

precisely, at each X we find
(
β̄ (X)−z (X)

) ∈ T ∗
ν M and for each pair of points X1 and

X2 the corresponding morphological descriptors ν1 and ν2 differ in general each other, so(
β̄ (X1)−z (X1)

)
and

(
β̄ (X2)−z (X2)

)
belong to different linear spaces, namely T ∗

ν1
M

and T ∗
ν2
M. The cotangent space T ∗M does not coincides with a linear space unless spe-

cial circumstances occur. As a consequences the integral of β̄ − z over b is in general not
defined. Really one could propose to make use in the same sense of a connection over
M to ‘transfer’ all values of β̄ − z from their relevant cotangent space to a given T ∗

ν M
selected as ambient for the integration. However, unless physical circumstances impose a
specific connection, the choice of it is in certain sense of constitutive nature. An integral
balance of substructural interactions (if we were able to think of it) should be intrinsic, i.e.
independent on the choice of the connection over M. The connection itself would induce
a parallel transport that would be in general not bounded or, if bounded, not uniformly
bounded and, above all, not isometric. So that the possible choice of a certain T ∗

ν M would
be not invariant. The Riemannian connection would assure an isometric parallel transport
over M but there is no physical reason to prefer the Riemannian connection to others. In
summary, we cannot assume an integral version of the balance of substructural interactions
as primitive principle unless M coincides with a linear space (see also [119]).

By making use of balance equations (18), (21) and Gauss theorem we get

Pext
b (ẋ, ν̇) = P int

b (ẋ, ν̇) , (23)

where

P int
b (ẋ, ν̇) =

∫
b

(
P · Ḟ + z · ν̇+S · ∇ν̇

)
d3X (24)

for differentiable rate fields.

Remark 3. If we consider ẋ and ν̇ as ‘virtual’ velocity fields, (23) takes the role of
a version of the principle of virtual work, which is valid for multifield theories of complex
bodies. In this way, (23) is a basic ingredient to construct appropriate finite element schemes
for multifield theories as we shall see later. Really, one could assume in principle the relation
(23) as a primary balance principle, by assuming it valid for any choice of velocity fields.
Balance equations of standard and substructural interactions would follow as a consequence
(see [78] for the exploitation of this point of view in the case of micromorphic bodies). In
standard continuum mechanics this procedure is basically equivalent to the requirement
of invariance with respect to classical changes in observer (the ones ruled by the action
of SO (3)) of the sole external power of bulk and surface interactions. In the case of the
mechanics of complex bodies, in the multifield sense described here, it is not so. The reason
is that, if we postulate (23) as a primary principle, we must assume the existence of a
self-force z, while, if we require just SO (3) invariance of the external power, we obtain the
need of the existence of z as a consequence.

2.2.1 Inertial effects

Special physical circumstances may allow us to attribute to the material substructure own
kinetic energy. A paradigmatic example is the case of incommensurate intergrowth com-
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pounds, that are quasiperiodic alloy characterized by the presence of incommensurate sub-
lattices that may displace one with respect to the other in a way such that kinetic energy
may be associated with this special micro-displacement process [118].

In general, to indicate the substructural kinetic energy we make use of a function

K : T ∗M →R
+ (25)

such that

1. K (ν, µ) is equal to zero only when µ = 0,

2. K (ν,λµ) = λ2K (ν, µ) with λ ∈ R, i.e. K (ν, ·) is of degree 2 in µ,

3. the second derivative ∂2
µµK exists and is positive definite.

The total kinetic energy of an arbitrary part b of the body is given by

{kinetic energy of b} =
∫

b

(
1
2
ρ0ẋ · ẋ+K (ν, µ)

)
d3X (26)

where ρ0 is the referential density of mass.

Remark 4. The choice of a rather abstract function K (·,·) has defined above to represent
the substructural kinetic energy is not due to a pure taste for abstract formalism. Really,
the standard kinetic energy 1

2ρ0ẋ · ẋ has the same properties of K (·,·). However, TB is a
trivial bundle so that we may separate invariantly the velocity ẋ from the point x where
it is attached. On the contrary, in general T ∗M is not a trivial bundle so that we cannot
separate ν from µ unless special physical circumstances (as in the case of incommensurate
undergrowth compounds) allow us to think of µ independently of ν.

As anticipated above, both b̄ and β̄ contain inertial contributions in additive manner
so that we have

b̄ = b + b(in) and β̄ = β + β
(in) (27)

where b(in) and β(in) are the inertial components.
To identify them, we assume as a postulate that the rate of the total kinetic energy of

any arbitrary part b of the body in B0 equals the opposite of the power of inertial bulk
interactions b(in) and β(in) for any choice of the velocity fields, namely we assume that

d

dt

∫
b

(
1
2
ρ0ẋ · ẋ+K (ν, µ)

)
d3X+

∫
b

(
b(in)·ẋ + β(in) · ν̇

)
d3X = 0 (28)

for any choice of ẋ and ν̇.
By developing the time derivative of the first addendum of (28), thanks to the arbitrari-

ness of b we find [17]

b(in) = −ρ0ẍ, (29)

and

β(in) = − d

dt
∂ν̇X (ν, ν̇) + ∂νX (ν, ν̇) (30)

The function X is called kinetic co-energy and has the properties listed in what follows.
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(i) Its Legendre transform sup
ν̇∈TνM

(∂ν̇X · ν̇ −X (ν, ν̇)) with respect to ν̇ is such that the

sup is attained at a unique point in TνM.

(ii) Where the sup is attained, it coincides with the substructural kinetic energy, namely

K (ν, µ) = ∂ν̇X · ν̇ −X , µ = ∂ν̇X . (31)

Roughly speaking, the identification of β(in) by means of (28) is possible in terms of
a function, namely X (ν, ν̇), which is such that its Legendre transform coincides with the
kinetic energy. This situation is not so exotic as it appears. Really, the same route is
followed in identifying b(in) but, since the standard kinetic energy is quadratic, it coincides
with its Legendre transform. In other words, the interplay between X and K is the same
interplay between Lagrangian and Hamiltonian densities.

After the identifications of the inertial terms b(in) and β(in), the balance equations
become

b +DivP =ρ0ẍ, (32)

β − z +DivS =
d

dt
∂ν̇X (ν, ν̇) − ∂νX (ν, ν̇) . (33)

2.2.2 Eulerian representation of balance equations

Up to this point we have developed a Lagrangian picture of standard and substructural
interactions. In other words, fields have been considered defined over B0 so that (32) and
(33) hold pointwise in B0.

An actual (Eulerian) description of interactions is available by pushing forward the
relevant quantities from B0 on B. More specifically, in B, the counterparts of (32) and (33)
read

ba + divσ = ρv̇, (34)

βa−za+divSa =
d

dt
∂υX (νa, υ) − ∂νaX (νa, υ) , (35)

moreover (22) becomes

skewσ =
1
2
e (A∗za+ (gradA∗)Sa) . (36)

Here, σ denotes Cauchy stress and the subscript “a” means that the relevant quantities
are the ‘actual’ counterpart of the original ones. More precisely, by means of inverse Piola’s
transform, one obtains

σ =(det F)−1 PFT , Sa = (det F)−1 SFT , (37)

ba = (det F)−1 b, za = (det F)−1 z, βa = (detF)−1 β (38)

In this way, we may recognize that at each x we have σ ∈Hom (T ∗
xB, T ∗

xB) and Sa∈Hom
(T ∗

xB, T ∗
ν M). Moreover, ba ∈ T ∗

xB and za, βa ∈ T ∗
ν M exactly like b, z and β. The way in

which σ and Sa act is represented in Figure 3 where τττ represents here the microtraction (i.e.
the contact interaction that we have represented with Sn in the expression of the external
power) and t the standard traction (the one given by Pn in Pext

b (ẋ,ν̇)).
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Figure 3. Scheme of the ‘action’ of stress measures

2.3 Constitutive Restrictions

The format developed in previous sections is common to all materials for which multifield
representation of the morphology is necessary to account for prominent aspects of the sub-
structural morphology even at ‘minute’ scales. Constitutive prescriptions select subclasses
of complex materials (even before specifying the nature of M). However, such (general)
prescriptions cannot be selected at will. In fact, for the materials they characterize, all
possible mechanical processes must satisfy the laws of thermodynamics, in particular the
second law (see [39]). Here, for the sake of simplicity we restrict our treatment to the
case of isothermal processes so that we make use of an isothermal version of the second
law prescribing that the rate of free energy9 of an arbitrary part b minus the power of all
external actions over b is less or equal to zero for any choice of the velocity fields, namely

d

dt

∫
b
ψd3X−P ext

b (ẋ, ν̇) ≤ 0 (39)

for any choice of ẋ, ν̇ and b. In (39), ψ is the free energy density.
Notice that we are not considering possible migration of substructures from one material

element to another10.
Here, substructures remain always within the pertinent material element although they

may undergo changes there even of irreversible nature.
By developing the time derivative in the first addendum of (39), since b is fixed in time,

thanks to the arbitrariness of b, the use of (23), from (39) we get

ψ̇ − P · Ḟ − z · ν̇−S · ∇ν̇ ≤ 0 (40)

We treat first the case of elastic complex bodies. For them we assume constitutive
structures of the type

ψ = ψ̃ (F, ν,∇ν) , (41)

9The existence of the free energy for a complex body can be proven by using the abstract thermodynamic
formalism developed in [40].

10See [117] for a general treatment of migration, also [91] and [122] for special cases.



Computational Aspects of the Mechanics of Complex Materials 411

P = P̃ (F, ν,∇ν) , (42)

z = z̃ (F, ν,∇ν) , (43)

S = S̃ (F, ν,∇ν) , (44)

where we have omitted an explicit dependence on X for the sake of simplicity. ∇ν accounts
for weakly non-local effects of gradient type. When ν describes a multi-phase material
structure (as in the case of two-phase materials in which the morphological descriptor is
the volume fraction of one phase), ∇ν allows us to spread over the bulk effects of minute
diffused interfaces - a sort of regularization.

Moreover, once we have decided to account for the presence of ∇ν in the constitutive list
of entries of the free energy and the measures of interactions, the contemporary presence of
ν is due to the circumstances that, in general, we cannot decompose invariantly ∇ν from
the pertinent ν. By developing the time derivative of ψ we get

(∂Fψ − P) · Ḟ+(∂νψ − z) · ν̇+(∂∇νψ − S) · ∇ν̇ ≤ 0, (45)

for any choice of the rates involved. Really, for any choice of the state (F, ν,∇ν) we may
select arbitrarily11 the rates Ḟ, ν̇, ∇ν̇, so that the validity of (45) implies

P =∂Fψ̃ (F, ν,∇ν) , (46)

z =∂νψ̃ (F, ν,∇ν) , (47)

S=∂∇νψ̃ (F, ν,∇ν) . (48)

Remark 5. In seeing (46)-(48), one realizes straight away that, in the static case (i.e.
when inertial effects are neglected) and in presence of conservative standard and substruc-
tural bulk actions, the balances of standard and substructural interactions are the Euler-
Lagrange equations associated with the energy functional∫

B0

ψ̃ (F, ν,∇ν) d3X−
∫
B0

Ũ (x, ν) d3X, (49)

where Ũ is the potential of conservative standard and substructural interactions, under
suitable regularity conditions for ψ. Moreover, in this setting, by substituting (46)-(48) in
(22) we realized that (22) itself is nothing but the condition assuring SO (3) invariance of
ψ (see [17]).

Special expressions of ψ are generalizations of Ginzburg-Landau energies so that we
may have for example structures of the type

ψ = ψ̃ (F, ν) +
1
2
a ‖∇ν‖2 (50)

11In fact,
(
Ḟ, ν̇,∇ν̇

)
can be selected in an open set because no constraint are imposed.
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where12

(i) ψ̃ (·, ν) is polyconvex in F and the dependence on ν may be of various nature;

(ii) a is a constitutive constant;

(iii) ‖∇ν‖ indicates in a concise way ‖∇ν‖2
Hom(TXB0,TνM).

Expressions of the type (50) appear in the case of two-phase materials, ferroelectrics,
magnetoelastic bodies. The term 1

2a ‖∇ν‖2 is due to the spatial variation of the morpho-
logical descriptors implied by non-uniform distributions of substructures. It disappears in
‘large body limit’ that is when the effect of inhomogeneities or domain branching is negli-
gible. Moreover, as mentioned previously, the term 1

2a ‖∇ν‖2 accounts also in a smeared
sense for possible surface energy between phases.

As a further special case, if ψ̃ (F, ν) satisfies the additive decomposition ψ̃ (F, ν) =
ψ̃1 (F) + ψ̃2 (ν), we may extract an immediate physical interpretation: ψ̃1 (F) is the free
energy associated with the relative change of place of neighboring material elements; ψ̃2 (ν)
is the additional energetic contribution of substructural events occurring within the material
element.

As a matter of fact, the free energy density ψ cannot depend on the rate of deformation
and the rates of the morphological descriptor and its gradient.

To prove this statement, let us admit for a while that ψ could depend, say, on the rate of
ν in a generalized way, namely ψ = ψ̃ (F, ν,∇ν, ν̇). If so, by calculating the time derivative
of ψ, we would obtain an inequality given by (45) with the left-hand side term augmented
by an addendum of the type ∂ν̇ψ · ν̈. As a consequence, since no measure of interaction
is associated with ν̈ in terms of power, the validity of the inequality for any choice of the
velocity fields implies ∂ν̇ψ = 0, which completes the proof.

However, when viscous effects occur at gross and substructural level, the Piola-Kirchhoff
stress P, the microstress S and the self-force z do depend on the rates Ḟ, ν̇, ∇ν̇ which
measure the ‘removal’ from ‘thermodynamical equilibrium’ where (46)-(48) hold.

The simplest case occur when just substructural viscosity occur within each material
element in a way such that just the self-force z depends on ν̇ in addition to F, ν, ∇ν.
We follow the same way of reasoning adopted for standard viscosity in [39] and [163]. In
this way we assume first that z be decomposed additively in its viscous and non-viscous
components, namely

z = zv+znv (51)

with

znv = z̃nv (F, ν,∇ν) , (52)

zv = z̃v (F, ν,∇ν; ν̇) , (53)

with the restriction z̃v (F, ν,∇ν;0) = 0.
Then we assume also that (41), (42) and (44) hold. In this way the point of view of our

picture is that the free energy rules only the non-viscous parts of the stress measures. The
local dissipation inequality (40) then becomes

(∂Fψ −P) · Ḟ+(∂νψ − znv) · ν̇+(∂∇νψ − S) · ∇ν̇ − zv · ν̇ ≤ 0 (54)

12Of course we may have cases in which the explicit dependence on X is necessary (as we will see later),

so that we could have ψ̃ (X,F, ν) and a (X) [116].
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and is valid for any choice of the velocity fields involved, so that we get (46)-(48) and

zv · ν̇ ≥ 0 (55)

which declares the purely dissipative nature of zv.
A solution of previous inequality is given by

zv = λν̇ (56)

with λ = λ̃ (F, ν,∇ν), λ̃ a scalar definite positive function in some cases depending also on
ν̇. As a consequence, in this case the balance of substructural interactions becomes

β − znv +DivS − λν̇ =
d

dt
∂ν̇X−∂νX (57)

Of course, another solution to (55) is given by zv = Aν̇ with A ∈ Hom (TνM, T ∗
ν M), at

each X, or, in components over M, (zv)α = Aαβ ν̇
β with A definite positive, i.e. Aαβ ν̇

αν̇β ≥
0 for any choice of ν̇, the equality sign holding when ν̇ = 0. The solution zv = Aν̇ reduces
to (56) when Aαβ = λδαβ . Finally, we may consider zv as the derivative with respect to ν̇
of the dissipation potential given by 1

2Aαβ ν̇
αν̇β , a sort of Rayleigh function over M.

In this special case zv · ν̇ is the substructural (mechanical) production of entropy.
The issue becomes more complicated when additional gradient substructural viscosity

and gross viscosity - i.e. friction between adjacent material elements - occur. In this case,
decompositions of P and S in their viscous and non-viscous components are necessary in
addition to (51). They read

P = Pnv + Pv (58)

S = Snv+Sv (59)

Now we have

Pv = P̃v
(
F, ν,∇ν; Ḟ, ν̇,∇ν̇

)
, (60)

Sv = S̃v
(
F, ν,∇ν; Ḟ, ν̇,∇ν̇

)
, (61)

zv = z̃v
(
F, ν,∇ν; Ḟ, ν̇,∇ν̇

)
, (62)

while the non-viscous components still satisfy (42)-(44) and the constitutive structure of
the free energy is given by (41).

The viscous parts of the stress measures satisfy also the restrictions

P̃v (F, ν,∇ν;0,0,0) = 0, (63)

S̃v (F, ν,∇ν;0,0,0) = 0, (64)

z̃v (F, ν,∇ν;0,0,0) = 0 (65)
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In this case, if we follow the same path leading to (55), we obtain instead of (55) itself
its counterpart given by

Pv · Ḟ+Sv · ∇ν̇ + zv · ν̇ ≥ 0 (66)

As solution to (66) we find Pv, Sv and zv as linear functions of Ḟ, ∇ν̇ and ν̇ with tensor
coefficients depending on F, ∇ν and ν, namely

P̃v = A
(P)
1 Ḟ + A

(P)
2 ν̇+A

(P)
3 ∇ν̇,

S̃v = A
(S)
1 Ḟ + A

(S)
2 ν̇+A

(S)
3 ∇ν̇, (67)

z̃v = A
(z)
1 Ḟ + A

(z)
2 ν̇+A

(z)
3 ∇ν̇.

Of course, the linear operator represented by A
(P)
1 A

(P)
2 A

(P)
3

A
(S)
1 A

(S)
2 A

(S)
3

A
(z)
1 A

(z)
2 A

(z)
3

 (68)

must be definite positive at each X (see the analogous case of thermoelastic simple bodies
with viscosity effects discussed in [163]). However, the reduced dissipation inequality (66)
does not imply that each single addendum be semi-positive definite. On the other hand,
if we prescribe (in certain sense as additional dissipation inequalities) that each viscosity
mechanism be intrinsically dissipative, i.e. that

P · Ḟ ≥ 0,
S·∇ν̇ ≥ 0, (69)
z · ν̇ ≥ 0.

independently, then (68) becomes diagonal.
Remark 6 We know that the dependence on the rates is just the simplest way to ac-
count for viscous effects. The theory of standard materials with memory would deserve
to be extended to the multifield setting treated here. Concrete examples such as relaxor
ferroelectrics - for which vanishing memory effects are prominent - suggest the need of this
kind of development of the general theory. Really, when Ḟ, ν̇, and ∇ν̇ are present in the
list of constitutive entries, we are dealing with complex materials of “differential” type, a
special class of complex materials with memory.

Once (46)-(48) have been derived, it is immediate to obtain the constitutive structures
of the spatial counterparts of the measures of interactions by using (37) and (38).

2.3.1 A generalized Doyle-Ericksen formula

A purely spatial description of the mechanism of complex body is available (see [21], [97]).
With the words “purely spatial” we indicate that no reference configuration B0 is considered
and used as a paragon setting for lengths or as domain of definition of various fields. The
body occupies only the region B ‘here and now’, all fields are defined just over B.

In the elastic case, in which the body is characterized by the elastic energy e (·) and we
consider the velocity fields (5) and (6) over B, the conservation of energy in a part ba of B
reads

δ

(∫
ba

ed3x
)
−P int

ba
(v, υ) = 0 (70)
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where δ indicates the variation of the total elastic energy in ba, namely
∫
ba
ed3x; and

P int
ba

(v, υ) =
∫

ba

(σ·gradv + za · υ+Sa · gradυ) d3x (71)

The velocity v and the actual rate υ of the morphological descriptor are chosen as
virtual fields. In particular, we presume that v(·, ·) be of pure deformative nature, i.e.
skew (gradv)= 0.

We assume that e (·) admits constitutive structure of the type

e = ẽ (g, νa, gradνa) , (72)

where g is the metric in space, so that

δe = ∂ge · δg + ∂νa
e · δνa + ∂gradνae · δgradνa. (73)

Analogous constitutive structures are presumed for σ, za, and Sa. Notice that no
reference to B0 is made. The deformation is only accounted for by means of the dependence
of the energy on the metric in space.

To specify the nature of the variations involved, we first consider g dragged along the
flow v so that δg coincides with the autonomous Lie derivative Lvg of g along v (g does
not depend explicitly on time) and we have

δg = Lvg = 2sym (gradv) = 2gradv (74)

The last equality holds because we have assumed skwgradv = 0.
Moreover, we put

δν = υ, (75)

δgradν = gradυ+(gradν) gradv. (76)

By substituting (74)-(76) in (70), the arbitrariness of v and υ allows us to get

za = ∂νae, (77)

Sa = ∂gradνae, (78)

σ = 2∂ge− (gradνa)∗ Sa. (79)

The last identity is a generalized version of Doyle-Ericksen formula [21]. With respect
to the case of standard elasticity (see [56], [129]) the new additional term − (gradνa)∗ Sa

governs the transfer of energy from the substructural level to the macroscopic level. Its
contribution appears evident in complex fluids where it governs strictly the possibility of
topological transitions that may develop along flows [115].

2.4 Differences and Analogies with Internal Variable Models

After having displayed the essential elements of the mechanics of complex bodies, it is nat-
ural to underline analogies and differences with internal variable models that are largely
used to describe microstructural effects in various circumstances. To clarify the issue one
should come back to the 1967 paper [38] where the format of internal variable models is
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first presented in the realm of the continuum mechanics of deformable bodies (see also
[160], [134], [135], [136] for basic results on this matter). Roughly speaking, one imagines
to have a list of variables, collected in a vector α ∈R

n, describing the ‘internal’ state of each
material element and satisfying a general evolution law of the type13

α̇ = ω̄ (F, α) (80)

postulated a priori.
Both the first Piola-Kirchhoff stress P and the free energy depend on α, namely

P = P̃ (F, α) , ψ = ψ̃ (Fα) . (81)

Moreover, as usual, P is given by

P = ∂Fψ, (82)

and satisfies the standard Cauchy balance (18). The reduced dissipation inequality reads

∂αψ · α̇ ≥ 0 (83)

However, (83) does not mean that ψ cannot depend on α, because α̇ cannot be selected
at will since it is ruled by (80) so that (83) becomes

∂αψ · ω̄ ≥ 0 (84)

which is a restriction on the possible structures of ψ and ω̄.
Differences and analogies appear then evident.

1. In internal variable models, α measures exclusively the removal from thermodynamic
equilibrium by means of irreversible processes ‘ruled’ by (80) and (84). When conser-
vative processes develop, internal variable models reduce to standard elasticity and
α plays just a parametric role. When, in fact, α̇ =0 in the scheme above there is
no production of entropy because ∂αψ · ω̄ = 0 and (80) reduces to a sort of internal
‘constraint’ ω̄ (F, α) = 0.

2. On the contrary, in the setting of multifield theories, the one described in previous
sections, when mechanical process are conservative and the range is elastic, a non-
standard elasticity occur and may allow us to obtain unusual results as we shall see
later in developing concrete examples.

3. No crude interactions are associated with α in a direct sense. The expression of the
external power includes just standard forces. The derivative of the free energy with
respect to α represents only an affinity quantifying the sole production of entropy by
means of (84).

4. A direct action on the material texture of possible external actions such as electro-
magnetic fields is not accounted for in (80).

5. Formally, we may link models with internal variables with the multifield setting de-
scribed here. Let the following hypotheses apply:

(i) There aren’t external bulk actions over the substructure, i.e. β =0.
13The temperature and its gradient may be added in the list of entries of ω̄ in non-isothermal problem.
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(ii) Substructural inertia is absent.

(iii) Substructural actions of contact nature are absent. Each material element is a
solitary individual that does not interact with its neighboring fellows. The mi-
crostress S is then completely absent (as it occurs for example in dilute solutions
of bubbles).

(iv) The rate of the morphological descriptor is associated with substructural viscous
effects within each material element.

With these assumptions, the free energy density ψ has a constitutive structure of the
type ψ = ψ̃ (F, ν) and the balance of substructural interactions reduces to

z = 0. (85)

However, since substructural inertia occurs, z can be decomposed in its irreversible and
reversible components so that (85) becomes

zv = −znv, (86)

with zv given by (56). As a consequence, (86) reduces to

ν̇ = −1
λ
∂νψ (F, ν) (87)

which coincides formally with (80) when we put

ω̄ (·, ·) = −1
λ
∂νψ (·, ·) (88)

with λ the second derivative with respect to ν̇ of a Rayleigh function over M as recalled
above.

In this way, in the sense summarized above, internal variable models may be considered
as special cases of multifield theories. The description of specific physical circumstances
may suggest us the appropriate point of view.

2.5 Some Example of Complex Materials

Below we indicate a first list of special cases of complex bodies. However, before going in
details, we recall briefly our familiar lexicon.

M is the manifold of substructural shapes, while each element ν of it is a morphological
descriptor of the substructure within the material element ‘collapsed’ at X. The rate ν̇ ∈
TνM is the rate of change (even of virtual nature) of the substructure at X. Substructural
interactions are actions within each material element (z) and between neighboring material
elements (S), due to substructural rearrangements.

To construct any special model of a complex material in the general model building
framework described above, we need first to have a sort of ideal picture of the material
element and to select consequently the morphological descriptor and the nature of M. Once
the morphology of the material substructure has been described geometrically, one should
select an appropriate explicit form of the free energy and possible dissipation potentials
or - more simply - viscous coefficients. Symmetry requirements, experimental data and
identification from ideal lattice models of the material element may help in selecting the
form of the energy and, in general, in determining the values of constitutive coefficients.
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2.5.1 Porous and multi-phase bodies

When pores are finely distributed throughout a body, we may imagine that each material
element be a patch of matter with spherical voids and select the morphological descriptor
as a scalar indicating the void volume fraction of the material patch at X. In this case
M reduces to the interval of the real axis [0, 1] and A vanishes identically. Substructural
bulk measures of interaction β and z reduce to scalars β and z, while the microstress S is a
vector (see [148], [44], [43], [121]). Since A vanishes identically, the procedure based on the
invariance of external power fails and this special case seems to be pathological with respect
to it. Formally, one may circumvent the problem by using as a morphological descriptor
a spherical second order tensor. In this way one may obtain the balance of substructural
interactions as in previous sections, then, since one may select ν as aI, with I the second
order unit tensor and a = ã (X, t), one may reduce to the scalar case straight away.

In the case of linear elastic materials with voids, by indicating with ε the infinitesimal
strain tensor ε =sym∇u (u is the displacement), linear constitutive equations are associated
with the free energy ψ coincident with a quadratic form in ε, ν and ∇ν (ν is now a scalar).
Additionally, one can take into account viscous effects due to the surface tension at pores by
using the procedure described in Section 2.3. Then, one obtains for elastic porous materials
the following constitutive relations with damping:

σij = Cijhkεhk +C
(1)
ijkν,k + C

(2)
ij ν, (89)

z = C(3)ν̇ − C(4)ν −C
(5)
ij εij −C

(6)
i ν,i, (90)

Si = C
(7)
ij ν,j +C

(8)
ijkεjk + C

(9)
i ν, (91)

where C ijhk is the usual stiffness tensor and C (i) are appropriate constitutive tensors,
vectors or scalars (the tensor order is indicated in the formulas above). As usual, ν,i

denotes the derivative ∂xiν.
In the isotropic case, previous relations reduce to

σij = λδijεhh + 2µεij + ξ(1)νδij , (92)

z = −ξ(2)ν̇ − ξ(3)ν − ξ(1)εhh, (93)

Si = ξ
(4)
i ν,i, (94)

where δij is the unit tensor, λ and µ are the standard Lamé constants. The inequalities

µ > 0 , ξ(4) � 0 , ξ(3) � 0 (95)

3λ+ 2µ � 0 , (3λ+ 2µ) ξ(3) � 12ξ(1) (96)

apply. They assure uniqueness and weak stability of solution to the balance equations.
The scheme described above can be used also for granular matter [79], [149] and for

two-phase materials. In the latter case, ν represents the volume fraction of one phase or
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may be the indicator function of some phase, i.e. ν is zero if there one of the two phases is
absent and is equal to 1 when only that phase is present.

Transition layers are identified throughout the body as the thin layers where ∇ν un-
dergoes large oscillations. During the evolution of phase transitions, the order parameter
is governed by the balance of substructural interactions where terms like zv are accounted
for (see [151], [41], [73], [74]).

In the case of multi-phase materials one may choose as order parameter a list

ν =(ν1, ..., νN ) , (97)

whose entries take values on [0, 1] and are subjected to the constraint

N∑
i=1

νi = 1, (98)

thus only N -1 entries are independent.
In this case M becomes the cube

[0, 1] × ... × [0, 1] N times. (99)

If we look just to standard non-linear elasticity, in the case of multi-phase materials we
have non-convex multi-well potentials. The scheme described above allows one to ‘approx-
imate’ such a potential.

Solid-to-solid phase transitions in shape memory alloys may be also described by com-
bining scalar and second-order tensor valued morphological descriptors, the latter allow us
to account for the re-orientation of martensitic variants, as proposed in [8].

2.5.2 Ferroelectrics

Barium Titanate BaTiO3 and the large family of PZT perovskite are examples of mate-
rials experiencing spontaneous polarization associated with crystalline rearrangements at
a critical temperature called Curie temperature. Also, applied strain and external electric
fields influence the local polarization state. Such materials are called ferroelectrics. They
are used for various sophisticated devices and the literature about them is abundant (see,
e.g., [80], [81], [158], [186], [187], [45], [46], [47]). For them the material element is just the
crystalline cell and we describe the polarization state within it by means of a vector.

At each X we indicate the polarization vector by p, take it as morphological descriptor
and assume that 0 ≤ |p| ≤ pm, with pm a material constant. Then M is the ball of radius
pm in R3. We also consider the body subjected to an external electric field E.

Balance equations are formally identical to (18), (21) and (22). A is the second order
tensor −p× (in components (−p×)ij = eijkpk, with eijk the alternating symbol). As a
consequence, the relation (12) becomes ṗ∗ = ṗ + p × q̇. Here, the microstress S accounts
for interactions between neighboring crystals with different polarizations; z measures self-
interactions within each polarized crystal. To include the effects of the applied electric field
in the balance equations, we assume that the bulk interactions b̄ and β̄ and the boundary
‘tractions’ t = Pn and τ =Sn can be decomposed additively in electromechanical (em) and
purely electric parts (el), namely

b̄ = bem+bel, (100)

β̄ = βem+βel, (101)
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t = tem+tel, (102)

τ = τ em+τ el. (103)

For any arbitrary part b of B, the purely electric parts are defined by assuming that
their power on any part b equals the rate of electric energy in b. In other words, one
postulates the validity of the balance

d

dt
D (b) +

∫
b
(bel·ẋ + βel·ṗ) d3X +

∫
∂b

(tel·ẋ + τ el·ṗ) dH2 = 0, (104)

where

D (b) = −1
2

∫
b
ρE·pd3X (105)

is the electric energy in b, associated with the local polarization state. We assume that
such a balance holds (within classical limits) for any choice of the rates ẋ and ṗ involved.

A theorem of Tiersten [178] give us the explicit expression of the rate ofD in the current
configuration. We write the Lagrangian version of Tiersten’s formula by pulling it back in
the reference configuration so that we get

d

dt
D (b) = −

∫
b
ρ (gradE)p · ẋd3X−

∫
∂b

1
2

(det F) p2
nF

−Tn · ẋdH2−
∫

b
ρE · ṗd3X, (106)

where pn is the normal component of p. The arbitrariness of the rates ẋ and ṗ and the
validity of (104) allow us to identify corresponding terms, namely

bel = ρ (gradE) p, (107)

βel = ρE, (108)

tel =
1
2

(det F) p2
nF

−Tn, (109)

τel = 0, (110)

where pn = p · n. Consequently, the balance equations (18) and (21) become

bem +DivP + ρ (gradE) p = 0, (111)

βem − z+DivS + ρE = 0, (112)

where bem and βem include the inertial terms as ever.

2.5.3 Cosserat materials

The scheme of Cosserat materials is a special case of multifield theories often used for direct
models of structural elements like beams, plates or shells [66], [3] or to model composites
reinforced with diffused small rigid fibers. Each material element is considered as a rigid body
which can rotate independently of the neighboring fellows. In this way, ν can be naturally
chosen as a proper orthogonal tensor Q (thus, an orthogonal matrix with determinant equal
to 1) describing the independent rigid rotation of the material element and M coincides
with the special orthogonal group SO (3).
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More simply, it is also possible to describe the independent rigid rotation of each material
element by means of vector-valued order parameters ω (see [17] for the connection between
the tensor representation and the vectorial representation of Cosserat materials; see also
[87] and [147]).

Contact interactions are then the traction t and a contact couple m. This couple de-
velops power in the rate of rigid independent rotation of each material element. At each
virtual surface ‘cut’ in B0, m is considered a function of the place, possibly of the time and
of the normal to the surface ‘cut’ itself: m = m̂ (X, t,n). An analogous of Cauchy’s theorem
holds and it is possible to prove the existence of a second order tensor M such that

Mn =m (113)

The tensor M is a linear transformation from �3 into itself: thus it is an element
of Hom

(
R3,R3

)
. The couple m is power conjugated with ω̇. In the expression of the

external power, β describes possible applied body couples, so that, after the usual invariance
procedure on a part b of B0 of Pext

b (ẋ, ω̇) - where now ω̇ is a specification of ν̇ -, we get the
standard integral balance of forces (16) and an integral balance of couples given by∫

b

(
(x − x0) × b̄ + β

)
d3X+

∫
b
((x − x0) × Pn + Mn) dH2. (114)

The arbitraryness of b implies

DivM + β − ePFT = 0 (115)

which displays the standard results that in Cosserat materials Cauchy stress is not sym-
metric.

In the case of infinitesimal deformations, the linearized measure of infinitesimal strain
εc displais clearly the influence on the gross deformation of the local independent rotation.
It reads

εc = ∇u−eω. (116)

Cosserat’s scheme has been developed not only in elastic range. Cosserat plasticity
is available and has been formulated in [54] and [174] to account for plastic phenomena.
Hardening has been introduced in [114].

2.5.4 Strain gradient dependent materials

Lenght scale dependent effects are recognized in material behavior by means of various types
of experiments. A paradigmatic example is Hall-Petch effect [94], [152]: The strength of
polycrystalline aggregates increases with decreasing grain size. Various other experimental
evidences of length scale dependent effects can be found in the current scientific literature
(see, e.g., [131], [145], [159]). These effects are due to non-local interactions with limited
range so that they may be described by resorting to higher order gradients of deformation.
However, it is not possible in principle to add simply higher order gradients of F to the
list of state variables and to maintain a form of the dissipation inequality analogous to
the one of simple materials. In fact, with reference to elastic processes, a constitutive
choice for the free energy of the type ψ = Ψ(x̃ (·)), with Ψ (x̃ (·)) a functional of the entire
deformation, is incompatible with a local dissipation inequality of the form ψ̇ −P · Ḟ ≤ 0,
unless ψ = ψ̃ (F) (see [89]). Of course, a special case of ψ = Ψ(x̃ (·)) is a structure of the
form ψ = ψ̃

(
F,∇F,∇2F, ...,∇nF

)
.
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An analogous result when ψ is of the type ψ = ψ̃
(
F,∇F,∇2F, ...,∇nF, α

)
, with α some

list of internal variables [161].
To assure thermodynamic compatibility to constitutive expressions of the form ψ =

ψ̃ (F,∇F), or e.g. ψ = ψ̃
(
F,∇F,∇2F

)
, appearing in second- and third-grade elasticity, it

is necessary to modify the mechanical dissipation inequality by adding a rate of supply
of mechanical energy that we denote here with (∗) - as shown first in [57]. The modified
expression of the mechanical dissipation inequality is then given by

ψ̇ − P · Ḟ− (∗) ≤ 0. (117)

However, the nature of (∗) is left unspecified in [57]. A basic result presented first in [15]
shows us that the general framework of multifield theories allows us to specify completely
the nature of the rate of supply of mechanical energy (∗). Really, we need two ingredients:

(i) absence of bulk interactions acting directly on the substructure, namely β̄ = 0, and

(ii) an internal constraint linking directly the morphological descriptor to the gross defor-
mation, that is, for example, ν = ν̃ (F).

Under these conditions, we say that the substructure is latent : “Though its effects are
felt in the balance equations, all relevant quantities can be expressed in terms of geometric
quantities pertaining to apparent placements” [15]. Of course, the concept of latence is
not exclusively restricted to the assumption of an internal constraint of type ν = ν̃ (F).
Temperature, higher order gradients of F and their rates may occur in the list of entries
of ν̃ (·). Here, the choice of ν = ν̃ (F) allows us just to explain how second grade elasticity
can be considered as a special case of the multifield setting.

As a consequence of (i), the local version of the local mechanical dissipation inequality
(40) reduces to

ψ̇ − P · Ḟ−Div (S ν̇) ≤ 0, (118)

so that, by comparison with (117), we get

(∗) = Div (S ν̇) . (119)

The constraint ν = ν̃ (F) implies that the constitutive structure ψ = ψ̃ (F, ν,∇ν) reduces
to ψ = ψ̃ (F,∇F).

The rate of supply of mechanical energy (∗) necessary to justify a constitutive depen-
dence of the energy on ∇F is then a consequence of substructural events that induce a
weakly non-local character in the constitutive equations.

To explain clearly the issue, we may focus the attention on the special case of micro-
morphic bodies in linear setting, the one formulated in [137] (see also relevant remarks and
references in the Introduction). In this special case, one assumes that each material element
is a unit cell containing ”a molecule of a polymer, a crystallite of a polycrystal or a grain of
a granular material” [137] and may admit deformations independently of the neighboring
fellows. As a consequence, ν describes a local micro-deformation and is a second-order ten-
sors, so that M coincides with Hom

(
R3,R3

)
. Since the manifold of substructural shapes

coincides thus with a linear space in this case, the linearized theory follows naturally. If we
focus the attention on it, we may define a measure of relative deformation γ by

γ = ∇u − ν (120)
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(u the displacement) and assume that along isothermal processes the state of each material
element be defined by the three-plet (ε, γ, gradν). It is essential to note how this point of
view contains as a special case the model of Cosserat materials. To obtain it, in fact, it is
sufficient to select ν as a second-order tensor such that symν = 0 and skewν ∈ SO (3).

Calculations developed along the general path discussed in previous sections, allow us
to observe that the balance of standard and substructural interactions merge the one into
the other and one gets

ba + div (σ−divSa) = 0 (121)

in absence of inertial effects. Moreover, if one assumes as internal constraint that the
relative deformation γ vanishes, that is ∇u = ν, a special case of ν = ν̃ (F), than the list
of constitutive entries (ε, γ, gradν) reduces to (ε,gradu) and (121) to the balance of forces
in second grade linear elasticity.

More complicated is the matter in non-linear setting when one considers the internal
constraint ν = ν̃ (F) without attributing a special meaning to ν. However, even in this
case one may obtain a result and for a free energy of the type ψ̃ (F,∇F) one finds [15] the
balance of forces

b +Div
(
∂Fψ −Div (∂∇Fψ) −Div

(
Fskw

(
∂∇FψF−1

)))
= 0, (122)

in absence of inertial effects.

2.5.5 Liquid crystals

Liquid crystals are a paradigmatic example of complex bodies. They are characterized
by stick molecules smeared in a ground fluid. Such molecules may arrange themselves in
various manners that characterize different phases [50].

Nematic phase. In nematic phase, the stick molecules are ordered along prevailing di-
rections but they have no orientation. In other words, there is a head-to-tail symmetry.
As morphological descriptor, we may attach to each point an indicator of the prevailing
direction of the stick molecules there (as proposed first in [60], [61]). In this way, M may
be selected to be the unit sphere in R

3 but with the constraint that diametrically opposite
points are identified to account for the head-to-tail symmetry. With this constraint, M is
isomorphic to the projective plane P 2 and the morphological descriptor is thus an element
of it. The explicit constitutive structure of the self-force and the microstress can be ob-
tained from the Oseen-Frank potential (see [17]) as derivatives with respect to ν and its
gradient respectively.

Alternatively, if one would like to account more deeply for the geometrical features of
the local distribution of stick molecules within each material element, one could adopt as a
morphological descriptor a second order symmetric tensor D with unitary trace (trD = 1),
or better its deviatoric part DD. In particular, one selects DD as to be expressed by
DD = ζ

(
ς ⊗ ς−1

3I
)
, with ς a unit vector, namely ς ∈ S2, and ζ ∈ [−1

2 , 1
]
. In this way, one

has two morphological descriptors: the vector ς representing the prevailing direction of stick
molecules - really one selects ς ∈ P 2 - and a scalar ζ indicating the degree of orientation
(as defined in [65]). Since D is symmetric, the distribution it describes is an ellipsoid.

We have then a first set of substructural interactions power conjugated with the rate of
ς and a second set conjugated with the rate of ζ. Each set is balanced independently.
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Biaxial nematics. Optical biaxiality can emerge in nematic liquid crystals. When it
occurs, the symmetry of the molecules is reduced to that of a rectangular box. In this case,
one needs two other scalar morphological descriptors, namely the degree of prolation dg and
the degree of triaxiality dt defined respectively by

dg =
1
2

(
3∏

i=1
(3λi − 1)

) 1
3

, dt =
(

6
√

6
3∏

i=1
|λi − λi+1|

) 1
3

, (123)

with λi the i − th eigenvalue of D (as proposed first in [20]). These degrees characterize
the geometry of the ellipsoid associated with D.

Alternatively, one may select M coincident with the quotient between the special unitary
group SU (2) and the group of quaternions (see [132]).

Smectic-A phase. In the smectic-A phase, liquid crystals are organized in layers in which
the stick molecules tend to be aligned orthogonally to the layer interface. Within each layer
the molecules flow freely; in the orthogonal direction they may permeate from a layer into
another. In such a direction the behavior is basically the one of a one-dimensional crystal.
Natural ingredients for describing the smectic-A phase are a unit vector ς that represents at
each point the local orientational order, and a scalar function w parametrizing the layers.
More precisely, we may write [18] w (x, t, aλ), with λ an appropriate length scale and a
running in a set of integers, to account for possible unequal spacing of layers. At a coarse
grained scale and with reference to the current configuration, we may imagine that w (x, t, ·)
be defined in a continuum approximation on an interval of the real line so that |gradw|−1

measures the current thickness of the layers. Then, we can select the order parameter as
the pair (ς, w); however, far from the defect core, where tilt is absent, we have

ς =
gradw

|gradw| , (124)

and the simplest choice for the potential ψ in the incompressible case (where incompress-
ibility is intended at ‘gross’ scale) is of the form (see [58])

ψ (w, gradw) =
1
2
γ1 (|gradw| − 1)2 +

1
2
γ2 (divς)2 , (125)

with the identification (124), γ1 and γ2 material constants. In (125), the term (|gradw| − 1)2

accounts for the compression of layers while (divς)2 describes the nematic phase and is the
first addendum of (three constant) Frank’s potential (see [17], p. 55). Inertial effects can be
considered by putting χ = 1

2ρα |ς̇|2, with α a material constant. Of course, the assumption
of incompressibility at a gross scale is not incompatible with the assumed compressibility
of the layers that may rearrange with one another without altering the volume.

2.5.6 Bodies with polymeric linear chains

Bodies characterized by polymeric chains smeared in a melt are described variously, de-
pending on physical circumstances (see [107]). Each material element is considered as a
patch of matter containing a family of polymeric ‘linear’ chains. Except the case of di-
lute solutions, interactions may occur between neighboring material elements. They have
a weakly non-local character of gradient type. Such kind of interactions in polymeric flu-
ids may also be generated by turbulence even in dilute polymer solutions and can be the
source of terms involving spatial gradients of the substructural descriptors in the evolution
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equations describing the substructural changes of shape of the families of polymer chains
[48].

To select an appropriate morphological descriptor, one may describe first each chain by
means of an end-to-end stretchable vector r. Moreover, at each point X of B0 we have a
distribution function fP (X) (r) of r representing the population of chains within the material
element placed at X. Then, one may identify ν with a second order symmetric tensor R
given by

R (X) = 〈r⊗ r〉fP(X)(r)
. (126)

This choice is suggested by the need to be indifferent to the transformation r → −r. The
parenthesis 〈·〉 denotes ensemble average over the family of chains described by fP (X) (r).

Then, the manifold of substructural shapes M coincides with the (linear) space of
symmetric tensors with positive determinant Sym+

(
R3,R3

)
.

Balance equations can be derived by following the guidelines of the general format
described in previous sections. In requiring the invariance of the external power with
respect to the action of SO (3), one needs to take into account that in this special case the
relation (12) becomes now

Ṙ∗ = Ṙ + Aq̇ (t) (127)

and the linear operator A is then a third-order tensor whose covariant components are
given by Aijk = eiljRlk − Rilejlk. To obtain the explicit expression of A, one should take
into account that under the action of SO (3) over Sym+

(
R

3,R3
)
, we have Rq = QTRQ =

exp (eq)R exp (eq), where, as usual, e is Ricci’s alternating symbol, q a vector and Rq

the value of R after the action of an arbitrary element Q of SO (3). From the relation
A = dRq

dq |q=0 , one then get the explicit expression of A [122].

2.5.7 Polyelectrolyte polymers and polymer stars

Polymeric chains my undergo polarization as in the case polyelectrolyte polymers or may
be arranged as stars. In the former case, we may imagine to assign at each point X not
only the dyadic tensor R defined above but also a polarization vector p as in the case of
ferroelectrics. By indicating by Bpm a ball of R3 centered at zero and with radius equal to
pm, the maximum amplitude of the polarization, we have M = Sym+

(
R3,R3

)×Bpm and we
may construct the relevant mechanical theory, once an explicit expression for the free energy
ψ has been selected, adding, in presence of external electric fields, the electromagnetic
energy. In the case of polymer stars, the picture becomes more articulated and we may
imagine to have M = Sym+

(
R3,R3

) × Bpm × (0, b), with b > 0. In this case, at each X,
we add an arbitrary element of the interval (0, b) of the real line that describes the radius
of gyration of the polymeric molecules [107], [115].

2.5.8 Superfluid Helium

Superfluid Helium displays complexity that can be profitably described within the setting
of multifield theories.

In particular, in the case of superfluid Helium 4He the manifold of substructural shapes
can be choosen to be the unit circle in the complex plane, that is M = S1 ⊂ C. Then, one
should choose a free energy ψ with Ginzburg-Landau structure with complex entries [115],
[17].

In the case of superfluid Helium 3He in the dipole loched-A phase, M coincides simply
with SO (3) so that this type of superfluid Helium can be described by the Cosserat scheme
[132].
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3 A SPECIAL CASE DEVELOPED IN DETAIL: ELASTIC MICRO-
CRACKED BODIES

Microcracks distributed throughout a body rouse often mechanisms of stress-strain concen-
tration which can be source of plastic phenomena and/or macroscopic rupture and may
generate loss of serviceability of structures. The effects of distributed microcracks on the
whole mechanical behavior of bodies can be tangible already in the elastic regime where
they alter the distribution of stresses and strains. To treat cases in which the microcracks
are not dilute over the body, multifield approach is necessary [109], [124], [125], [127].

In fact, in the common modelling of microcracked materials, one tries to determine an
equivalent material without microcracks that behaves like the original microcracked body
at least in linear elastic regime. To this aim, different methods are proposed in literature.
In a 1976 pioneer paper, Budiansky and O’Connell introduced in linear elasticity the self-
consistent method to derive homogenized (also defined ‘effective’) elastic moduli of bodies
endowed with flat microcracks of planar elliptic shape [12].

A basic assumption is that “the statistical distribution of sizes, shapes, locations and
orientations of the cracks are supposed to be sufficiently random and uncorrelated to render
the body homogeneous and uncorrelated in the large” [12]. Possible effects due to the closure
of the cracks are also neglected and the microcracks are considered in elastic phase, i.e. they
do not evolve irreversibly.

Modifications of the self-consistent method are the generalized self-consistent method
[96], the differential scheme [95] and the Mori-Tanaka method [140] (comparisons among
them are in [154]). In these methods, the interaction between neighboring microcracks are
accounted for only indirectly. For example, in the self-consistent method one evaluates at
an intermediate step the displacement field around a microcrack embedded in an uncracked
linear elastic material. Such a material is endowed with the unknown homogenized stiffness
to take into account in the real material the interactions of the other microcracks with the
one considered. In going on and determining the homogenized stiffness, one obtains also
unphysical consequences: The stiffness vanishes when the microcracks density reaches a
value lesser than 1. Other homogenization methods avoid this shortcoming by reducing the
interactions among microcracks. In other words, such methods work well when microcracks
interact weakly. However, when microcracks are dense or the matter is sufficiently soft, we
need to account for microcrack-microcrack interactions. To describe them we should make
use of a multifield approach as described above. The point of view described here has been
formulated in [109], [127] and then developed in [124], [125], [170], [171]. Such a model is
able to show effects of strain localization which do not appear in models based on a linear
Cauchy’s continuum but have experimental counterparts in the linear setting.

3.1 Kinematics of Microcracked Bodies

Since we consider that microcracks are not dilute over the body, we assume that the generic
material element is a patch of matter endowed with a family of microcracks. Moreover, we
consider each microcrack either as a sharp defects - a planar compact bounded region not
penetrated by material bonds - or as an elliptic void with one dimension very small with
respect to the others. If the body is free of microcracks, the current placement x of a
material element is obtained by means of the standard deformation x̃ defined in Section 2.

When microcracks are present throughout the body and may deform without growing
further14, after a deformation, each material point will occupy a place x′ (different from x
in principle) in a current configuration B′. The discrepancy between x and x′ is due to the
possible ‘enlargement’ of the existing microcracks that induce a kinematical perturbation

14Phenomena like coalescence and nucleation are not considered here.
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on the deformative behavior. The region B′ is assumed to be regular and to be obtained
from B0 by means of a one-to-one continuously differentiable mapping

B0 � X x̃′�−→x′ = x̃′ (X) ∈ B′. (128)

Moreover, a mapping f such that

x′ = (f ◦ x̃) (X) (129)

and B′ = f (B) can be defined.
The standard displacement is then u = x −X while the ‘incremental’ displacement

(microdisplacement) due to the presence of microcracks is indicated with d = x̃′ (X)−x̃ (X).
In other words, if the microcracks are absent, the relative change of placement between

neighboring patches is measured through the displacement field u. When microcracks occur
and deform, they induce an additional displacement d that ‘perturbs’ u. The vector d is
thus a coarse grained descriptor of the influence of microcracks on the gross mechanical
behavior. It takes the role of ν, so that M coincides with the entire translational space
over E3 or, alternatively, with R

3.
We remark here that d is considered to be defined over B0 so that we have a mapping

B0 � X d̃�−→d = d̃ (X) ∈ R
3. (130)

Let us indicate with Ftot the gradient of x̃′ at X. By chain rule we get

Ftot = ∇x̃′ (X) = ∇ (f ◦ x̃) (X) = ((gradf)∇x̃) (X) = F(m)F (131)

where

F(m) = gradf (x) (132)

is the gradient of deformation from B to B′, i.e. F(m) ∈ Hom (TxB, Tx′B′).
If we indicate with da the spatial counterpart of d (i.e. the specialized version of νa) given

in terms of mapping d̃a and d̃ by da= d̃a (x) =
(
d̃◦x̃−1

)
(x), we get first ∇d =(gradda)F

by chain rule, then

F(m) = gradf (x) = I + gradda = I + (∇d)F−1 (133)

so that we may express Ftot in terms of the additive decomposition

Ftot = F + ∇d. (134)

This is one of the cases in which the measures of deformation involve the gradient of
the morphological descriptor. In the present case, in fact, we may define an overall right
Cauchy-Green tensor Ctot given by Ctot = FT

totFtot so that by (134) we recognize the
influence of ∇d on the macroscopic deformation.

The direct description of the kinematics of microcracked bodies just sketched here can
be obtained rigorously by using the procedure involving limits of bodies as described in
[53].
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3.2 Balance Equations and Identification of the Constitutive Structure from a
Lattice Model

Balance equations can be derived by using the general procedure described in Section 2
with ν identified with d. In particular, one should take into account that in this case the
linear operator A is given by −d×. To prove such a relation one should first recall that
any proper orthogonal tensor Q ∈ SO (3) can be expressed by means of the exponential
map as Q = exp (eq), with e Ricci’s permutation index and q a vector. After the action
of SO (3) over R

3 each d changes in dq = Qd = exp (eq)d. As a consequence, we get

A = ddq

dq

∣∣∣
q=0

= ed which proves our previous statement.

The balance of standard forces is still (18). There are no bulk interactions acting directly
over microcracks - they are voids, roughly speaking - also, peculiar substructural inertia is
absent so that (21) reduces to

DivS − z = 0. (135)

Moreover, by taking into account the special expression of A, (22) changes in

skw
(
SFT +z⊗ d+ST (∇d)

)
= 0. (136)

Constitutive relations for standard and substructural measures of interactions follow
once the explicit expression of the elastic energy is available in terms of F, d, ∇d. Experi-
mental data may allow us to get numerical values for the coefficients. In absence of them we
may try to construct a lattice model of the material element –i.e. of the microcracked body–
from which we derive constitutive relations by means of an identification procedure based
on the power equivalence with the continuum model15. Below we follow such a procedure
in linear elastic setting.

Figure 4 shows the prototype model adopted in the numerical simulations. It is con-
stituted by two lattices: The former –called macro-lattice– is made of rigid balls while the
latter –called micro-lattice– is made of empty elastic ellipsoids. Links are elastic and carry
only axial forces. The macro-lattice represents the molecular level while the micro-lattice
describes microcrack distribution.

Let A and B be two material points of the macro-lattice (the spheres) placed at a and
b respectively, and the two mass centers of the ellipsoids H and K be placed at the points
h and k. It is assumed that the ellipsoids can only deform along a plane orthogonal to the
major axis, along a direction eh, prescribed for each ellipsoid. Measures of deformation in
the discrete system are (i) the relative displacement dh between the margins of each ellipsoid
along the direction h orthogonal to its major axis, (ii) the elongation

(
dh − dk

)
of each link

connecting neighboring ellipsoids, (iii) the elongation
(
ua − dh

)
of each link between macro

and micro-lattice, (iv) the elongation
(
ua − ub

)
of each link in the microlattice.

The identification procedure follows two basic steps.

Step 1) The density of the internal power in the continuum is equalized to the power
developed in the RVE, namely

P·∇u + z·d + S · ∇d =
1

VRV E

(
L∑

i=1

ti ·
(
ua − ub

)
+

+
LN∑
l=1

zl ·
(
ua − dh

)
+

M∑
h=1

zh
0 · dh +

LM∑
j=1

zj ·
(
dh − dk

) , (137)

15We follow ideas of Cauchy, Born, Voigt, Stakgold and Ericksen [64], [169] and adapt them to the
multifield setting adopted here.
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Figure 4. Representative Volume Element (RVE) of the discrete model

where L is the number of bonds in the macro-lattice, LN the number of bonds between
macro and micro-lattice, M the number of ellipsoids and LM the number of bonds of
the micro-lattice. In (137), ti is the force between the two points a and b along the
i-th direction, zj the force between h and k along the j-th rod (connecting the two
ellipsoids H and K), zh

0 the force due to the displacement dh, zl the force between
the material point a and the ellipsoid h along the l-th direction.

Step 2) We assume that the macrolattice undergoes a homogeneous deformation, and that
each shell deforms also homogeneously but differently from the neighboring ones. In
this way, we may find a point x̄ in the RVE such that

dh = d (x̄) + ∇d (x) (h − x) , ua − ub = ∇u (x̄) (a − b) , (138)

dh − dk = ∇d (x̄) (h − k) , ua − dh = ∇u (x̄) (a − x̄) −∇d (x̄) (h − x̄) . (139)

Then, by inserting (138)-(139) in (137) and identifying common terms, one gets

P =
1

VRV E

(
L∑

i=1

ti ⊗ (a − b) +
LN∑
i=1

zl ⊗ (a − x)

)
, (140)

z =
1

VRV E

M∑
h=1

zh
0 , (141)

S=
1

VRV E

 M∑
h=1

zh
0 ⊗ (h − x) +

LM∑
j=1

zj ⊗ (h − k) −
LN∑
l=1

zl ⊗ (h − x)

 . (142)
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Once constitutive equations are assigned to rods and shells in the lattice, the linear
expressions of the constitutive equations (140)-(142) are given by P =A∇u−A

′∇d
z =Cd

S=G∇d − G′∇u
. (143)

With reference to the special geometry adopted in Figure 4, explicit expressions of the
constitutive tensors A, A′, C, G′ and G are indicated below:

A =
EA

lM


2 + 1√

2
0 0 1√

2

0 1√
2

1√
2

0
0 1√

2
1√
2

0
1√
2

0 0 2 + 1√
2

+
1
2 l

2
M

2E∗A√
2(lm−lM )∣∣l2M − l2m

∣∣
 1 0 0 1

0 1 1 0
0 1 1 0
1 0 0 1

 , (144)

A
′ = G

′ =
1
2 lmlM

2E∗A√
2(lm−lM )∣∣l2M − l2m

∣∣
 1 0 0 1

0 1 1 0
0 1 1 0
1 0 0 1

 , (145)

C=
2EÂ

πlc

l2m

[
1 0
0 1

]
, (146)

G=
1
2
EA

πlc

 1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

+
1
2 l

2
m

2E∗A√
2(lm−lM )∣∣l2M − l2m

∣∣
 1 0 0 1

0 1 1 0
0 1 1 0
1 0 0 1

 . (147)

They depend on the Young modulus E of the rods between neighboring spheres, the
Young modulus E∗ of the rods between elastic shells and rigid spheres (it is a parameter
that allows us to describe the interactions between each microcrack and the surrounding
matter), the area A of the cross section of the rods among rigid spheres and between rigid
spheres and elastic shells, the characteristic lengths lm and lM , the characteristic length lc
of the shells in the lattice, the cross section area Â of rods between adjacent microcracks.
Remark 7. Only the ratio between the material scales lM and lm is significant in the
numerical developments.

Our procedure aims to match a discrete simulations of the material at a mesolevel with
its coarse grained continuum representation. In spirit there are stringent analogies, with
respect to the final target, with the quasi-continuum method, the coarse-grained molecular
dynamics, and the dynamic atomistic-continuum modelling based on matching conditions.
The choice of appropriate values for the material and geometrical quantities characterizing
the discrete model and determining (144)-(147) is a delicate matter of modeling.

When we imagine to eliminate the mesolattice, thus the corresponding terms in (144)-
(147), the final results must be the constitutive equations of the real material in a virgin
state free of microcracks, so E, A, and lM must be selected accordingly.

The length lc is the averaged maximal dimension of the microcracks, the average being
calculated over the population of microcracks. The length lm is strictly associated with
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Figure 5. Three-dimensional schematic view of the basic cell of the lattice model.

the density of microcracks: For fixed symmetry properties, namely the cubic one here, the
density increases as lm decreases. In principle both lc and lm can be evaluated by means of
X-ray techniques (see, e.g.,[103]). The remaining coefficients might be derived by mean of
an appropriate inverse analysis.

Let us consider, for example, a strip of microcracked material loaded by two opposite
tensile unitary forces. Calculate the total displacement utot between the points of applica-
tion of the two forces and also the analogous displacement by imagining the strip made of
uncracked material. The difference of the two values is the perturbation d̄ induced by the
microcracks. At this point, once for the special material under examination E, A, lM , lc
and lm have been selected with the criteria described above, we should choose E∗ and Â
in order to fit the value d̄. Of course, the solution is not unique because we may select the
parameters E, A, lM , lc, lm, E∗ and Â in different ways. When experimental analyses sug-
gest that the microcrack distribution displays some symmetry and we organize the lattice
taking into account it, the identification procedure preserves such a symmetry.

The discrete model chosen here is only a simple device useful to simulate the mechanical
behavior of the material element. The selection of the values of the geometric and consti-
tutive quantities of the lattice is guided by the possibility to fit experimental data about
the displacements in the real material.

3.3 Numerical Examples

Different examples, developed in the setting of standard finite element method, are here
illustrated. A set of constitutive parameters concerning the macro-lattice and the micro-
lattice is chosen as in Table 1. The behavior of four different two-dimensional speciemens
under tensile force is analyzed.

Numerical simulations display the occurrence of strain localization phenomena already
in linear elastic setting. Such phenomena cannot be obtained in a natural way by using
standard homogenized models based on Cauchy continuum in the same linear setting. It
is worth noting that the possibility of obtaining localization zones in a fairly natural way
depends basically on the presence of ∇d in the constitutive equations (see comments and
additional results in [124] and [125]).

Two constitutive parameters have a prominent influence on the shape of the localization
zones. They are (i) the ratio � between Young modulus E ∗ of inter-lattice links and Young
modulus E of the links in the macro and micro-lattice and (ii) the ratio lm

lM
between the

length scales of the micro-lattice and of the macro-lattice.
In particular, when the coupling coefficient � increases, the amplitude of the localization
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lm (mm) see Figure 4 75
lM (mm) see Figure 4 5
E
(

N
mm2

)
modulus of the macro-lattice and micro-lattice bonds 103

E∗ ( N
mm2

)
modulus of the inter-lattice bonds 103

A
(
mm2

)
section area of the rods in the macro-lattice 1

Â
(
mm2

)
area of the cross section of the strip utilized in deriving d0 0.0314

lc (mm) see Figure 4 1

Table 1. Summary of the symbols used in the two dimensional examples of elastic
microcracked bodies

zones increases too; if a fixed value for lM is assumed, when lm increases, the perturbation
of the displacement field induced by microcracks diffuses progressively and reduces the
intensity of the localization phenomenon.

When � = 0 the analytical problem is uncoupled and the macro-displacement u corre-
sponds to the displacement obtained in the same situation in a body free of microcracks.

Moreover, the inter-lattice modulus E∗ is a measure of the influence of the microcrack
distribution on the macroscopic behavior of the body. A way to measure E∗ is to compare
experimental results with numerical tests. In the simulation below E∗ has been chosen
coincident with E.

3.3.1 Rectangular slab with different discontinuities

Consider a rectangular slab of microcracked body of length 3L and width L. Three cases
with macroscopic discontinuities are considered and the gross mechanical behavior of the
slab is studied by using numerical simulations. For each case the same boundary conditions
are imposed in terms of macrodisplacement (to avoid rigid body motions) and standard
tractions. No prescriptions are given in term of microdisplacement. Moreover, microtrac-
tion vanishes on the whole boundary of the slab. This last condition is in agreement with the
physical circumstance that no direct load can be applied on the microcracks at the bound-
ary of the slab since these microcracks lose their identity there becoming just corrugations
of the boundary itself.

Figure 6 shows the case of a double notched domain, Figure 8 the case of a central
discontinuity and Figure 10 that of a central square hole. These figures are assembled as to
represent, from left to right, (i) the boundary conditions, (ii) the underformed configuration
and (iii) the deformed configuration amplified with an amplifying factor equal to 10. In
Figure 8 the amplifying factor is 50.

Numerical results are collected respectively in Figures 7, 9 and 11 where the macro
and microdisplacement along the orizonthal (x) and vertical (y) axes are shown. Strain
localization zones appear in the region near the tips of the two cracks showing in both cases
the same shape.

Analogously, strain localization zones occur also when the discontinuity in the rectan-
gular domain is a central crack as in the case of Figure 9. Once again, the region interested
are those near the tips of the crack.

This kind of behaviour remains almost the same even when the central crack is substi-
tuted by a central hole of square shape. Such results are presented in Figure 11.

3.3.2 Square slab with square hole

In the previous sections the behaviour of a rectangular slab with a central square hole
has been considered amid other examples. Here, the length of the slab is reduced up to
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Figure 6. Double notched rectangular slab, from left to rigth: (i) dimensions of
the domain and boundary conditions, (ii) undeformed mesh and (iii)
deformed mesh a multiplying factor equals to 10

Figure 7. Numerical solution in term of macro and microdisplacement along the
orizonthal (x) and vertical (y) axes for the case of Figure 6
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Figure 8. Rectangular slab with a central crack, from left to right: (i) dimension
of the domain and boundary conditions, (ii) undeformed mesh and (iii)
deformed mesh a multiplying factor equals to 50

Figure 9. Numerical solution in term of macro and microdisplacement along the
orizonthal (x) and vertical (y) axes for the case of Figure 8

render the slab a square. The boundary conditions are the same values as in the previous
examples. In this case, strain localizations zones are less concentrated but are still placed
in the regions near the corners of the central hole subject to dilatation. This fact underlines
the influence of size effects on the topology of strain localization zones.
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Figure 10. Rectangular slab with a central rhombic hole, from left to rigth: (i)
dimension of the domain and boundary conditions, (ii) undeformed
mesh and (iii) deformed mesh with an amplifying factor equal to 10

Figure 11. Numerical solution in term of macro and microdisplacement along the
orizonthal (x) and vertical (y) axes for the case of Figure 10
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Figure 12. Square slab with a square rhombic hole, from left to rigth: (i) dimen-
sions of the domain and boundary conditions, (ii) undeformed mesh
and (iii) deformed mesh a multiplying factor equals to 10

3.4 Microcrack Randomness

The constitutive relations obtained in Section 3.2 contain both elastic moduli and material
internal lengths. In particular, the former are functions of the elastic moduli of the links
in the lattice, while the latter are the characteristic lengths of the RVE. In particular, the
constitutive properties are most sensitive to the values of lm, i.e. the distance between
neighboring microcracks.

Experiments based on imaging or scattering techniques show that real distributions
of microcracks vary randomly throughout the body [103]. As a consequence, the interac-
tions between microcracks may be considered random. So, the interactions between each
microcrack and the surrounding material are random too.

To describe this randomness, we may follow different strategies involving the geometry
of the lattice and/or the elastic constants.

Even when we consider random the geometry of the mesoscopic texture, we find a
consequent randomness of the interactions because the substructural interactions depend
on the characteristic length of the mesoscopic scale. To account for microcrack randomness,
we assume as deterministic all material and geometric parameters of the lattice model of
the RVE except the length lm of the mesoscale which is then considered as a random field
B0 � X �−→lm (X) over the body.

We cannot consider lm as a Gaussian field because such choice would imply physically
impossible values of lm like, for example, negative values. We then adopt for lm a shifted
lognormal model with a lower cut-off at lM , following in this way [123].

The characteristic length lm of the mesoscopic scale is then considered as a special
translation field with the shifted log-normal structure

lm(X) = r + exp[µY ∗ + σY ∗Y (X)] (148)

where r, µY ∗ and σY ∗ are parameters that need to be selected in order to obtain target
values µlm and σlm of the mean and the variance of lm respectively and to match the
physical condition lm > lM at each X; moreover Y is a real valued Gaussian homogeneous
field. The scalar δ = σlm

µlm
− r is the coefficient of variation of the shifted log-normal process.
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Figure 13. Numerical solution in term of macro and microdisplacement along the
orizonthal (x) and vertical (y) axes for the case of Figure 13

Various cases of spatial correlation can be considered for lm. In particular, perfect spatial
correlation and absence of spatial correlation are respectively upper and lower bounds.

The assumption of perfect spatial random correlation is too strong, and physically not
plausible, because one assumes that the value of lm at a certain X is strictly related to all
the other values of lm over the whole body, independently of its size. Even the absence
of correlation can be considered a limit case because we are treating situations in which
microcracks are not dilute over the body.

The cases of perfect correlation and absence of correlation are discussed with numerical
experiments in [123]. Here, we treat just an intermediate case in two-dimensional setting.

In the plane 0X1X2, we embed a two-dimensional body and develop there numerical
calculations. The field X �−→lm (X) is then defined over the body in 0X1X2 and is assumed
to be such that its spatial covariance is given by

Clmlm(X1,X2) = σ2
lmexp[−(cX1)2 − (cX2)2] (149)

where c is a parameter proportional to the correlation distance.
Notice that the assumption of some type of random correlation implies a non-local

constitutive behavior of the body, while the absence of random correlation corresponds to
a completely local behavior.

3.4.1 Numerical example and comparisons

As a sample case, we analyze the square membrane in Figure 14.
On the left side, only vertical displacements are allowed, except at a fixed point.
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Figure 14.

A mixed boundary value problem is considered: in the middle of the right side we apply
a tensile force F , assuming that it is sustained by the standard Cauchy stress, and assign
in a tentative way the boundary value d0.

Note that, as in the example of Section 2.4, we might not assign any condition on d on
the right-hand-side of the membrane and we could consider a boundary condition of the
type Sn = 0 , with n the outward unit normal at the boundary.

As mentioned previously, the possible assumption that the microtractions Sn vanish at
the boundary is the only one which is physically reasonable.

The mesh is made of 1600 square finite elements and the shape functions used for the
macrodisplacement and the microdisplacement are linear.

The numerical procedure goes as follows:

• Step 1. We generate sample values of lm by using the stochastic structure of lm repre-
sented in (148) and a Monte-Carlo technique. Three further sub-steps are necessary:
(i) calibration of the marginal distribution and the covariance function to obtain the
target statistical properties of lm, (ii) generation of samples of the Gaussian field
Y , (iii) generation of the translation field lm. A total of 10,000 samples has been
considered in the simulation below.

• Step 2. For each sample, we develop finite element analyses by using the same scheme
of deterministic cases treated previously.

• Step 3. We calculate statistics of the results. In particular, we obtain mean, coeffi-
cient of variation (c.o.v.), skewness and kurtosis of the distribution of displacements,
according with the correlation structure in (149).

Evident strain localization phenomena are due to the cooperation of microcracks. The
same origin can be attributed to the patterns in the portraits of momenta of the displace-
ment fields. Such a cooperation is ruled by the presence of self-interactions z and weakly
non-local interactions S.

The patterns in the portraits of the skewness and the kurtosis are indicators toward the
transition from the elastic to the irreversible behavior. In the localization zones, in fact,
the distributions are far from Gaussian. This circumstance suggests the presence of a net
of strongly interacting microcracks ‘oriented’ along the strain localization paths. Such a
net, in fact, could break the symmetry of the distribution and its Gaussian properties.
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Figure 15. Macro-displacement along x axis: a) mean, b) c.o.v.; c) skewness; d)
kurtosis

Finally, we could imagine that similar patterns could be common to various special
cases of complex bodies in which physical circumstances suggest contemporary presence of
morphological descriptors and their gradients in the list of entries of the energy.

4 INTERPOLATION OVER MANIFOLDS AND THE CONSTRUCTION OF
FINITE ELEMENTS

For standard finite elements used - say - in linear elasticity, we write the displacement
u = x − X at a certain point X in terms of shape functions and nodal values of the
displacement itself as

u = Φuû, (150)

where Φu is the matrix of shape functions at X and û the vector of nodal values which does
not depend on X. We have also used the same approximation for the microdisplacement
d in Section 3 in analyzing elastic microcracked bodies, as we shall see in detail later. In
both cases we work well because, at each X, both u and d belong to linear spaces, precisely
to two different copies of R3. In fact, at each X, any combination of nodal displacements
û multiplied by arbitrary shape functions is also an element of R

3 so that it may be a
candidate for a possible u. The same reasoning holds for d.

Let us assume for a while that ν̃ takes values on the unit sphere S2. An arbitrary
combination of elements of S2 - that may be selected as nodal values - does not necessarily
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Figure 16. Macro-displacement along y axis: a) mean, b) c.o.v.; c) skewness; d)
kurtosis

belong to S2 because S2 itself is not a linear space. The same problem occurs in the case in
which one considers an abstract manifold M of substructural shapes that does not coincide
in general with a linear space.

A way to solve the problem is to embed M in a linear space L(N) of appropriate dimen-
sion N .

In previous sections we have considered M with finite dimension: an embedding in
a linear space is always available by Whitney theorem [185]. More specifically, isometric
embeddings of M in a linear space are also available by Nash theorems [143], [144]. Isometric
embeddings are also preferable from a physical point of view because the isometry preserves
the substructural kinetic energy when it admits a quadratic form: in this case, in fact, the
coefficients of this quadratic form are the coefficients of the metric over M. However, even
isometric embeddings are not unique, so that the choice of a specific embedding becomes
matter of modeling.

Below, we construct first a general scheme for linearized multifield elasticity by means of
the isometric emebedding of M in a linear space L(N). Then, we construct various types of
finite elements for the resulting scheme. To simplify notations, we write such finite elements
for the multifield model of elastic microcracked bodies discussed in Section 3. However, the
path leading to them can be followed in general for any type of ‘linearized multifield theory’.
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Figure 17. Micro-displacement along x axis: a) mean, b) c.o.v.; c) skewness; d) kurtosis

4.1 Linearized Multifield Elasticity

In standard elasticity of simple bodies, the linearization procedure is based on the systematic
use of Fréchet derivative of maps between Banach spaces. Such a use relies upon the
circumstance that the Euclidean structure of the point space in which the body is placed
permits us to regard the set of maps x̃’s (the space of placements) as an open set in a
Banach space when there are no displacement boundary conditions (see [129], Chap. 4).
In the general multifield setting, a basic difficulty arises. Since M does not coincide in
general with a linear space, we may construct norms for the maps ν̃’s of various nature but
all based on the natural ways to define (in a certain sense) ‘distances’ over M, as discussed
in [49].

That plausible resulting norms, compatible with physical requirements, induce a natural
Banach structure on the space of ν̃’s, namely Cν , is a rather delicate matter when M is
not embedded. On the contrary, once we select M finite-dimensional and embed it in an
appropriate linear space, results of H. Brézis and Y. Li [10] apply and one may consider Cν

as an appropriate Sobolev space.
Since our aim is to obtain a linearization, the embedding in L(N) and the Euclidean

structure there (induced by the scalar product) may allow us to circumvent the general
problem and consider, in the special case of the embedding, the space C of pairs of maps
(x̃, ν̃) as a manifold modeled16 over a Banach space which is sufficient for the use of Fréchet

16The manifolds treated in Section 2.1 are modeled over the Euclidean space because local charts take
values in the Euclidean space.
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Figure 18. Micro-displacement along y axis: a) mean, b) c.o.v.; c) skewness; d)
kurtosis

derivative that we make here. We remark once more that the choice of the appropriate
isometric embedding (in particular the regularity of it [143], [144]) is a stringent matter of
mechanical modeling.

Two basic assumptions apply:

H1. We act in the regime of infinitesimal deformations, i.e.,
∣∣∣(∇u)i

J

∣∣∣ << 1 and presume
that we may ‘confuse’ B0 with B, in the sense that if v indicates a vector field tangent
to x, then v ≈ u at any X in B0. Moreover, we confuse ν with νa for consequent
obvious reasons.

H2. We embed isometrically M in a linear space L(N), i.e. M N
↪→ L(N), and assume the

existence of a (physically significant) parallelism there.

We consider fields

B = x̃ (B0) � x ṽ�−→ v = ṽ (x) ∈ TxE3, (151)

B = x̃ (B0) � x υ̃�−→ υ = υ̃ (ν̃ (x)) ∈ TνM, (152)

such that v and υ vanish where boundary conditions are imposed in terms of displacement
and morphological descriptor. We make a slight abuse of notation (i) by writing ν and M
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as before the embedding and (ii) by indicating the fields defined just above the same letters
of the actual rates v and υ.

The notation L (A) (x̄,v) (ν̄, υ) is used here to indicate the linearization of A ‘about’
the pair of maps (x̄, ν̄).

In what follows we superpose a bar over ‘objects’ calculated at (x̄, ν̄) and consider v
and υ relative to (x̄, ν̄).

Let [0, t̄] � t �−→ (x̃, ν̃) (t) be a smooth curve over C emanating from (x̄, ν̄), i.e. such
that (x̃, ν̃) (0) = (x̄, ν̄). Since ṽ (t) and υ̃ (t) are associated with x̄ and ν̄ respectively, we
say that ṽ and υ̃ cover x̄ and ν̄.

At each X, the linearizations of the maps x �−→ F and ν �−→∇ν ‘about’ (x̄, ν̄) are then
given by

L (F) (x̄,v) = F̄+∇v, (153)

L (∇ν) (ν̄, υ) = ∇ν + ∇υ, (154)

where ∇v and ∇υ are covariant derivatives of v and υ respectively. Previous formulas make
sense because we have a parallel transport on x̃ obtained by pointwise parallel transport
of F over curves on E3, as well as we may use the parallelism assumed over M by H2 to
transport ∇ν along curves there. Moreover, since M is embedded and L(N) is complete,
we may also use geodetics to transport ∇ν.

The subsequent step is to consider the maps

ς �−→ P̃ ◦ ς, (155)

ς �−→ z̃ ◦ ς, (156)

ς �−→ S̃ ◦ ς, (157)

where ς = (F, ν,∇ν), and to linearize them ‘about’ (x̄, ν̄). Under the assumption that they
are sufficiently smooth to allow localization, we get at each X

L
(
P̃
)

(x̄,v) (ν̄, υ) = P̄+∂FP∇v+∂νPυ+∂∇νP∇υ =

= P̄+A
(P )
1 ∇v+A

(P )
2 υ+A

(P )
3 ∇υ =

= P̄ + L(P ) (∇v, υ,∇υ) , (158)

L (z̃) (x̄,v) (ν̄, υ) = z̄+∂Fz∇v+∂νzυ+∂∇νz∇υ =

= z̄+A
(z)
1 ∇v+A

(z)
2 υ+A

(z)
3 ∇υ =

= z̄ + L(z) (∇v, υ,∇υ) , (159)

L
(
S̃
)

(x̄,v) (ν̄, υ) = S̄+∂FS∇v+∂νSυ+∂∇νS∇υ =

= S̄+A
(S)
1 ∇v+A

(S)
2 υ+A

(S)
3 ∇υ =

= S̄+L(S) (∇v, υ,∇υ) , (160)
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where the A
(·)
i ’s are tensors indicating formally the partial derivatives of the measures of

interaction. For different circumstances, some of the A
(·)
i ’s may vanish, so that we use

the more general notation L(y) (∇v, υ,∇υ) to indicate that the measure of interaction y is
expressed by a linear operator depending in general on ∇v, υ,∇υ.

We may reduce our treatment to the case in which P̄ = 0, z̄ = 0, and S̄ = 0. Moreover,
thanks to H1, we may substitute v with the displacement u, so that we obtain linear
constitutive equations of the form

P = L(P ) (∇u, υ,∇υ) , (161)

z = L(z) (∇u, υ,∇υ) , (162)

S= L(S) (∇u, υ,∇υ) . (163)

In this case, the elastic energy is expressed by a quadratic form

w̃ (∇u, υ,∇υ) = Quad (∇u, υ,∇υ) (164)

such that its partial derivatives with respect to its entries furnish relevant measures of
interaction.

With the linearization procedure explained roughly here we follow the linearization path
discussed deeply in [129] and adapt it to the multifield setting. With respect to standard
non-linear elasticity, a crucial point envisaged here is the hypothesis H2 concerning the
isometric embedding of M in a linear space.

By construction, the linearization procedure above may be used also to describe the ef-
fects of superimposed infinitesimal deformations and ‘infinitesimal’ changes in substructural
shapes over a given state where P̄, z̄, and S̄ do not vanish.

In this sense, the fields ṽ and υ̃ used just above play the role of virtual variations of a
given morphology of the body.

4.2 Finite Element Models in the Linear Setting

In the linearized setting described above, various types of finite elements can be built
up. Here, for the sake of simplicity, we construct some of them with reference to the
model of elastic microcracked bodies discussed in Section 3 so that ν coincides with the
microdisplacement d. We write everything with respect to B without making distinction
with B0 because we are in infinitesimal deformation regime. In this way we reduce also the
weight of the notation.

Just for reader’s convenience, before going on, we recall the linearized constitutive equa-
tions introduced in Section 3, namely

P =A∇u+A
′∇d, (165)

z =Cd, (166)

S =G
′∇u+G∇d, (167)

that are special cases of (161)-(163).
Let us denote by

• ∂Bu the part of the boundary of B on which the displacement u is prescribed;

• ∂Bd the part on which d is prescribed;
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• ∂Bt the part on which the traction Pn is prescribed (∂Bt does not intersect ∂Bu, i.e.
∂Bu ∪ ∂Bt = ∂B and ∂Bu ∩ ∂Bt = ∅);

• ∂Bτ the part on which Sn is prescribed (∂Bd ∩ ∂Bτ = 0; and ∂Bd ∪ ∂Bτ = ∂B).

We shall assume that ∂Bu ≡ ∂Bd and ∂Bt ≡ ∂Bτ although in principle they could be
different. For this reason we continue to write them with their own specific subscript.

To construct finite elements on B we must first define a tessellation {Be} of B made of
M regular parts of B. The following notations apply in the sequel of this section:

• ∂Beu = ∂Be ∩ ∂Bu,

• ∂Bed = ∂Be ∩ ∂Bd,

• ∂Bet = ∂Be ∩ ∂Bt,

• ∂Beτ = ∂Be ∩ ∂Bτ ,

• ∂Bij = ∂Bi ∩ ∂Bj , with i and j indicating different elements of the tessellation {Be}.

As usual in finite element methods (FEM), some points (finite in number) in each Be

play the role of nodes in calculations. Here, the degrees of freedom of each node are listed
in an array containing both the nodal displacement ûe and the nodal micro displacement
d̂e. The subscript e indicates that ûe and d̂e pertain to the generic finite element Be.

Each node may have two (one-dimensional case, 1D), four (2D) or six (3D) degrees of
freedom in terms of displacements.

Matrices of shape functions Φe
u and Φe

d need to be introduced to obtain element dis-
placements ue and de along each element Be in the standard way, namely

ue = Φe
uûe , de = Φe

dd̂e. (168)

With reference to each Be, we write weak integral versions of the balance equations of
standard and substructural interactions (roughly speaking, the equality between external
and internal virtual power of all interactions over B is possibly modified by the addition
of different conditions as we shall see later). To this aim we introduce vector-valued test
functions17 ũe and d̃e with the physical meaning of displacements, multiply local balances
time the variations δũe and δd̃e and integrate on each Be. In developing calculations we
meet integral terms of the type∫

Be

(δ (test. funct.) · (Differential operator) (ue, de)) d3x, (169)

so we need to assume tacitly that ũe and d̃e satisfy standard regularity properties assuring
that the above mentioned integrals make sense.

Test functions te and τe analogous to ũe and d̃e need to be introduced to obtain mixed
finite elements written both in terms of displacements and tractions. Test functions te and

17We do not discuss here the analytical properties of the solutions. In any case we are in a situation in
which basic analytical properties of finite elements can be applied (see [37]). Note, in fact, that the choice of
a positive definite potential energy and the boundedness of the constitutive tensors in (165)-(167), written
explicitly in Section 3, assure the uniqueness of the solution thanks to Lax-Milgram theorem. Consequently,
a-priori estimates of the errors can be obtained by standard procedures for elliptic systems (see [175] and
[37]).
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τe have in this context the physical meaning of tractions. In principle ũe, d̃e, te and τe are
arbitrary (provided that they satisfy standard regularity conditions) and do not correspond
with true displacements and tractions. Of course it is possible to identify ũe with ue, d̃e

with de throughout each finite element Be as well as te with Pne and τe with Sne at the
boundary of each element without loss of generality; i.e. it is possible to identify each test
function with the corresponding real field. Of course, ne is the outward unit normal at the
boundary of Be.

We denote by ũ(i)
e and d̃

(i)
e the test displacements of the i-th element and by t(i)

e and
τ

(i)
e standard and generalized test tractions at the boundary of the i-th element: te and
τe are conjugated with ũe and d̃e respectively. At the common interface ∂Bij continuity
conditions need be satisfied for any i and j.

Continuity conditions:

ũ(i)
e − ũ(j)

e = 0 on ∂Bij , (170)

d̃(i)
e − d̃(j)

e = 0 on ∂Bij , (171)

t(i)
e − t(j)

e = 0 on ∂Bij , (172)

τ (i)
e − τ (j)

e = 0 on ∂Bij , (173)

ũe = ue on ∂Beu, (174)

d̃e = de on ∂Bed, (175)

te = te on ∂Bet, (176)

τe = τ e on ∂Beτ , (177)

where ue, de, te and τe are prescribed data.
As common in FEM, we need to relax (170)-(173) and consider at each interface between

adjacent elements continuity conditions involving integrals like∫
∂Bij

δλT
u

(
ũ(i)

e − ũ(j)
e

)
dH2 +

∫
∂Bij

δλT
d

(
d̃(i)

e − d̃(j)
e

)
dH2 +

+
∫

∂Bij

δµT
t

(
t(i)
e + t(j)

e

)
dH2 +

∫
∂Bij

δµT
τ

(
τ (i)
e + τ (j)

e

)
dH2 (178)

Here, δλ and δµ are multipliers defined only on the interfaces ∂Bij and such that

δλ
(i)
u = −δλ(j)

u = δλu, δλ
(i)
d = −δλ(j)

d = δλd, (179)

δµ
(i)
t = δµ

(j)
t = δµt, δµ(i)

τ = δµ(j)
τ = δµτ . (180)

With these premises, different FEM can be built up. Some of them are described in
what follows. In constructing FEM we adapt the way typically used in standard linear
elasticity to the multifield case treated here.
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4.3 Additional Remarks

Before describing in detail some finite elements that can be constructed in the situation
summarized above, we add other remarks about the embedding of M and the nature of
boundary conditions.

Remark 1

For some special models, the manifold of substructural shapes M is naturally a submanifold
of some linear space. In this case, to construct numerical algorithms, we may (i) assume
that a priori the morphological descriptor map ν̃ may take values over the whole pertinent
linear space, then (ii) we may add an internal constraint forcing ν̃ to go in M.

Roughly speaking, we may think of reaching values of ν moving freely within the perti-
nent linear space even outside M and to come back in M itself by means of some internal
constraint. Such a point of view renders more easy in some circumstances the selection of
appropriate numerical algorithms (see in some special cases [32] and [6]).

A paradigmatic example of this kind of reasoning is the one of ferroelectrics described
in Section 2. The local polarization vector p belongs to the ball Bpm. In the spirit of
the framework described in Section 2 we should consider now Bpm as a manifold per se,
living outside everything. In this way we can develop the relevant mechanics as in previous
sections. However, Bpm is also naturally a submanifold of R3 so that one may think of the
morphological descriptor p as an element of R

3, develop the relevant mechanics and add
the side condition |p| ≤ pm.

The same scheme applies also to materials undergoing spontaneous magnetization due
to different sources like the application of external electromagnetic fields or deformation.
The natural morphological descriptor of the local magnetization state is a vector belonging
to the unitary ball in R3. Here, a special subcase deserves particular attention. In fact,
in saturation conditions the local magnetization is constant and just its orientation may
vary from place to place so that it is described by a unit vector ς and M coincides with
the unit sphere S2. Even in this case we may consider S2 as an abstract manifold or as
a submanifold of R3 defined by the side condition |ς| = 1. Moreover, another constraint
applies: Since ς is constrained to have unitary length, its possible inertia must be only of
rotational nature. Before going on, we recall that we have obtained an explicit expression
of the inertial component β(in) of substructural bulk actions by requiring that its power
β(in) · ν̇ equals the negative rate of the substructural kinetic energy, if existing (see Section
2). However, in adopting such a procedure, the identification of β(in) is obtained unless a
powerless term. In coming back to the case of micromagnetics in saturation conditions, we
then realize that such a possible powerless therm plays a role. Rotational inertia occurring
in micromagnetics is, in fact, of this type and is not derived from a kinetic energy. We
may select, in fact, β(in) = −ς × ς̇ which vanishes when multiplied by ς̇ (i.e. (ς × ς̇) · ς̇ = 0
trivially). Moreover, if we leave also out the standard deformation and select a free energy
of the type

ψ = ψ̃ (ς,∇ς) =
1
2
‖∇ς‖2 , (181)

with normalized material constants, the balance of substructural interactions reduces to

ς̇ = −ς × ∆ς, (182)

which coincides with Landau-Lifshitz-Gilbert equation in the case in which only gyromag-
netic effects are accounted for.
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Remark 2

In the finite element models developed below in linearized setting, there are various bound-
ary conditions involving boundary values of the morphological descriptor ν and of the
micro-traction Sn. They generate Cauchy or Neumann boundary value problems or com-
binations of them. From a mathematical point of view the assignment of ν and Sn on
some portions of the boundary is natural. However, there is doubt about the possibility
to have at disposal loading devices allowing us to furnish physical concreteness to these
kind of boundary conditions in all cases. We can tell a few words in general. The question
must be tacked case by case. For example, in the case of liquid crystals we can assign the
orientation of the stick molecules at the boundary by making use of appropriate (chemical
and/or mechanical) treatments of the walls of the container of the liquid crystal itself. In
the case of microcracked bodies, the condition Sn = 0 seems to be the sole boundary condi-
tion in terms of microtractions with physical meaning. The reason is that at the boundary
microcracks loose their identity since they are determined just by the surrounding matter
so that at the boundary they become just corrugations of the boundary itself, as mentioned
previously.

In general we could act in two different manners:

(a) We may think of a sort of limit layer theory and consider the external boundary as a
sort of membrane ‘packing up’ the body. In this way, we may assume the existence
of two surface densities Ū (x) and U (ν) such that

Pn = t = ρ0∂xŪ , Sn = τ = ρ0∂νU, (183)

where Ū and U plays here the rôle of surface potentials as suggested in [21]. A concrete
example of this idea can be found in [9] with reference to nematic liquid crystals.

(b) In the case in which the substructure becomes ‘latent’ in Capriz’s sense and an internal
length scale can be easily recognized. Series expansions with respect to the internal
length may allow us to transform the boundary value (multifield) problem that we
handle in a hierarchy of (multiscale, in some sense) problems that require just pre-
scriptions of data in terms of standard tractions or displacements. This kind of point
of view has been proposed in [88] with reference to Cosserat elastic bodies but it has
been not yet developed in general.

4.4 Compatible Models

Two models of finite elements written only in terms of displacements are presented here.
Both models require a-priori the validity of the constitutive relations above. They differ in
terms of boundary conditions of both prescribed data and type of continuity required at
the interfaces between neighboring finite element.

4.4.1 Model 1

We assume that at the boundary ∂Be of the generic element Be the following conditions
are satisfied a-priori :

ue = ũe , de = d̃e, (184)

Pne = te , Sne = τe, (185)

In other words, we prescribe that at the boundary of each element the test functions coincide
with the related true fields.
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We assume also the validity a-priori of the following conditions

ũ(i)
e − ũ(j)

e = 0 on ∂Bij , (186)

d̃(i)
e − d̃(j)

e = 0 on ∂Bij , (187)

ũ(i)
e − ũ(j)

e = 0 on ∂Bij , (188)

d̃(i)
e − d̃(j)

e = 0 on ∂Bij . (189)

We impose balance equations, the equilibrium conditions at each interface and the
boundary conditions over ∂Bet and ∂Beτ .

The integral version of the equilibrium problem, pertaining to the generic element Be,
is given by18∫

Be

δu · (div (A∇u+A
′∇d

)− b
)
d3x +

∫
Be

δd · (div (A′∇u+G∇d
)− Cd

)
d3x +

+
∫

∂Bet

δu · ((A∇u+A
′∇d

)
n − t

)
dH2 +

∫
∂Beτ

δd · ((A′∇u+G∇d
)
n − τ

)
dH2 +

+
∫

∂B∗
e

δu · (A∇u+A
′∇d

)
ndH2+

∫
∂B∗

e

δd· (A′∇u+G∇d
)
ndH2 = 0, (190)

where δu and δd are standard variations vanishing at the boundary where the displacements
are prescribed and ∂B∗

e is the part of the boundary of B∗
e internal to B.

In obtaining the previous integral balance, we make use of (178) identifying δµt with
δu and δµτ with δd. Such an assumption is peculiar of “Model 1”.

By integrating (190) by parts we get∫
Be

(
δ (∇u) · (A∇u+A

′∇d
)

+ δd · Cd + δ (∇d) · (G∇d + A
′∇u

))
d3x =

=
∫
Be

δu · bd3x+
∫

∂Bet

δu · tdH2 +
∫

∂Bet

δd · τdH2, (191)

then, with the use of (168), it follows that

δûe ·
(∫

Be

(
(∇Φe

u)T
A∇Φe

uûe+∇Φe
uA

′∇Φe
dd̂e

)
d3x

)
+

+δd̂e ·
(∫

Be

(
ΦeT

d CΦe
dd̂e + (∇Φe

d)
T

G∇Φe
dd̂e + ΦeT

d A
′∇Φe

uûe

)
d3x

)
=

= δûe ·
(∫

Be

ΦeT
u bd3x+

∫
∂Be

ΦeT
u tdH2

)
+ δd̂e ·

(∫
∂Beτ

ΦeT
d τdH2

)
, (192)

which holds for any choice of the variations δûe and δd̂e. As a consequence, we reduce our
equilibrium problem to the study of the algebraic system

K
{

ûe

d̂e

}
=
{

re
u

re
d

}
, (193)

18From now on the index “e” is often suppressed when a given field is under some integral on Be or part
of its boundary when the symbology can be simplified.
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where the stiffness matrix K is given by

K =

 ∫
Be

(
(∇Φe

u)T
A∇Φe

u

)
d3x

∫
Be

ΦeT
d A′∇Φe

ud
3x∫

Be
ΦeT

d A
′∇Φe

ud
3x

∫
Be

(
ΦeT

d CΦe
d + (∇Φe

d)
T

G∇Φe
d

)
d3x

 (194)

and  re
u

re
d

 =


∫
Be

ΦeT
u bd3x+

∫
∂Bet

ΦeT
u tdH2

∫
Be

ΦeT
d τd3x

 . (195)

This finite element scheme has been used to obtain the numerical results collected in
Section 3.

4.4.2 Model 2

We assume that the following conditions are satisfied a-priori at the boundary ∂Be of the
generic element Be

ue = ũ(i)
e on ∂Be, (196)

de = d̃(i)
e on ∂Be, (197)

t(i)
e + t(j)

e = 0 on ∂Bij , (198)

τ (i)
e + τ (j)

e = 0 on ∂Bij . (199)

Then we impose the balances of standard and substructural interactions together with
the following boundary conditions:(

A∇u+A
′∇d

)
ne − t = 0 on ∂Be, (200)

(
A
′∇u+G∇d

)
ne − τ = 0 on ∂Be, (201)

u(i)
e − u(j)

e = 0 on ∂Bij , (202)

d(i)
e − d(j)

e = 0 on ∂Bij , (203)

ue = ue on ∂Beu, (204)

de = de on ∂Bed, (205)

t =t on ∂Bet, (206)

τ =τ on ∂Beτ . (207)
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With reference to a generic element Be, we then write the weak version of the balance
equations with previous boundary conditions as∫

Be

δu · (div (A∇u+A
′∇d

)− b
)
d3x +

∫
Be

δd · (div (A′∇u+G∇d
)− Cd

)
d3x +

+
∫

∂Be

δu · ((A∇u+A
′∇d

)
n − t

)
dH2 +

∫
∂Beτ

δd · ((A′∇u+G∇d
)
n − τ

)
dH2 +

+
∫

∂B∗
e

δt · udH2−
∫

∂B∗
e

δτ · ddH2 −
∫

∂Beu

δt · (u−u) dH2 −
∫

∂Bed

δτ · (d−d̄
)
dH2 +

+
∫

∂Bet

δu · (t−t
)
dH2 +

∫
∂Beτ

δd · (τ−τ) dH2 = 0. (208)

In obtaining the last relation, we use some integrals like the ones in (178) and identify
δλu with δt and δλd with δτ . This type of identification is an assumption peculiar of Model
2.

Variations of test functions vanish on the portion of the boundary where the relevant
fields are prescribed, i.e. δu = 0 on ∂Beu. Consequently, by integrating by parts, we obtain∫

Be

(
δ (∇u) · (A∇u+A

′∇d
)

+ δd · Cd + δ (∇d) · (G∇d + A
′∇u

))
d3x =

=
∫
Be

δu · bd3x+
∫

∂Be

δu · tdH2+
∫

∂Be

δd · τdH2+
∫

∂B∗
e

δt · udH2+

+
∫

∂B∗
e

δτ · ddH2 +
∫

∂Beu

δt · (u−u) dH2 +
∫

∂Bed

δτ · (d−d̄
)
dH2 −

−
∫

∂Bet

δu · (t−t
)
dH2 −

∫
∂Beτ

δd · (τ−τ) dH2. (209)

We assume also

ue = ue on ∂Beu, (210)

de = de on ∂Bed, (211)

δu = 0 on ∂Beu, (212)

δd = 0 on ∂Bed. (213)

By using (168), after some algebra we obtain

δûe ·
(∫

Be

(
(∇Φe

u)T
A∇Φe

uûe+∇Φe
uA

′∇Φe
dd̂e

)
d3x

)
+

+δd̂e ·
(∫

Be

(
ΦeT

d CΦe
dd̂e + (∇Φe

d)
T

G∇Φe
dd̂e + ΦeT

d A
′∇Φe

uûe

)
d3x

)
=

= δûe ·
(∫

Be

ΦeT
u bd3x+

∫
∂Bet

ΦeT
u tdH2

)
+ δd̂e ·

∫
∂Beτ

ΦeT
d τdH2 + δûe ·

∫
∂B∗

e

ΦeT
u tdH2+

+δd̂e ·
∫

∂B∗
e

ΦeT
d τdH2+

∫
∂B∗

e

δt · Φe
uûedH2 +

∫
∂B∗

e

δτ · Φe
dd̂edH2. (214)
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The previous relation suggests the introduction of new matrices of shape functions for
t and τ , namely Φe

t and Φe
τ respectively, such that

te = Φe
t t̂e , τe = Φe

τ τ̂e on ∂Be, (215)

where t̂e and τ̂e are nodal tractions on ∂Be.
Since (214) holds for any variation δûe, δd̂e, δt̂e, δτ̂e, we reduce the equilibrium problem

to the analysis of the algebraic system

K1


ûe

d̂e

t̂e

τ̂e

 =


re
u

re
d
0
0

 . (216)

The stiffness matrix K1 is given by

K1 =

 (K1)11 (K1)12 (K1)13 0
(K1)21 (K1)22 0 (K1)24
(K1)31 0 0 0

0 (K1)42 0 0

 , (217)

where

(K1)11 =
∫
Be

(
(∇Φe

u)T
A∇Φe

u

)
d3x, (218)

(K1)12 =
∫
Be

ΦeT
d A

′∇Φe
ud

3x, (219)

(K1)13 = −
∫

∂B∗
e

ΦeT
u Φe

tdH2, (220)

(K1)21 =
∫
Be

ΦeT
d A

′∇Φe
ud

3x, (221)

(K1)22 =
∫
Be

(
ΦeT

d CΦe
d + (∇Φe

d)
T

G∇Φe
d

)
d3x, (222)

(K1)24 = −
∫

∂B∗
e

ΦeT
d Φe

τdH2, (223)

(K1)31 = −
∫

∂B∗
e

ΦeT
t Φe

udH2, (224)

(K1)42 = −
∫

∂B∗
e

ΦeT
τ Φe

ddH2, (225)

while re
u and re

d are the same vectors obtained in Model 1 above.
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4.5 Mixed Finite Elements Models

By the locution ‘mixed finite element models’ we indicate models that involve both the
displacements u and d and the tractions t and τ in the array of unknown. In standard
linear elasticity they are based on Hellinger-Reissner principle and basically require only the
validity a-priori of the constitutive equations. To formulate them here, we need a version
of Hellinger-Reissner principle extended to cover the linearized multifield setting adopted19.

As in the case of compatible models we present below two different schemes: The
validity of constitutive equations is assumed in both cases; they differ in terms of boundary
conditions assumed to be valid a-priori.

4.5.1 Model 3

A mixed model may be obtained from Model 2 by removing the conditions u =u ⇒ δu = 0
on ∂Bu and d =d ⇒ δd = 0 on ∂Bed. In this way the weak form of equilibrium conditions
read

δûe ·
(∫

Be

(
(∇Φe

u)T
A∇Φe

uûe+∇Φe
uA

′∇Φe
dd̂e

)
d3x

)
+

+δd̂e ·
(∫

Be

(
ΦeT

d CΦe
dd̂e + (∇Φe

d)
T

G∇Φe
dd̂e + ΦeT

d A
′∇Φe

uûe

)
d3x

)
=

= δûe ·
(∫

Be

ΦeT
u bd3x+

∫
∂Bet

ΦeT
u tdH2

)
+ δd̂e ·

∫
∂Beτ

ΦeT
d τdH2 +

+δûe ·
∫

∂B∗
e∪∂Beu

ΦeT
u Φe

tt̂edH2 + δd̂e ·
∫

∂B∗
e∪∂Bed

ΦeT
d Φe

τ τ̂edH2+

+δt̂e ·
∫

∂B∗
e∪∂Beu

ΦeT
t Φe

uûedH2 − δt̂e ·
∫

∂Beu

ΦeT
t udH2+

+δτ̂e ·
∫

∂B∗
e∪∂Bed

ΦeT
τ Φe

dd̂edH2 − δτ̂e ·
∫

∂Bed

ΦeT
τ d̄dH2. (226)

The arbitrariness of δûe, δd̂e, δt̂, δτ̂e implies the algebraic problem

K1


ûe

d̂e

t̂e

τ̂e

 =


re
u

re
d
ζe
t
ζe
τ

 , (227)

where K1 is given by (217) and

ζe
t = −

∫
∂Beu

ΦeT
t udH2, (228)

ζe
τ = −

∫
∂Bed

ΦeT
τ d̄dH2. (229)

19See also [141] for a discussion of mixed variational principles for linear elastic microcracked bodies in
linearized setting.
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4.5.2 Model 4

To build up the second mixed model, we assume

ũ(i)
e − ũ(j)

e = 0 on ∂Bij , (230)

d̃(i)
e − d̃(j)

e = 0 on ∂Bij . (231)

Moreover, we impose the balances of standard and substructural interactions together
with the following boundary conditions:

ue = ũe on ∂Beu, (232)

de = d̃e on ∂Bed, (233)

(
A∇u+A

′∇d
)
ne − t = 0 on ∂Be, (234)

(
A
′∇u+G∇d

)
ne − τ = 0 on ∂Be, (235)

t(i)
e − t(j)

e = 0 on ∂Bij , (236)

τ (i)
e − τ (j)

e = 0 on ∂Bij , (237)

ũe = ue on ∂Beu, (238)

d̃e = de on ∂Bed, (239)

te=te on ∂Bet, (240)

τe=τ e on ∂Beτ . (241)

The weak for of the equilibrium conditions reads∫
Be

δu · (div (A∇u+A
′∇d

)− b
)
d3x +

∫
Be

δd · (div (A′∇u+G∇d
)− Cd

)
d3x +

+
∫

∂Be

δu · ((A∇u+A
′∇d

)
n − t

)
dH2 +

∫
∂Beτ

δd · ((A′∇u+G∇d
)
n − τ

)
dH2 −

−
∫

∂Be

δt · (u−ũ) dH2−
∫

∂Be

δτ ·
(
d−d̃

)
dH2+

+
∫

∂B∗
e

δũ · tdH2+
∫

∂B∗
e

δd̃ · τdH2 −

−
∫

∂Beu

δt · (ũ−u) dH2 −
∫

∂Bed

δτ ·
(
d̃−d̄

)
dH2 +

+
∫

∂Bet

δũ · (t−t
)
dH2 +

∫
∂Beτ

δd̃ · (τ−τ) dH2 = 0 (242)
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To derive (242) we use integrals like the ones in (178) and identify δµt with δũ and δµτ

with δd̃. This last assumption is peculiar of Model 4.
By integrating by parts and taking into account the boundary conditions, we obtain∫

Be

(
δ (∇u) · (A∇u+A

′∇d
)

+ δd · Cd + δ (∇d) · (G∇d + A
′∇u

))
d3x =

=
∫
Be

δu · bd3x+
∫

∂Be

δu · td2H+
∫

∂Be

δd · τd2H+

+
∫

∂Be

δt · udH2+
∫

∂Be

δτ · ddH2 −

−
∫

∂Be

δt · ũdH2 −
∫

∂Be

δτ · d̃dH2 +
∫

∂Be

δũ · tdH2+
∫

∂Be

δd̃ · τdH2+

+
∫

∂Beu

δt · ũdH2 +
∫

∂Bed

δτ · d̃dH2+

+
∫

∂Beu

δũ · tdH2+
∫

∂Bed

δd̃ · τdH2 −
∫

∂Beu

δt · udH2 +

−
∫

∂Bed

δτ · dd2H +
∫

∂Bet

δũ · td2H +
∫

∂Beτ

δd̃ · τd2H. (243)

It appears evident the necessity of introducing other shape functions such that

ũe = Φe
ũũ

n
e , d̃e = Φe

d̃
d̃n

e on ∂Be, (244)

where ũn
e and d̃n

e are the nodal displacements for nodes on ∂Be.
By using (244) together with (168) and (215) we obtain

δûe ·
(∫

Be

(
(∇Φe

u)T
A∇Φe

uûe+∇ΦeT
u A

′∇Φe
dd̂e

)
d3x

)
+

+δd̂e ·
(∫

Be

(
ΦeT

d CΦe
dd̂e + (∇Φe

d)
T

G∇Φe
dd̂e + ΦeT

d A
′∇Φe

uûe

)
d3x

)
=

= δûe ·
∫
Be

ΦeT
u bd3x+δûe ·

∫
∂Be

ΦeT
u Φe

t t̂edH2 +

+δd̂e ·
∫

∂Be

ΦeT
d Φe

τ τ̂edH2 + δt̂e ·
∫

∂Be

ΦeT
t Φe

uûedH2+

+δτ̂e ·
∫

∂Be

ΦeT
τ Φe

dd̂edH2 − δũn
e ·
∫

∂B∗
e∪∂Bet

ΦeT
ũ Φe

t t̂edH2 +

−δd̃n
e ·
∫

∂B∗
e∪∂Beτ

ΦeT
d̃

Φe
τ τ̂ed

2H− δt̂e ·
∫

∂B∗
e∪∂Bet

ΦeT
t Φe

ũũ
n
e dH2 +

−δτ̂e ·
∫

∂B∗
e∪∂Beτ

ΦeT
τ Φe

d̃
d̃edH2 − δt̂e ·

∫
∂Beu

ΦeT
t udH2 − δτ̂e ·

∫
∂Bed

ΦeT
τ d̄dH2 +

+δũn
e ·
∫

∂Bet

ΦeT
ũ tdH2 + δd̃n

e ·
∫

∂Beτ

ΦeT
d̃
τdH2. (245)
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The arbitrariness of δûe, δd̂e, δũn
e , δd̃

n
e , δτ̂e, δt̂e implies the following algebraic problem:

K2



ûe

d̂e

ũn
e

d̃n
e
τ̂e
t̂e


=



re
u

re
d

re
u

re
d
ζe
t
ζe
τ


. (246)

The matrix K2 is given by

K2 =


(K2)11 (K2)12 0 0 (K2)15 0
(K2)21 (K2)22 0 0 0 (K2)26

0 0 0 0 (K2)35 0
0 0 0 0 0 (K2)46

(K2)51 0 (K2)53 0 0 0
0 (K2)62 0 (K2)64 0 0

 , (247)

where

(K2)11 =
∫
Be

(
(∇Φe

u)T
A∇Φe

u

)
d3x, (248)

(K2)12 =
∫
Be

ΦeT
d A

′∇Φe
ud

3x, (249)

(K2)15 = −
∫

∂Be

ΦeT
u Φe

tdH2, (250)

(K2)21 =
∫
Be

ΦeT
d A

′∇Φe
ud

3x, (251)

(K2)22 =
∫
Be

(
ΦeT

d CΦe
d + (∇Φe

d)
T

G∇Φe
d

)
d3x, (252)

(K2)26 = −
∫

∂Be

ΦeT
d Φe

τdH2, (253)

(K2)35 =
∫

∂B∗
e∪∂Bet

ΦeT
ũ Φe

tdH2, (254)

(K2)46 =
∫

∂B∗
e∪∂Beτ

ΦeT
d̃

Φe
τd

2H, (255)

(K2)51 = −
∫

∂B∗
e∪∂Bet

ΦeT
t Φe

udH2, (256)

(K2)53 =
∫

∂B∗
e∪∂Bet

ΦeT
t Φe

ũdH2, (257)

(K2)62 = −
∫

∂Be

ΦeT
τ Φe

ddH2, (258)

(K2)64 =
∫

∂B∗
e∪∂Beτ

ΦeT
τ Φe

d̃
dH2. (259)
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Moreover, re
u and re

d are given by (195), ξe
t and ξe

τ by (228) and (229), while

re
u =

∫
∂Bet

ΦeT
ũ tdH2, (260)

re
d =

∫
∂Beτ

ΦeT
d̃
τdH2. (261)

The four finite element models presented above are only some possible schemes. Other
finite elements can be constructed depending on which boundary conditions are imposed in
the weak form of equilibrium conditions.

5 INFLUENCE OF SUBSTRUCTURES ON SHARP MACROSCOPIC DIS-
CONTINUITIES

As mentioned in Section 2, the presence of ∇ν in the constitutive list of variables permits us
to describe weakly non local interactions due to branching of substructures between domain
walls and/or homophase gradient effects. In the former case, ∇ν allows us to account
for widespread minute interfaces ‘smearing’ them over the body. Additional macroscopic
sharp surfaces of discontinuity may also occur as a consequence of the presence of shock
or acceleration waves, or defects of various nature such as cracks. Their possible evolution
is influenced by the presence of diffused interfaces due to substructural rearrangements.
For example, one may consider a shock wave in a polarized ferroelectric: The shock front
encounters walls of polarized domains and interacts with them. In addition, such domain
walls influence the propagation of surface defects like cracks, as experiments point out.

We may face in general two circumstances: (i) macroscopic sharp discontinuity surfaces
are endowed with own surface energy - in this case they are referred to as structured - or
(ii) they are free of such energy so that they are unstructured. In the former case, surface
stresses accrue: they are of standard and substructural nature; moreover one finds also the
existence of a surface self-force.

Below, we summarize briefly the description of the influence of the material substructure
on the evolution of sharp discontinuity surfaces. The results apply to a wide class of physical
problems. We list some of them as examples:

• equilibrium and/or evolution of sharp interfaces between paraelectric and ferroelectric
phases,

• equilibrium and/or evolution of damage fronts,

• equilibrium and/or evolution of sharp interfaces between isotropic and oriented phases
–for example sharp interfaces between isotropic and nematic phases in liquid crystals–
or between ferroelectric and paraelectric phases,

• solidification of complex fluids,

• growing defects in biological tissues.

We mention a part the analysis of the influence of the material substructure on the
growth of macroscopic cracks because it is treated briefly in Section 5.2 since it presents
specific problems which have interest per se from both theoretical and computational points
of view.
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5.1 Macroscopic Discontinuity Surfaces

We consider within B0 a single macroscopic sharp discontinuity surface Σ defined by

Σ ≡ {X ∈ clB0, f (X) = 0} , (262)

with f a smooth function with non-singular gradient. It is oriented by the normal vector
field Σ � X m̃�−→m = m̃ (X) = ∇f (X) / |∇f (X)| and we use the notation Π for the second
order tensor I −m ⊗m, i.e. the projection operator over Σ. The opposite of the surface
gradient of m, namely −∇Σm, is indicated by L and is the curvature tensor.

Let X �−→ a = ã (X) be a generic field taking values in a linear space and suffering
bounded discontinuities across Σ. For ε > 0 we indicate by a± the limits limε→0 a (X± εm)
which are the outer (a+) and inner (a−) traces of a at Σ. Then [a] = a+ − a− denotes the
jump of a across Σ and 2 〈a〉 = a+ + a− its average.

Σ is coherent when the two pieces of the body separated by the surface do not suffer
relative shear - in this case the jump of the gradient of deformation F satisfies the relation
[F]Π = 0 - otherwise the surface is called incoherent.

When Σ moves relatively to B0 even in ‘virtual’ way, we describe such a motion by means
of a vector field Σ � X ũ�−→u=ũ (X) ∈ R

3 with normal component U = u·m. Moreover, when
the velocity ẋ suffers bounded jumps across Σ, as we assume here, we get the condition
[ẋ] = −U [F]m.

We assume also that the morphological descriptor map ν̃ is continuous across Σ. On
the contrary the jump of ν would not be defined unless M would not coincide with a linear
space. However, across Σ, the gradient of the morphological descriptor may suffer jumps at
each X ∈ Σ, i.e. at each ν there. Under the assumption that both F and ∇ν suffer bounded
jumps across Σ, we define the surface deformation gradient F and the surface gradient of
the morphological descriptor N at X ∈ Σ by

F = 〈F〉Π, N = 〈∇ν〉Π. (263)

It is then evident that at each X ∈ Σ, we have F ∈ Hom (TXΣ, TxB) and N ∈ Hom (TXΣ,
TνM).

We pay attention to the case in which the discontinuity surface is structured and may
sustain surface tensions of standard and substructural nature. We describe these tensions
by means of a surface stress T and a surface microstress S. They are surface tensors in the
sense that at each X ∈ Σ, we have T ∈ Hom (T ∗

XΣ, T ∗
xB) and S ∈ Hom (T ∗

XΣ, T ∗
ν M) and

assume that the related maps T̃ and S̃ associating T and S to each X are continuous and
continuously differentiable over Σ.

To determine appropriate balance equations across Σ that involve surface stresses, we
may follow the procedure discussed in Section 2 which requires the invariance of the external
power with respect to changes in observers ruled by SO (3). To this aim we consider an
arbitrary part bΣ crossing Σ so that ∂bΣ ∩ Σ is a piecewise smooth curve. Except a finite
number of points, at each X ∈ ∂bΣ ∩ Σ we find a normal n in the tangent space TXΣ. In
writing the external power of all actions over bΣ, we must add to the expression used in
Section 2 the contributions in terms of power of surface stresses. Really, we could account
for the contribution of external body interactions appearing as surface counterparts of b̄
and β̄, but we neglect here them for the sake of simplicity (see [22] for a treatment including
them). After the use of the machinery of the SO (3) invariance, we finally get the integral
balances of forces and moments given respectively by∫

bΣ

b̄d3X +
∫

∂bΣ

PndH2 +
∫

∂bΣ∩Σ
TndH1 = 0, (264)
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∫
bΣ

(
(x − x0)×b̄+A∗β̄

)
d3X +

∫
∂bΣ

((x − x0)×Pn + A∗Sn) dH2 +

+
∫

∂bΣ∩Σ
((x − x0)×Tn + A∗

Sn) dH1 = 0. (265)

Here, we consider the non-inertial bulk actions b and β continuous everywhere over the
bulk while P and S are also continuous except at Σ where they suffer bounded discontinu-
ities as well as the inertial components of b̄ and β̄. With these assumptions, by shrinking
bΣ to ∂bΣ ∩ Σ uniformly in time, from (264) we get

[P]m +DivΣT = −ρ0 [ẋ]U, (266)

while from (265), with the use of (266), we find the existence of a surface self-force z ∈ T ∗
ν M

such that

A∗z = eTF
T − (∇ΣA∗) S, (267)

[S]m +DivΣS − z = − [∂ν̇X ]U (268)

(see [113] for details).
In this way we account for the circumstance that, often, we encounter in real bodies dis-

continuity thin layers rather than pure surfaces. So, we consider Σ endowed with a surface
free energy density φ associated with the surface tensions of standard and substructural
nature. The surface energy density is defined by a sufficiently smooth map φ̃ acting as

(m,F, ν,N)
φ̃�−→ φ = φ̃ (m,F, ν,N) . (269)

The presence of the normal m in the list of entries of φ̃ account for possible anisotropy of
the surface.

When we use the mechanical dissipation inequality to find constitutive restrictions, we
need to add not only the power of surface substructural interactions but also the surface
free energy. Standard developments allow us to get (see [113])

T = −∂Fφ, z = ∂νφ, S = −∂Nφ. (270)

When Σ evolves irreversibly in B0, its evolution is ruled by the balance

m· [P]m + Ctan · L +DivΣc = U [(∇ν)∗ ∂ν̇X ] · m + [X (ν, ν̇)] − 1
2
ρ0U

2
[
|Fm|2

]
, (271)

where

P = ψI −FTP − (∇ν)∗ S, (272)

Ctan = φΠ − F
T

T − N
∗
S (273)

are generalized versions of the bulk and surface Eshelby stresses respectively and

c = −∂mφ− T
T 〈F〉m − S

∗ 〈∇ν〉m (274)
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is a surface shear. We obtain (271) by adapting to multifield theories the framework of
configurational forces developed in [90].

The surface balance of forces (266) has been derived in [93] while equations (267), (268)
and (271) in [113], [110], where the surface substructural interactions have been introduced.
The surface balances (266), (268) and (271) satisfy not only SO (3) invariance. In the
Lagrangian-Hamiltonian setting it is possible to prove that they are also covariant in the
sense that they arise also from requirements of invariance with respect to the action of the
group of automorphisms of the ambient space (namely (266)), the action of an arbitrary
Lie group over M (namely (268)) and the action of a special group of diffeomorphisms
permuting possible defects in B0 and Σ. The relevant theorem has been proven in [49].

5.2 Cracks at a Macro-Scale

The interfacial balance equations above can be used in various situations of physical interest.
Amid them there is the growth of macroscopic cracks in complex bodies. However, in this
case one must pay attention to the phenomena occurring at the tip and should develop
appropriate tools to describe them.

Consider first B0 free of cracks. When a crack occurs in the current place B, the mapping
x̃ is pointwise one-to-one except a surface Σ which does not cross completely B0. The image
in B0 of the real tip of the crack is thus the margin J of Σ within the interior of B0. We
assume that J is a simple regular curve parametrized by arc length s ∈ [0, s̄] and represented
by a point-valued mapping Z̃ : [0, s̄] → B0 so that the derivative Z,s of Z̃ (s) with respect to
s is the tangent vector t (s) at Z, while h = −Z,ss is the curvature vector at Z. A normal
vector field n is chosen along J to be at each Z an element of the tangent plane of Σ at Z
outward Σ.

When the crack grows in the current configuration in a certain time interval [0, t̄], in
B0 the surface Σ evolves in time and is Σ (t) so that J has an intrinsic relative motion
with respect to the rest of the body, while any piece of Σ (t) far from J remains at rest.
Of course, the motion of J is ‘fictitious’ in the sense that it is non-material because B0 is
free of cracks and Σ is just a geometrical picture of the real crack in B. Moreover, Σ (·)
increases monotonically in time: Σ (t1) ⊆ Σ(t2), for any t1 ≤ t2. We assume also that,
during the time interval [0, t̄], the crack does not cut completely the body.

In B0 the velocity along J is

vtip =
∂Z̃ (s, t)
∂t

, (275)

where we indicate still by Z̃ the mapping Z̃ : [0, s̄]× [0, t̄] → B0 displaying the current shape
of the tip at the instant t. Only the normal component V = vtip · n of vtip is independent
of the parametrization s, and we shall consider just vtip = V n.

There are just constant standard surface tensions and surface microstresses along Σ.
No surface self-force occurs. Also, normal motion along Σ is absent: just the tip moves.
As a consequence the surface balances of standard and substructural interactions become
respectively

[P]m = 0, [S]m = 0. (276)

Moreover, if both the standard momentum ρ0ẋ and ∂ν̇X are assumed to be bounded up to
the tip, at each point Z of the tip itself we get∫

tip
Pn = 0,

∫
tip

Sn = 0, (277)
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where
∫
tip indicates a special limit process which consists in evaluating an integral on the

boundary of a disc centered at the tip in a plane orthogonal to the tangent t (s) to the tip
at a given point and in shrinking the disc up to the tip uniformly in time.

We consider the margins of the crack endowed with a constant (in space) surface energy
φ and indicate by φtip its tip value. We also attribute a line (constant) energy λtip along
the tip: it accounts for material bonds in an infinitesimal neighborhood of the tip itself.

Let n (s) be the direction of propagation of the crack at the point Z̃ (s) of the tip. At
each Z, the evolution of the tip is ruled by the evolution equation

−gtipV = −φtip − λtipK + n · j, (278)

where gtip is a negative ‘diffusion’ coefficient that must be assigned constitutively and j
indicates the vector defined by

j =
∫

tip

((
1
2
ρ0 ‖ẋ‖2 + K (ν, ν̇)

)
I−P

)
n, (279)

with P given by (272).
By indicating by J the product n · j, we interpret the difference

f = J − φtip − λtipK (280)

as the force driving the tip of the crack ; it accounts directly for the influence of the material
substructure. J is an extended version for complex materials of the so-called J-integral.
When the crack grows, so that V > 0, the driving force must be non-negative, namely
f ≥ 0.

The energy release rate at the tip is given by the power fV developed by the driving
force along the normal motion of the crack tip. In terms of the power of standard and
substructural interactions and of kinetic and free energies, the product fV is given by

fV = −φtipV − λtipKV +
∫

tip

((
ψ +

1
2
ρ0 ‖ẋ‖2 + K (ν, ν̇)

)
V + Pn · ẋ + Sn · ν̇

)
, (281)

which represents the balance of energy at the tip.
When inertial effects are negligible, the evolution of the crack is ‘quasi static’. The

J-integral reduces to its quasi static counterpart Jqs:

Jqs = n ·
∫

tip
Pn ≡ n ·

∫
tip

(
ψI −FTP − (∇ν)∗ S)n. (282)

The following proposition can be easily proven: If the material is homogeneous, Σ is
planar, the crack has the margins free of standard and substructural tractions (in the sense
that P±m = 0 and S±m = 0), Jqs is path-independent. Moreover, Jqs reduces to the
standard J-integral given by n · ∫tip

(
ψI− FT P

)
n when the substructure is absent or its

gross effects are negligible.
The relations above describe the influence of the material substructure on the evolution

of a crack. Such an influence is recognized experimentally in various cases (see e.g. [76] for
data in the case of ferroelectrics and [184] for materials that fail by de-cohesion or cleavage
at the atomic scale).

The results collected here about crack growth in complex bodies have been obtained in
[116].
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5.3 Computational Strategy

For mechanical problems involving the presence of submanifolds of B0 (say a surface) where
some fields involved suffer jumps, a reliable computational strategy seems to be the one of
extended finite element method (XFEM). It is based on the partition of unity method [5]
and has been developed by T. Belytschko and co-workers (see, e.g. [7], [33], [55], [83], [138],
[173], [176], [177] and [188]).

Basically, one consider the submanifold where discontinuities are concentrated as the
level set of some function and includes it in the list of quantities to be discretized. Moreover,
with respect to nodes far from the submanifold itself, the interpolation space at nodes
around it is enlarged. In this sense, the discretization of the relevant fields at these nodes
is enriched. In the case of cracks we have two types of enrichments: (i) the former at nodes
along the margins of the crack, (ii) the latter at the nodes around the tip. The fact that
the nodes enriched are very few does not increase the computational cost which is reduced,
on the other hand, by the absence of the need to choose an articulated mesh.

In adapting XFEM to the multifield setting, we need to discretize also the morpholog-
ical descriptor field so that remarks of Section 4 apply. Both the displacement and the
morphological descriptor fields need to be enriched at the relevant nodes. In principle we
could choose different enrichments; however, for particular choices of the morphological
descriptor the enrichment could be the same.

Below, we present an example of the possible extension of XFEM to multifield theo-
ries. It deals with the description of the interaction between a macroscopic cracks and a
population of microcracks.

5.3.1 An example of the possible extention of XFEM to the multifield setting:
macrocrack-microcrack interaction

When a macroscopic crack is present in a microcracked body, microcracks may interact with
it influencing the propagation. The multifield setting adopted here allows us to describe
such interactions. For the sake of simplicity we restrict the analysis to a two-dimensional
setting.

B0 is reference place of a two-dimensional body. A macroscopic crack inside it is de-
scribed by a smooth simple curve Γ with two ends points: one on the boundary of B0, the
other in the interior. Except the point on the boundary, Γ is inside B0 and is represented
by a smooth point-valued function r(s) with arc-length s ∈ [0, s̄]. r(0) belongs to ∂B0 and
r(s̄) is the crack tip denoted with Z. m is the unit normal to Γ and t = ∂sr the tangent.
Defining tZ = lim

s→s̄
t (s) one wants to have tZ · lim

s→s̄
m (s) = 0.

When the crack faces remain closed during the deformation, we have [x] · m = 0,
[d] ·m = 0.

Balance equations along the margins of the crack and at the tip can be easily obtained
by specializing general interfacial and tip balances recalled previously.

The vector

jq−st =
∫

tip

(
ψI− FTS−∇dTS)n (283)

represents the traction at the crack tip under quasi-static growth. The component of jq−st

along the direction of propagation of the crack, namely Jq−st= tZ · jq−st, is the J-integral
for crack-microcrakcs interactions.

The way we describe here to extend XFEM to multifield theories follows strictly [125].
Although the treatment is restricted to the case of elastic microcracked bodies in linear set-
ting, the path can be naturally followed in other cases once M is embedded (isometrically)
in a linear space and the consequent linearization developed.
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Below, ∂Bu, ∂Bd, ∂Bt and ∂Bτ are subsets of ∂B where u, d, t̄ = Pn and τ̄ = Sn
are prescribed respectively. It is also assumed that ∂Bu ∩ ∂Bt = 0, ∂Bu ∪ ∂Bt = ∂B,
∂Bd ∩ ∂Bτ = 0 and ∂Bd ∪ ∂Bu = ∂B0.

Let Ct be a space of continuous and piecewise differentiable vector valued fields over B0.
The space of trial functions U is defined by

U = {ũ,d̃∈ Ct | u = ū on ∂Bu

d = d̄ on ∂Bd
}. (284)

The trial functions satisfy the continuity conditions required for compatibility and the
displacement boundary conditions. The space of test functions U0 is then defined by

U0 = {δṽ,δṽd∈ Ct | δv =0 on ∂Bu

δvd=0 on ∂Bd
}. (285)

Test functions δṽ have the meaning of virtual displacements and vanish where trial
functions satisfy the displacement boundary conditions.

By making use of the results in Section 3, we recall the weak form of the boundary value
problem: Given b : B → R

3, t̄ : ∂Bt → R
3, ū : ∂Bu → R

3, τ̄ : ∂Bp → R
3 and d̄ : ∂Bd → R

3,
find u,d ∈ U such that for all δv,δvd∈U0

(W )
{ ∫

B0
∇ (δv) · Pd3X+

∫
B ∇ (δvd) · Sd3X+

+
∫
B0
δvd·zd3X− ∫

B0
δv · bd3X− ∫∂Bτ

δvd·τ̄ dH2− ∫
∂Bt

δv · t̄dH2 = 0. (286)

In infinitesimal deformation regime and linear constitutive behavior, we then get –as in
Section 4–∫

B0

∇ (δv) · (A∇u − A
′∇d

)
d3X+

∫
B0

∇ (δvd) ·
(
G∇d − G

′∇u
)
d3X +

+
∫
B0

δvd·Cdd3X =
∫
B0

δv · bd3X+
∫

∂Bτ

δvd·τ̄ dH2+
∫

∂Bt

δv · t̄dH2, (287)

for any choice of δv,δvd ∈ U0.
As mentioned above, XFEM does not require that the mesh be adapted to the crack

which is described by means of the Level Set Method (LSM) so that it is the zero level set
of a function (signed distance function) f (·) defined in a narrow band Bf around the crack
by

f (X) = sign
[
m· (X− X̄

)]
min
X̄∈Γ

∣∣X− X̄
∣∣ (288)

where X̄ is the closest point projection of X on Γ.
The signed distance function is approximated by

fh (X) =
nel∑
I=1

NI (ξ) fI (289)

where NI denotes the I-th shape function in terms of parent coordinates, fI is the I-th
nodal value of the f (x) and nel is the number of nodes in each element. When linear shape
functions are implemented, triangular elements have nel = 3, while nel = 6 when quadratic
shape functions are used, as in [173] and [172].

Below, N is the number of all nodes of the discretization, N T ip the number of nodes
belonging to elements containing th tip of the crack and N cr the number of nodes belonging
to elements completely cut by the crack.
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Then, the XFEM approximation for the displacement field u is given by

uh (X) =
N∑

I=1

NI (X)uI +
NCr∑
J=1

ÑJ (X)
(
H(fh (X)) −H (fJ)

)
au

J +

+
NTip∑
K=1

ÑK (X)
4∑

α=1

(
F (α)(r, θ) − F (α) (XK)

)
buα

K = N [uI ,au
J ,b

uα
K ] (290)

while the approximation for d is given by

dh (X) =
N∑

I=1

NI (X) dI +
NCr∑
J=1

ÑJ (X)
(
H(fh (X)) −H (fJ)

)
ad

J +

+
NTip∑
K=1

ÑK (X)
4∑

α=1

(
F (α)(r, θ) − F (α) (XK)

)
bdα

K = N

[
dI ,ad

J ,b
dα
K

]
, (291)

where H (f (X)) is Heaviside step function modified to be symmetric across the crack and
F (α)(r, θ) (with α = 1, 2, 3, 4) forms the basis for the Westergaard field near crack tip,
defined as in [71] by

F α(r, θ) =
(√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

)
(292)

with r, θ polar coordinates around the tip.
It is worth noting that F 1 is discontinuous across the crack faces, while the other three

functions are continuous.
In previous expressions, uI is the nodal value of u, dI the nodal value of d, while au

J and
bu

K and ad
J and bd

K are additional degrees of freedom associated with the nodal enrichment
of u and d around the crack respectively.

It is worth noting that both u and d are enriched with the same enrichment functions
because either u and d represent displacements. Two kinds of shape functions can be used:
NI (X) for standard finite element code and ÑJ (X) for the enrichment functions.

Numerical examples below have been obtained by using triangular elements with linear
shape functions.

We put uI =
{
uIx

uIy

}
, au

I =
{
au

Ix
au

Iy

}
, buα

I =
{
buα
Ix
buα
Iy

}
and use similar expressions for

dI , ad
J and bdα

K . We then have

∇u =B̄ũ =
[

B
u
I B

a
J B

bα
K

]  uI

au
J

buα
K

 , with

I = 1...N
J = 1...N cr

K = 1...N TIP

α = 1, 2, 3, 4

, (293)

∇d=B̄d̃=
[

Bu
I Ba

J Bbα
K

]  dI

ad
J

bdα
K

 , with

I = 1...N
J = 1...N cr

K = 1...N TIP

α = 1, 2, 3, 4

, (294)
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where

B
u
I =

 NI,x 0
0 NI,y

NI,y 0
0 NI,x

 , (295)

B
a
J =


(ÑJ (H −H(XJ))),x 0

0 (ÑJ (H −H(XJ ))),y

(ÑJ (H −H(XJ))),y 0
0 (ÑJ (H −H(XJ ))),x

 ,

B
bα
K

∣∣∣
α=1,2,3,4

=


(ÑK (F α

K − F α
K(XK))),x 0

0 (ÑK (F α
K − F α

K(XK))),y

(ÑK (F α
K − F α

K(XK))),y 0
0 (ÑK (Kα

K − F α
K(XK))),x

 . (296)

As a consequence, the equilibrium condition reduces to the algebraic equation

K̂q̃ = f̃
ext

, (297)

where

q̃ =
{

ũ
d̃

}
, (298)

K̂ =
[ ∫

B B̄
T

AB̄d3x − ∫B B̄
T

G
′
B̄d3x

− ∫B B̄T G′B̄d3x
∫
B
(
NT CN+B̄T GB̄

)
d3x

]
, (299)

f̃ ext =
{

r̃u

r̃d

}
=
{

ru
I ; rau

J ; rbuα
K

rd
I ; r

ad

J ; rbdα
K

}
, with

I = 1...N
J = 1...N cr

K = 1...N TIP

α = 1, 2, 3, 4

(300)

and

ru
I =

∫
∂Bt

NI t̄dH2 +
∫
B
NIbd3X, (301)

rau

J =
∫

∂Bt

ÑJ (H −H(XJ ))̄tdH2 +
∫
B
ÑJ (H −H(XJ ))bd3X, (302)

rbuα
K

∣∣∣
α=1,2,3,4

=
∫

∂Bt

ÑK(F α − F α(XK))̄tdH2 +
∫
B
ÑK(F α − F α(XK))bd3X, (303)

rd
I =

∫
∂Bp

NI τ̄ dH2, rad

J =
∫

∂Bp

ÑJ(H −H(XJ ))τ̄ dH2, (304)

rbdα
K

∣∣∣
α=1,2,3,4

=
∫

∂Bp

ÑK(F α − F α(XK))τ̄ dH2. (305)
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Figure 19. Strip of microcracked material cut by a straight macro-crack. In the
XFEM mesh, nodes labelled with a square are enriched with branch
functions while circled nodes with the step function.

Numerical simulations are developed by considering the notched strip of microcracked
material shown in Figure 19. Unitary uniform traction along the vertical axis is prescribed
at the top and at the bottom of the strip. Rigid body motions are avoided by means of a
roll and a hinge. Both the roll and the hinge prescribe essential boundary conditions only
on the standard displacement field u. No prescriptions are imposed on the field d, since
they seem to be unnecessary due to the nature of the stiffness matrix of the finite element
approximation. In fact, the total stiffness matrix has only three null eigenvalues, which are
associated with the three standard rigid body degrees of freedom of the strip in the plane.
Moreover, the microstress p̄ is assumed to vanish identically all around the boundary of the
strip.

Linear triangular XFEM elements have been used. Values of the material constants are
the ones collected in Table 2.

Strip 100×300 mm 154 nodes 318 nodes 423 nodes
Jq−st e Jq−st e Jq−st e

lm= 15 2.1275 56.7461 2.3270 58.0926 2.3516 58.3520
lm= 25 2.1480 57.1617 2.3575 58.5300 2.3795 58.7921
lm= 50 2.1517 57.2345 2.3629 58.6067 2.3845 58.8695
lm= 75 2.1521 57.2405 2.3634 58.6131 2.3850 58.8760

virgin material 2.1854 57.2578 2.3634 58.6374 2.3860 58.8787

Table 2. Values of the J- Integral, varying on the number of nodes and the
distance between neighboring microcracks
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Numerical results in terms of u and d are post-processed to compute the total (quadratic)
internal energy e and the quasi-static J-integral Jq−st. The latter has been computed by
adapting the procedure illustrated in [139].

When d = 0, or lm → ∞, the multifield model falls naturally in a standard Cauchy
continuum with cubic symmetry coinciding with the one of the lattice chosen to derive
constitutive equations, as mentioned in Section 3.

Table 2 shows values of internal energy e and J-integral Jq−st for different values of lm
and for different numbers of nodes for a strip with dimension 100×300 mm. Once the
material and the geometric parameters are fixed, for growing values of lm, the multifield
model furnishes numerical results closer and closer to those of the uncracked material.

The numerical solution in terms of u and d are shown in Figure 20 where strain local-
ization effects around the crack tip are evidenced and are strictly due to the presence of
the microcracks. They are indicators toward the crack growth: Their geometry suggests an
increment of (standard and substructural) tractions in a manner that would push the crack
to grow horizontally once some critical value of the traction at the tip is reached; this is
also the suggestion of experiments and physical intuition.

It is worth noting that the simulation with lm = 15 mm gives a microcracked body
softer than that represented when lm = 75 mm. This is due to the fact that a higher value
of lm implies a more dilute microcracks distribution.

Moreover, the numerical results obtained with an XFEM technique may be compared
with of a standard FEM procedure, as shown in Table 3.

FEM XFEM
nodes e Jq−st nodes e Jq−st

434 55.2814 2.06 154 57.2405 2.1521
699 57.4337 2.2518 423 58.8760 2.3850
932 58.0432 2.3342 705 59.8892 2.5964
1338 58.7763 2.3735 1310 61.0273 2.6136
3575 60,3773 2,5052 2089 61.3354 2.5997

Table 3. Comparison between FEM and XFEM in term of J integral and total energy

The difference between the XFEM and the standard FEM consists in the number of
nodes (which influence the computational cost) used to develop the numerical simulations:
The XFEM needs a lesser number of nodes with respect to the FEM to obtain the same
numerical results. Moreover, when the evolution discontinuities is considered, in the XFEM
the remeshing is unnecessary.

6 CONCLUDING REMARKS

With this section we conclude the paper but do not bring to an end the story. In fact, the
computational aspects of the mechanics of complex bodies constitute fruitful and rather
unexplored sources of challenging problems. The unitary point of view presented here about
the structure of a wide class of models of condesed matter with exotic properties suggests
in some sense a research program in the field. Many topics deserve to be investigasted
and have been not touched here. We list below some of them that would deserve to be
developed.

1. General alghoritms for non linear problems should be constructed in general (some of
them are available in the special case of micromagnetics).
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Figure 20. Strip of Figure 19 with dimension 100X300 mm for lm = 15 mm (four
top pictures) and lm = 75 mm (four bottom pictures). The numerical
solution is given in terms of macro displacement u and micro displace-
ment d along the X axis (horizontal) and Y axis (vertical)
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2. As regards dynamical problems involving even substructural inertia, at least in the
elastic case, the program about variational integrators, developed by J. E. Marsden
and co-workers (see e.g. [130], [106], [70]), would deserve to be extended to cover
multifield theories. In developing the issue, once more the geometrical properties of
M play a crucial role.

3. The analysis of the evolution of structured sharp discontinuity surfaces in com-
plex bodies implies a (perhaps non-trivial) generalization of extended finite element
method (XFEM). Such a kind of evolution is ruled by a (rather extended) generaliza-
tion of the motion by curvature (see equation (271)).

4. The same generalization of XFEM would be useful to analyze cases of the influence
of the material substructure on the growth of macroscopic cracks in situations more
complicated than the one analyzed here.

5. All problems dealing with irreversible substructural changes deserve to be investi-
gated. We mention, in passing, that some available formulations of strain gradient
plasticity are based strictly on the multifield setting.

6. Finally, all items above imply the need of convergence results for the relevant numer-
ical schemes.
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83 Gravouil, A., Moës, N. and Belytschko, T. (2002). Non-planar 3D crack growth by the extended
finite element and level sets Part II: Level set update. Int. J. Num. Meth. Eng., 53, 2569–2586.

84 Green, A.E. and Laws, N. (1966). A general theory of rods. Proc. Roy. Soc. Lond. A, 293,
145–155.

85 Green, A.E. and Naghdi, P.M. (1995). A unified procedure for construction of theories of
deformable media. II. Generalized Continua. Proc. Royal Soc. London A, 448, 357–377.

86 Green, A.E., Naghdi, P.M. and Wainwright, W.L. (1965). A general theory of a Cosserat
surface. Arch. Rational Mech. Anal., 20, 287–308.
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176 Stolarska, M., Chopp, D.L., Moës, N. and Belytschko, T. (2001). Modelling crack growth by
level sets and the extended finite element method, Int. J. Num. Meth. Eng., 51, 943-960.
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